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Non-uniqueness of positive ground states of non-linear
Schrödinger equations

Juan Dávila, Manuel del Pino and Ignacio Guerra

Abstract

Existence of a positive, decaying radial solution to the problem

Δu − u + up + λuq = 0 in R
N ,

when λ > 0 and 1 < q < p < (N + 2)/(N − 2) has been known for a long time. For λ = 0, it
is well known that this solution is unique. While uniqueness conditions for rather general non-
linearities have been found, the issue has remained elusive for this problem. We prove that
uniqueness is in general not true. We find that if N = 3, 1 < q < 3, λ is fixed sufficiently large,
and p < 5 is taken sufficiently close to 5, then there are at least three positive decaying radial
solutions.

1. Introduction

We consider the non-linear Schrödinger equation

iψt = Δψ + |ψ|p−1ψ + |ψ|q−1ψ in R
N × R, (1.1)

where N � 3 and the powers p and q are superlinear and subcritical, namely

1 < q < p <
N + 2
N − 2

.

This equation is a natural non-scaling invariant extension of the extensively studied defocusing
equation

iψt = Δψ + |ψ|p−1ψ in R
N × R.

A complete theory on the basic issues of well-posedness, asymptotic behaviour and blow-up
for (1.1) was developed by Tao, Visan and Zhang [29].

In this paper, we are interested in standing-wave solutions of problem (1.1), namely finite-
energy solutions of the form

ψ(x, t) = e−iβtQ(x).

Assuming that β = α2 with α > 0 and renormalizing through the scaling

Q(x) = α2/(p−1)v(αx),

we obtain the following equation for v:

Δv − v + |v|p−1v + λ|v|q−1v = 0 in R
N , (1.2)

where
λ = α2(q−p)/(p−1).
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In this paper, we are interested in positive decaying solutions of equation (1.2) (sometimes
called ground states), namely solutions of the problem

Δv − v + vp + λvq = 0, v > 0 in R
N ,

v(x) −→ 0 as |x| −→ ∞,
(1.3)

where λ > 0 and 1 < q � p < (N + 2)/(N − 2).
In the case of a pure power non-linearity, namely the problem

Δv − v + vp = 0, v > 0 in R
N ,

v(x) −→ 0 as |x| −→ ∞,
(1.4)

existence of a radially symmetric solution was first established by Strauss [28] for 1 < p <
(N + 2)/(N − 2). When p � (N + 2)/(N − 2) no solution exists, as it follows from Pohozaev’s
identity [25]. Solutions of (1.4) (and also those of (1.3)) are necessarily radially symmetric
up to translations owing to the classical Gidas, Ni and Nirenberg result [13]. In [15], Kwong
established uniqueness of the radially symmetric solution of (1.4).

Berestycki and Lions [6] found that existence of radial solutions also holds for the more
general problem

Δv − v + f(v) = 0, v > 0 in R
N ,

v(x) −→ 0 as |x| −→ ∞,
(1.5)

where f is of class C1 and there exist p ∈ (1, (N + 2)/(N − 2)) and t0 > 0 such that

f(0) = f ′(0) = 0,
t20
2
<

∫ t0

0

f(t) dt, |f(t)| � C(1 + tp) for all t > 0.

These conditions obviously hold for the sum of subcritical powers (1.3); see also
[1, 4, 5, 7, 10–12, 24] for related existence results.

On the other hand, uniqueness of radial solutions of (1.5) is known only under more restrictive
assumptions; see, for instance, [8, 15–18, 21, 22, 27] and also [3, 9] for uniqueness in balls.

The most general extension of Kwong’s result is due to Serrin and Tang [27]: a radial
solution of (1.5) is unique if there exists a b > 0 such that (f(v) − v)(v − b) > 0 for v �= b and
the quotient (f ′(v)v − v)/(f(v) − v) is a non-increasing function of v ∈ (b,∞).

However, f(v) = vp + λvq does not satisfy the latter condition for large v, unless p = q. Thus,
uniqueness of radial solutions of problem (1.3), the most natural extension of the single power
case (1.4), has remained conspicuously open.

The purpose of this paper is to establish the rather striking fact that Kwong’s uniqueness
result is in general not true for problem (1.3) when p �= q. In fact, we establish that in dimension
N = 3 and suitable ranges for the parameters p, q and λ, problem (1.3) has at least three
solutions.

Thus we consider in what follows the problem{
Δv − v + vp + λvq = 0, v > 0 in R

3,

v(x) −→ 0 as |x| −→ ∞,
(1.6)

where λ > 0, and 1 < q < p < 5.

1.1. Main result

Our main result reads as follows.

Theorem 1.1. Let 1 < q < 3. Then for each λ sufficiently large, there exists a number
1 < p0 < 5 so that for all p0 < p < 5 problem (1.6) has at least three solutions.
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Figure 1. Bifurcation diagram in p for (1.6) for λ sufficiently large and fixed.

It is illustrative to depict the above result in terms of bifurcation diagrams. The picture in
Figure 1, obtained from numerical simulations, represents the branch of positive solutions for
a fixed, large number λ, when we let p act as a parameter of the problem and q is fixed. The
branch in p crosses the critical exponent p = 5 then it turns backwards crossing again p = 5
and finally it turns right developing an asymptote at p = 5. We distinguish in this picture for
a given p slightly below 5, a large solution and a small solution. Those parts of the branch will
be described in detail. The third solution can be found by a degree-theoretical argument.

The restriction 1 < q < 3 is essential in our proof. Moreover, if q > 3, then the branch appears
numerically monotone. This seems also the case in dimensions N � 4. Establishing uniqueness
in those scenarios (except for λ small, which is easy by perturbations) appears as a challenging
problem.

1.2. The small solution

The lower part of the branch represents a small solution of size of order O(λ−1/(q−1)). The
change of variables v(x) = λ−1/(q−1)w(x) takes problem (1.6) into the form{

Δw − w + τwp + wq = 0, w > 0 in R
3,

w(x) −→ 0 as |x| −→ ∞,

where τ = λ−(p−1)/(q−1).
In Lemma 5.1, we find a solution for any λ large as regular perturbation of the unique

solution for τ = 0.

1.3. The large solution

The upper part of the branch diverges in size by bubbling. Let us write p = 5 − ε, where we
regard ε as a small positive parameter. It turns out that the following scaling is convenient:

v(x) = ε−2/(4−ε)u(x/ε),
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so that problem (1.6) becomes{
Δu+ u5−ε + λεαuq − ε2u = 0, u > 0 in R

3,

u(y) −→ 0 as |y| −→ ∞,
(1.7)

where

α :=
5 − q

2
− ε(q − 1)

2(4 − ε)
. (1.8)

As ε→ 0, problem (1.7) approaches formally to

Δu+ u5 = 0, u > 0 in R
3,

whose unique radial solutions are given by the functions

wμ(y) = 31/4

(
μ

μ2 + |y|2
)1/2

.

As we will see, there is a solution of (1.7) which comes as a perturbation of wμ for the choice
μ = π/32. In terms of the original problem (1.6), the following result holds.

Theorem 1.2. Let 1 < q < 3, λ � 0 be given, and write p = 5 − ε. Then for all sufficiently
small ε > 0 there exists a solution uε of (1.6) of the form

uε(x) = 31/4

(
1

1 + (32/π)2ε−2|x|2
)1/2

ε−1/2
√

32/π(1 + o(1)), (1.9)

where o(1) → 0 uniformly as ε→ 0.

1.4. The central solution and λ large

As a by-product of the proofs, we will see that the large and the small solution are both non-
degenerate, and that their Morse indices are both equal to 1. This information yields their
local degrees in a suitable space, and the existence of a third solution will follow from a global
degree argument. The number λ in Theorem 1.1 has to be fixed prior to letting p approach
5. Indeed, as we find in Lemma 5.3, when we fix p, if λ is too large, then there is only one
solution. The set of positive solutions when we fix p = 5 − ε and consider λ as its parameter
can be depicted by the diagram in Figure 2, obtained by numerical simulations. Computing
how large λ can be taken in Theorem 1.1, depending on ε, corresponds intuitively to locating
the upper turning point Pε in Figure 2. For λ near that point, we see two large solutions which
can be explicitly described for 2 � q < 3 as follows.

Theorem 1.3. Assume 2 � q < 3. There exists a number λ0 such that for each 0 < λ̄ < λ0

and the number

λ =

{
λ̄ε−(3−q)/2 if 2 < q < 3,
λ̄ε−1/2| log ε|−1 if q = 2,

in problem (1.6), there exist two positive numbers d− and d+ such that for all ε there are two
solutions v± of the form

v±(x) = 31/4

(
1

1 + d4±ε−2|x|2
)1/2

ε−1/2d±(1 + o(1)), (1.10)

where o(1) → 0 uniformly as ε→ 0.
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Figure 2. Bifurcation diagram in λ for (1.6) in p = 5 − ε, ε > 0 small and fixed.

In the case 1 < q < 2, it is also possible to find these two solutions but the proof is different
and will be addressed in future work. The numbers λ0 and d± can be explicitly computed as
follows. Let us consider the function

f(μ) = b1μ
−(3−q)/2 − b1

π

32
μ−(5−q)/2 where b1 =

4
5 − q

q + 1
3(q−1)/4

Γ((1/2)(q + 1))
π1/2Γ((q − 2)/2)

,

whose maximum value is computed as

λ0 := max
μ>0

f(μ) = f(μ0) = b1

( π
32

)−(3−q)/2
(

5 − q

3 − q

)−(5−q)/2 2
3 − q

, μ0 =
5 − q

3 − q

π

32
. (1.11)

Thus, given 0 < λ̄ < λ0, the equation λ̄ = f(μ) has exactly two solutions
π

32
< μ−(λ̄) < μ0 < μ+(λ̄). (1.12)

As we will see, the numbers d± in (1.10) are simply given by

d± = μ±(λ̄)−1/2.

The solutions of (1.6) in the (λ, v) space can be identified with a set in the (λ,m)-plane, where
m = v(0) = ‖v‖∞ as in Figure 2. Our result can be portrayed as representing approximately
the upper turning point as

P ε ∼ (λ0ε
−(3−q)/2, 31/4(μ0)−1/2ε−1/2),

while the set is itself near this point approximated by the graph

λ = ε−(3−q)/2f(31/2(εm2)−1) for m ∼ ε−1/2.

The proofs are based on a Lyapunov–Schmidt reduction method along the lines of that used
in [23, 24]. We first prove Theorem 1.2 in Section 4 after some preliminaries in Section 2, a
computation of the energy in Subsection 2.2, and a study of the linearized operator in Section 3.
Theorem 1.1 is proved in Section 5. In Section 6, we carry out the proof of Theorem 1.3.



Page 6 of 27 JUAN DÁVILA, MANUEL DEL PINO AND IGNACIO GUERRA

2. First approximation of the large solution

We assume that 1 < q < 3 and λ � 0 are given. As we have discussed, to prove Theorem 1.2 it
is convenient to express problem (1.6) in its equivalent form{

Δu+ u5−ε + λεαuq − ε2u = 0, u > 0 in R
3,

u(y) −→ 0 as |y| −→ ∞,
(2.1)

with α = (5 − q)/2 − ε(q − 1)/2(4 − ε), via the change of variables v(x) = ε−2/(4−ε)u(x/ε).
Thus, letting

w(y) = 31/4 1
(1 + |y|2)1/2

, wμ(y) = μ−1/2w(y/μ),

the idea is to look of a solution of (2.1) which is a perturbation of wμ for a suitable choice of
μ. It turns out that a more convenient first approximation than wμ is its projection Uμ defined
as the unique solution of the problem{

ΔUμ − ε2Uμ = −w5
μ in R

3,

Uμ(y) −→ 0 as |y| −→ ∞.
(2.2)

Let us write

fε(u) = u5−ε + λεαuq.

Searching for a solution u of (2.1) of the form u = Uμ + φ yields the following equation for φ:{
Lεφ+N(φ) +R = 0 in R

3,

φ(y) −→ 0 as |y| −→ +∞,
(2.3)

where

Lεφ = Δφ+ f ′ε(Uμ)φ− ε2φ, N(φ) = fε(Uμ + φ) − fε(Uμ) − f ′ε(Uμ)φ,

R = ΔUμ + fε(Uμ) − ε2Uμ. (2.4)

We will use a Lyapunov–Schmidt reduction scheme to solve problem (2.3). To this end, it is
important to get some basic estimates for Uμ.

2.1. Basic estimates for Uμ

First, by the maximum principle we readily find

0 < Uμ � wμ in R
3.

Define the positive function πμ := wμ − Uμ. Then

Δπμ − ε2πμ = −ε2wμ in R
3.

The following estimates hold.

Lemma 2.1. Assume that δ � μ � δ−1 for some δ > 0. For any 0 < σ < 1, we have the
expansion

μ1/2πμ(y) = 4π31/4εμH(εy) − ε2μ2D0(y/μ) + ε3−σθε(y),

where H(x) = (1 − e−|x|)/4π|x|,
D0(y) = 1

2 [|y|−1 log(|y| +
√

|y|2 + 1) +
√

|y|2 + 1 − |y|], (2.5)

and |θε(y)| � C(1 + ε|y|)−1+σ for all y ∈ R
3.
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Proof. Let us define the Green’s function G := G(x) by

− ΔG(x) +G(x) = δ0(x), G(x) −→ 0 as |x| −→ ∞. (2.6)

Take H(x) = 1/4π|x| −G(x), so

ΔH(x) −H(x) = − 1
4π|x| , H(x) − 1

4π|x| −→ 0 as |x| −→ ∞.

Note thatH(x) = (1 − e−|x|)/4π|x| is the explicit solution of the problem. LetD0 be the unique
continuous solution of the problem

ΔD0 = D1(y) := 31/4

[
1

(1 + |y|2)1/2
− 1

|y|
]

with D0(y) → 0 as |y| → ∞. Since D1 < 0, we have D0 > 0, in fact D0 is given by (2.5). Define

S(y) = μ1/2πμ(y) − 4π31/4εμH(εy) + ε2μ2D0(y/μ).

Clearly, S satisfies
−ΔS + ε2S = ε4μ2D0(y/μ) > 0 in R

3.

By the maximum principle S > 0 in R
3. Taking S̄(x) = S(x/ε),

−ΔS̄ + S̄ = ε2μ2D0(x/(εμ)) in R
3.

Since D0(y) ∼ |y|−1 log(|y|) as |y| → ∞, we have D0(x/(εμ)) � C(ε/|x|)1−σ for any 0 < σ < 1.
Then S̄(x) � ε2(ε/(1 + |x|))1−σ for all x ∈ R

3.

Lemma 2.2. We have

wμ(y) − Uμ(y) � C
ε

1 + ε|y| for all y ∈ R
3, (2.7)

Uμ(y) � Cε−4|y|−5 for |y| � 1/ε. (2.8)

Proof. Let P (x) = wμ(x/ε) − Uμ(x/ε). The P satisfies

−ΔP + P = wμ(x/ε) in R
3.

Since wμ(x/ε) � Cε/|x|, using v(x) = ε/|x| as a barrier in a set |x| � R/ε with R > 0 a large
constant, we get P (x) � Cε/(1 + |x|) for all |x| � R/ε. On the other hand, P (x) � ε near the
origin and we deduce (2.7).

To prove (2.8), we use as barrier the function v(y) = ε−4|y|−5. It satisfies Δv − ε2v �
−ε−2|y|−5 for |y| � R/ε with R > 0 a large constant. Since v(y) = Rε for |y| = R/ε and
Uμ(y) � wμ(y) � C/|y| for all |y| � 0, we get Av(y) � Uμ(y) for |y| = R/ε, for some constant
A > 0. By the maximum principle, Uμ(y) � Av(y) for all |y| � R/ε.

We will also need the functions

Zμ =
∂wμ

∂μ
(2.9)

and

Z̃μ =
∂Uμ

∂μ
, (2.10)

which satisfies {
ΔZ̃μ − ε2Z̃μ = −5w4

μZμ in R
3,

Z̃μ(y) −→ 0 as |y| −→ ∞.

As in the proof of (2.7), we can also show the following lemma.
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Lemma 2.3.

|Z̃μ(y) − Zμ(y)| � Cε

1 + ε|y| for all |y| � 0, (2.11)

|Z̃μ(y)| � C

1 + |y| for all |y| � 0, (2.12)

|Z̃μ(y)| � Cε−4|y|−5 for all |y| � 1/ε. (2.13)

2.2. Energy expansion for Uμ

Solutions of problem (2.1) are critical points of the energy functional

E(u) = Ep(u) + Eλ(u),

where p = 5 − ε,

Ep(u) =
1
2

∫
R3

|Du|2 dy +
ε2

2

∫
R3

|u|2 dy − 1
p+ 1

∫
R3

|u|p+1 dy

and

Eλ(u) = −λεα 1
q + 1

∫
R3

|u|q+1 dy.

Lemma 2.4. Assume 1 < q < 3, λ > 0 and δ > 0 be fixed. Then there exist positive
constants a0, a1, a2, a3 for such that δ < μ < δ−1

E(Uμ) = a0 + εΨ(μ) − a2ε log ε− a3ε+ εΘε(μ),

where

Ψ(μ) = a1μ− a2 log μ,

and Θε(μ) → 0 as ε→ 0 in the C1 norm in the interval δ � μ � δ−1.

Since a1 and a2 are positive, the critical point of Ψ is μ = a2/a1 and d = μ−1/2.

Proof. For u = Uμ, we have

E5(Uμ) = −1
6

∫
R3

|Uμ|6 dy +
1
2

∫
R3
w5

μUμ dy,

writing Uμ = wμ − πμ, we have

E5(Uμ) =
1
3

∫
R3
w6

μ(y) dy − 1
2

∫
R3
w5

μπμ dy + R,

where

R = −1
6

∫
R3

[|wμ − πμ|6 − w6
μ + 6w5

μπμ] dy.

Using Lemma 2.1, we have

1
3

∫
R3
w6

μ(y) dy − 1
2

∫
R3
w5

μπμ dy = a0 + a1εμ,

where

a0 =
1
3

∫
R3
w6(y) dy =

1
4

√
3π2, a1 =

1
2

∫
R3
w(y)531/4 dy = 2π

√
3.



NON-UNIQUENESS OF GROUND STATES OF NLS Page 9 of 27

Now using (2.7), we have

R = −5
∫

R3

∫1

0

(wμ − tπμ)4π2
μ(1 − t) dt dy = O(ε2).

So we have the following energy expansion

E5(Uμ) = a0 + a1εμ+O(ε2).

On the other hand,

Ep(Uμ) − E5(Uμ) = (p− 5)[a2 log(μ) + a3] + o(p− 5),

where

a2 =
1
12

∫
R3
w(y)6 dy =

√
3π2

16
, a3 =

1
36

∫
R3
w(y)6[6 log(w(y)) − 1] dy.

For 2 < q < 3, we have

Eλ(Uμ) = −λa4(εμ)(5−q)/2 +O(ε2).

where

a4 =
1

q + 1

∫
R3
wq+1(y) dy =

3(q+1)/4

(q + 1)
π3/2Γ((q − 2)/2)

Γ(1/2(q + 1))
,

and the energy has the form

E(Uμ) = a0 + a1εμ− λa4(εμ)(5−q)/2 + (p− 5)[a2 log(μ) + a3]. (2.14)

For q = 2, we have the following estimate

E(Uμ) = a0 + a1μ+ λa4 log(εμ)(εμ)3/2 + (p− 5)[a2 log(μ) + a3], (2.15)

where a4 = 4π/31/4. In fact, we have∫
R3
Uμ(y)3 dy =

∫
B0(1/ε)

Uμ(y)3 dy +
∫

R3\B0(1/ε)

Uμ(y)3 dy (2.16)

= −4π33/4μ3/2 log(εμ) +O(1), (2.17)

since
∫a

0
r2/(1 + r2)3/2 = log(a+

√
1 + a2) − a/

√
1 + a2. For 1 < q < 2, we have∫

R3
(wμ − πμ)q+1 = μ(q+1)/2εq−2(31/44π)q+1

∫
R3
Gq+1 + o(1),

and the energy has the form

E(Uμ) = a0 + a1εμ− λa4(εμ)(q+1)/2 + (p− 5)[a2 log(μ) + a3], (2.18)

where a4 = (31/44π)q+1
∫

R3 G
q+1(x)/(q + 1) dx.

Combining (2.14), (2.15) and (2.18), and taking p = 5 − ε, we obtain the result.

3. Solvability for the linearized operator around Uμ

In this section, we analyse the linear equation⎧⎪⎨
⎪⎩

Δφ+ pUp−1
μ φ+ λεαqUq−1

μ φ− ε2φ = h+ c1Zμw
4
μ in R

3,

φ(y) −→ 0 as |y| −→ +∞,∫
R3 φZμw

4
μ = 0,

(3.1)

where Uμ is the function introduced in (2.2), p = 5 − ε, 1 < q < 5 and α = (5 − q)/
2 − (5 − p)(q − 1)/2(p− 1).
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Let us define the following norms, for function φ, h : R
3 → R:

‖φ‖∗ = sup
|y|�1/ε

(1 + |y|2)(θ−2)/2|φ(y)| + sup
|y|�1/ε

ε2|y|θ|φ(y)| (3.2)

and
‖h‖∗∗ = sup

|y|�0

(1 + |y|2)θ/2|h(y)| (3.3)

with θ in the range 2 < θ < 3 (so that r2−θ is superharmonic).
The objective of this section is to prove the following result.

Lemma 3.1. Let 0 < δ < 1 and λ̄ � 0 be fixed. Then there exists ε0 = ε0(δ, λ̄) > 0 such
that for 0 < ε � ε0, 0 � λ � λ̄, δ � μ � δ−1, and for any radial h with ‖h‖∗∗ <∞ there exists
a unique radial φ with ‖φ‖∗ < +∞ and c1 ∈ R solution of (3.1), moreover there exists C > 0
such that

‖φ‖∗ � C‖h‖∗∗, |c1| � C‖h‖∗∗. (3.4)

We first prove an a priori estimate for solutions of a simpler problem:⎧⎪⎨
⎪⎩

Δφ+ pUp−1
μ φ− ε2φ = h,

φ(y) −→ 0 as |y| −→ ∞,∫
R3 Zμw

4
μφ = 0,

∫
R3

∂wμ

∂xi
w4

μφ = 0, i = 1, 2, 3
(3.5)

with |p− 5| = ε. In order for it to be useful in a later situation, we do not assume here h, φ to
be radial.

Lemma 3.2. Assume that δ � μ � δ−1 where 0 < δ < 1 is fixed. There is C such that if
ε > 0 is sufficiently small, for any h, φ solution of (3.5) we have

‖φ‖∗ � C‖h‖∗∗. (3.6)

Proof. By contradiction, suppose that there exist φn, hn, μn, εn, |pn − 5| = εn such that

‖φn‖∗ = 1, ‖hn‖∗∗ −→ 0, μn ∈ [δ, δ−1], εn −→ 0,

and such that φn, hn solve (3.5).
We claim that φn → 0 uniformly on compact sets of R

3. Indeed, assume otherwise. Then up
to a subsequence μn → μ > 0 and φn → φ uniformly on compact subsets of R

3, where φ �≡ 0
and satisfies

Δφ+ 5w4
μφ = 0 in R

3.

We also know that ‖φ‖∗ � 1 which implies that φ is bounded. Since wμ is non-degenerate, it
is well known, see [26], that φ = c0Zμ +

∑3
i=1 ci(∂wμ/∂xi) for some c0, . . . , c3 ∈ R. But taking

the limit in the orthogonality condition in (3.5), we obtain∫
R3
Zμw

4
μφ = 0

∫
R3

∂wμ

∂xi
w4

μφ = 0,

so φ = 0, which is a contradiction.
This proves that φn → 0 uniformly on compact sets of R

3. We will obtain now an estimate
for ‖φn‖∗ using suitable barriers. Let 0 < σ < 1 with σ < θ, δ > 0 and r0 > 0 to be fixed later
on. Define

φ̄(x) = r2−θ + δr−σ, r = |x|.
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Then

(Δ + pnw
pn−1 − ε2n)φ̄ = (2 − θ)(3 − θ)r−θ + pnw

pn−1r2−θ − ε2nr
2−θ

+ δ[−σ(1 − σ)r−σ−2 + pnw
pn−1r−σ − ε2nr

−σ]

= (2 − θ)(3 − θ)r−θ +O(r−4+O(εn))r2−θ − ε2nr
2−θ

+ δ[−σ(1 − σ)r−σ−2 + +O(r−4+O(εn))r−σ − ε2nr
−σ]

� −Cθr
−θ for r � r0,

where Cθ > 0 depends only on θ, if we chose r0 > 0 large depending on θ and σ. Define

vn(x) =

(
sup

|y|=r0

|φn(y)|rθ−2
0 +

1
Cθ

‖h̃n‖∗∗ +
1
n

)
φ̄(x) − φn(x),

which satisfies
(Δ + pnw

pn−1 − ε2n)vn � 0 for |x| � r0

and
vn(x) � 0 for |x| = r0.

Since |φn(x)| � ε−2
n |x|−θ for |x| � 1/εn, we can find rn � 1/εn such that for |x| � rn we have

vn(x) � 0 for |x| � rn.

By the maximum principle, we deduce that

vn(x) � 0 for |x| � r0,

which means

φn(x) �
(

sup
|y|=r0

|φn(y)|rθ−2
0 +

1
Cθ

‖h̃n‖∗∗ +
1
n

)
(|x|2−θ + δ|x|−σ) for |x| � r0.

By a similar argument,

|φn(x)| �
(

sup
|y|=r0

|φn(y)|rθ−2
0 +

1
Cθ

‖h̃n‖∗∗ +
1
n

)
(|x|2−θ + δ|x|−σ) for |x| � r0.

Letting δ → 0, we obtain

|φn(x)| �
(

sup
|y|=r0

|φn(y)|rθ−2
0 +

1
Cθ

‖h̃n‖∗∗ +
1
n

)
|x|2−θ for |x| � r0. (3.7)

Let
φ̄(x) = r−θ + δr−σ, r = |x|,

with σ as before. Then

(Δ + pnw
pn−1 − ε2n)φ̄ = −θ(1 − θ)r−θ−2 + pnw

pn−1r−θ − ε2nr
−θ

+ δ[−σ(1 − σ)r−σ−2 + pnw
pn−1r−σ − ε2nr

−σ]

� −ε
2
n

2
r−θ for r � M

εn
,

where M > 0 is a constant that depends only on θ. So

(Δ + pnw
pn−1 − ε2n)

(
2
ε2n

‖h̃n‖∗∗φ̄− φn

)
� 0 for r � M

εn
.

Since

φ̄

(
M

εn

)
� M−θεθ

n,
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and by (3.7)

|φn(x)| �
(
|φn(r0)|rθ−2

0 +
1
Cθ

‖h̃n‖∗∗ +
1
n

)
M2−θεθ−2

n for |x| =
M

εn
,

we have

|φn(x)| �
(
|φn(r0)|rθ−2

0 +
1
Cθ

‖h̃n‖∗∗ +
1
n

)
M2ε−2

n φ̄

(
M

εn

)
for |x| =

M

εn
.

We also have

|φn(x)| �
(

sup
|y|=r0

|φn(y)|rθ−2
0 +

1
Cθ

‖h̃n‖∗∗ +
1
n

)
M2ε−2

n φ̄(x)

for |x| sufficiently large. By the maximum principle,

|φn(x)| �
((

sup
|y|=r0

|φn(y)|rθ−2
0 +

1
Cθ

‖h̃n‖∗∗ +
1
n

)
M2ε−2

n +
2
ε2n

‖h̃n‖∗∗
)
φ̄(x)

for all |x| � M/εn. Letting δ → 0, we obtain

|φn(r)| �
((

sup
|y|=r0

|φn(y)|rθ−2
0 +

1
Cθ

‖h̃n‖∗∗ +
1
n

)
M2ε−2

n +
2
ε2n

‖h̃n‖∗∗
)
|x|−θ

for all |x| � M/εn. This and (3.7) imply that ‖φn‖∗ → 0 as n→ ∞, which is a contradiction,
and establishes (3.6).

We derive now an a priori estimate for the solutions of:⎧⎪⎨
⎪⎩

Δφ+ pUp−1
μ φ+ λεαqUq−1

μ φ− ε2φ = h,

φ(y) → 0 as |y| −→ ∞,∫
R3 Zμw

4
μφ = 0,

∫
R3

∂wμ

∂xi
w4

μφ = 0, i = 1, 2, 3,
(3.8)

with |p− 5| = ε and 1 < q < 5. Again this is done without assuming φ, h to be radial.

Lemma 3.3. Assume that δ � μ � δ−1 where 0 < δ < 1 is fixed. There is C such that if
ε > 0 is sufficiently small, for any h, φ solution of (3.8) we have

‖φ‖∗ � C‖h‖∗∗. (3.9)

Proof. We claim that

‖Uq−1
μ φ‖∗∗ � Cεq−3‖φ‖∗. (3.10)

Since Uμ � wμ, it is sufficient to prove

‖wq−1
μ φ‖∗∗ � Cεq−3‖φ‖∗.

We have that

sup
|y|�1/ε

(1 + |y|2)θ/2wq−1
μ |φ(y)| � C sup

|y|�1/ε

(1 + |y|2)θ/2|y|−(q−1)|φ(y)|

� C‖φ‖∗ sup
|y|�1/ε

|y|3−q.

Therefore,

sup
|y|�1/ε

|y|θwq−1
μ (y)|φ(y)| � C‖φ‖∗εq−3.
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Now we analyse the case |y| � 1/ε:

sup
|y|�1/ε

|y|θwq−1
μ (y)|φ(y)| � C sup

|y|�1/ε

|y|θ|y|−(q−1)|φ(y)|

� C sup
|y|�1/ε

|y|θ|y|−(q−1)|y|−θε−2‖φ‖∗

= Cε−2‖φ‖∗ sup
|y|�1/ε

|y|−(q−1)

� C‖φ‖∗εq−3,

since q > 1. This proves (3.10).
Then, using estimate (3.6), we deduce that

‖φ‖∗ � C‖h‖∗∗ + Cεα+q−3‖φ‖∗.
Since α = (5 − q)/2 +O(ε), we see that α+ q − 3 > 0, which proves the desired estimate.

Proof of Lemma 3.1. We first prove the estimate (3.4). Assume that h, φ are radial and
φ satisfies (3.1). Then Lemma 3.3 shows that ‖φ‖∗ is finite. Let η ∈ C∞

0 (B2R(0)) be such
that η ≡ 1 in BR(0), |∇η| � CR−1, |Δη| � CR−2. Multiplying (3.1) by Zμη and then letting
R→ ∞, we get

c1

∫
R3
Z2

μw
4
μ =

∫
R3

(pUp−1
μ − 5w4

μ)φZμ + λεαq

∫
R3
Uq−1

μ φZμ − ε2
∫

R3
φZμ −

∫
R3
hZμ.

To verify this, we need to estimate∫
BR(0)

|φΔη|Zμ � C

R2
‖φ‖∗

∫2R

R

1
ε2rθ+1

r2 dr � Cε−2R−1−θ‖φ‖∗

and ∫
BR(0)

|φ||∇η||∇Zμ| � Cε−2R−1−θ‖φ‖∗,

and they converge to 0 as R→ ∞. We also have

ε2
∫

R3
|φZμ| � C‖φ‖∗εθ−2 (3.11)

and ∣∣∣∣
∫

R3
(pUp−1

μ − 5w4
μ)φZμ

∣∣∣∣ � Cε‖φ‖∗,

using (2.7). Similarly,

λεα

∫
R3
Uq−1

μ |Zμφ| � Cεθ−2, (3.12)

and | ∫
R3 hZμ| � C‖h‖∗∗. The inequalities (3.11) and (3.12) show that

|c1| � o(1)‖φ‖∗ + C‖h‖∗∗,
where o(1) → 0 as ε→ 0. This together with (3.9) yields (3.4).

To prove existence of a solution of (3.1), consider the Hilbert space

H =
{
φ ∈ H1(R3) :

∫
R3
Zμw

4
μφ = 0

}
with inner product 〈φ1, φ2〉 =

∫
R3 ∇φ1∇φ2 + ε2

∫
R3 φ1φ2. For h : R

3 → R, with ‖h‖∗∗ < +∞,
the variational problem of finding φ ∈ H such that

〈φ, ψ〉 =
∫
Ωλ

(pUp−1
μ φ+ λεαUq−1

μ + h)φ for all φ ∈ H
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is a weak formulation of (3.1). Using the Riesz representation theorem, this variational problem
is equivalent to solve

φ+K(φ) = h̃, (3.13)

where h̃ ∈ H and K : H → H is a compact operator. Any solution φ of (3.13) is a weak solution
of (3.1) and by standard regularity theory φ ∈ C(R3). Moreover, we can prove that this solution
has finite ‖ ‖∗ norm using barriers, and hence estimate (3.4) holds. When h̃ = 0, then this
argument shows that φ = 0. By the Fredholm alternative, there is a solution φ ∈ H of (3.13)
giving a solution of (3.1).

4. Proof of Theorem 1.2 and non-degeneracy of the solution

For the proof, we will solve the problem in two steps: first we use the linear theory devised
in the previous section to solve a projected version of the problem, and then we will find the
right value of μ in such a way that we actually have a solution to the full problem. We have
the validity of the following result.

Proposition 4.1. For ε > 0 sufficiently small, there is a unique φμ and c solution of{
Lεφ+N(φ) +R = cZμw

4
μ in R

3, φ(x) −→ 0 as |x| −→ +∞,∫
R3 φZ̃ = 0,

(4.1)

and such that ‖φμ‖ � Cε, |c| � Cε.

For the proof, we start by estimating R, which was defined in (2.4).

Lemma 4.2. Assume 1 < q < 5. Suppose that δ � μ � δ−1 where 0 < δ < 1 is fixed and
that λ̃ � 0 is a constant. Then, choosing 2 < θ < 3 appropriately in the norms (3.2), (3.3),
there exists ε0 = ε0(λ̃) > 0 such that if 0 < ε � ε0, 0 � λ � λ̃, we have

‖R‖∗∗ � Cε, (4.2)
‖∂μR‖∗∗ � Cε. (4.3)

Proof. We compute R = U5−ε
μ − w5

μ + λεαUq
μ. We claim that

‖U5−ε
μ − w5−ε

μ ‖∗∗ � Cε. (4.4)

Indeed, using (2.7) we get

sup
|y|�1/ε

(1 + |y|2)θ/2|U5−ε
μ − w5−ε

μ | � C sup
|y|�1/ε

(1 + |y|2)θ/2w5−ε−1
μ |Uμ − wμ|

� Cε sup
|y|�1/ε

(1 + r)θ−4+O(ε)

1 + rε
� Cε,

since we work with 2 < θ < 3. Also

sup
r�1/ε

(U5−ε
μ + w5−ε

μ ) � Cε4−θ+O(ε) � Cε4−θ � Cε,

and we obtain (4.4).
By direct calculation,

‖w5−ε − w5‖∗∗ � Cε.



NON-UNIQUENESS OF GROUND STATES OF NLS Page 15 of 27

To estimate the term λεαUq
μ, we use the inequality Uμ � wμ to get

λεα sup
0�|y|�1/ε

(1 + |y|2)θ/2Uq
μ �

{
Cλεα if θ < q,

Cλεα+q−θ if θ � q.

Using (2.8), we find

λεα sup
|y|�1/ε

(1 + |y|2)θ/2Uq
μ � Cλεα−4q sup

|y|�1/ε

(1 + |y|)θ/2|y|−5q � Cλεα+q−θ.

Note that α+ q = q/2 + 5/2 +O(ε) > 3. Therefore, fixing θ in the range

2 < θ <
3 + q

2
, (4.5)

we get estimate (4.2).
Regarding the derivative of R, we have

∂μR = (5 − ε)U5−ε−1
μ Z̃μ − 5w4

μZμ + λεαqUq−1
μ Z̃μ.

Owing to (2.11) and (2.12), the proof of estimate (4.3) for ‖∂μR‖∗∗ is similar to that of ‖R‖∗∗.

4.1. Proof of Proposition 4.1

Let T be the linear operator that to h with ‖h‖∗∗ < +∞ associates the unique solution φ of
(3.1) with ‖φ‖∗ < +∞, constructed in Lemma 3.1. Then problem (4.1) can be written as the
fixed point problem

φ = −T (N(φ) +R),

which we can solve by the fixed point mapping principle. For this, let E be the Banach space of
continuous radial functions φ : R

3 → R with ‖φ‖∗ <∞, endowed with this norm. Let B̄ρ ⊂ E
be the closed ball in E centred at zero with radius ρ > 0, where ρ will be chosen later on.

Owing to (3.4),
‖T (N(φ) +R)‖∗ � C(‖N(φ)‖∗∗ + ‖R‖∗∗).

We estimate ‖N(φ1) −N(φ2)‖∗∗ for ‖φ1‖∗, ‖φ2‖∗ � ρ, by writing

N(φ1) −N(φ2) =
∫1

0

N ′(φ2 + t(φ1 − φ2)) dt(φ1 − φ2).

We see that
‖N(φ1) −N(φ2)‖∗∗ � K‖φ1 − φ2‖∗,

where

Kρ = sup
‖φ‖∗�ρ

[
sup

r�1/ε

r2|f ′ε(Uμ + φ) − f ′ε(Uμ)| + sup
r�1/ε

ε−2|f ′ε(Uμ + φ) − f ′ε(Uμ)|
]
. (4.6)

We compute

sup
r�1/ε

r2|(Uμ + φ)p−1 − Up−1
μ | � C(‖φ‖∗ + εmin((θ−2)(p−1)−2,0)‖φ‖p−1

∗ ) (4.7)

and
sup

r�1/ε

ε−2|(Uμ + φ)p−1 − Up−1
μ | � C(εθ+p−6‖φ‖∗ + ε(θ−2)(p−1)−2‖φ‖p−1

∗ ). (4.8)

If 2 � q < 3, then we obtain

Kρ � Cλεα(εθ+q−6 + ε(θ−2)(q−1)−2)ρ,
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and if 1 < q < 2, then we get

Kρ � Cλεα+(θ−2)(q−1)−2ρq−1.

Take ρ = Aε for some A to be fixed. Then for ‖φ1‖∗, ‖φ2‖∗ � Aε,

‖N(φ1) −N(φ2)‖∗∗ � Cεa‖φ1 − φ2‖∗,
where a > 0 (for any 2 < θ < 3). This and the estimate for R in (4.2) (valid for θ > 2 in the
range (4.5)) show that taking A large enough, −T (N(φ) +R) is a contraction from B̄Aε to
itself, and therefore it has a unique fixed point in this set.

Proposition 4.3. The solution φμ, c(μ) constructed in Proposition 4.1 is C1 with respect
to μ and satisfies

‖∂μφμ‖∗ + |c′(μ)| � Cε. (4.9)

Proof. The differentiability of φμ, c(μ) with respect to μ follows from the differentiability of
R, the operator T defined by Lemma 3.1 and the contraction mapping principle, by a standard
argument. We will prove next estimate (4.9). Differentiating (4.1) with respect to μ, we find
for v = ∂μφμ

Δv + f ′ε(Uμ)v − ε2v + (f ′ε(Uμ + φ) − f ′ε(Uμ))(Z̃μ + v) +
∂R

∂μ

= c′Zμw
4
μ + c

∂(Zμw
4
μ)

∂μ
,

in R
3, where Z̃μ is given by (2.10). Let ṽ = v − aZμw

4
μ, where a ∈ R is chosen so that∫

R3 ṽZμw
4
μ = 0. Differentiating the orthogonality condition in (4.1), we see that a = O(ε).

The function ṽ satisfies

Δṽ + f ′ε(Uμ)ṽ − ε2ṽ + α[Δ(Zμw
4
μ) + f ′ε(Uμ)Zμw

4
μ − ε2Zμw

4
μ]

+ (f ′ε(Uμ + φ) − f ′ε(Uμ))(Z̃μ + ṽ + aZμw
4
μ) +

∂R

∂μ
= c′Zμw

4
μ + c

∂(Zμw
4
μ)

∂μ

in R
3. Therefore, applying Lemma 3.1 we obtain

‖ṽ‖∗ + |c′| � Cε+ C

∥∥∥∥(f ′ε(Uμ + φ) − f ′ε(Uμ))(Z̃μ + ṽ + aZμw
4
μ) +

∂R

∂μ

∥∥∥∥
∗∗
, (4.10)

where we have used that a = O(ε) and c = O(ε). Using the function Kρ introduced in (4.6),
we can estimate

‖(f ′ε(Uμ + φ) − f ′ε(Uμ))ṽ‖∗∗ � Cεb‖ṽ‖∗ (4.11)

for some b > 0. Similarly, since a = O(ε) and ‖Zμw
4
μ‖∗ � C and using the estimates for Kρ,

we find
‖(f ′ε(Uμ + φ) − f ′ε(Uμ))aZμw

4
μ‖∗∗ � Cε. (4.12)

Next we claim that
‖(f ′ε(Uμ + φ) − f ′ε(Uμ))Z̃μ‖∗∗ � Cε. (4.13)

The computations for the term up in fε are similar as before, using Kρ, the estimates (4.7),
(4.8) and ‖Z̃μ‖∗ � C. Regarding the term λεαuq, in the case 2 � q < 3 we compute

εα sup
r�1/ε

rθ|((Uμ + φ)q−1 − Uq−1
μ )Z̃μ| � εα sup

r�1/ε

rθ(|Uμ|q−2 + |φ|q−2)|φ||Z̃μ|

� Cεα+q−2,
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and note that α+ q − 2 > 1. Also, using (2.13)

εα sup
r�1/ε

rθ(|Uμ|q−2 + |φ|q−2)|φ||Z̃μ| � Cεα+q−2.

In the case 1 < q < 2, a similar calculation shows that

εα sup
r�0

rθ|φ|q−1|Z̃μ| � Cεα+(θ−1)(q−2).

We note that in the case 1 < q < 2, choosing θ in the interval (4.5) implies 2 < θ < 2 +
(q − 1)/2(2 − q) which gives α+ (θ − 1)(q − 2) > 1 for ε > 0 small. Therefore, we obtain (4.13).

Using the bounds (4.10)–(4.13) and the estimate for ‖∂μR‖∗∗ in (4.3), we deduce

‖ṽ‖∗ + |c′| � Cεb‖ṽ‖∗ + Cε.

Thus, for ε > 0 small we deduce the validity of (4.9).

4.2. Variational reduction and the proof of the theorem

Next we adjust μ such that c = 0. We consider the energy functional

E(u) =
∫

R3

1
2
|∇u|2 − Fε(u),

where Fε(u) =
∫u

0
fε(s) ds, and define

Ẽ(μ) = E(Uμ + φμ).

Lemma 4.4. We have the expansion

Ẽ(μ) = E(Uμ) + o(ε),

as ε→ 0 where this error is in C1 norm for μ in an interval of the form [δ, δ−1].

The proof of this estimate is similar to the one of del Pino, Dolbeault and Musso
[23, Lemma 4].

Proof of Theorem 1.2. Testing equation (4.1) against Z̃μ, we obtain∫
R3
φLεZ̃μ +

∫
R3
N(φ)Z̃μ +

∫
R3
RZ̃μ = c

∫
R3
Z̃μZ̃μw

4
μ.

A calculation shows that the equation c = 0 is equivalent to∫
R3
RZ̃μ + o(ε) = 0, (4.14)

as ε→ 0 where o(ε) depends continuously on μ for μ in (δ, δ−1). We observe that∫
R3
RZ̃μ = Ẽ′(μ).

By Lemma 2.4,
Ẽ(Uμ) = cε + εΨ(μ) + o(ε),

where
Ψ(μ) = a1μ− a2 logμ

with a1, a2 > 0 and o(ε) is uniform in C1 for μ in [δ, δ−1]. The function Ψ has a unique critical
point μ∗ > 0, which is moreover non-degenerate. Then, owing to Lemma 4.4, equation (4.14)
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can be rewritten in the form

ε(Ψ′(μ) + o(1)) = 0,

where o(1) → 0 uniformly as ε→ 0 in [δ, δ−1]. Since μ∗ is a non-degenerate critical point of Ψ,
it follows that for ε > 0 small there is a unique solution μ of (4.14) close to μ∗. The construction
is concluded.

4.3. Non-degeneracy and Morse index

We will prove that the solution just built is non-degenerate in the sense that the linearized
operator only contains trivial solutions, and in addition we will compute its Morse index as a
critical point of the associated energy.

We recall the notation fε(u) = u5−ε + λεαuq. Let με be the unique number close to μ∗ such
that Ẽ′(με) = 0. Let uε be the solution constructed before for ε > 0 small, having the form
uε = Uμε

+ φμε
. We shall denote in the following:

Uμ = Uμε
, φ = φμε

and wμ = wμε
.

We need to show that if ψ is a bounded solution of

Δψ + f ′ε(uε)ψ − ε2ψ = 0 in R
3,

then ψ is a linear combination of the functions ∂uε/∂xi, i = 1, 2, 3. We note that for convenient
c1, c2, c3 ∈ R the function ψ̃ = ψ −∑3

i=1 ci(∂uε/∂xi) satisfies∫
R3

∂wμ

∂xj
ψ̃w4

μ = 0, j = 1, 2, 3. (4.15)

Indeed, this system is equivalent to
∫

R3
ψ
∂wμ

∂xj
w4

μ =
3∑

i=1

ci

∫
R3

∂uε

∂xi

∂wμ

∂xj
w4

μ,

which is diagonal with the diagonal elements bounded away from 0. Replacing ψ with ψ̃, we
may assume that ψ satisfies (4.15) and it is sufficient to prove that ψ = 0.

Let us write ψ = ψ⊥ − α1Z̃μ where α1 is such that∫
R3
ψ⊥Zμw

4
μ = 0, (4.16)

and where Zμ, Z̃μ are defined in (2.9) and (2.10), respectively. Then ψ⊥ satisfies

Δψ⊥ + f ′ε(Uμ + φ)ψ⊥ − ε2ψ⊥ − α1(f ′ε(Uμ + φ)Z̃μ − 5w4
μZμ) = 0 in R

3.

Multiplying this equation by Z̃μ and integrating, we obtain

α1

∫
R3

(f ′ε(Uμ + φ)Z̃μ − 5w4
μZμ)Z̃μ =

∫
R3

(f ′ε(Uμ + φ)Z̃μ − 5w4
μZμ)ψ⊥. (4.17)

We want to estimate the integral

I =
∫

R3
(f ′ε(Uμ + φ)Z̃μ − 5w4

μZμ)Z̃μ. (4.18)

Let us define the energy of the ansatz as

J(μ) = E(Uμ) =
∫

R3

1
2
|∇Uμ|2 − Fε(Uμ) +

ε2

2
U2

μ,
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and let us compute

J ′(μ) = −
∫

R3
(ΔUμ + fε(Uμ) − ε2Uμ)Z̃μ,

J ′′(μ) = −
∫

R3
(ΔZ̃μ + f ′ε(Uμ)Z̃μ − ε2Z̃μ)Z̃μ −

∫
R3

(ΔUμ + fε(Uμ) − ε2Uμ)
∂Z̃μ

∂μ
.

Differentiating (2.2) with respect to μ yields{
ΔZ̃μ − ε2Z̃μ = −5w4

μZμ in R
3,

Z̃μ(y) → 0 as |y| −→ ∞,
(4.19)

so

I =
∫

R3
(f ′ε(Uμ + φ)Z̃μ + ΔZ̃μ − ε2Z̃μ)Z̃μ

= −J ′′(μ) +
∫

R3
(f ′ε(Uμ + φ) − f ′ε(Uμ))Z̃2

μ −
∫

R3
(ΔUμ + fε(Uμ) − ε2Uμ)

∂Z̃μ

∂μ

= −J ′′(μ) +
∫

R3
20w3

μφZ
2
μ +

∫
R3

[(f ′ε(Uμ + φ) − f ′ε(Uμ))Z̃2
μ − 20w3

μφZ
2
μ]

−
∫

R3
(ΔUμ + fε(Uμ) − ε2Uμ)

∂Z̃μ

∂μ
.

But differentiating (4.19) with respect to μ gives

Δ
∂Z̃μ

∂μ
− ε2

∂Z̃μ

∂μ
+ 20w3

μZ
2
μ + 5w4

μ

∂Zμ

∂μ
= 0.

Multiplying this equation by φμ, integrating and evaluating at μ = με, so that c = 0 in equation
(4.1), we find

∫
R3

(f ′ε(Uμ)φ+N(φ) +R)
∂Z̃μ

∂μ
=

∫
R3

(
20w3

μZ
2
μ + 5w4

μ

∂Zμ

∂μ

)
φ.

We solve from here
∫

R3 20w3
μZ

2
μφ and replace it in the formula for I, recalling that R = ΔUμ +

fε(Uμ) − ε2Uμ:

I = −J ′′(με) +
∫

R3

(
f ′ε(Uμ)

∂Z̃μ

∂μ
− 5w4

μ

∂Zμ

∂μ

)
φ+

∫
R3
N(φ)

∂Z̃μ

∂μ

+
∫

R3
[(f ′ε(Uμ + φ) − f ′ε(Uμ))Z̃2

μ − 20w3
μφZ

2
μ].

We need to show that all terms in RHS of the above expression, except F ′′(μ), are o(ε) as
ε→ 0. We start estimating

A :=
∫

R3
[(f ′ε(Uμ + φ) − f ′ε(Uμ))Z̃2

μ − 20w3
μφZ

2
μ] = A1 +A2 +A3,

where

A1 =
∫

R3
p((Uμ + φ)p−1 − Up−1

μ − (p− 1)Up−2
μ φ)Z̃2

μ,

A2 =
∫

R3
p(p− 1)Up−2

μ φZ̃2
μ − 20w3

μφZ
2
μ,

A3 = λεα

∫
R3

(q(Uμ + φ)q−1 − qUq−1
μ )Z̃2

μ.
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Let us estimate A3. In the case 1 < q < 2, we estimate |(Uμ + φ)q−1 − Uq−1
μ | � C|φ|q−1. Using

that |φ(r)| � ε−2r−θ‖φ‖∗ � Cε−1r−θ for r � 1/ε and (2.13), we estimate

εα

∫
r�1/ε

|(Uμ + φ)q−1 − Uq−1
μ |Z̃2

μ � Cεα

∫∞

r=1/ε

(ε−1r−θ)q−1(ε−4r−5)2r2 dr

� Cεα+(θ−1)(q−1)−1.

Since α has the form (1.8) and q > 1, we see that α+ (θ − 1)(q − 1) − 1 > 1 for ε > 0 small.
Also, since |φ(r)| � Cε(1 + r)2−θ and |Z̃μ(r)| � (1 + r)−1 for r � 1/ε,

Cεα

∫
r�1/ε

|(Uμ + φ)q−1 − Uq−1
μ |Z̃2

μ � εα

∫∞

0

(ε(1 + r)2−θ)q−1(1 + r)−2r2 dr.

Therefore, A3 = o(ε) as ε→ 0. Similarly, it is possible to verify that A1 = o(ε), A2 = o(ε)
as ε→ 0.

It follows that

I = −J ′′(με) + o(ε), as ε→ 0. (4.20)

We estimate the right-hand side of (4.17)∫
R3

|(f ′ε(Uμ + φ)Z̃μ − 5w4
μZμ)ψ⊥| � Cε‖ψ⊥‖∗. (4.21)

We observe that ψ⊥ satisfies (4.16) and (4.15) because
∫

R3 Z̃μ(∂wμ/∂xj) = 0. Therefore,
we may apply Lemma 3.3 and obtain

‖ψ⊥‖∗ � C‖α1(f ′ε(Uμ + φ)Z̃μ − 5w4
μZμ)‖∗∗ � Cε|α1|. (4.22)

Combining (4.17) and (4.20)–(4.22), we find

|α1(−J ′′(με) + o(ε))| � Cε2|α1|.
Since J ′′(με) = Ψ′′(με)ε+ o(ε) as ε→ 0, and Ψ′′(με) �= 0, we deduce from this that α1 = 0.
This implies that ψ = ψ⊥ and from (4.22) we obtain that ψ = 0, which is the desired non-
degeneracy of the solution uε.

We comment here on the claim that uε has Morse index equal 1. By Morse index, we mean
the largest integer k such that there is a subspace N ⊂ C∞

0 (R3) of dimension k on which the
quadratic form

Q(ϕ) =
∫

R3
|∇ϕ|2 + ε2ϕ2 − pup−1

ε ϕ2 − λqεαuq−1
ε ϕ2

is negative definite.
It is convenient to introduce the eigenvalue problem

Δψ + f ′ε(uε)ψ − ε2ψ + νw4
μψ = 0 in R

3 (4.23)

with ψ ∈ H1(R3). Owing to the weight w4
μ, the embedding from H1(R3) to L2(w4

μ dx) is
compact and the theory provides a sequence of eigenvalues νj,ε → ∞ as j → ∞ with associated
eigenfunctions ψj,ε ∈ H1(R3). These eigenvalues can be obtained variationally

νj,ε = inf
{

Q(ϕ)∫
R3 w4

μϕ
2

: ϕ ∈ C∞
0 (R3), 〈ϕ,ψi,ε〉 = 0, i = 1, . . . , j − 1

}
,

where 〈ϕ1, ϕ2〉 =
∫

R3 ϕ1ϕ2w
4
μ. Then the Morse index of uε is the same as the number of negative

eigenvalues of (4.23).
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The limit eigenvalue problem

Δψ + 5w4
μψ + νw4

μψ = 0 in R
3

is known to have a negative eigenvalue ν1 = −4 with associated eigenfunction ψ1 = wμ. The
second eigenvalue is 0 with eigenfunctions given by Zμ and ∂wμ/∂xi, i = 1, 2, 3.

The eigenvalue ν1,ε is simple, and the eigenfunction is radial, has exponential decay and
converges as ε→ 0 (after normalization) to a multiple of ψ1. Also ν1,ε → ν1 as ε→ 0.

Now suppose that ψε is an eigenfunction with eigenvalue νε < 0, νε �= ν1,ε. Let us consider
first the case that νε stays away from zero. Then one can prove that ψε converges, after
normalizing ‖ψε‖L2 = 1, to an eigenfunction ψ associated to a negative eigenvalue ν < 0. The
case ν = ν1 can be discarded because ψ is L2(w4

μ dx) orthogonal to ψ1, since ψε is L2(w4
μ dx)

orthogonal to ψ1,ε. The case ν1 < ν < 0 can be discarded because the limit eigenvalue problem
has only one negative eigenvalue.

In the case νε → 0 as ε→ 0, we argue as follows. We define

ψ̃ε = ψε −
3∑

i=1

ci,ε
∂uε

∂xi

with ci,ε chosen so that (4.15) holds for ψ̃ε. Note that

|ci,ε| � C‖ψε‖∗. (4.24)

We write ψ̃ε = ψ⊥
ε − α1Z̃μ so that (4.16) holds for ψ⊥

ε . Observe that ψ⊥
ε also satisfies (4.15).

We compute

Δψ⊥
ε + f ′ε(uε)ψ⊥

ε − ε2ψ⊥
ε + νεw

4
μψ

⊥
ε + νε

3∑
i=1

ci,εw
4
μ

∂uε

∂xi

= α1(f ′ε(uε)Z̃μ − 5w4
μZμ + νεw

4
μZ̃μ) (4.25)

in R
3. We multiply this equation by Z̃μ and obtain,

α1

(
I + νε

∫
R3
w4

μZ̃
2
μ

)
=

∫
R3

(f ′ε(uε)Z̃μ − 5w4
μZμ)ψ⊥

ε + νε

∫
R3
w4

μψ
⊥
ε Z̃μ,

where I is the integral (4.18). Owing to (4.20), we find

α1

(
−J ′′(με) + o(ε) + νε

∫
R3
w4

μZ̃
2
μ

)
� C(ε+ |νε|)‖ψ⊥

ε ‖∗.

Using Lemma 3.3 and equation (4.25), we obtain

‖ψ⊥
ε ‖∗ � C‖α1(f ′ε(uε)Z̃μ − 5w4

μZμ + νεw
4
μZ̃μ)‖∗∗ + C

∥∥∥∥∥
3∑

i=1

ci,ενεw
4
μ

∂uε

∂xi

∥∥∥∥∥
∗∗
. (4.26)

As in (4.22),
‖α1(f ′ε(uε)Z̃μ − 5w4

μZμ + νεw
4
μZ̃μ)‖∗∗ � C|α1|(ε+ |νε|).

Therefore, (4.26) and (4.24) yield

‖ψ⊥
ε ‖∗ � C|α1|(ε+ |νε|) + C|νε|‖ψ⊥

ε ‖∗.
Then for ε > 0 small we obtain

‖ψ⊥
ε ‖∗ � C|α1|(ε+ |νε|). (4.27)

Therefore,

α1

(
−J ′′(με) + o(ε) + νε

∫
R3
w4

μZ̃
2
μ

)
� C(ε+ |νε|)2|α1|.
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Since J ′′(με) = Ψ′′(με)ε+ o(ε) as ε→ 0, Ψ′′(με) > 0, and νε < 0, νε → 0 as ε→ 0, we can
conclude that α1 = 0 for ε > 0 small. This implies that ψ̃ε = ψ⊥

ε and then (4.27) implies that
ψ̃ε = 0, which gives that ψε is a linear combination of the functions ∂uε/∂xi. But νε < 0 and
this implies ci,ε = 0, so ψε = 0, which is a contradiction.

5. Proof of Theorem 1.1

The proof of Theorem 1.1 is based on Theorem 1.2 which provides a large solution and
Lemma 5.1 that gives the existence of a small solution. A degree-theoretical argument will
give the third solution.

We start with the existence of small solutions (for λ large). This solution can also be
constructed by a shooting argument, using the results in [11].

Lemma 5.1. Fix 1 < q < 5 and consider p ∈ [p1, p2], where 1 < p1 < p2 are fixed (here p2

need not be subcritical). Then there exists λ0 > 0 such that for all λ � λ0, (1.3) has a solution
uλ, which depends continuously on λ and satisfies ‖u‖L∞ � Cλ−1/(q−1).

Proof. By the change of variables u(x) = λ−1/(q−1)v(x), problem (1.3) gets rewritten as{
Δv + λ−γvp + vq − v = 0, v > 0 in R

3,

v(x) −→ 0 as |x| → +∞,
(5.1)

where γ = (p− 1)/(q − 1) > 0. Let v0 ∈ H1(R3) be the unique radially symmetric solution of

Δv + vq − v = 0, v > 0 in R
3. (5.2)

We look then for a solution of (5.1) of the form v = v0 + φ. Then equation (5.1) becomes

Lφ+N1(φ) +N2(φ) = 0 in R
3,

where

Lφ = Δφ+ qvp−1
0 φ− φ,

N1(φ) = λ−γ(v0 + φ)p
+, N2(φ) = (v0 + φ)q

+ − vq
0 − qvq−1

0 φ.

Problem (5.1) can be solved by the contraction mapping theorem in the space E of radial
continuous functions φ : R

3 → R, with the norm

‖φ‖σ = sup
x∈R3

eσ|x||φ(x)|,

where σ > 0 is fixed and small. Using the non-degeneracy of v0, see [20, Appendix C] and also
[15, 16], it can be shown that L is invertible from E to E. We look for a solution φ of

φ = L−1(N1(φ) +N2(φ)).

In fact, we have

‖N1(φ1) −N1(φ2)‖σ � λ−γ‖φ1 − φ2‖σ, ‖N1(0)‖σ � Cλ−γ

and

‖N2(φ1) −N2(φ2)‖σ � λ−min{q−1,1}γ‖φ1 − φ2‖σ.

Then we find a unique solution φ ∈ E with ‖φ‖σ � Aλ−γ and A large.
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Next we compute the total degree of the solutions of (1.3). For this purpose, we introduce
the operator

T (u) = G ∗ (up
+ + λuq

+)

for u ∈ H1
rad(R3) = {u ∈ H1(R3) : u is radial}, where G is the Green function defined in (2.6).

Fixed points of T in H1
rad(R3) are automatically solutions of (1.3).

We can write T = G ∗A(u), where A(u) = up
+ + λuq

+. By the lemma of Strauss [28], A :
H1

rad(R3) → L6
rad(R3) is completely continuous. Since G is C∞ with exponential decay, u ∈

L6
rad(R3) �→ G ∗ u ∈ H1

rad(R3) is a bounded linear operator, and we get that T : H1(R3) →
H1(R3) is completely continuous.

For 1 < q < p < 5, there is an apriori bound for solutions of (1.3), that is, there is R > 0
such that for any solution u of (1.3) we have

‖u‖H1(R3) < R. (5.3)

Indeed, using a blow-up argument and the non-existence result of Gidas and Spruck [14], there
exists R such that for any solution u of (1.3) satisfies

‖u‖L∞(R3) = u(0) � R.

Then a barrier argument gives

u(x) � Ce−c|x| for all x ∈ R
3

for some c > 0 (see, for example, [6]). This implies the apriori estimate (5.3). Moreover, this
estimate is uniform for bounded λ.

Then, forR > 0 large enough, the Leray–Schauder degree deg(I − T,BR(0), 0) is well defined.

Lemma 5.2. For all λ � 0, if R > 0 is large, then deg(I − T,BR(0), 0) = 0.

Proof. We introduce a family of operators Tt : H1(R3) → H1(R3) defined by

Tt(u) = G ∗ ((tg + u+)p + uq
+),

where t � 0 and g(x) � 0, is a radial C∞ function with compact support such that g = 1 in
the unit ball B1(0). The same argument that leads to the apriori estimate (5.3) shows that for
any L > 0, there exists R > 0 such that for any t ∈ [0, L] and any fixed point u ∈ H1

rad(R3) of
Tt we have

‖u‖H1(R3) < R.

Then by homotopy invariance of the degree,

deg(I − T0, BR(0), 0) = deg(I − TL, BR(0), 0).

We claim, that the above total degree is zero if L is large, which we can prove by showing
that TL as no fixed points. Suppose to the contrary that TL has a fixed point u ∈ H1

rad(R3).
Then u solves

Δu+ (u+ Lg(x))p + λuq − u = 0 in R
3, (5.4)

and decays to zero exponentially as |x| → +∞.
Let ϕ1 ∈ H1(R3), ϕ > 0 be the principal eigenfunction of

−Δϕ+ ϕ = μg̃ϕ in R
3,

where g̃ � 0 is a smooth non-trivial function with compact support in the unit ball. The
existence of this principal eigenfunction associated to an eigenvalue μ > 0 can be found in [19].
We normalize the eigenfunction ϕ so that ϕ(0) = 1, and note that it decays exponentially to
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zero. Multiplying (5.4) by ϕ and integrating in R
3, we get∫

R3
(u+ Lg)pϕ+ λuqϕ = μ

∫
R3
g̃uϕ.

If we choose L large enough, then we have

(u+ L)p � μ‖g̃‖L∞u+ 1 ∀u � 0,

and therefore, (u+ Lg)p + λuq � μg̃u+ 1 in B0(1). This yields∫
R3
ϕ � 0,

which is impossible, and we conclude that (5.4), has no solutions.

Lemma 5.3. Fix 1 < q < p < 5. Then for all λ sufficiently large (depending on p, q), (1.6)
has a unique radial solution.

Proof. We proceed by contradiction. Suppose that for a sequence λn → +∞, there are two
different radial solutions v1,n, v2,n of (5.1). Using a blow-up argument, we can show that v1,n,
v2,n remain uniformly bounded in R

3, and then that they converge uniformly on compact sets
to the unique radially symmetric solution v0 of (5.2).

Let

wn =
v1,n − v2,n

‖v1,n − v2,n‖L∞(R3)
.

Then wn satisfies

Δwn + λ−γ
n An(x)wn +Bn(x)wn − wn = 0 in R

3,

where

An =
vp
1,n − vp

2,n

v1,n − v2,n
, Bn =

vq
1,n − vq

2,n

v1,n − v2,n
.

Using a barrier, we get |wn(x)| � Ce−δ|x| for some constants C, δ > 0 and all large n. Therefore,
there is some xn ∈ R

3 such that |wn(xn)| = 1, and xn remains bounded. By elliptic regularity,
up to subsequence wn → w uniformly on compact sets, and w is bounded and satisfies

Δw + qvq−1
0 w − w = 0 in R

3.

By the non-degeneracy of v0, deduce that w ≡ 0 (see [2, p. 47]). But also up to subsequence
xn → x0 and hence |w(x0)| = 1, which yields a contradiction.

Proof of Theorem 1.1. Let λ0 be as in Lemma 5.2. The solution uλ of (1.6) constructed
in that lemma for λ � λ0 is continuous with respect to λ, and is also isolated in the space
E in that lemma. By elliptic regularity, it is isolated also in H1

rad(R3). Therefore, the local
degree of T around uλ is well defined. But for λ > 0 very large the total degree is zero, there
is uniqueness of non-trivial solutions, and the zero solution has local degree 1. Therefore, the
local degree of T around uλ is −1 for all λ � λ0.

By Theorem 1.2, for any λ̄ > 0 there exists ε̄ > 0 such that for 0 < ε � ε̄ and 0 � λ � λ̄ there
exists a solution Uλ,ε of (1.6) of the form (1.9). In particular,

Uε,λ(0) = Cε−1/2(1 + o(1)) (5.5)

as ε→ 0, and this is uniform for 0 � λ � λ̄. Moreover, this solution is non-degenerate in the
space of radial functions by Theorem 1.2.
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Fix λ̄ > λ0 and ε > 0 small, and let λ0 � λ � λ̄. We note that Uε,λ �= uλ because ‖u‖L∞ �
Cλ−1/(q−1) and (5.5). Since

deg(I − Tλ, BR(0), 0) = 0

for λ0 � λ � λ̄ (R is fixed large), Uε,λ is non-degenerate and the local degrees of uλ and 0 are
−1,1, respectively, by degree theory we conclude that there exists a third solution of (1.6).

6. Three solutions

In this section, we sketch the proof of Theorem 1.3 in the case 2 < q < 3. The case q = 2 is
analogous.

We look for solution of problem

(Pε)

{
Δu+ u5−ε + λ̄ε−(3−q)/2uq − u = 0 in R

3,

u > 0 in R
3 u in H1(R3).

By the rescaling in Section 2, we obtain{
Δu+ u5−ε + λ̄εᾱuq − ε2u = 0, u > 0 in R

3,

u(y) −→ 0 as |y| −→ ∞,
(6.1)

where

ᾱ = 1 − ε(q − 1)
2(4 − ε)

.

To prove Theorem 1.3, we follow the proof of Theorem 1.2. For that, we need to study the
solvability of the linear problem (3.8) with λ = λ̄ and α = ᾱ. This is done in Lemma 3.3, for
(3.8). Rewriting the proof of Lemma 3.3, now using λ = λ̄ and α = ᾱ, we obtain the result. For
problem (6.1), we can prove the error estimates (4.2) and (4.3) as in Lemma 4.2, using that
2 < q < 3, and λ = λ̄ and α = ᾱ. Note that now λ̃ < λ0 in Lemma 4.2. The expansion of the
energy is different and is given in the next lemma.

Lemma 6.1. Assume 2 < q < 3, λ̄ > 0 and δ > 0 be fixed. Then there exist positive
constants a0, a1, a2, a3, a4 for such that δ < μ < δ−1

E(Uμ) = a0 + εΨ(μ) − a2ε log ε− a3ε+ εΘε(μ),

where

Ψ(μ) = a1μ− λ̄μ(5−q)/2a4 − a2 log μ,

and Θε(μ) → 0 as ε→ 0 in the C1 norm in the interval δ � μ � δ−1.

Combining the solvability of the linear problem, the error estimates and the above lemma,
we can conclude the proof of Theorem 1.3. Note that Ψ has two non-degenerate critical points
for each 0 < λ̄ < λ0. In fact,

Ψ′(μ) = a1 − λ̄
5 − q

2
μ(3−q)/2a4 − a2μ

−1

is negative for small and large μ, and has a unique critical point that is a maximum. In this
maximum point μmax, the function Ψ′(μmax) is positive if and only if 0 < λ̄ < λ0, where λ0 is
given by (1.11). In this case, the equation Ψ′(μ) = 0 has two positive solutions μ±(λ̄) satisfying
(1.12). Note that μ− is a local minimum and μ+ is a local maximum of Ψ(μ). Following the
argument in Section 4, the solution u−ε has Morse index 1 and u+

ε has Morse index 2.
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