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1. Introduction

Our aim in this paper is to provide both necessary and su�cient condi-
tions for the solvability of the Cauchy problem

@u
@t
� div�umÿ1ru� in RN � �0; T �; �1:1�

u�x; 0� � f �x� in RN ; �1:2�
where T > 0, m < 0 are given constants and f is a nonnegative, locally in-
tegrable function. Equation (1.1) can also be written as

@u
@t
� D/m�u� in QT ; �1:3�

where /m�u� � um=m and QT � RN � �0; T �.
By a solution of (1.1), (1.2) we mean a nonnegative function u in

C��0; T �; L1loc�RN �� for which /m�u� belongs to L1loc�RN � �0; T �� and which
satis®es equation (1.3) in the distributional sense. Note that the assumption
that /m�u� be locally integrable implies that u is nonzero almost everywhere
in QT .

Equation (1.1) with m < 0 arises naturally in certain physical applications.
For example, superdi�usivities of this type have been proposed by DEDE

GENNESENNES [8] as a model for long-range Van der Waals interactions in thin
®lms spreading on solid surfaces. This equation also appears in the study of
cellular automata and interacting particle systems with self-organized criti-
cality; see [6] and its references. Other physical applications are mentioned in
the works [3] and [4].

In [11], VaÂ zquez showed that if (1.1), (1.2) has a solution for some T > 0,
then necessarily f2j L1�RN �. It is natural to ask what is the fastest possible
decay of f at in®nity if problem (1.1), (1.2) is solvable. A partial answer to
this question has been recently provided in [7] where is shown the existence of
a constant C � C�m;N� such that if (1.1), (1.2) is solvable, then
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lim sup
R!1

1

RNÿ2=�1ÿm�

Z
BR

f 3 CT 1=�1ÿm�: �1:4�

Here and in the sequel BR denotes the ball of radius R centered at the origin.
This condition is in some sense sharp, as seen from the explicit solution of
(1.1) given by

vT �x; t� � �2a�T ÿ t��jxjÿ2�1=�1ÿm�; a � �N ÿ 2=�1ÿ m��; �1:5�
which exists exactly up to time T and which has initial data f �x� � vT �x; 0�
satisfying (1.4) with C � C� given by

C� � 2 N ÿ 2

1ÿ m

� �� �1=�1ÿm�
xN : �1:6�

Here xN denotes the surface area of the unit sphere. It is interesting to
observe that condition (1.4) is in correspondence with the porous medium or
slow di�usion case m > 1. In fact, in that situation the solvability of (1.1),
(1.2) implies that

lim sup
R!1

1

RNÿ2=�1ÿm�

Z
BR

f 2 CT 1=�1ÿm�; �1:7�

for a certain constant C depending only on m and N , as follows from the
Harnack estimate established by ARONSONRONSON & CAFFARELLIAFFARELLI [1]. On the other
hand, BENILANEÂ NILAN, CRANDALLRANDALL & PIERREIERRE [2] showed that a growth assumption
like (1.7) is also su�cient for existence. It is tempting to guess that a condition
of the form (1.4), possibly replacing the lim sup by lim inf, is su�cient for
existence when m < 0. As we shall see, this is the case under radial symmetry.
More precisely, if f is radial and if

lim inf
R!1

1

RNÿ2=�1ÿm�

Z
BR

f 3 C�T 1=�1ÿm�; �1:8�

then (1.1), (1.2) is solvable. Here C� is exactly the constant given by (1.6).
However, the general situation seems to be considerably more delicate

than in the porous medium case. As an example, we will see in §3 that for any
0 < C 2 �1 we can ®nd an f such that

lim
R!1

1

RNÿ2=�1ÿm�

Z
BR

f � C

but with problem (1.1), (1.2) having no solutions for any T > 0.
The purpose of this paper is to advance the understanding of the mech-

anism leading to existence of solutions to problem (1.1), (1.2). Our main
results, Theorems 1.2 and 1.3 below, provide optimal nonexistence and ex-
istence conditions for solvability of (1.1), (1.2).

As a motivation, we begin by stating our existence result in the radially
symmetric, locally bounded case. To do this, we de®ne the operator N� on
L1loc�RN �, as
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N��h��r� �
Zr

0

ds
xN sNÿ1

Z
Bs

h�x�dx; r > 0:

Theorem 1.1. Assume that f 2 L1loc�RN � is radially symmetric and satis®es

lim inf
R!1

R2m=�1ÿm�N�� f ��R�3 E�T 1=�1ÿm�; �1:9�
where

E� � ÿ 2mC�

1ÿ m
> 0; �1:10�

with C� the constant given by �1:6�. Then (1.1), (1.2) possesses a solution.

Observe that condition (1.9) is implied by (1.8). Concerning nonexistence,
we have a result dual to the above which does not require radial symmetry
and in particular improves condition (1.4) to the optimal constant C � C�

given by (1.6).

Theorem 1.2. Assume that f 2 L1loc�RN � is nonnegative and satis®es

lim sup
R!1

R2m=�1ÿm�N�� f ��R� < E�T 1=�1ÿm�; �1:11�

where E� is given by (1.10). Then (1.1), (1.2) admits no solutions.

As we already mentioned, condition (1.8) or its weaker version (1.9), does
not su�ce for existence if f is not radial. Nevertheless, our next result pro-
vides a general existence condition which reduces to (1.9) in the case that f is
radial. In order to state the result we will de®ne a new operator, which equals
N� on radially symmetric functions.

For a number q > 0 we denote by Gq Green's function for the ball Bq. For
a locally bounded function h, we set

G�q�h��x� �
Z
Bq

�Gq�0; y� ÿ Gq�x; y��h� y�dy; x 2 Bq: �1:12�

It is easy to verify that if h is radially symmetric, then

G�q�h��x� � N�h��jxj� for x 2 Bq;

and for all q > 0. An observation, crucial for our purposes, is that

G�q�Dw��x� � w�x� ÿ w�0� �1:13�
for a function w 2 C2�Bq� which is constant on @Bq.

Our main existence result is

Theorem 1.3. Let E� be the constant de®ned in (1.10). Assume that there exists
a nonnegative, locally bounded function ~f for which f 3 ~f and a sequence
qn " �1 such that
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jxj2m=�1ÿm�G�qn
� ~f ��x�3 E�T 1=�1ÿm� � h�x�; �1:15�

for all jxj < qn. Here h�x� is a function such that h�x�jxjÿ2m=�1ÿm� is locally
bounded and h�x� ! 0 as jxj ! 1. Then, problem (1.1), (1.2) is solvable.

This result clearly reduces to Theorem 1.1 in the case that f is radial and
locally bounded. Moreover, we have the validity of the following result.

Corollary 1.1. Assume that there are nonnegative, locally bounded functions g
and h with f 3 gÿ h, such that g is radial and satis®es the growth assumption
(1.9), jyj2ÿN h� y� is a function in L1�RN � and

lim
R!1

R
2

1ÿmÿ N
p

� Z
BR

jhjpdx
�1=p

� 0

for some p > N=2. Then problem (1.1), (1.2) is solvable.

The rest of the paper will be devoted to the proof of these results. In § 2 we
prove some results concerning solvability of (1.1), (1.2) in a cylinder
X� �0; T �, with in®nite boundary values, which will be fundamental in the
later sections. In §3 we deal with the counterexample mentioned before, while
§4 will be fully devoted to the proof of Theorem 1.3. The proof of Theorem
1.2 is carried out in §5.

2. Preliminary results

In this section we state and prove some facts, basic tools in the proofs of
Theorems 1.2 and 1.3. We begin by solving the following initial-boundary-
value problem on a bounded, smooth domain X in RN .

@u
@t
� D/m�u�

u�x; t� � �1
u�x; 0� � f �x�;

in X� �0;1�;
on @X� �0;1�;
x 2 X:

�2:1�

Here f 2 L1�X� and is nonnegative.
By a solution of (2.1) we mean a nonnegative function u�x; t� continuous

in Q � X� �0;1�, for which u�x; t� ! �1 as x approaches @X for each
t > 0, and which satis®es (2.1) in the weak sense, namely, um 2 L1loc
�X� �0;1�� andZ Z

X��0;T �

/m�u�Dg� u
@g
@t

� �
dx dt

�
Z
X

u�x; T �g�x; T �dxÿ
Z
X

f �x�g�x; 0�dx; �2:2�

P. DASKALOPOULOSASKALOPOULOS & M. DELEL PINOINO366



for all T > 0 and g 2 C1c �X� �0;1��.

Lemma 2.1. There exists a solution u to the boundary-value problem (2.1) for
each nonnegative f 2 L1�X�.

Proof. Let us ®x numbers 1 < M <1 and e 2 �0; 1�. We denote by ue;M the
unique solution to the boundary value problem

@u
@t
� D/m�u�

u�x; t� � M

u�x; 0� � f �x� � e;

in X� �0;1�;
on @X � �0;1�;
x 2 X:

�2:3�

Existence and uniqueness of ue;M follow from the standard theory of non-
degenerate quasilinear parabolic equations; see for example [10]. Moreover,
the maximum principle implies that

e 2 ue;M �x; 0�2 jjf jj1 �M :

We let e! 0 and M !1 to obtain a solution of (2.1). In order to control
this limiting process, we need uniform barriers from above and below for
ue;M .

Given a time T > 0, we next construct a lower barrier for ue;M on
X� �0; T �. Let / denote a positive ®rst eigenfunction of the Laplacian in X
under Dirichlet boundary conditions. Choose a number 0 < g < ÿ1=m such
that g < 2=�1ÿ m�. For d 3 0 and C > 0 we set zd � �d� C/�ÿg. The fol-
lowing fact follows from a direct computation: There is a constant C su�-
ciently large, uniform in all 02 d 2 1, such that zd satis®es in X the elliptic
inequality

Dz m
d � zd 3 0:

Next notice that if we de®ne the function v on X� �0;1� as
vd�x; t� � t

1
1ÿm zd�x�;

then vd satis®es

@vd

@t
ÿ D

vm
d

m

� �
� 1

1ÿ m
t

m
1ÿm zd ÿ 1

m
t

m
1ÿm Dz m

d 2
1

�1ÿ m�m t
m

1ÿm zd 2 0: �2:4�

Now observe that if we choose d � T
1

g�1ÿm�Mÿ
1
g su�ciently small, then we get

vd 2 M on @X� �0; T �. Since vd � 0 when t � 0, (2.4) and the maximum
principle gives us that ue;M 3 vd for t 2 �0; T � and for this choice of d. In
short, we have established that

t
1

1ÿm�T 1
g�1ÿm� Mÿ

1
g � C/�x��ÿg 2 ue;M �x; t� in X� �0; T � �2:5�

for some ®xed C > 0.
We next ®nd an upper barrier for ue;M . Let us consider the function w

de®ned on X� �0;1� as
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w�x; t� � �1� t� 1
1ÿm�c/�x��1m;

where / again denotes a positive ®rst eigenfunction of the Laplacian under
Dirichlet boundary conditions. Again, a direct computation shows that an
appropriate choice of c, this time su�ciently small, makes w satisfy

@w
@t
ÿ D

wm

m

� �
3 0:

Noting that w is �1 on @X� �0;1� and reducing c if necessary, we also
have

w�x; 0�3 jjf jj1 � e:

It follows from the maximum principle that

ue;M�x; t�2 w�x; t� � �1� t� 1
1ÿm�C/�x��1m in X� �0;1�: �2:6�

Equations (2.5) and (2.6) provide the necessary control on the sequence to
take limits. First observe that the maximum principle implies that the se-
quence fuM ;eg is monotonic in e and therefore the limit

uM �x; t� :� lim
e!0

ue;M �x; t� �2:7�

exists for all �x; t� 2 X� �0;1�. Clearly uM still satis®es the bounds (2.5) and
(2.6) and satis®es (2.1) with initial data f in the weak sense. Moreover, uM

de®nes an increasing sequence in M . Finally letting M " 1, and using the
uniformity of the bounds found, we conclude that

u�x; t� :� lim
M!1

uM �x; t�
satis®es

t
1

1ÿm�C/�x��ÿg 2 u�x; t�2 �t � 1� 1
1ÿm�c/�x��1m; �2:8�

for all �x; t� 2 X� �0;1�. Therefore u��; t� 2 L1loc�X�, for all t, um 2 L1loc
�X� �0;1�� and u satis®es (2.2) for all g 2 C1c �X� �0;1��. Also, if X0 is a
domain such that X0 � X and 0 < s1 < s2 <1, it follows from the bounds
(2.8) that

l1 2 u�x; t�2 l2 on X0 � �s1; s2� �2:9�
for some positive constants l1 and l2. Thus, from classical results on non-
degenerate parabolic equations we can conclude that u is continuous on
X0 � �s1; s2�. Hence u is continuous in X� �0;1� and it follows from (2.8)
that u�x; t� ! �1 as x approaches @X for all t > 0. We have shown that u is
the desired solution of problem (2.1). (

The following two Remarks, easy consequences of the maximum principle
and the construction in Lemma 2.1, are going to be used in Sections 3 and 4.

Remark 2.1. For 0 < R1 < R2 <1 and f 2 L1�BR2
�, let uRi , i � 1; 2 be the

solutions to problems (2.1) on QRi � BRi � �0;1� with initial data f , con-
structed in Lemma 2.1. Then
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uR1
3 uR2

on QR1
: �2:10�

To see this we just have to observe that if uRi
e;M , i � 1; 2, denotes the solu-

tion to the problem (2.3) in QRi , then as a direct consequence of the maxi-
mum principle applied on QR1

, we have uR1

e;M 3 uR2

e;M , for all e 2 �0; 1�
and M > 1� jjf jjL1�BR2 �. Letting e # 0 and M " 1, we obtain the inequality
(2.10).

Remark 2.2. For 0 < R <1 and f1; f2 2 L1�BR� let u1; u2 be the solutions to
the problem (2.1) in QR � BR � �0;1� with initial data f1; f2 respectively,
constructed in Lemma 2.1. Assume that f1 2 f2 in BR. Then

u1 2 u2 in QR: �2:11�
To show this we observe again that if u1e;M ; u

2
e;M are the solutions to problems

(2.3) on QR with initial data f1, f2 respectively, then the classical maximum
principle implies that u1e;M 2 u2e;M in QR and thus (2.11) follows by taking
limits e # 0 and M " 1.

The following basic a priori estimate, known as the Aronson-BeÂ nilan
inequality, will be used in the proofs of the existence and nonexistence results.

Lemma 2.2. Let u be a solution of (2.3) with f 2 L1�X�. Then u satis®es

ut 2
1

1ÿ m
1

t
u: �2:12�

As a consequence, the solution u to the problem (2.1) constructed in Lemma 2.1
satis®es (2.12) in the sense of distributions.

Proof. To prove the inequality (2.12) we apply the maximum principle to the
equation satis®ed by x � 1=�1ÿ m�tut ÿ u. We refer the reader to [5] for the
details of this simple computation. (

We next state a nonlinear version of the weak Harnack inequality. Its
proof can be found in [11].

Lemma 2.3. Let X be a domain in RN , N 3 2, and for m < 0 let u be a positive,
bounded and smooth solution of equation @u=@t � Dum=m in QT � X� �0; T �
for some T > 0. Then for every 0 < s1 < s2 < T and x0 2 X, q > 0 such that
Bq�x0� � X,

1

qN

Z
Bq�x0�

u�x; s1�mdx 2
s2
s1

� � ÿm
1ÿm

um�x0; s2� � c
s2
s1

� � ÿm
1ÿm Kq2

s2 ÿ s1
; �2:13�

where Bq�x0� denotes the ball with center x0 and radius q, K � jju��; s1�jj1 and c
is a positive constant depending only on N and m.

The following lemma gives an a priori pointwise estimate for um in terms
of its spatial averages.

Lemma 2.4. Under the same hypotheses and notation as in Lemma 2.3, the
estimate
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um�x0; t�2 1

qN

Z
Bq�x0�

um�x; t�dx� c
Kq2

t
�2:14�

holds for all 0 < t < T , where K � jju��; t�jj1 and c is a positive constant de-
pending only on m and N .

Proof. The proof is standard so we omit the details. Fix a number t 2 �0; T �,
and notice that it follows from the Aronson-BeÂ nilan inequality that u��; t�
satis®es

Dum ÿ m
1ÿ m

1

t
u 3 0 �2:15�

in X. Let Gq�r� � Gq�jxÿ x0j� denote the elliptic Green function de®ned in a
ball Bq�x0� by

Gq�r� �
r2ÿN ÿ q2ÿN � Nÿ2

2 qÿN �r2 ÿ q2� if N > 2;

log qÿ log r � 1
2 qÿ2�r2 ÿ q2� if N � 2:

8<:
Then Gq satis®es DGq � N�N ÿ 2�qÿN ÿ �N ÿ 2�xNdx0 in Bq�x0� and
Gq�r� � G0q�r� � 0 for r � q. Therefore, testing the equation (2.10) against G
and integrating by parts, we obtain

1

qN

Z
Bq�x0�

um�x; t�dxÿ um�x0; t� � C�m;N� 1
t

Z
Bq�x0�

u�x; t�Gq�x�dx 3 0:

Since Gq�r� � q2ÿN G1�r=q�, the desired inequality easily follows by rescaling.
(

3. A counterexample

From the analogy made with the porous medium equation, and in light of
the fact that a condition of the form (1.8) su�ces for existence in the radial
case, it is natural to ask whether the same condition still su�ces for existence
in the general case.

The purpose of this section is to show via an example that the answer to
this question is negative. In fact, we will see that for any 0 < C 2 �1 one
can ®nd an f such that

lim
R!1

1

RNÿ2=�1ÿm�

Z
BR

f � C �3:1�

but with problem (1.1), (1.2) having no solution for any T > 0.
We restrict our attention to the case N � 2; however the construction we

will make can be extended to any dimension. Let us consider, for a number
k > 0, the region bounded between two logarithmic spirals Sk given in polar
coordinates by
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h 2 �ÿ1;1�; h < log r < h� p
k
: �3:2�

Then the following result holds.

Theorem 3.1. Assume that N � 2. Then there exists a number k0 � k0�m� > 0
such that if 0 < k < k0 and f is in L1�RN � and vanishes in Ak, then problem
(1.1), (1.2) is not solvable for any T > 0.

Since this result allows arbitrary values of f outside Ak, the existence of an
f satisfying (3.1) for which no local solution to (1.1), (1.2) exists follows.

Proof of Theorem 3.1. For k > 0 let us consider the region Ak de®ned by (3.2),
and assume that f � 0 on Ak and that (1.1), (1.2) has a solution u�x; t� for
some T > 0. We consider the bounded open set AR

k de®ned as consisting of the
�r; h� 2 Ak with r < R. The proof we present consists of the construction of
smooth positive functions wR�x; t� de®ned on AR

k � �0;1� and satisfying
wR�x; t� ! �1 as x! @AR

k for all t > 0 so that

@wR

@t
ÿ D

wm
R

m

� �
3 0 in AR

k � �0;1�: �3:3�

The maximum principle then implies that such functions satisfy

u�x; t�2 wR�x; t� in AR
k � �0; T �; �3:4�

for all R > 0. We will see that if k is chosen su�ciently small, then along a
sequence Rn ! �1, we have

lim
n!1wRn�x; t� � 0 for all �x; t� 2 Ak � �0;1�: �3:5�

But this is impossible by (3.4) since u > 0 almost everywhere. Thus the
problem is reduced to ®nding the desired functions wR. Our starting point in
the construction is that the following function is positive and harmonic in Ak

and vanishes on its boundary:

v�x� � ekhrk sin �k�log r ÿ h��:
Let g be a positive, smooth cut-o� function on B1 so that g � 1 on B1=2 and
g � 0 on @B1. For a small number d > 0 to be ®xed, we set

w1�x; t� � �dg�x�v�x��1=m�t � 1�1=�1ÿm�; x 2 A1; t > 0:

Using the fact that v is harmonic, we immediately check that if d is chosen
su�ciently small, then

@w1

@t
ÿ D

wm
1

m

� �
3 0

so that w1 satis®es the desired requirements. Next we de®ne wR by just setting

wR�x; t� � Rÿ2=�1ÿm�w1�x=R; t�:
The function wR clearly satis®es (3.3) and approaches �1 if x approaches the
boundary of AR

k . Moreover wR�x; 0�3 c�R� > 0, for all x 2 AR
k . It follows then
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by the maximum principle and a standard approximation argument that
u 2 wR in AR

k � �0; T �. We ®nally check the assertion (3.5) for a su�ciently
small k > 0. Let x be a point in Ak with polar coordinates �r0; h0� and set
a � k�log r0 ÿ h0), so that a 2 �0; p�. Choosing Rn � exp�2np=k�, we have

wRn�x; t� � Rÿ2=�1ÿm�
n v1=m�x=Rn; t��t � 1�1=�1ÿm�

� Rÿk=mÿ2=�1ÿm�
n �ekh0 sin a�1=m�t � 1�1=�1ÿm�:

Therefore, if we choose 0 < k < ÿ2m=�1ÿ m�, we have that wRn�x; t� ! 0 as
n!1, as desired. This concludes the proof. (

4. Existence of solutions

In this section we carry out the proof of our main existence result, The-
orem 1.3. The procedure we follow roughly consists in solving the initial-
boundary-value problem on a sequence of expanding cylinders with in®nite
values on the lateral boundary, using the results of the previous section. The
associated sequence of solutions turns out to be decreasing, and the as-
sumptions of the theorem permit us to obtain an appropriate ``control from
below'' of the sequence, whose limit will be the desired solution. The key step
in obtaining such control is contained in the following lemma.

Lemma 4.1. Assume that N 3 2 and that g 2 L1�Bq� is a nonnegative function
satisfying

G�q�g��x�3 E�jxjÿ2m=�1ÿm�T 1=�1ÿm� ÿ l; �4:1�
where G�q is the operator de®ned in (1.12), E� is the constant given by (1.10) and
l is a positive constant. Let w be the solution to the boundary-value problem
(2.1) on Bq � �0;1� with w�x; 0� � g�x�, constructed in Lemma 2.1. Then,Zr

0

ds
xN sNÿ1

Z
Bs

w�x; t�dx 3 E�rÿ2m=�1ÿm��T ÿ t�1=�1ÿm�
� ÿ l �4:2�

for all 0 < r < q and 0 < t < T .

Proof. Let vT be the explicit solution of equation (1.1), de®ned by (1.5). An
easy computation shows that

G�q�vT ��; t���x� � N�vT ��; t���jxj� � E�jxjÿ2m=�1ÿm��T ÿ t�1=�1ÿm�
� ;

and therefore the proof of the lemma is reduced to showing that if

G�q�g��� ÿ vT ��; 0���x�3 ÿ l

for all x 2 Bq, then

G�q�w��; t� ÿ vT ��; t���x�3 ÿ l �4:3�
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for all �x; t� 2 Bq � �0; T �. This inequality will follow from an application of
the maximum principle.

For e 2 �0; 1� and M > 1, let wM ;e denote the unique classical solution to
the problem (2.3) on Bq � �0;1�, with wM ;e�x; 0� � g�x� � e. Let us ®x a small
number d > 0. We will show that

G�q�wM ;e��; t� ÿ vT ��; t���x� � l 3 0 �4:4�
for all su�ciently large M and for x 2 BR and 02 t 2 T ÿ d. To simplify the
notation, let us set

~w � wM ;e; W �x; t� � jmj�G�q�wM ;e��; t� ÿ vT ��; t���x� � l�:
Using (1.11) and the fact that �vT �m�0; t� � 0, we obtain

@W
@t
� G�q�D��~w�m ÿ �vT �m�� � �ÿ�~w�m�x; t� � �~w�m�0; t� � �vT �m�x; t��: �4:5�

Therefore W satis®es

@W
@t

3 A�x; t�DW ; �4:6�
with

A�x; t� � jmjÿ1ÿ�~w�
m�x; t� � �vT �m�x; t�

~w�x; t� ÿ vT �x; t� :

Observe that W �0; t� � ljmj > 0 and that W is uniformly continuous on
Bq � �0; T ÿ d�. Hence there is a number r > 0, such that W �x; t� > 0 for
x 2 Br and all t. On the other hand, W is in C2�Q� \ C� �Q�, where
Q � fBqnBrg � �0; T ÿ d�, so that we can apply the maximum principle as
long as we verify that W 3 0 on the parabolic boundary of Q. We will see that
this is the case if M is su�ciently large. For �x; t� 2 @Bq � �0; T ÿ d� we ob-
tain, using (4.5),

@W
@t

3 dm=�1ÿm�qÿ2m=�1ÿm� ÿMm;

and thus for large M we have W 3 0 on @Bq � �0; T ÿ d�. Since we also have
W �x; 0�3 0 by assumption, we conclude from the maximum principle that
W �x; t�3 0. Hence, (4.4) holds, so that

G�q�wM ;e��; t��x��3 E�jxjÿ2m=�1ÿm��T ÿ t�1=�1ÿm� ÿ l:

Taking spherical averages in this inequality we obtainZr

0

ds
xN sNÿ1

Z
Bs

wM ;e�x; t�dx 3 E�rÿ2m=�1ÿm��T ÿ t�1=�1ÿm�
� ÿ l �4:7�

for 0 < r < q and 0 < t < T ÿ d. To conclude the lemma, we just take the
limits e! 0 and M !1 in (4.7) as we did in the proof of Lemma 2.1, and
use the fact that d is arbitrary. We then obtain that (4.3) holds, and the proof
is complete. (
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Now we are in a position to prove Theorem 1.3.

Proof of Theorem 1.3.We will ®rst construct a solution ~u to (1.1), with initial
data ~f . We begin by observing that (1.14) and the assumption (1.15) gives us
the existence of an increasing sequence qn " 1 with the property that for a
®xed d > 0 there are numbers n0 and l, such that for all n 3 n0 and x 2 Bqn

,
we have

G�qn
� ~f ��x�3 E�jxjÿ2m=�1ÿm��T ÿ d�1=�1ÿm� ÿ l: �4:8�

Let ~un be the solution of problem (2.1) on Bqn
� �0;1� with ~un�x; 0� � ~f �x�

constructed in Lemma 2.1. It follows from (4.8) and Lemma 3.1 thatZr

0

ds
xN sNÿ1

Z
Bs

~un�x; t�dx 3 E�rÿ2m=�1ÿm��T ÿ dÿ t�1=�1ÿm�
� ÿ l �4:9�

for all 0 < r < qn and 0 < t < T ÿ d. On the other hand, as we have men-
tioned in Remark 2.1, the sequence f~ung is decreasing in n and therefore the
limit

~u�x; t� � lim
n!1

~un�x; t� �4:10�

exists for all �x; t� 2 RN � �0;1�. Our aim is to show that ~u is a solution to
problem (1.1), (1.2) with initial data ~f . We ®rst observe that we can take the
limit n!1 in (4.9) and use monotone convergence to conclude thatZr

0

ds
xN sNÿ1

Z
Bs

~u�x; t�dx 3 E�rÿ2m=�1ÿm��T ÿ dÿ t�1=�1ÿm�
� ÿ l �4:11�

for all r > 0 and 0 < t < T ÿ d. Since l is a ®xed number and rÿ2m=�1ÿm� ! 1
as r !1, this estimate implies that there exists a point x0 2 RN such that

~u�x0; T ÿ 2d� � lim
n!1 ~un�x0; T ÿ 2d� > 0: �4:12�

Now let q > 0 and let n0 be su�ciently large so that Bq�x0� is strictly con-
tained in Bqn

for all n 3 n0. Applying the Harnack estimate (2.13) for each of
the un's, we conclude that for all n 3 n0 we have

qÿN
Z

Bq�x0�

~um
n �x; T ÿ 3d�dx 2 C�T ��~um

n �x0; T ÿ 2d� � cdK�q�q2�; �4:13�

where C�T � is a constant which depends only on T , N and m, and K�q� is an
upper bound for un0��; T ÿ 3d� on Bq�x0�. We wish to estimate the spatial
averages of ~um��; t� for all 0 < t 2 T ÿ 3d. For this we use the Aronson-
BeÂ nilan inequality (2.12). Indeed, integrating (2.12) in time we obtain the
estimate

~un�x; t�3 t
T ÿ 3d

� �1=�1ÿm�
~un�x; T ÿ 3d�; �4:14�
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and therefore as a combination of (4.13) and (4.14) we have

qÿN
Z

Bq�x0�

~um
n �x; t�dx 2 C�T �tm=�1ÿm��~um

n �x0; T ÿ 2d� � cdK�q�q2�:

It follows by monotone convergence and (4.12) thatZ
Bq�x0�

~um�x; t�dx 2 C�q; T ; d; ~u�tm=�1ÿm�; �4:15�

where the constant C�q; T ; d; ~u� is independent of t. This in particular implies
that ~u 2 L1loc�RN � �0; T ÿ 3d��. It remains to show that ~u satis®es (1.1) in the
distributional sense and that ~u��; s� ! ~f in L1loc�RN �, as s! 0. This follows
from the estimate (4.15). Indeed, let g 2 C1c �RN � �0; T �� be a nonnegative
test function and 0 < s < T ÿ 3d. Then, if n is su�ciently large so that
Bqn
� �0; T � contains the support of g, we haveZ

~un�x; s�g�x; s�dxÿ
Z

~f �x�g�x; 0�dx �
Zs

0

Z
~un
@g
@t
� ~un

m

m
Dg dx dt: �4:16�

It follows from (4.10) and (4.15) that we can pass to the limit n!1 in (4.16)
to conclude that the same integral equality holds for ~u. Hence, ~u satis®es
@~u=@t � D~um=m in the distributional sense. Also combining (4.15) and (4.16)
we obtain Z

~u�x; s�g�x; s�dxÿ
Z

~f �x�g�x; 0�dx

���� ����2 C�g; T ; d�s � o�s�

as s! 0. We conclude then that ~u is a solution of the problem
@~u=@t � Dum=m, ~u�x; 0� � ~f �x�, on RN � �0; T ÿ 3d�. Since d > 0 can be
chosen arbitrarily small, we ®nally obtain that ~u is a solution of (1.1), (1.2)
with initial data ~f .

We now construct a solution u of the problem (1.1), (1.2) with initial data
the given function f 2 L1loc�RN � and such that

u 3 ~u on RN � �0; T �: �4:17�
Let qn !1 and ~un be chosen as at the beginning of the proof, and for k 2 N,
let un;k be the solution of the problem (2.1) with X � Bqn

and
un;k��; 0� � fk � min�f ; k�. Then it follows from the Remark 2.2 that

un;k�1 3 un;k 3 ~un 3 ~u in Bqn
� �0; T � �4:18�

for all k 3 k0 if k0 is chosen so that fk0 3 ~f in Bqn
. Moreover, if g 2 C1c �Bqn

� is
a nonnegative test function, each un;k satis®es the integral identityZ

Bqn

un;k�x; s�g�x�dxÿ
Z

Bqn

fk�x�g�x�dx � mÿ1
Zs

0

Z
Bqn

um
n;kDg�x� dx dt �4:19�
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for all s 2 �0; T �. By using (4.18) the right-hand side of (4.19) can be esti-
mated by �����

Zs

0

Z
Bqn

um
n;kDg�x� dx dt

�����2 C�g�
Zs

0

Z
Bqn

~umdx dt <1:

Since the sequence fun;kg is increasing in k, the limit

un�x; t� :� lim
k!1

un;k�x; t� �4:20�

exists for all �x; t�, and it follows from (4.19), (4.20) and the monotone
convergence theorem that un��; t� 2 L1loc�Bqn

� for all t 2 �0; T � and
um

n 2 L1loc�Bqn
� �0; T ��. It is then easy to conclude that un satis®es the

equation @un=@t � Dum
n =m in the sense of distributions on Bqn

� �0; T �. Also
combining (4.15) with (4.19) and (4.20) we conclude that for all
g 2 C1c �Bqn

� Z
un�x; s�g�x�dxÿ

Z
f �x�g�x�dx

���� ����2 C�g; T �s � o�s�; �4:21�

as s! 0.
We next observe that

un�1 2 un on Bqn
� �0; T �;

since it follows from the Remark 2.2 that un�1;k 2 un;k for all k su�ciently
large. Therefore the limit

u��; t� � lim
n!1 un��; t�

exists and u��; t� 2 L1loc�RN � for all t 2 �0; T �. Moreover, (4.17) holds. It is then
easy to see that um 2 L1loc�RN � �0; T �� and that u satis®es (1.1) in the distri-
butional sense. Finally taking the limit n!1 in (4.21) we conclude that
u��; s� ! f in L1loc�RN �, as s! 0. Hence u is a solution of the problem (1.1),
(1.2) and the proof of the theorem is complete. (

5. A nonexistence result

In this section we prove the nonexistence result Theorem 1.2. Our proof is
based on comparison arguments similar to those used in the proof of The-
orem 1.3. We also use many of the results in [7], so we refer the reader to that
paper for some of the details. For e 2 �0; 1� and M > 1, we denote by ue;M the
unique classical solution of the initial-value problem @u=@t � Dum=m, on
RN � �0;1�, with u��; 0� � min� f ;M� � e. We also de®ne

ue :� lim
M!1

ue;M ; w :� lim
e!0

ue; �5:1�

where the limits exist, as was shown in [7]. Moreover, it was proved in [7] that
if u is a solution of (1.1), (1.2) with initial data f , then
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u��; t�2 w��; t� for all t 2 �0; T �: �5:2�
The important step in our proof is to show that if f satis®es (1.11), then

N�w��; t���jxj�2 N�vTÿd��; t���jxj� � l; �5:3�
for all 0 < t 2 T ÿ d. The desired result then easily follows as a combination
of (5.2), (5.3) and Theorem 1.1 in [7].

Set s � T ÿ d and ®x a number R > 1. Let ~vR be the solution of the
boundary value problem (2.1) with X � BR, ~v�x; 0� � �2as�1=�1ÿm�min
�jxjÿ2=�1ÿm�; 1�, a � N ÿ 2=�1ÿ m�, as constructed in Lemma 2.1. It is easy to
see that ~vR is radially symmetric in x. The proof of the inequality (5.3) will be
based upon the following lemma.

Lemma 5.1. Let f be a nonnegative locally bounded function satisfying (1.13)
and assume that ue�0; s� <1 and w�0; s� � l > 0. Then, there exists a positive
constant l independent of R, such that

N�w��; t���jxj�2 N�~vR��; t���jxj� � l for jxj < R; �5:4�
for all 02 t 2 s.

Proof. To simplify the notation set ~v � ~vR and r � jxj. We begin by noticing
that condition (1.13) implies the existence of a positive constant l0 depending
only onN ,m and s, such thatN� f ÿ ~vR��; 0���r�2 l0: In particular, if we de®ne

W �r; t� � jmj�N�uM ;e��; t���r� ÿ N�~vR��; t���r��; �5:5�
then W �r; 0�2 l0 � eR2 for all r 2 R. Denote by uM ;e the spherical averages of
uM ;e. since @uM ;e=@t � Dum

M ;e=m and um
M ;e 3 �uM ;e�m, the function W satis®es

the di�erential inequality

@W
@t

2 A�r; t�DW � um
M ;e�0; t�; �5:6�

with A�r; t� � jmjÿ1f�ÿ�uM ;e�m � ~vm�=�uM ;e ÿ ~v�g. It follows from the Aronson-
BeÂ nilan inequality that um

M ;e�0; t�2 C0tm=�1ÿm� with C0 � C0�s; l� independent
of e and M . Therefore the function

~W � W ÿ �1ÿ m�C0t1=�1ÿm�

satis®es @ ~W =@t 2 A�r; t�D ~W with ~W �r; 0�2 l0 � eR2 for all 0 < r 2 R, and
@ ~W =@t � ÿ�uM ;e�m�R; t�2 0 on @BR � �0; s�. The maximum principle then
implies that ~W �r; t�2 l0 � eR2 on BR � �0; s�. In particular,

N�ue;M ��; t���r� ÿ N�~vR��; t���r�2 l0 � �1ÿ m�C0t1=�1ÿm�2 l;

with l � l0 � �1ÿ m�C0s1=�1ÿm�, and therefore taking limits M !1 and
e! 0, we ®nally obtain the desired inequality (5.4). (

It follows from the Remark 2.1 that the sequence f~vRg is decreasing in R,
and therefore the limit

~v :� lim
R!1

~vR �5:7�
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exists. It follows from the proof of Theorem 1.3 that ~v is a solution of
@~v=@t � D~vm=m on RN � �0; s� with ~v�x; 0� � �2as�1=�1ÿm�min�jxjÿ2=�1ÿm�; 1�,
a � N ÿ 2=�1ÿ m�.

We have the following comparison lemma.

Lemma 5.2. If ~v is the solution de®ned by (5.7), then ~v 2 vs on RN�
�0; s�; s � T ÿ r.

Proof. Set z � ~vÿ vs, and let v denote the characteristic function of the set
where ~v�x; t� > ~u�x; t�. Fix a number 0 < t < s and pick a test function
g 2 C1c �RN �, g 3 0. Then, since z�x; 0�2 0, we haveZ

z��x; t�g�x�dx 2
Z t

0

Z
v�x; s��/m�~v�x; s�� ÿ /m�vs�x; s���Dg�x� dxds; �5:8�

where /m�u� � um=m. To derive (5.8) one combines KATO'SATO'S inequality [9] and
an approximation argument to conclude that

D�/m�~v� ÿ /m�vs���3 vD�/m�~v� ÿ /m�vs�� �5:9�
in the distributional sense. Also, since @z�=@t � v@z=@t again in the distri-
butional sense, (5.8) follows. Let A�x; s� � �/m�~v� ÿ /m�vs��=�~vÿ vs� whenever
~v > vs and zero elsewhere. It follows from the exact formula de®ning vs that
A�x; s�2 �~vs�mÿ1�x; s�2 c�s�jxj2. Hence, if g 2 C1c �B2R� is chosen so that
02 g 2 1, g � 1 on BR and jDgj2 CRÿ2, we obtainZ

BR

z��x; t� dx 2 C
Z t

0

Z
B2R

z��x; s� dxds: �5:10�

Also, notice that with the same of choice of g in (5.8) we can also conclude
that Z

BR

z��x; t� dx 2 CRÿ2
Z t

0

Z
B2R

j/m�~vs�j dxds 2 C�s�RNÿ2=�1ÿm� �5:11�

for all R > 1. It follows that

l�t� :� sup
R 3 1

1

RNÿ2=�1ÿm�

Z
Br

z��x; t� dx 2 C�s� <1:

Now choose R > 1 such that
R
BR

z��x; t�3 1
2 l�t�RNÿ2=�1ÿm� and apply (5.10) to

conclude that

l�t�2 C
Z t

0

l�s� ds

for some constant C � C�N ;m; s�. Hence, l�t� � 0, which implies that
~v��; t�2 vs��; t�, for all 0 < t < s. (
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We are now in position to prove Theorem 1.2.

Proof of Theorem 1.2. We show that for the solution w de®ned in (5.1) we
have w��; t� � 0, for all t > T ÿ d. Since, as we have proved in [7], any solu-
tion u of the problem (1.1), (1.2) satis®es u 2 w, this would imply the desired
nonexistence result.

Assume that w��; T ÿ d�40; otherwise the desired result follows from
Theorem 1.2 in [7]. It follows then from the Lemmas 2.3 and 2.4 that
w�0; T ÿ d� � l > 0 and therefore as a combination of Lemmas 5.1 and 5.2
we have ZR

0

1

rNÿ1xN

Z
Br

w�x; t� dxdr 2 l; �5:12�

for all t 3 T ÿ d and R > 0.
The proof of Theorem 2.1 in [7] then implies that w��; t� � 0, for all

t > T ÿ d. (
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