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We consider the equation —Au = |u[*/ (N =2y 4 ¢ f(x) under zero Dirichlet boundary
conditions in a bounded domain 2 in RV exhibiting certain symmetries, with f > 0,
f # 0. In particular, we find that the number of sign-changing solutions goes to
infinity for radially symmetric f, as ¢ — 0 if {2 is a ball. The same is true for the
number of negative solutions if {2 is an annulus and the support of f is compact in (2.

1. Introduction

This paper is concerned with the existence of multiple solutions of the problem
~Au = [ulP'u+ef(z) in 2, ()
u=0 on 02, -

where {2 is a bounded smooth domain in RY, N > 3, p is the critical Sobolev
exponent p = (N 4 2)/(N — 2) and f(z) is a non-homogeneous perturbation.
Ifl<p< (N+2)/(N—-2)and f = 0, the associated energy functional is
even and satisfies the Palais-Smale (PS) condition in H}(£2). Standard Ljusternik—
Schnirelmann theory then yields the existence of infinitely many non-trivial solu-
tions. On the other hand, when p = (N + 2)/(N — 2), PS no longer holds and
this poses an essential difficulty to the existence question. In fact, when f = 0
and the domain (2 is strictly star shaped, it is shown in [13] that no non-trivial
solution exists. In [6], Brézis and Nirenberg showed that the presence of the non-
homogeneous term may restore solvability. As pointed out in [16], the result in [6]
implies that if f # 0, f >0, f € H~(£2), then at least two positive solutions exist
for all small ¢, while no positive solution exists if € is sufficiently large. This result
was improved by Rey [16] and by Tarantello [20] in two different directions. In [16],
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it is found that, for f > 0 sufficiently regular with f # 0 at least cat(2)+ 1, positive
solutions exist, where cat(§2) denotes the Ljusternik-Schnirelmann category of 2.
One of these solutions approaches zero while the others develop single-spike shape
at some points in {2 as ¢ — 0. The spike-shape solutions resemble Uy (z — ) for
some ¢ € {2 and A > 0 very small, depending on ¢, where

A >(N2)/2

with ay = (N(N — 2))V=2)/4 We recall that the above are the unique positive

solutions up to translations of the equation
Au4uNFD/N=2 — ¢ in RN (1.2)

(see [3,7,18]). On the other hand, in [20], the result in [6] is improved by establishing
that at least two solutions exist, provided that f # 0, [lef||g-1(0) < Cn, where Cx
is an explicit constant. These solutions are positive if f > 0.

Ali and Castro [1] showed that the existence result in [6] is optimal for posi-
tive solutions in a ball; if 2 is a ball and f = 1, problem (=.) admits exactly
two positive solutions for all sufficiently small €. Since positive solutions must be
radial in that case, their analysis is carried out by means of analysis of the asso-
ciated ordinary differential equation. One purpose of this paper is to show that
the situation is drastically different in the case of sign-changing solutions in a ball
centred at 0; for f > 0, f # 0 radially symmetric, a large number of (non-radial)
solutions appears as ¢ — 0. More precisely, for any integer k sufficiently large, a
solution exists developing negative spike shape at the k vertices of a regular poly-
gon centred at 0, with a positive spike at the origin. This result holds true in more
generality, including, for instance, the case of a solid of revolution in R?, which is
also symmetric in the coordinate of the rotation axis. Let us state precisely the
assumptions we will make in the domain {2 and the non-homogeneous term f. We
write x = (2,23,...,7x5) = (z,2') for a point in RY = C x RV~2. Assume that the
domain 2 in RY, N > 3, and the non-homogeneous term f satisfy the following
properties.

(H1) If (2,2") € £2, then (e!2,2") € 2 for all 6 € [0, 27].

(H2) If (z,23,...,Z4,...,xN) € {2, then (z,23,...,—2i,...,xn) € §2 for each ¢ =
3,...,N.

(H3) f € L°°(£2) is non-negative in {2, has the form f = f(|z],2') and is even in
each variable z; for i =3,..., N.

We will find solutions exhibiting spikes at the vertices of a regular polygon. More
precisely, for k € N, we write

P = (™% 0y, j=1,... k. (1.3)

THEOREM 1.1. Assume that (2 satisfies (H1), (H2) and, additionally, that 0 € (2.
Let f satisfy (H3). Then there is a ko(§2) such that, for each k > ko, the following
holds. If €, is any sequence with €, — 0, then there is a subsequence of <, labelled
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the same way, positive numbers Ay, A_, p and solutions u,, of =, for e =¢€, of the
form

k
U, (x) = [_ZUAi(x_ijk)"_UAn ()| (1 4+ o(1)), (1.4)
j=1

where o(1) — 0 uniformly in 2 as n — oo and

AE = e/ (=25,
Here, Uy is defined by (1.1) and Pj, by (1.3).

From the result in [16], we know that the presence of non-trivial topology in
the domain {2 induces higher multiplicity of single-spike solutions. The additional
effect of symmetries in the multiplicity question has recently been studied in [8]. For
instance, if {2 is symmetric with respect to 0, 0 € £2, and f > 0 is even, then at least
cat(£2) + 2 positive solutions exist, provided that ||ef||z-: is small enough. More
symmetries induce higher multiplicity of positive solutions; among other results, we
find that if {2 is an annulus

A ={zeCV:1<|z| <1+ 4}

and f is non-negative radially symmetric, f # 0, then the number of positive
solutions goes to infinity as 6 — 0 and € — 0. Positive solutions exhibiting spike
shape at the vertices of a k-regular polygon indeed exist for any k£ > 1 in this
situation.

The following theorem reveals a rather surprising dual version of the above result.
We find that, in an annulus of fixed size, the number of solutions of =, goes to
infinity for f > 0, f # 0, as ¢ — 0. These solutions are negative if the support of f
is compact in {2.

THEOREM 1.2. Assume that 2 satisfies (H1), (H2) and, additionally, that 0 & (2.
Then there is a ko(§2) such that, for each k = ko, the following holds. If f satis-
fies (H3) and e, — 0, then, passing to a subsequence, there exist positive numbers
A, p and non-trivial solutions u, of = for e =&, of the form

k
() = —[Z UAn@—ijk)} (14 (1), (15)

j=1
where o(1) — 0 uniformly in 2 as n — oo and

AE = 2/ (N=2) )\
Moreover, if the support of f is compact, then u, is negative in 2.

The proofs of theorems 1.1 and 1.2, to which we devote the rest of this paper,
follow a Lyapunov-Schmidt reduction procedure, related to that in [16], recently
devised for the study of the slightly supercritical problem

— Ay = uNFTD/IN=2+= 4y

u=0 on 02,
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in [9-11]. In particular, a result similar to that in theorem 1.2 is found for the above
problem in [11].

Finally, we should mention that the subcritical case 1 < p < (N + 2)/(N — 2)
has been extensively considered in the literature. While it is shown in [12] that no
positive solution exists for large €, several results implying the existence of multiple
or infinitely many sign-changing solutions are available (for small and also large
non-homogeneous perturbations) (see [2,4,14,15,17,19]).

2. Ansatz and expansion of its associated energy

Let f and ¢, be as in the assumptions of theorem 1.1. In order to construct the
solutions predicted in theorem 1.1, it is convenient to introduce the change of vari-
ables

v(y) = —eu(e? N 72y), (2.1)

where, for notational convenience, we drop the subindex n from &,,. Then u is a
solution to problem (=) if and only if v solves

Av + oY (N=2)y — €2N/(N72)f(y) -0 in Qa:} 22)
u € Hy(52.),
where (2. is the rescaled domain given by
Q. =2/ N2,
while f(y) = f(e=*/(N"2)y).
Letting ¢ — 0 in (2.2), the limiting equation becomes
Av+ Y N2y =0 inRY, (2.3)
whose positive solutions are all given by
) A\ (N=2)/2
Vie(y) =an (W) ) (2.4)

where ay = (N(N —2))(N=2/4 ¢ ¢ RN and X > 0. We also write V = Vi0-
Let us consider (k + 1)-tuples of points and numbers,

£: (50151:' "agk) € ‘Qk+1’ A= (AO’AD o "Ak) € Ri+1'
We set
522672/(]\[72)51'695 and g’:(gé,...,ﬁ,’c)eﬂfﬂ.

In order to find the solutions predicted by theorem 1.1, it is then natural to look
for solutions to (2.2), in the class of functions that respect the symmetries of {2,
which, at a first approximation, look like

k

v Y (Ve = Vi)
=1

for appropriate choice of points &/ and parameters A;. In order to take into account
the boundary conditions in problem (2.2), a better approximation is then given by
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the projections of the functions VM&; onto HE(£2.). More precisely, we define by
V), ¢, the unique solution of the problem

CAV,, ¢ = VRN
Aiki Xirki e (2.5)
g, =0 on 0f2.
For notational convenience, we write
k
Vi=Vae, VI=D Vi, Vi=Vyg and V=V'-V". (2.6)
i=1
We then look for a solution of (2.2) of the form
u(y) = V(y) + o(y),
where ¢ represents a lower-order term.
Let p= (N +2)/(N — 2). The functional associated to (2.2) is given by
1 -
2w =5 [ 1Dy [t [ fapea @)
2 p+1 Q.

We will work out the asymptotic expansion for the energy functional J. at the
function V', assuming that the points &; and the parameters \; satisfy certain con-
ditions.

We make the following choice for the points and the parameters. For a given
0 > 0, we consider points £; and parameters \; such that

dist(&;,00) > 4, & — & > 0, §< <ol (2.8)

The advantage of this constraint on points and parameters is the validity of
an expansion of J.(V) in terms of Green’s function and of its regular part of the
Laplacian with Dirichlet boundary conditions on 2. We denote by G(z,y) Green’s
function of {2, namely, the solution of

AwG($7y):(50(£L’_y), :L’EQ,
G(z,y) =0, x € 012,

where dg(x) denotes the Dirac mass at the origin and H(z,y) its regular part,

namely,
H(z,y) =I'(x —y) = G(z,y) V(z,y) € 2x 1, (2.9)

where I is the fundamental solution of the Laplacian, I'(x) = by|z|>~". In order
to state the expansion, we denote

&= [ )G9 (2.10)
In other words, ~ solves
—Avy=f in £2,
v=0 on 0.

We observe that, since f € L°°(£2), then v € C1(£2) for any o < 1.
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PROPOSITION 2.1. Given § and choosing
A = (ay! 47/ N2
with ay = f]RN VP dx, we have
Jo(V) = (k+ 1)Sn + %Y(&, A) + o(e?)

uniformly in the C sense with respect to (&, A) satisfying (2.8).
The constant Sy is here given by

_ 1 _
SN:l/ DV de — —— [ VPHldg
2 RN p+1 RN

and the function ¥y is defined by

[ZH@,@ =2 Y G &Nl +2) G, &) A Ao}

1<j, 170 i#0

k
+ 3 (&) A — 7(80) Ao

j=1
’ (2.11)
Proof. We write
J (V)= J(V)+ e [ Fy)Viy)dy. (2.12)
Q2.

The expansion of J. (V) follows from the arguments developed in [5,10]. Given (2.8),
we have that

k
JV) = (b 1Sy + 5| S HE.6)47-2 3 G664
=0

1<, 17#0
+2ZG<£O,&)AZ'AO} e’ +o(e?)

i#£0
(2.13)

uniformly in the C'! sense with respect to points and parameters that satisfy (2.8).
On the other hand, taking into account that, away from z = &;,

Vo (e 72g) = G(%&)&(‘N%)/Qez/ VP + o(g?) (2.14)
]RN

uniformly on each compact subset of {2, a direct computation yields

P Fy)Viy)dy

02

=Mt Z y)dy — Pt , F)Voly)

k
Z/ F@)Vi(e=2 V=2 dm_/ F@)Vole=? V-2 3) dg
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k

=2 A§.N2>/2( Vpdac) F(2)G(z,&)d
LA, ) ] g
—EQA((JNQ)/Q(/ Vpdx>/ f(2)G(x,&) dz + o(e?)

—E(Zmz (o ) +ole?). (2.15)

This concludes the proof of proposition 2.1. O

3. The finite-dimensional reduction

In this section we consider the problem of finding a function ¢ that, for certain
constants c;;, solves

AV 4@+ V4P (V4o)—er fly) = ciVP ' Zi; in 02,
ij

p=0 on OS2, (3.1)

oVP ' Zi5 =0 for all i, j,
-Qa
where the functions Z;; are defined as the H&(QE)—prOjection of the function Zij,
where
_ aV;
Zi': 3 j:]-:"':N:
J 8yj
- ov; ) _ _
ZiNt1 = IV (x=&) Vit (N =2)V,

namely, Z;; € HJ(£2.) satisfies the equation AZ;; = AZij.
A first step to solve (3.1) consists of dealing with the following linear problem.
Given h € L*°(f2.), find a function ¢ and constants ¢;; such that

Ap+plVIPro=h+> c;VP ' Zy in 2,
3

=0 on 012, (3.2)

/ VP Zh =0 for all , ;.
In order to study the invertibility of the linear operator L. associated to (3.2),
namely,

Le(¢) = Ad +plV[~ro

under the previous orthogonality condition, it is useful to introduce convenient
norms that depend on the points £'. For a function v defined in £2., we define

(jz:ﬁ)ﬁww)

¥l = sup
TEN:

)
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where 3 =1if N =3, 3=2if N > 4, and, for any dimension N > 3,

(i mw@ |

Jj=0

”1/’”** = sup
T€ (2,

Concerning the solvability of (3.2), a slight modification of the results obtained
in [9-11] yields the following result.

PROPOSITION 3.1. Assume that constraints (2.8) hold. Then there are numbers
gg > 0, C > 0, such that, for all0 < & < g9 and all h € C*({2.), problem (3.2)
admits a unique solution ¢ = L.(h). Furthermore, the map

(€A h) = Le(h) = ¢
is of class C' and satisfies
[8ll« < CllAlwr (3.3)
and
Ve ol < Cllhls (3.4)

Here and in the rest of this paper, we denote by C' a generic constant that is
independent of € and of the particular &;, A\; chosen satisfying (2.8).

We are now in a position to solve problem (3.1). The first equation in (3.1) can
be written in the following form,

Le(¢) = =Nu(¢) — R. — F. + Z Cijvipilzij, (3.5)
2]
where

Ne(9) = [V + 0P (V +¢) = VPV = plV P71, (3.6)

k
R.=|V[P7lV - (Z VP — VOP>, (3.7)

i=1
) (3.8)

For small £ > 0 and [|¢||. < %, the following estimates hold (see [10]):

Clloll? if N <6,

3.9
C (2P |¢|]2 + 2@=PB||p|2) if N > 6. 39

[Ne(@)[1x < C{
Now, taking into account the fact that
Va,e (@) = Vi(z) = C* + o(e?)

for [z — ¢/] < 0e72/N=2) and § < \; < 571, we have

k 1 —4
Kzrwﬁ&>&

i=1

< Ce2.
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N+2)/(N-2)

In the complement of these regions, |R.| < Ce?( , and hence we get

Finally, since f € L*°(§2), a direct computation yields
[ Fellan < CE2. (3.11)
The following result holds.

PROPOSITION 3.2. Assume that relations (2.8) hold. Then there is a constant C > 0

such that, for all € > 0 small enough, there exists a unique solution ¢ = d(&, ) to
problem (5.1) of the form ¢ = ¢ + ¢, with ¢ = —LZY(R.). Furthermore, the map
(€', 0) — (&', N) is of class C for the || - ||« norm and it satisfies

6]l < Ce?.

Moreover, B
[Der 29l < Ce®.

Proof. Problem (3.1) is equivalent to solving a fixed point problem. Indeed, ¢ is a
solution of (3.1) if and only if

¢ =L (N(¢+ &) + R + F.) =t A(9).

Thus we need to prove that the operator A. defined above is a contraction in a
proper region. Let us consider the set

Fr=A{:llgll. <re?},

with 7 a positive number to be fixed later. From proposition 3.1 and estimates (3.9),
(3.10), (3.11), we get

7"52 if N < 6:

< | r <
||Aa(¢)||* = C||Na(¢) + R. +Fa||** = {C(E4B+2 _|_€2pﬂ+2 +€2) < re2 if N >6

for all small e, provided that 7 is chosen large enough, but independent of . Thus A,
maps F, into itself for this choice of r. Moreover, A. turns out to be a contraction
mapping in this region. This follows from the fact that N. defines a contraction in
the || - |« norm, which can be proved in a straightforward way.

Concerning now the differentiability of the function ¢(£’, ), let us write

B(E', X, ¢) := ¢ — To(Ne(¢) + Re + F2).
Of course, we have B(¢', A, ¢) = 0. Now we write
DyB(£', A, 9)[0] = 0 — T-(0Dy(Ne(¢))) =: 6 + M(6).
It is not hard to check that the following estimate holds:
1M (0)]. < Cell6)]..

It follows that, for small ¢, the linear operator DyB(¢, A, ¢) is invertible, with
uniformly bounded inverse, in C,, the Banach space of continuous functions in {2,
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with bounded || - || norm. It also depends continuously on its parameters. Let us
differentiate with respect to &’ (analogous arguments give the differentiability with
respect to \). We have

Dng(ﬁ', A ¢) = _(Dﬁ’Ta)(N€(¢) + R + Fa) - Ta((Dﬁ’NE)(fla ¢) + Dﬁ’Ra)a

where all the previous expressions depend continuously on their parameters. Hence
the implicit function theorem yields that ¢(¢/, \) is a C! function into C,. Moreover,
we have

Ded = —(DyB(E', X, ¢)) " [De' B(E' A, 9)],
so that
||D€’¢||* < C(||Na(¢) + R + Fa”* + ||D5/NE(§', A, ¢)”*) < Ce®.
This concludes the proof of proposition 3.2. O

Given the unique solvability of (3.1), problem (2.2) admits a solution of the
desired form if the points &; and the parameters \; are chosen so that

cij(€,2) = 0. (3.12)

Observe now that, integrating (3.1) against Z,;, we obtain an ‘almost diagonal’
system, which can be written in the form

DIV +6)[Z;) = 0, (3.13)

where J; is the functional introduced in (2.7). In fact, this system is equivalent
to (3.12).
Let us now write
I(§,N) = J(V + ¢).

We claim that (3.13), and hence (3.12), are equivalent to

VI.(&,)) =0. (3.14)
In fact, observe that
OV +¢)  _oin_ oV +9)
Tx‘j = oW 2)(011‘Zij +o(1)), o @i Ziyn+1) +o(1),
with a; = —1 for i = 0, a; = 1 for i # 0 and o(1) — 0 uniformly on 2, as e — 0.

Each term o(1) can be written as the sum of a function that belongs to the space
spanned by the Z;; and a function 7 that satisfies

/Q WV Ziy =0

e

for all ¢, j. Again, from (3.1), we get DJ.(V +¢)[n] = 0. Hence, for certain numbers
Bij, we get
VI(6A) = DIV + $)V(V + )] = 3 B DJ(V +6)[ 2] = 0,
ij

which proves the equivalence between (3.12) and (3.14).
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The next step will be to show that solving (3.14) reduces to finding critical points
of the leading part of J.(V + ¢), namely, J.(V). This result is established in the
following lemma, the proof of which can be found in [10,11].

LEMMA 3.3. Let ¢ be the function given by proposition 3.2. Then the following
expansion holds,
I(§,A) = J(V) + o(),

where the term o(g?) is uniform in the C' sense over all points satisfying con-
straint (2.8), for given 6 > 0.

4. Proof of theorem 1.1

According to the results of the previous sections, the final step to establish theo-
rem 1.1 consists of finding critical points £ = (&g, ...,&) and A = (Ao, ..., \x) of
the function

L(6, 4) = J.(V + 9),

where \; = (a;,l/li)Q/(N*Q) as in proposition 2.1.
We will now see that the symmetry of the domain and of the functions V', f let
us look for critical points of I of the very special form

50:0, szppj, AjZ/l Vj=1,...,/{:. (4.1)

Let us set
I.(p, Ao, A) = I.((0, p(P1,. .., Pr)), (Ao, A(1,...,1))). (4.2)

We have the following result.

LEMMA 4.1. Under the assumptions of theorem 1.1, if (p, Ao, A) is a critical point
of I, then (§,A) = ((0, p(P1,..., Py)), (A, A(1,...,1))) is a critical point of I..

Proof. Observe that the functions V' and f are even with respect to each of the vari-
ables y3,...,yn in 2. and they are invariant under rotations in the plane spanned
by the first two coordinates. Since ¢ solves (3.1), it follows that ¢(y1, .. ., yn) shares
the same properties with V' and f Hence, since (3.1) is uniquely solvable, ¢;; = 0
automatically for all 0 <7 <k and 2 < 7 < N and ¢o; = 0.

As a consequence, only the term

k k
-1 -1
DoV Zn 4+ Y v Vi Zivy
=1 i=0

appears in the right-hand side of the first equation in (3.1).
Using again the invariance of ¢ under rotations in the (y1, y2)-plane, the previous
summation reduces to
k ~

DAV Z 4 VI Ziv ) + sV Zov ),

j=1
where

Z;=17

~ 21y . ([ 27my
j j1 COS (T) + ng SIH(T>
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and ¢; = ¢;(p, Ao, A), i = 1,2,3. Therefore, finding critical points of I of the form

(&, A) =(0,p(Py,...,Py), Ao, A(1,...,1))

reduces to solving ¢;(p, Ao, A) =0 for i = 1,2, 3.
On the other hand, these relations are equivalent to saying that (p, Ao, 4) is a
critical point of Z.. In fact, observe first that

8v+<;s => Zy—o(l) fori=1,....k j=1,...,N,

0
iV +e) = Z Zin+1) +o(1),
=1

0

EYn — (V+ ) = Zy(n41) +0(1),

with o(1) — 0 uniformly as € — 0. Now, VZ. = 0 is equivalent to

2V +9)

DJE(V+¢)[ 0 (V+¢>)} = DJE(V+¢)[ 0

= DUV +0) |V + )
—0. (4.3)

Using again the observation that each term o(1) can be written as the sum of a
function that belongs to the space spanned by the Z;; and a function n that satisfies
fQ nVP~ Zm =0 for all 4, j, equation (4.3) reads as the system

3

3 (65 +o(1))e; =0 for j=1,2,3.
=1

Hence ¢ = ¢co = ¢c3 = 0. O
We are now in a position to prove theorem 1.1.

Proof of theorem 1.1. According to lemma 4.1, we need to find a critical point
(p, Ao, A) of the function Z.(p, Ao, A) defined in (4.2).
Now, from proposition 2.1 and lemma 3.3, we get

Za(p: AO: A) = (k + 1)SN + 52Wk(pa AO: A) + 0(62): (44)
where
Wk(pﬂ AOaA) = wk(oap(Pla R aPk)ﬂ AO: A(]-: ceey 1))

(see (2.11)).

Let [0, R) be the maximal range for p. We claim that ¥, has a critical point
(pr, Aok, Ax) € (0, R) x Ri for any k large.

We may write ¥y in a more compact way,

Ui (p, Ao, A) = 3L My (p)L + L'k (p), (4.5)
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where
|4 _ | Nilp)  G(O,pPr)
L=[a] 0= |owmy oo (+0)
with
Ni(p) = H(pPy,pP1) = Y _ G(pPy, pP)) (4.7)
J#1
and
_ [v(pP1)
Ve(p) = [7(0)/16} ; (4.8)
with 7 defined as in (2.10).
First observe that V4, 1)¥ = 0 amounts to the relation
L(p) = =M (p)k(p),
H(0,0) 2(0)
[A(p)} 1 w— 1(pP1) + G0, pPr) == (o)
Mool A MO | o, ppy - e 22|
’ k

where Ny (p) is given by (4.7). The previous expression makes sense for values of p
such that det My(p) # 0.
Consider now

Vie(p) =V

k
4 (Ag,A)¥E=0}

(p)-

An easy computation yields

Ui, (p) = —29L ()M (p)y(p) = —————21(p), (4.10)

where

7%(0)
.

Ui(p) = H(0,0)7*(pP1) + 2G(0, pP1)7(0)y(pP1) + Ni(p) (4.11)

The key observation to show that ¥; has an admissible critical point for any k
sufficiently large is the following. There exists p > 0, kg € N such that

Yr(p) <0 forall p € [0, p] for all k > ko. (4.12)

In fact, observe that, for p — 0, H(pP1,pP1), v(pP1) are bounded quantities.
Moreover, from the properties of Green’s function, there exists § > 0 such that, for
0<p<dandj#1, wehave

by by
G(pplappj) > pN72|P1 — Pk|N72 - O(l):G(prO) < pN*Q + O(l): (413)

where O(1) denote quantities uniformly bounded and positive in [0, d].
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Hence we get

1
T > G(pP1, pPy)

J#1 . ,
g E;(PN%RJXPHNQ B O(l)>
y (gﬂ)NszpNgkN3(N1_ 3T ;)kN3> — k; 10(1) if N > 3,
) Wlogk—%ﬂl) if N = 3.

(4.14)

The previous remarks, together with (4.13) and (4.14) imply (4.12). Now, a direct
computation gives that

Yr(p) <

0
In particular, we have, for 0 < p < p and k > ko,
det My (p) < 0. (4.15)

= det My(p) < 0.

Using the properties of Green’s function and its regular part, one easily see that,
for any k,

lim det My(p) = —oo and  lim det My(p) = +oo.

p~>0+ p— R~
Then, for any k, there exists pg, 0 < pr < R with the property that
det My(p) <0 for 0 <p < pr and det My(pr) =0. (4.16)

As a consequence, p < pi for any k large enough and an easy computation gives

Vi(pr) > 0. (4.17)

We now have the tools to show that @k(p) has a minimum in (0, ), with negative
value, for any k large enough. In fact, for k large enough, equations (4.10), (4.11),
(4.12) and (4.15) imply that

lir(r)l+ @k(p) =0 and @k(p) <0 forp~0".
p—

On the other hand, equations (4.10), (4.11), (4.16) and (4.17) yield

lim ¥ (p) = +oo0.

P— Py
We denote by ¢ and py, respectively, the minimum value and the minimum point
of ¥, in (0, p), that is,

cr = @k(pk) = min @k(p) < 0.
PE(0,pr)
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We can then conclude that (pg, Ao(pr), A(Pr)) (see (4.9)) is a critical point for
¥;,. We may conclude that this critical point is admissible after we check that
L(px) € Ri.
The fact that A;(pg) > 0 is a direct consequence of (4.9) and det My (py) < 0.
On the other hand, since det My (pr) < 0 and @k(pk) < 0, we have ¥y(pr) < 0
and hence

Aopr) = _m (—G(O, pePr)Y(prPr) — NW):&%)
! 7 (px)
> —m (G(O, o P )y (prPr) + H(0,0) ) >
> 0.

To conclude the proof of theorem 1.1, we need to show that this critical point
persists under small C! perturbation. In fact, since (4.4) holds, this implies that
Z.(p, Ao, A) has itself a critical point (5, A§,;,, A3) close to (pr, Ao(pr), A1(pr))-

Let @ > 0 and define

D, = (pr — a, pr +a) X (Ao(pr) — a, Ao(pr) + a) x (A(pr) — a, A(pr) + a).

Since py, is a non-degenerate minimum of ¥, and from the definition of the function
¥, we can choose, by continuity, a small enough so that the following relations
hold true:

g g
—Y, —a, Ay, A) <0, —Y, , Ao, A) >0
9 k(pk — a, Ao, A) o k(pk + a )

for all (Ao, 4) € [Ao(pr) — a, Alpr) + ] x [Alpr) — a, Aps) +a].  (4.18)
On the other hand, the point (A¢(pk), A1(pr)) is a saddle point for the function
(Ag, A) — Pi(pk, Ao, A). Tt follows then that the local degree deg(V¥y, D,,0) is
well defined and different from 0. On the other hand, since VZ. = £2V¥;, + o(e?)
uniformly in D, as a consequence of (4.4), for all sufficiently small e, we also have

deg(VZI., D,,0) # 0. This gives the existence of a critical point for Z. and it con-
cludes the proof of theorem 1.1. O

5. Proof of theorem 1.2

The proof of theorem 1.2 follows the same scheme as the proof of theorem 1.1. We
work in the expanded domain

.= VN2 >,

and now, since we are looking for multi-peak positive solutions of (2.2), we fix an
integer k and we set up the ansatz

k
v=> Vi+¢ (5.1)
=1

where ¢ is a lower-order term, V; = VAJ.75;, are the functions defined in (2.6) for
parameters A; € RT and points f} € {2.. Observe that, in our new problem, the
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negative peak at the origin in the ansatz (2.6) is neglected. We denote again by V
the leading part of (5.1), namely, V = Z?Zl V.

Proof of theorem 1.2. In order to carry out the construction of a solution with the
form (5.1), we again introduce the intermediate problem (3.1) for ¢. With the same
arguments used in § 3, we obtain the solvability and the estimates for ¢ contained
in proposition 3.2.

Hence a solution with the desired form exists if points £ and scalars A can be
chosen so that the k(N + 1) X k(N + 1) system of equations

cij(§,A) =0 foralli,j (5.2)
is satisfied. This system turns out to be equivalent to finding critical points
& A)=(&,. ..., A1, ..., Ay),
with A; defined as in proposition 2.1, of
I.(6,A) = J.(V +¢)
(see (2.7)) and, since lemma 3.3 still holds, we have
I (€, 4) = J.(V) + o(e”)
uniformly in the C! sense with respect to (&, A) satisfying
dist(&;,002) > 6, & — &1 > 4, S<X<do! (5.3)

foralli=1,...,k, ¢ # j, for a given small .
Now, taking into account the symmetry of the problem, we look for critical points
of the very special form

fj:ppj, AJ:A ngl,,k

We call (a, b) the interval of values for p. Arguing as in the proof of lemma 4.1, we
get that, under the assumptions of theorem 1.2, if (p, A) is a critical point of

T.(p, A) = L(p(P, ..., P), AL,. .., 1)), (5.4)

then (&, A) = (p(Py,...,Py), A(1,...,1)) is a critical point for I..
From lemma 3.3 and proposition 2.1, we have

T.(p, A) = kSy + €2 (p, A) + o(?) (5.5)

uniformly in ¢, in the C! sense, on compact subsets of (a,b) x (0, +00), where

Uy, (p, A) = k{342 Fi(p) +v(p) A}, (5.6)
with .
Filp) = H(&1,6) — Y G(€1,&),
=2

and §; = pP;.
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Under the given assumptions, there exist numbers a < a’ < b’ < b such that
Fr(p) < 0 for p € (d/,b), for any k sufficiently large. In fact, since the Robin
function H(,€) tends to +o0o as £ approaches 942, it follows that, for any integer
k,

lim Fy(p) = lin})Fk(p) = 4o0.
p—

p—a
On the other hand, if §; = %(a + b)P;, then
G(&1,8) =bylér — &PV +0(1),
where the quantity O(1) is bounded independently of k, and hence
G(&,&) > ARN 2

for all large k, with A independent of k. Now, H({1,&1) < B with B independent
of k. It follows that

Fp(3(a+b) <k(B- AN %) <0

for all sufficiently large k.

In particular, we can choose a’ < b’ such that F) has a negative minimum in
(a,b") and that F/(a’) < 0, F},(b') > 0 and Fi(p) < 0 hold for all p € (a’,b’). Then,
if ¢ is fixed and sufficiently small, we see that the following relations hold:

0 0 1 Y

aAWk(p, 5) >0, aAWk(p,é ) <0 forallpela,b], (5.7)
Iy (a’',A) >0 Iy (b, A) <0 forall Ae[55 (5.8)
8/) k 3 3 8/) k\Y, 3 . .

Let us set R = (a’,b’) x (6,671) and let (dy,ds) be the centre point of this rectangle.
We consider the homotopy

Hy(p, A) =tV (p, A) + (1 —t)(p— di,—(A—dy)), te[0,1].

Then, from (5.7) and (5.8), we see that the degree deg(H¢,R,0) is well defined
and constant for ¢ € [0, 1]. It follows then that deg(V¥, R,0) = 1. Since VI, is a
small uniform perturbation of V¥ on R, we conclude that deg(VI.,R,0) =1 for
all sufficiently small e. Hence a critical point (pe, pte) € R of Z. indeed exists for all
sufficiently small € and the existence part of the theorem is thus concluded.

It only remains to establish that if f is compactly supported in {2, then the
solutions v, found here are positive. To prove this, we claim first that if

ve(y) = V(y) + ¢(y) <0,

then y needs to be close to 2. In fact, we claim that, given § > 0,
dist(y, 802.) < de~2/ (V=2

for all sufficiently small . Let us assume the opposite holds for some 6 > 0. Then

it is easy to see that
k

Vi) > Y (14 y— €N
1=1
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for some Cs > 0. On the other hand, we recall that ||¢||, = O(£?). In other words,

6(y)| < Ce*(ly — & +1)7,

where 6 =2 for N > 4 and § =1 for N = 3. Besides, for all 7,

ly — €| < Ce /N2,

Combining these facts, we see that v.(y) > 0, which is impossible, and the claim is
proved. Thus, if the support of f is compact and we set

2 ={y e 2 [ (V+4)(y) <0},

then v. =V + ¢ satisfies, in this set,

Av+ [vP =0

for all small €. Using the fact that |v.| < Ce? in this region, and the equation, we

get

/ |VU€|2<C€2(:D71)/ v2.
(o 2

But Poincaré’s inequality in this domain yields

084/(1\[72)/ vgé/ | Vue|?.
(o 2

Since 4/(N — 2) = p — 1, we conclude that v, = 0 in this set. Hence v, > 0 in 2,
and the desired result then follows. O
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