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We investigate stable solutions of elliptic equations of the type

{
�−��su = �f�u� in B1 ⊂ �n

u = 0 on �B1�

where n ≥ 2, s ∈ �0� 1�, � ≥ 0 and f is any smooth positive superlinear function.
The operator �−��s stands for the fractional Laplacian, a pseudo-differential
operator of order 2s. According to the value of �, we study the existence and
regularity of weak solutions u.

Keywords Boundary reactions; Extremal solutions; Fractional operators.

Mathematics Subject Classification 35J25; 47G30; 35B45; 53A05.

1. Introduction

We are interested in the regularity properties of stable solutions satisfying the
following semilinear problem involving the fractional Laplacian

{
�−��su = �f�u� in B1�

u = 0 on �B1�
(1.1)
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1354 Capella et al.

Here, B1 denotes the unit-ball in �n, n ≥ 2, and s ∈ �0� 1�. The operator �−��s is
defined as follows: let �	k


�
k=1 denote an orthonormal basis of L2�B1� consisting

of eigenfunctions of −� in B1 with homogeneous Dirichlet boundary conditions,
associated to the eigenvalues ��k


�
k=1. Namely, 0 < �1 < �2 ≤ �3 ≤ · · · ≤ �k → +�,∫

B1
	j	k dx = �j�k and {

−�	k = �k	k in B1

	k = 0 on �B1�

The operator �−��s is defined for any u ∈ C�
c �B1� by

�−��su =
�∑
k=1

�skuk	k� (1.2)

where

u =
�∑
k=1

uk	k� and uk =
∫
B1

u	k dx�

This operator can be extended by density for u in the Hilbert space

H =
{
u ∈ L2�B1�  �u�2H =

�∑
k=1

�sk�uk�2 < +�
}
� (1.3)

Note that

H =



Hs�B1� if s ∈ �0� 1/2��
H

1/2
00 �B1� if s = 1/2�

Hs
0�B1� if s ∈ �1/2� 1��

see Section 2 for further details. In all cases, �−��s  H → H ′ is an isometric
isomorphism from H to its topological dual H ′. We denote by �−��−s its inverse,
i.e., for � ∈ H ′, 	 = �−��−s� if 	 is the unique solution in H of �−��s	 = �.

The boundary condition u = 0 that appears in (1.1) has to be interpreted with
some care if 0 < s < 1/2, see the discussion in Section 2.

We will assume that the nonlinearity f is smooth, nondecreasing,

f�0� > 0� and lim
u→+�

f�u�

u
= +�� (1.4)

In the spirit of [3], weak solutions for (1.1) are defined as follows: let 	1 > 0 denote
the eigenfunction associated to the principal eigenvalue of the operator −� with
homogeneous Dirichlet boundary condition on B1, normalized by �	1�L2�B1� = 1.

Definition 1.1. A measurable function u in B1 such that
∫
B1
�u�	1 dx < +� and∫

B1
f�u�	1 dx < +�, is a weak solution of (1.1) if

∫
B1

u� dx = �
∫
B1

f�u��−��−s� dx� for all � ∈ C�
c �B1�� (1.5)
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Regularity of Radial Extremal Solutions 1355

The right-hand side in (1.5) is well defined, since for every � ∈ C�
c �B1�, there

exists a constant C > 0 such that ��−��−s�� ≤ C	1; see Lemma 3.1 and its proof.
The boundary condition u = 0 that appears in (1.1) is implicitly present in the

weak formulation (1.5), similarly as in [3]. If u ∈ C�B1� is a weak solution then one
can deduce that u vanishes on the boundary.

We shall be interested in weak solutions of (1.1) having the following stability
property.

Definition 1.2. A weak solution u of (1.1) is semi-stable if for all � ∈ C�
c �B1�

we have ∫
B1

��−�� s2��2 dx ≥
∫
B1

f ′�u��2 dx� (1.6)

The following result gives the existence of solutions according to the values of �.

Proposition 1.3. Let s ∈ �0� 1�. There exists �∗ > 0 such that

• for 0 < � < �∗, there exists a minimal solution u� ∈ H ∩ L��B1� of (1.1). In
addition, u� is semi-stable and increasing with �.

• for � = �∗, the function u∗ = lim�↗�∗ u� is a weak solution of (1.1). We call �∗

the extremal value of the parameter and u∗ the extremal solution.
• for � > �∗, (1.1) has no solution u ∈ H ∩ L��B1�.

For the proof, see Section 3.

Remark 1.4. Proposition 1.3 remains true when B1 is replaced by any smooth
bounded domain.

Remark 1.5. For 0 < � < �∗, the solution u� is minimal in the sense that u� ≤ u

for any other weak solution u. In particular, u� and u∗ are radial. In addition, u�
and u∗ are radially decreasing (see Section 4) and u� ∈ C��B1� ∩ C��B1� for � ∈
�0�min�2s� 1�� (see Section 2). If u∗ is bounded, then we also have u∗ ∈ C��B1� ∩
C��B1� for � ∈ �0�min�2s� 1��, using again Section 2.

Here is our main result, concerning the regularity of the extremal solution u∗.

Theorem 1.6. Assume n ≥ 2 and let u∗ be the extremal solution of (1.1). We have that:

(a) If n < 2�s + 2+√
2�s + 1�� then u∗ ∈ L��B1�.

(b) If n ≥ 2�s + 2+√
2�s + 1��, then for any � > n/2− 1−√

n− 1− s,

there exists a constant C > 0 such that u∗�x� ≤ C�x�−� for all x ∈ B1.

Remark 1.7. In particular, for any 2 ≤ n ≤ 6, any s ∈ �0� 1�, and any smooth
nondecreasing f such that (1.4) holds, the extremal solution is always bounded.

Remark 1.8. We do not know if the bound n < 2�s + 2+√
2�s + 1�� is optimal for

the regularity of u∗. We note however that lims→1− 2�s + 2+√
2�s + 1�� = 10, and
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1356 Capella et al.

that the extremal solution of {
−�u = �f�u� in �

u = 0 on ��
(1.7)

is singular when � = B1, f�u� = eu, and n = 10 (see e.g., [18]).

Nonlinear equations involving fractional powers of the Laplacian are currently
actively studied. Caffarelli, Salsa and Silvestre studied free boundary problems for
such operators in [11, 12]. Cabré and Tan [10] obtained several results in analogy
with the classical Lane-Emden problem −�u = up, posed on bounded domains and
entire space, related to the role of the critical exponent. Previously, some authors
considered elliptic equations with nonlinear Neumann boundary condition, which
share some properties with semilinear equations of the form (1.1), see e.g., [9, 14].

Equation (1.1) is the fractional Laplacian version of the classical semilinear
elliptic equation (1.7). When f�u� = eu, (1.7) is known as the Liouville equation [21]
or the Gelfand problem [16]. Joseph and Lundgren [18] showed in this case that if
� is a ball, then the extremal solution u∗ of (1.7) is bounded if and only if n < 10.
Crandall and Rabinowitz [13] and Mignot and Puel [22] proved that if f�u� = eu and
n < 10 then for any smoothly bounded domain �, u∗ is bounded. Using Hardy’s
inequality, Brezis and Vázquez [4] provided a different proof that u∗ is singular
when � = B1 and n ≥ 10. For some other explicit nonlinearities, such as f�u� =
�1+ u�p with p > 1 or p < 0, the critical dimension for the regularity of the extremal
solution is known (for further details see the above mentioned references). For
general nonlinearities, Nedev [23] proved that for any convex function f satisfying
(1.4), and any smooth bounded domain � ⊂ �n, n ≤ 3, u∗ is bounded. This result
has been extended by Cabré to the case n = 4 and � strictly convex [5]. Finally,
Cabré and Capella [6] showed that if � is a ball and n ≤ 9 then for any nonlinearity
f satisfying (1.4), the extremal solution is bounded.

Theorem 1.6 is an extension to the fractional Laplacian defined by (1.2) of
this result. There are other nonequivalent (see [24]) ways of defining the fractional
Laplacian in B1. Roughly speaking, interior regularity results for these operators are
the same, but boundary regularity is different. As in [6], the proof of Theorem 1.6
uses the stability condition to deduce weighted integrability of a radial derivative
of the solution, in a way which is independent of the nonlinearity. Since we work
with radially decreasing solutions, this information is relevant near the origin,
and therefore one can expect that for other definitions of fractional Laplacian
Theorem 1.6 would also hold true with the same restriction on n and s. The optimal
condition for n and s, can still depend on the definition of the fractional Laplacian.

2. Preliminaries

2.1. Functional Spaces

We start by recalling some functional spaces, see for instance [20, 25]. For s ≥ 0,
Hs��n� is defined as

Hs��n� = �u ∈ L2��n�  ���sû��� ∈ L2��n�
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Regularity of Radial Extremal Solutions 1357

where û denotes the Fourier transform of u, with norm

�u�Hs��n� = ��1+ ���s�û����L2��n��

This norm is equivalent to

�u�L2��n� +
( ∫

�n

∫
�n

�u�x�− u�y��2
�x − y�n+2s

dx dy

)1/2

�

Given a smooth bounded domain � ⊂ �n and 0 < s < 1, the space Hs��� is
defined as the set of functions u ∈ L2��� for which the following norm is finite

�u�Hs��� = �u�L2��� +
( ∫

�

∫
�

�u�x�− u�y��2
�x − y�n+2s

dx dy

)1/2

�

An equivalent construction consists of restrictions of functions in Hs��n�. We define
Hs

0��� as the closure of C�
c ��� with respect to the norm � · �Hs���. It is well known

that for 0 < s ≤ 1
2 , H

s
0��� = Hs���, while for 1/2 < s < 1 the inclusion Hs

0��� ⊆
Hs��� is strict (see Theorem 11.1 in [20]).

The space H defined in (1.3) is the interpolation space �H2
0 ���� L

2����s�2, see
for example [2, 20, 25]. Here we follow the notation from [25, Chap. 22]. Lions and
Magenes [20] showed that �H2

0 ���� L
2����s�2 = Hs

0��� for 0 < s < 1, s �= 1/2, while

�H2
0 ���� L

2����1/2�2 = H
1/2
00 ���

where

H
1/2
00 ��� =

{
u ∈ H1/2��� 

∫
�

u�x�2

d�x�
dx < +�

}
�

and d�x� = dist�x� ��� for all x ∈ �.
An important feature of the operator �−��s is its nonlocal character, which is

best seen by realizing the fractional Laplacian as the boundary operator of a suitable
extension in the half-cylinder �× �0���. Such an interpretation was demonstrated
in [12] for the fractional Laplacian in �n. Their construction can easily be extended
to the case of bounded domains as described below.

Let us define

� = �× �0�+���
�L� = ��× �0�+���

We write points in the cylinder using the notation �x� y� ∈ � = �× �0�+��.
Given s ∈ �0� 1�, consider the space H1

0�L�y
1−2s� of measurable functions v  � →

� such that v ∈ H1��× �s� t�� for all 0 < s < t < +�, v = 0 on �L� and for which
the following norm is finite

�v�2
H1
0�L�y

1−2s�
=
∫
�
y1−2s��v�2 dx dy�
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1358 Capella et al.

Proposition 2.1. There exists a trace operator from H1
0�L�y

1−2s� into Hs
0���.

Furthermore, the space H given by (1.3) is characterized by

H = �u = tr�v  v ∈ H1
0�L�y

1−2s�
�

Proof. For the case s = 1/2 see Proposition 2.1 in [10].
We consider now s �= 1/2. Restating the results of Paragraph 5 of Lions [19],

there exists a constant C > 0 such that

�v�·� 0��2Hs��n� ≤ C
∫
�n×�0�+��

y1−2s
(
v2 + ��v�2

)
dx dy�

whenever the right-hand side in the above inequality is finite. Now for any v ∈
H1

0�L�y
1−2s�,

∫
�
y1−2sv2 dx dy ≤ C

∫
�
y1−2s ��v�2 dx dy�

as follows from the standard Poincaré inequality in �. Hence, extending v by zero
outside �, we deduce that

�v�·� 0��Hs��� ≤ C�v�H1
0�L�y

1−2s��

This inequality shows that there exists a linear bounded trace operator

tr�  H
1
0�L�y

1−2s�→ Hs����

This operator has its image contained in Hs
0���. This is direct for 0 < s <

1/2 because in this case Hs
0��� = Hs���. If 1/2 < s < 1 we argue that any v ∈

H1
0�L�y

1−2s� can be approximated by functions in H1
0�L�y

1−2s� that have support away
from �L�. The trace of any such function has compact support in � and is therefore
in Hs

0���. In all cases, this implies that the image of the trace operator is contained
in H .

Let us prove tr�  H
1
0�L�y

1−2s�→ H is surjective. Take a function u ∈ H and let
us prove that there exists v ∈ H1

0�L�y
1−2s� such that tr��v� = u. Write its spectral

decomposition u�x� =∑+�
k=1 bk	k�x� and consider the function

v�x� y� =
+�∑
k=1

bk	k�x�gk�y�� (2.1)

where gk satisfies

g′′k +
1− 2s
y

g′k − �kgk = 0 in �0�+�� (2.2)

gk�0� = 1 gk�+�� = 0� (2.3)

This ODE is a Bessel equation. Two independent solutions are given by ysIs�
√
�ky�

and ysKs�
√
�ky�, where Is� Ks are the modified Bessel functions of the first and
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Regularity of Radial Extremal Solutions 1359

second kind, see [1]. Since Is increases exponentially at infinity and Ks decreases
exponentially, the solution we are seeking has the form

gk�y� = cky
sKs�

√
�ky��

It is well-known that Ks�t� = at−s + o�t−s� as t → 0, where a > 0. Therefore, one
can choose ck such that gk�0� = 1 and one can see that gk can be written in the form

gk�y� = h�
√
�ky��

for a fixed function h that verifies h�0� = 1 and h′�t� = −ct2s−1 + o�t� as t → 0, for
some constant c = cn�s > 0 depending only on s and n. This implies that

lim
y→0+

−y1−2sg′k�y� = cn�s�
s
k� (2.4)

Since each of the functions gk decreases exponentially at infinity we see that v
defined by (2.1) is smooth for y > 0, x ∈ � and moreover satisfies

div�y1−2s�v� = 0 in ��

Let us check that v ∈ H1
0�L�y

1−2s�. For any y > 0, by the properties of 	k:

∫
�
��v�x� y��2 dx =

�∑
k=1

b2k��kgk�y�
2 + g′k�y�

2��

Integrating with respect to y over ���+�� where � > 0:

∫ �

�

∫
�
y1−2s��v�x� y��2 dx dy =

�∑
k=1

b2k�−y1−2sg′k�y�gk�y���y=�� (2.5)

From the ODE (2.2) we deduce that gk ≥ 0, g′k ≤ 0 and g′k�y�y
1−2s is non-decreasing.

Thus, if �i ↓ 0, i→ � is a decreasing sequence, −�1−2s
i g′k��i�gk��i� is increasing. By

monotone convergence and thanks to (2.4) we deduce

∫ �

0

∫
�n
y1−2s��v�x� y��2 dx dy = cn�s

+�∑
k=1

b2k�
s
k�

This proves that H ⊆ tr��H
1
0�L�y

1−2s��. �

Let us remark that if u ∈ H , then the minimization problem

min
{∫

�
y1−2s��v�2 dx dy  v ∈ H1

0�L�y
1−2s�� tr��v� = u

}

has a solution v ∈ H1
0�L�y

1−2s�, by the weak lower semi-continuity of the norm
� �H1

0�L�y
1−2s� and continuity of tr�. Moreover the minimizer v is unique, which follows
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1360 Capella et al.

e.g. from the strict convexity of the functional. By standard elliptic theory v�x� y� is
smooth for y > 0 and satisfies


div�y1−2s�v� = 0 in �
v = 0 on �L�
v = u on �× �0


where the boundary condition on �× �0
 is in the sense of trace. For each y > 0
we may write v�x� y� =∑�

k=1 	k�x�gk�y� where gk�y� =
∫
�
	k�x�v�x� y� dx. Since

v�·� y�→ u in L2��� as y → 0, gk�0� are the Fourier coefficients of u, that is u =∑�
k=1 gk�0�	k. Then we deduce that gk�y� is smooth for y > 0 and satisfies the ODE

(2.2). One can check that gk�y�→ 0 as y → +� and therefore gk�y� = cky
sKs�

√
�ky�

for all y > 0 and some ck ∈ �. Then, similarly as in (2.5), we obtain for � > 0

∫ �

�

∫
�n
y1−2s��v�x� y��2 dx dy =

�∑
k=1

�−y1−2sg′k�y�gk�y���y=�� (2.6)

Arguing as before, for each k

lim
y↓0
�−y1−2sg′k�y�gk�y�� = c�skgk�0�

2�

We deduce from (2.6) that

�u�2H =
�∑
k=1

�skgk�0� = c�v�2
H1
0�L�y

1−2s�
�

In what follows we will call v the canonical extension of u.

2.2. Solvability for Data in H−s���

This section is devoted to prove the following lemma:

Lemma 2.2. Let h ∈ H ′. Then, there is a unique solution to the problem:

find u ∈ H such that �−��su = h� (2.7)

Moreover u is the trace of v ∈ H1
0�L�y

1−2s�, where v is the unique solution to



div�y1−2s�v� = 0 in �
v = 0 on �L�
− lim

y→0
�y1−2svy� = cn�sh on �× �0


(2.8)

where cn�s > 0 is a constant depending on n and s only.

Remark 2.3. Equation (2.8) is understood in the sense that v ∈ H1
0�L�y

1−2s� and

cn�s�h� tr�����H ′�H =
∫
�
y1−2s�v�� dx dy for all � ∈ H1

0�L�y
1−2s�� (2.9)
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Regularity of Radial Extremal Solutions 1361

where �� �H ′�H is the duality pairing between H and H ′. The constant cn�s is the same
constant appearing in (2.4).

Remark 2.4. If 1/2 ≤ s < 1, instead of (2.7) we could use the notation

{
�−��su = h in �

u = 0 on ��
(2.10)

since for these values of s there is a trace operator from H to L2���� and
the boundary condition can be interpreted in this sense. For 0 < s < 1/2 this
interpretation is no longer possible. We will see later that if h is bounded then the
solution u of (2.7) has a representative that is continuous up to the boundary, with
zero boundary values, so the notation (2.10) is justified in this case. Note however
that for 0 < s < 1/2 and for arbitrary h ∈ H ′, u = 0 on �� does not have a clear
meaning. For instance, h = �−��s1 ∈ H ′ and the solution to (2.7) is u = 1. For
simplicity, from here on we use the notation (2.10) even if it is not entirely correct,
and it will always mean (2.7).

Proof of Lemma 2.2. The case s = 1/2 was treated in [10].
The space H ′ can be identified with the space of distributions h =∑�

k=1 hk	k
such that

∑�
k=1 h

2
k�

−s
k < �. Then, it is straightforward to verify that for any h ∈ H ′

there is a unique u ∈ H such that �−��su = h. Fix now h = 	k for some k ≥ 1
and let u = �−sk 	k, so that �−��su = h. By the Lax–Milgram theorem, there is a
unique v ∈ H1

0�L�y
1−2s� such that (2.9) holds. Letting gk denote the unique solution

of (2.2)–(2.3), by a direct computation, we find that

v�x� y� = �−sk 	k�x�gk�y�

solves (2.9), with h = 	k and its trace is given by �−sk 	k = u. This proves the lemma
in the case h = 	k. By linearity and density, the same holds true for any h ∈ H ′. �

2.3. Maximum Principles

We say h ∈ H ′ satisfies h ≥ 0, if

�h� 	�H ′�H ≥ 0 for all 	 ∈ H� 	 ≥ 0� (2.11)

Lemma 2.5. Let n ≥ 1 and � ⊂ �n any bounded open set. Take h ∈ H ′ and let u ∈
H be the corresponding solution of (2.7). Let also v ∈ H1

L�y
1−2s� denote the canonical

extension of u. If h ≥ 0, then u ≥ 0 a.e. in � and v ≥ 0 in �.

Proof. Simply use v− as a test function in (2.9). �

Lemma 2.6. Let � ⊂ �n denote any domain and take R > 0. Let v denote any locally
integrable function on �× �0� R� such that

∫
�×�0�R�

y1−2s��v�2 dx dy < +��
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1362 Capella et al.

Assume in addition that

−� · �y1−2s�v� = 0 in �× �0� R��

v ≥ 0 in �× �0� R�, and −y1−2svy�y=0 ≥ 0 in � in the sense that

∫
�×�0�R�

y1−2s�v · �� dx dy ≥ 0

for all � ∈ H1�y1−2s��× �0� R�� such that � ≥ 0 a.e. in �× �0� R� and � = 0 on ��×
�0� R� ∪ �× �R
.

Then, either v ≡ 0, or for any compact subset K of �× �0� R�,

ess inf v�K > 0�

Proof. Let ṽ denote the even extension of v with respect to the y variable, defined
in �× �−R�R� by

ṽ�x� y� =
{
v�x� y� if y > 0�

v�x�−y� if y < 0�

Then,

∫
�×�−R�R�

y1−2s�ṽ�� dx dy ≥ 0�

for all � ∈ H1�y1−2s��× �−R�R��, such that � ≥ 0 a.e. in �× �−R�R� and � = 0 on
���× �−R�R��. By the results of Fabes, Kenig, and Serapioni (see Theorem 2.3.1
and the second line of equation (2.3.7) in [15]), either ṽ ≡ 0, or ess inf ṽ�K > 0 for
any compact set K of �× �−R�R�. �

Lemma 2.7. Let � ⊂ �n denote an open set satisfying an interior sphere condition at
some point x0 ∈ ��, that is, x0 ∈ �Br�x1� for some ball Br�x1� ⊂ �.Let R > 2 and let
v denote any measurable function on �× �0� R�, v ≥ 0, v �≡ 0, such that

∫
�×�0�R�

y1−2s��v�2 dx dy < +��

Assume in addition that

−� · �y1−2s�v� = 0 in �× �0� R��

and −y1−2svy�y=0 ≥ 0 in � in the sense that

∫
�×�0�R�

y1−2s�v · �� dx dy ≥ 0

for all � ∈ H1�y1−2s��× �0� R�� such that � ≥ 0 a.e. in �× �0� R� and � = 0 on ��×
�0� R� ∪ �× �R
.
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Regularity of Radial Extremal Solutions 1363

Then, there exists � > 0 and a constant c = c�R� > 0 such that

v�x� y� ≥ c�x − x0�

for all x in the line segment from x1 to x0 with �x − x0� < � and all y ∈ �0� R− 2�.

Proof. Take an interior sphere B which is tangent to �� at x0. Translating and
dilating � if necessary, we may always assume that B is the unit ball centered at the
origin. Take � > n− 2 to be fixed later and consider z = z�x� y� the function defined
by

z�x� y� = �1+ y2s��e−y
2 − e−�R−1�2���x�−� − 1� for x �= 0 and y ∈ �0� R− 1��

We compute

�xz = �1+ y2s��e−y
2 − e−�R−1�2����− �N − 2���x�−�−2�

lim
y→0+

�−y1−2szy� = −2s�1− e−�R−1�2���x�−� − 1� for x �= 0�

zyy +
1− 2s
y

zy = −4e−y
2
��1− s�+ �1+ s�y2s − y2 − y2s+2���x�−� − 1��

If y2 ≥ �1+ s�, then zyy + 1−2s
y
zy ≥ 0 and � · �y1−2s�z� ≥ 0. If y2 < �1+ s�, then zyy +

1−2s
y
zy ≤ C��x�−� − 1�. Choosing � large enough, we deduce that

� · �y1−2s�z� ≥ 0 for all x �= 0� y ∈ �0� R− 1��

Now, let v be as in the statement of the lemma. By Lemma 2.6, ess inf v�K > 0,
on K = �B1/2 × �0� R− 1�. Choose � > 0 so small that v ≥ �z a.e. on K. By the
maximum principle, applied in the region �B1\B1/2�× �0� R− 1�, we deduce that v ≥
�z in this region. �

Lemma 2.8. Let � ⊂ �n be a bounded open set with smooth boundary. Let v denote
a measurable function on �× �0�+��, such that

∫
�×�0�R�

y1−2s��v�2 dx dy < +� for all R > 0�

Assume that v ≥ 0 on ��× �0�+��, that

−� · �y1−2s�v� ≥ 0 in �× �0� R��

and −y1−2svy�y=0 ≥ 0 in � in the sense that

∫
�×�0�R�

y1−2s�v · �� dx dy ≥ 0

for all � ∈ H1�y1−2s��× �0�+��� with compact support in �× �0�+�� such that � ≥
0 and � = 0 on ��× �0� R� ∪ �× �R
.
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1364 Capella et al.

If there exist C > 0 and m > 0 such that

�v�x� y�� ≤ C�1+ �y�m� for all �x� y� ∈ �× �0�+��� (2.12)

then v ≥ 0 in �× �0�+��.

Proof. Take R > 0 such that � ⊆ BR�0�. Let 	R denote the first eigenfunction
of −� in BR�0� with zero Dirichlet boundary condition and let �R > 0 be its
corresponding eigenvalue. Let � > 0 to be chosen and set

z�x� y� = 	R�x��e
�y − �y��

We compute

� · �y1−2s�z� = y1−2s

[
− �R + �2 + �2�1− 2s�e−�y

e�y − 1
�y

]
	R�x�e

�y�

By choosing � > 0 small we have � · �y1−2s�z� < 0 in BR�0�× �0�+��. Let � > 0.
By (2.12) there exists L > 0 such that v+ �z ≥ 0 for x ∈ � and y ≥ L. Using the
maximum principle in the form of Lemma 2.5 we deduce that v+ �z ≥ 0 in �×
�0� L�. Letting L→ � we conclude that v+ �z ≥ 0 in �× �0�+��. Finally, by
letting �→ 0 we obtain the stated result. �

2.4. Interior Regularity

In this section, we study the extension problem (2.8), when h is bounded or belongs
to a Hölder space. The proof of the next lemma can be found in [8, Lemma 4.4].

Lemma 2.9. Let h ∈ H ′ and v ∈ H1
0�L�y

1−2s� denote the solution of (2.8). Then, for any
� ⊂⊂ �, R > 0, we have

(i) If h ∈ L����, then v ∈ C���× �0� R��, for any � ∈ �0�min�1� 2s��,
(ii) If h ∈ C���� then

(1) v ∈ C�+2s��× �0� R�� if � + 2s < 1,
(2) �v

�xi
∈ C�+2s−1��× �0� R�� if 1 < � + 2s < 2, i = 1� � � � � n,

(3) �2v
�xi�xj

∈ C�+2s−2��× �0� R�� if 2 < � + 2s, i� j = 1� � � � � n.

2.5. Boundary Regularity

Lemma 2.10. Let u ∈ H be the solution of

{
�−��su = h in �

u = 0 on ��
(2.13)

where h ∈ L����. Then u ∈ C���� for all � ∈ �0�min�2s� 1��.

We begin with the following estimate.
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Regularity of Radial Extremal Solutions 1365

Lemma 2.11. Let u ∈ H be the solution of (2.13), where h ∈ L����. Then there is
constant C such that

if 0 < s < 1/2� �u�x�� ≤ Cdist�x� ���2s�h�L���� for all x ∈ ��

and

if 1/2 ≤ s < 1� �u�x�� ≤ Cdist�x� ����h�L���� for all x ∈ ��

Proof. We use a suitable barrier to prove the estimate. To construct it, we write
x = �x1� � � � � xn� and define

h̄�x� =



1 if x ∈ B2� x1 < 0

−1 if x ∈ B2� x1 > 0

0 if x �∈ B2�

We construct a solution v̄ of the problem

div�y1−2s�v� = 0 in �n × �0�+��
v�z�→ 0 as �z� → �
−y1−2svy = h̄�x� on �n × �0


as

v̄�x� y� = Cn�s

∫ �

y
t
∫
�n

h̄�x̃�

�t2 + �x − x̃�2� n+2−2s
s

dx̃ dt� (2.14)

This implies

v̄�x� 0� = C ′
n�s

∫
�n

h̄�x̃�

�x − x̃�n−2s
dx̃ x ∈ �n�

where C ′
n�s = Cn�s

n−2s . By our choice of h̄ we can write for x ∈ �n

v̄�x� 0� = −C ′
n�s�I�x�− I�−x��

where

I�x� =
∫
B+
2

1
�x − x̃�n−2s

dx̃

and B+
2 = ��x1� � � � � xn� ∈ B2�0�  x1 > 0
. From this formula we see that if 0 < s <

1/2 then

�I�x�− I�0�� ≤ C�x�2s for all x ∈ �n�

and if 1/2 ≤ s < 1 then

�I�x�− I�0�� ≤ C�x� for all x ∈ �n�
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1366 Capella et al.

These estimates imply that if 0 < s < 1/2

�v̄�x�� ≤ C�x�2s for all x ∈ �n� (2.15)

and if 1/2 ≤ s < 1

�v̄�x�� ≤ C�x� for all x ∈ �n� (2.16)

Now let u ∈ H be the solution to (2.13) with h ∈ L���� and let v denote its
canonical extension. Take a point x0 ∈ ��. By the smoothness of �� we can find
x1 ∈ �n\� and R > 0 such that BR�x1� ⊆ �n\� and x0 ∈ �BR�x1�. We can choose R
bounded and bounded below. By suitable translation and rescaling, we can assume
that x1 = 0, R = 1 and �x0� = 1. After a further rotation we can also assume x0 =
�1� 0� � � � � 0� ∈ �n.

We will then define a comparison function w as the Kelvin transform of a
translate of v̄ as defined by (2.14). Let ṽ�x� y� = v̄�x − x0� y�. We write points in
�x� y� ∈ �n ×� as X = �x� y� and �X�2 = �x�2 + y2. We also write �n+1

+ for the set
of points X = �x� y� ∈ �n ×� with y > 0. Let

w�X� = �X�2s−nṽ
(
X

�X�2
)

X ∈ �n+1
+ � X �= 0�

A direct calculation shows that

div�y1−2s�w� = 0 in �n+1
+

and

lim
y→0+

�−y1−2swy�x� y�� = �x�−2s−nh̄
(
x

�x�2 − x0

)
s for all x ∈ �n� x �= 0�

For x ∈ �n\B1�0� we have x/�x�2 ∈ B1�0� and so h̄�x/�x�2 − x0� = 1. Since � is
bounded and contained in �n\B1�0�, we see that there is some constant c > 0
(bounded uniformly from below with respect to the parameters x0� x1� R with R
bounded from below) such that

lim
y→0+

�−y1−2swy�x� y�� ≥ c for all x ∈ ��

Since ṽ > 0 in B1�0�× �0�+�� we have w > 0 in �× �0�+��. Then, there is a
constant c > 0 (uniformly bounded from below as x0, x1 and R vary) such that
w�x� 1� ≥ c for all x ∈ �. Since w ≥ 0 on ��× �0�+�� and v vanishes there, by the
maximum principle we have

v ≤ C�h�L����w in �× �0� 1�

for some C > 0. From this, (2.15) and (2.16) we deduce the stated estimates. �

Proof of Lemma 2.10. We use a standard scaling argument combined with interior
regularity estimates from Lemma 2.9 and Lemma 2.11. Let v denote the canonical
extension of u and let us concentrate on the case 0 < s < 1/2.
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Regularity of Radial Extremal Solutions 1367

Take x0� y0 ∈ �. If x0� y0 and satisfy �x0 − y0� ≥ dist�x0� ���/2 and �x0 − y0� ≥
dist�y0� ���/2 from Lemma 2.11

�v�x0� 0�− v�y0� 0�� ≤ �v�x0� 0�� + �v�y0� 0�� ≤ C�h�L�����x0 − y0�2s
≤ C�h�L�����x0 − y0���

Now suppose that �x0 − y0� ≤ dist�x0� ���/2 and let r = dist�x0� ���/2.
Consider the function ṽ�x� y� = v�x0 + rx� ry� defined for x ∈ B�0� 1� and y > 0.
Thus

div�y1−2s�ṽ� = 0 in B1�0�× �0�+��

and

lim
y→0+

�−y1−2sṽ�x� y�� = h̃�x� x ∈ B1�0��

where h̃�x� = r2sh�rx�. By Lemma 2.11 we find

sup
B1�0�

�ṽ� ≤ Cr2s�h�L�����

Let 0 < � < 2s. Using the interior estimate (Lemma 2.9)

�ṽ�C��B1/2�
≤ C�sup

B1

�ṽ� + sup
B1

�h̃�� ≤ Cr2s�h�L����

we deduce

�v�x0� 0�− v�y0� 0�� ≤ C�h�L�����x0 − y0��r2s−� ≤ C�h�L�����x0 − y0���

The proof in the case 1/2 ≤ s < 1 follows analogously. �

3. Proof of Proposition 1.3

Let n ≥ 1 and � ⊂ �n denote a smooth bounded domain. We begin by adapting
Lemma 1 in [3]:

Lemma 3.1. Take f ∈ L1��� 	1dx�. Then, there exists a unique u ∈ L1��� 	1dx� such
that {

�−��su = f in �

u = 0 on ���
(3.1)

in the sense that ∫
�
u� dx =

∫
�
f�−��−s� dx� for all � ∈ C�

c ���� (3.2)
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1368 Capella et al.

In addition, letting �1 > 0 denote the principal eigenvalue of the Laplace operator with
homogeneous Dirichlet boundary condition on ��, we have

∫
�
�u�	1 dx ≤ 1

�1

∫
�
�f �	1 dx� (3.3)

Moreover, if f ≥ 0 a.e., then u ≥ 0 a.e. in �.

Proof. Take � ∈ C�
c ���. Then, there exists a constant C > 0 such that ��� ≤ C	1.

By the maximum principle (Lemma 2.5), it follows that 	 = �−��−s� satisfies �	� ≤
C
�1
	1. In particular, (3.2) makes sense for any � ∈ C�

c ���.
Let f ∈ L���� ⊂ H ′. Then, equation (3.1) has a unique solution u ∈ H , i.e., for

any � ∈ H ,

+�∑
k=1

�skuk�k =
+�∑
k=1

fk�k�

where uk =
∫
�
u	k dx, and �k� fk are similarly defined. Take now � = �−��−s�, � ∈

C�
c ���. Then, �k = �−sk �k and

+�∑
k=1

uk�k =
+�∑
k=1

fk�
−s
k �k�

which is equivalent to (3.2). We prove next that (3.3) holds. To see this, write f =
f+ − f−, where f+ is the positive part of f and f− its negative part. Without loss of
generality, we may always assume that f ≥ 0 a.e. Then, by the maximum principle
(Lemma 2.5), u ≥ 0 a.e. and using (3.2) with � = 	1, we deduce (3.3). The rest of
the proof is the same as that of Lemma 1 in [3], so we skip it. �

The method of sub and supersolutions can be applied in the context of solutions
of (1.1) belonging to H ∩ L����. We call ū ∈ H ∩ L���� a supersolution of (1.1) if

�−��su ≥ �f�ū�

where the inequality is in the sense of (2.11). A subsolution u is defined be
reversing the inequality. If u� ū ∈ H ∩ L���� are a subsbolution and a supersolution
respectively, and u ≤ ū, then a solution can be constructed by the monotone
iteration method. This works thanks to the maximum principle (Lemma 2.5) and
the estimates given by Lemmas 2.9 and 2.10.

Proof of Proposition 1.3. Since � = 0 is always a subsolution, we begin by showing
that there exists a positive supersolution of (1.1) for small � > 0. Take �0 to be the
solution of

�0 ∈ H� �−��s�0 = 1� (3.4)

By Lemma 2.10, �0 ∈ C��� and

�−��s�0 = 1 ≥ �f��0�� for � ≤ 1/�f��0��L�����
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Regularity of Radial Extremal Solutions 1369

Hence,

�∗ = sup�� > 0  (1.1) has a solution in H ∩ L����


is positive and well-defined. Multiplying (1.1) by 	1 and using that f is superlinear,
we easily deduce that �∗ < +�. It is also clear by the method of sub and
supersolutions that (1.1) has a minimal positive solution u� ∈ H ∩ L����, for all
� ∈ �0� �∗�. The solution u� is also semi-stable, which can be proved in a similar way
as for the second order case (see [6]).

We note that for � ∈ �0� �∗�, f�u�� ∈ L���� and hence u� is continuous up to
the boundary and satisfies the boundary condition in the classical sense. Lemma 3.1
implies that u� also satisfies the weak formulation (1.5). We will see now that we can
take the limit in (1.5). By minimality, u� increases with �. We claim that u∗�x� =
lim�↗�∗ u��x� is a weak solution of (1.1) for � = �∗. Take � < �∗, u = u� and multiply
(1.1) by 	1. Then,

�1

∫
�
u	1 dx = �

∫
�
f�u�	1 dx� (3.5)

Since f is superlinear, for every � > 0 there exists C� > 0 such that, for all t ≥ 0
f�t� ≥ 1

�
t − C�. Hence,

�∗C� ≥
(
�

�
− �1

) ∫
�
u	1 dx�

Choosing � = �
2�1

, we obtain that

∫
�
u�	1 dx ≤ C�

for some constant C independent of �. By (3.5), we also have

∫
�
f�u��	1 dx ≤ C� (3.6)

and, by monotone convergence, we may pass to the limit as �→ �∗ in (1.5). �

Remark 3.2. Observe that for s ≥ 1/2, we have the stronger estimate

�u��L1��� ≤ C� (3.7)

as follows from multiplying (1.1) by �0 (defined in (3.4)) and using Lemma 2.11,
giving the estimate

�0 ≤ C	1� (3.8)

Note also that (3.8) fails for s < 1/2. Due to radial monotonicity (see Lemma 4.1),
estimate (3.7) remains however true if � = B1 and s ∈ �0� 1� is arbitrary.

D
ow

nl
oa

de
d 

by
 [

18
5.

41
.2

0.
10

3]
 a

t 0
5:

35
 2

3 
Ju

ne
 2

01
4 



1370 Capella et al.

4. Radial Symmetry

Lemma 4.1. Let u ∈ H ∩ L��B�, u ≥ 0 denote a solution of (1.1). Then, u is radially
decreasing, i.e., u�x� = u��� whenever �x� = �, u is smooth in B, and

�u

��
< 0 in B\�0
� (4.1)

In addition, the canonical extension v of u is smooth in �, v�x� y� = v��� y�, and

�v

��
< 0 in �\�� = 0
� (4.2)

We remark that since we assume f�t� > 0 for all t ≥ 0, if � > 0 then u in the
statement of this Lemma is positive in B, thanks to the strong maximum principle
Lemma 2.6.

Proof. By Lemmata 2.9 and 2.10, u and v are Hölder continuous up to the
boundary. One can get higher interior regularity by applying the argument in [8].
In few words, the idea is to differentiate the equation of the canonical extension
in x variables, to use the explicit kernel in the entire space to get an homogeneous
problem for a new function, to extend this new function to �n+1 as an even function,
and finally apply the estimates of [15].

To prove radial symmetry, (4.1), and (4.2), we apply the moving plane
method [17]. Thus, it suffices to show that

�v

�x1
< 0 in ��x� y� ∈ B1 × �0�+��  x1 > 0
�

Now we show the last statement. Given � ∈ �0� 1�, let T� = ��x� y� ∈ �n ×�+  x1 =
�
 and �� = ��x� y� ∈ B1 × �0�+��  x1 > �
. Let also v��x� y� = v�2� − x1� x

′� y� for
�x� y� ∈ �� and w� = v� − v. We claim that w� ≥ 0 in ��, for � close to 1. To prove
this, observe that w = w� solves



div�y1−2s�w� = 0 in ��
w ≥ 0 on �L��
−y1−2swy − a�x�w = 0 on �x ∈ B1  x1 > �
× �0
�

where

a�x� =



f�u��− f�u�

u� − u
whenever u� �= u�

0 otherwise.
(4.3)

Now multiply the above equation by w− and integrate over ��. Then,

∫
��

y1−2s��w−�2 dx dy =
∫
�x∈B1x1>�


a�x��w−�2 dx�
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Regularity of Radial Extremal Solutions 1371

We extend w− by 0 outside ��, so that w− ∈ H1�y1−2s��n�. By the trace theorem
(Proposition 2.1), there exists a constant Ctr > 0 such that

�w−�2Hs��n� ≤ Ctr

∫
�n
y1−2s��w−�2 dx dy�

and by the Sobolev imbedding of Hs��n� into Lp��n�, with

1
p
= 1

2
− s

n
� (4.4)

we have

�w−�2Lp��n� ≤ CS�w−�2Hs��n��

Hence, by Hölder’s inequality

(∫
�n

�w−�p dx
)2/p

≤ CtrCS

∫
�x∈B1x1>�


�a�x���w−�2 dx

≤ CtrCS

(∫
�x∈B1x1>�


�w−�p dx
)2/p (∫

�x∈B1x1>�

�a� p

p−2 dx

)1−2/p

�

Since a is uniformly bounded,
∫
�x∈B1x1>�
 �a�

p
p−2 dx→ 0, as � → 1−. Therefore, for �

sufficiently close to 1, we conclude that w− ≡ 0, and the claim.
Consider now

�0 = inf�� ∈ �0� 1�  w� ≥ 0 in ��
�

The above argument shows that �0 is well-defined and �0 < 1. We want to prove
that �0 = 0. Assume by contradiction that �0 > 0. By continuity, w�0 ≥ 0 in ��0 , and
by the strong maximum principle (Lemma 2.6), w�0 > 0 in ��0 . Fix now � > 0 small,
� = �0 − � and choose a compact set K ⊂ �x ∈ B1  x1 > �0 
 such that

CtrCS

(∫
�x∈B1x1>�
\K

�a� p
p−2 dx

)1−2/p

<
1
2
�

Taking � > 0 smaller if necessary, we can assume that w� > 0 in K. Arguing as
before, we can prove that w−

� ≡ 0 in ��\K, and thus w� ≥ 0 everywhere in ��,
contradicting the definition of �0.

We have just proved that w� ≥ 0 in �� for all � ∈ �0� 1�, and by the strong
maximum principle (Lemma 2.6) we find that w� > 0 in ��. Finally, by the boundary
point lemma (Lemma 2.7), we conclude

2
�v�

�x1
��� x′� y� = −�w�

�x1
��� x′� y� < 0 for all ��� x′� y� ∈ B1 × �0�+���

as desired. �
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1372 Capella et al.

5. Weighted Integrability

We will use the following notation. Given a point �x� y� ∈ � = B1 × �0�+��, we let
� = �x� and v� = �v

��
for any C1 function v defined on �, which depends only on �

and y.
In what follows, for � ∈ �0� �∗�, u� denotes the minimal solution of (1.1) and v�

its canonical extension, which satisfies

div�y1−2s�v� = 0 in �
v = 0 on �L�
− limy→0�y

1−2svy� = �f�v� on B1 × �0
�

(5.1)

For � ∈ �0� �∗�, u� ∈ C��B1� ∩ C�B1�, and v� is smooth in �. Indeed, by
Lemmata 2.9 and 2.10 we obtain Hölder regularity of u� up to the boundary. One
can get higher interior regularity by applying the argument in [8]. In a similar
way, we also deduce that v� ∈ C��K × �0� R�� for every compact K ⊂ B1 and R > 0.
Moreover, any of the derivatives of v� with respect to the x variables belongs to
C��K × �0� R�� for every compact set K ⊂ B1 and R > 0.

The main result in this section is the following. It is an estimate for the L2-norm
of y

1−2s
2 �−�u� for certain exponent � that depends on the dimension n. This estimate,

which is independent of � and holds for stable solutions only, is the key ingredient
in the proof of the regularity Theorem 1.6.

Proposition 5.1. Assume n ≥ 2. Let � ∈ �0� �∗�, u = u� be the minimal solution of
(1.1) and v its canonical extension. Let � satisfy

1 ≤ � < 1+√
n− 1� (5.2)

Then ∫
��≤1/2�

y1−2sv2��
−2�dx dy ≤ C (5.3)

where C is a constant independent of �, and �� ≤ 1/2� denotes the set ��x� y� ∈ � 
�x� ≤ 1/2
.

Before proving Proposition 5.1 we need two preliminary results.
In the next lemma we collect some basic estimates expressing that v� and its

derivatives have exponential decay for y ≥ 1, which is uniform up to � < �∗, and
that for fixed � < �∗, v���� y� = O��� as �→ 0, uniformly as y → 0.

Lemma 5.2.

a) There are � > 0, C > 0 such that

v��x� y� ≤ Ce−�y	1�x� for all y ≥ 1� x ∈ B1� � ∈ �0� �∗�� (5.4)

Moreover, for any k ≥ 0 there is Ck > 0 such that

�Dkv��x� y�� ≤ Cke
−�y for all y ≥ 1� x ∈ B1� � ∈ �0� �∗�� (5.5)
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Regularity of Radial Extremal Solutions 1373

The constants � and C are independent of �.
b) Given � ∈ �0� �∗� and K a compact subset of B1 there exists C > 0 such that

���v���x�� y�� ≤ C�x� ∀x ∈ K� y ≥ 0� (5.6)

The constant in (5.6) may blow up as �→ �∗, but we will use this inequality for
fixed � ∈ �0� �∗�.
Proof. a) Define w�x� y� = 	1�x�y

2se−�y. A straight forward computation shows
that

� · �y1−2s�w� = 	1�x�e
−�y���2 − �1�y − ��1+ 2s��

and

y1−2swy�y=0 = lim
y→0

y1−2s	1�x�e
−�y�−�y2s + 2sy2s−1� = 2s	1�x��

Multiplying equation (5.1) by w and integrating by parts twice gives

�
∫
B1

f�u��w dx +
∫
B1

y1−2swyv� dx +
∫
�
��y1−2s�w�v� = 0�

Recalling that w�x� 0� = 0, we find

2s
∫
B1

	1u� dx =
∫
�
v�	1�x�e

−�y [��1 − �2�y + ��1+ 2s�
]
dx dy�

Now, we choose 0 < � <
√
�1 and use estimate

∫
B1
	1u� dx ≤ C derived in (3.6), to

find ∫
�
v�	1�x�e

−�ydx dy ≤ C (5.7)

for all 0 ≤ � < �∗.
Let z be the solution to {

−�z = 1 in B1

z = 0 on �B1�

For � ≥ t > 0 define 	�x� y� = z�x���− y��y − t�. We compute

� · �y1−2s�	� = y1−2s

[
−��− y��y − t�+ z�x�

(
− 2+ �1− 2s�

(
− 2+ �+ t

y

))]

Assume that 0 < t ≤ � ≤ 3t/2. We find

� · �y1−2s�	� ≤ −y1−2s��− y��y − t��

Multiplying (5.1) by 	 and integrating over B1 × �t� �� we obtain

�1−2s��− t�
∫
B1

v��x� ��z�x� dx + t1−2s��− t�
∫
B1

v��x� t�z�x� dx

= −
∫
B1×�t���

y1−2sv���y
1−2s�	� dx dy ≥

∫
B1×�t���

y1−2sv���− y��y − t� dx dy�
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1374 Capella et al.

Thus, for t ≥ 6 we deduce

∫
B1×�t+1�t+2�

y1−2sv� dx dy ≤ Ct1−2s
∫
B1

v��x� t�z�x� dx

+ C�t + 3�1+2s
∫
B1

v��x� t + 3�z�x� dx�

Integrating this inequality with respect to t ∈ �6� 13�, recalling that z ≤ C	1 for some
C > 0, and using (5.7) we obtain

∫
B1×�8�11�

v� dx dy ≤ C

with a constant independent of � as �→ �∗.
This inequality and standard elliptic estimates imply

v��x� y� ≤ Ce−�y	1�x� for all y ∈ �8� 10�� x ∈ B1� and � ∈ �0� �∗�� (5.8)

Now let w̄�x� y� = C	1�x�e
−�y. For 0 < � <

√
�1, this is a supersolution of the

equation in (5.1) and by comparison in B1 × �1�+��, using (5.8), we deduce (5.4).
Inequality (5.5) is a consequence of (5.4) and elliptic estimates.

b) This part follows from the fact that for � < �∗, u� is smooth in B1 and hence
v� and its derivatives with respect to the x variables are in C��K × �0� R�� for any
compact K ⊂ B1 and R > 0. �

Now, we show a result on the form of the second variation of the energy for
radially symmetric solutions of (1.1). An analogous result was showed in Lemma
1 of [6] for the Laplacian, and the ideas of its proof where inspired by the Simons
Theorem on the existence of minimal cones (see [7] for further details). We also
point out that, the expression for the second variation of the energy in the following
lemma is two dimensional, in the sense that it depends on both � and y. This is in
contrast to the previous results of this kind where all the expression depends on the
radial coordinate only (see [7].)

Lemma 5.3. Given � ∈ �0� �∗�, let u = u� ∈ H ∩ L��B1� denote the minimal solution
of (1.1), and let v ∈ H1

0�L�y
1−2s� denote its canonical extension. Then, for every � ∈

C1�B1 × �0�+��� with compact support in �, but not necessarily vanishing on B1 ×
�0
, we have

∫
�
y1−2sv2�����2 dx dy ≥ �n− 1�

∫
�
y1−2s

v2�

�2
�2 dx dy� (5.9)

Proof. Inequality (1.6) implies that for all � ∈ H1
0�L�y

1−2s�, there holds

∫
�
y1−2s����2 dx dy ≥ �

∫
B1

f ′�u��2 dx� (5.10)

where in the right-hand-side integral we identified � with its trace.
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Regularity of Radial Extremal Solutions 1375

Let � ∈ C1�B1 × �0�+��� as in the statement of the lemma and take � = �v�.
By Lemma 5.2, � ∈ H1

0�L�y
1−2s� and from (5.10) we obtain

�
∫
B1

f ′�u�v2��
2dx ≤

∫
�
y1−2s���v����2dx dy

=
∫
�
y1−2s���v��2�2 + v2�����2 + v��v� · ��2
 dx dy

=
∫
�
y1−2s�v2�����2 + ���2v�� · �v�
 dx dy� (5.11)

Since by Lemma 4.1, u is radially symmetric, by differentiation of (5.1) with
respect to �, one gets

� · �y1−2s�v�� = y1−2s n− 1
�2

v� in �� (5.12)

Next, we differentiate the Neumann boundary condition in (5.1) with respect to �
to obtain

−y1−2s�yv� = �f ′�v�v� for 0 ≤ � < 1� (5.13)

Now, we multiply (5.12) by �2v�, and integrate by parts and use (5.13) to find

∫
�
y1−2s���2v�� · �v� dx dy = �

∫
B1

f ′�u��v���
2 dx − �n− 1�

∫
�
y1−2s �v���

2

�2
dx dy�

Combining the last equation with (5.11) yields (5.9). �

Now we give:

Proof of Proposition 5.1. Given � > 0 let �� ∈ C���� be such that ���t� = 0 for t ≤
� and t ≥ 3/4, ���t� = 1 for t ∈ �2�� 1/2�, and �′��t� ≤ C/� for t ∈ ��� 2��. Given R >
0 we let  R denote a function C���� such that �R�y� = 1 for all r ≤ R and �R�y� =
0 for all y ≥ R+ 1.

Let � satisfy (5.2) and for � > 0, R > 0 define ���� y� = �1−�������R�y�. Given
� > 0 we estimate

����2 ≤ ��1− ��2 + ���−2������
2�R�y�

2 + C��
2−2�������R��2

for some C� > 0. Then by (5.9)

�n− 1�
∫
�
y1−2sv2��

−2�����R�
2dx dy ≤ ��1− ��2 + ��

∫
�
y1−2sv2��

−2�����R�
2dx dy

+ C
∫
�
y1−2s�2−2�v2�������R��2dx dy�

Choosing � > 0 small enough

∫
�
y1−2sv2��

−2�����R�
2dx dy ≤ C

∫
�
y1−2s�2−2�v2�������2�2

R + �2����R�2�dx dy

D
ow

nl
oa

de
d 

by
 [

18
5.

41
.2

0.
10

3]
 a

t 0
5:

35
 2

3 
Ju

ne
 2

01
4 



1376 Capella et al.

where C > 0. Thanks to (5.6) we have

∫
�
y1−2s�2−2�v2������2�2

Rdx dy ≤
C

�2

∫
��≤�≤2��0≤y≤R+1�

y1−2s�4−2�dx dy

≤ C�R+ 1�2−2s�2−2�+n� (5.14)

Because of (5.2) we have that 2− 2�+ n > 0. Letting �→ 0 we find

∫
��≤1/2�y≤R�

y1−2sv2��
−2�dx dy ≤ C

∫
�1/2≤�≤3/4�∪�R≤y≤R+1�

y1−2s�2−2�v2�dx dy ≤ C

where the last inequality follows from (5.5). Finally, letting R→ � we conclude
(5.3). Note that the constant C in (5.14) depends on �, but we let �→ 0 with � fixed,
so estimate (5.3) does not depend on � in the end. �

6. Proof of Theorem 1.6

Before giving the proof of Theorem 1.6 we need the following result, where we show
an explicit point-wise bound for the solution of the linear problem.

Lemma 6.1. Let h ∈ L��B1� and u ∈ H be the unique solution of

�−��su = h in B1�

Then

�u�x�� ≤ Cn�s

∫
B1

�h�x̃��
�x − x̃�n−2s

dx̃ for every x ∈ B1� (6.1)

Proof. Writing h = h+ − h− with h+� h− ≥ 0 we see that it is sufficient to prove the
result in the case h ≥ 0, so that also u ≥ 0.

Let v be the canonical extension of u. Since v�x��� = 0, for every x, we can
write

v�x� 0� = −
∫ �

0
vy�x� y�dy for all x ∈ B1� (6.2)

Let g�x� be equal to h�x� extended by 0 in �n\B1, and denote by ṽ the solution
of 


div�y1−2s�ṽ� = 0 in �n × �0�+��
ṽ�z�→ 0 as �z� → �
−y1−2sṽy = g�x� on �n × �0
�

(6.3)

By the Green’s representation formula for (6.3), we have

−ṽy�x� y� = Cn�sy
∫
�n

g�x̃�

��x − x̃�2 + y2�
n+2−2s

2

dx̃� (6.4)
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Regularity of Radial Extremal Solutions 1377

Consider the functions w = −y1−2svy and w̃ = −y1−2sṽy. Then, w and w̃ satisfy

��y2s−1�w� = 0 in ��

Since −ṽy ≥ 0 in �n × �0�+�� in particular we have

w̃ ≥ 0 = w on �L��

Furthermore

w ≤ w̃ in B1 × �0


and for z ∈ �, w�z�� w̃�z�→ 0 as �z� → +�. Then, the maximum principle
(Lemma 2.8) implies that

−vy ≤ −ṽy in �� (6.5)

Combining (6.2), (6.5) together with (6.4) we find

v�x� 0� ≤ Cn�s

∫ �

0
y
∫
�n

g�x̃�

��x − x̃�2 + y2�
n+2−2s

2

dx̃ dy

= Cn�s

∫
�n
g�x̃�

(∫ �

0

y

��x − x̃�2 + y2�
n+2−2s

2

dy

)
dx̃

for all x ∈ B1, where we have used Fubini’s theorem in the last line. Claim (6.1)
follows by performing the integration over the y variable in the last expression, and
recalling the definition of g�x�. �

Now we give:

Proof of Theorem 1.6. We denote points in � = B1 × �0�+�� as �x� y� ∈ �, where
x ∈ B1, y ∈ �0�+��, and � = �x�.

Step 1. Take � such that (5.2) holds. We claim that for � > 0 such that 2�� +
s − �� < n we have

∫
B1

f�u���
−� dx ≤ C (6.6)

with C independent of � as �→ �∗.
To prove the claim, let � > 0, R > 0 and multiply (2.8) by ��2 + y2 + ��−�/2 and

integrate over �� ≤ 1/2� 0 ≤ y ≤ R� to get

0 =
∫
��≤1/2�0≤y≤R�

� · �y1−2s�v���2 + y2 + ��−�/2 dx dy�

Integrating by parts we find

�
∫
B1/2

f�u����
2 + ��−�/2 dx = −I1 − I2 + I3 (6.7)
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1378 Capella et al.

where

I1 =
∫
��≤1/2�

R1−2svy��� R���
2 + R2 + ��−�/2 dx

I2 =
∫
�0≤y≤R�

y1−2sv��1/2� y��1/4+ y2 + ��−�/2 dy

I3 = −�
∫
��≤1/2�0≤y≤R�

y1−2s��2 + y2 + ��−�/2−1�v��+ vyy� dx dy�

By (5.4) and (5.5), I1 and I2 remain uniformly bounded as �→ 0 and �→ �∗. We
decompose further

I3 = I� + Iy

where

I� = −�
∫
��≤1/2�0≤y≤R�

y1−2s��2 + y2 + ��−�/2−1v�� dx dy�

Iy = −�
∫
��≤1/2�0≤y≤R�

y1−2s��2 + y2 + ��−�/2−1vyy dx dy�

Now we estimate Iy. Let g�x� be equal to �f�u��x�� extended by 0 in �n\B1, and
denote by ṽ the solution of


div�y1−2s�ṽ� = 0 in �n × �0�+��
ṽ�z�→ 0 as �z� → �
−y1−2sṽy = g�x� on �n × �0
�

(6.8)

By the Green representation formula for (6.8), we have

−ṽy�x� y� = Cn�s y
∫
�n

g�x̃�

��x − x̃�2 + y2�
n+2−2s

2

dx̃� (6.9)

Consider the functions w = −y1−2svy and w̃ = −y1−2sṽy. Then, w and w̃ satisfy

� · �y2s−1�w� = 0 in ��

Since −ṽy ≥ 0 in �n × �0�+�� we have in particular

w̃ ≥ 0 = w on �L��

Furthermore

w ≤ w̃ in B1 × �0


and for z ∈ �, w�z�� w̃�z�→ 0 as �z� → +�. Then, the maximum principle
(Lemma 2.8) implies that

−vy ≤ −ṽy in ��

D
ow

nl
oa

de
d 

by
 [

18
5.

41
.2

0.
10

3]
 a

t 0
5:

35
 2

3 
Ju

ne
 2

01
4 



Regularity of Radial Extremal Solutions 1379

It follows that

Iy ≤ −�
∫
��≤1/2�0≤y≤R�

y1−2s��2 + y2 + ��−�/2−1ṽyy dx dy

and by (6.9)

Iy ≤ �Cn�s

∫
��≤1/2�0≤y≤R�

∫
�n

y3−2sg�x̃�

��2 + y2 + ���/2+1��x − x̃�2 + y2�
n+2−2s

2

dx̃ dx dy

≤ �Cn�s

∫
�n
g�x̃�

(∫
��≤1/2�0≤y≤R�

y3−2s

��2 + y2 + ���/2+1��x − x̃�2 + y2�
n+2−2s

2

dx dy

)
dx̃�

(6.10)

For 0 < � < n let us introduce the number

An�s�� =
∫
�n×�0�+��

y3−2s

��x�2 + y2�
�+2
2 �y2 + �x − e�2� n+2−2s

2

dx dy

where e is any unit vector in �n. Note that

∫
��≤1/2�0≤y≤R�

y3−2s

��2 + y2 + ���/2+1��x − x̃�2 + y2�
n+2−2s

2

dx dy

≤
∫
�n×�0�+��

y3−2s

��2 + y2��/2+1��x − x̃�2 + y2�
n+2−2s

2

dx dy = �x̃�−�An�s���

From (6.10) we get

Iy ≤ �Cn�sAn�s��

∫
�n
g�x̃��x̃�−� dx̃ = �Cn�sAn�s���

∫
B1

f�u���x�−� dx� (6.11)

Combining (6.7) with (6.11) we obtain

�
∫
B1/2

f�u����
2 + ��−�/2 dx ≤ −I1 − I2 + �Cn�sAn�s���

∫
B1

f�u���x�−� dx + I��

Letting �→ 0 we deduce

�1− �Cn�sAn�s����
∫
B1

f�u���
−� dx ≤ C�

∫
B1\B1/2

f�u�� dx

+ lim sup
�→0

��I1� + �I2� + �I��� (6.12)

We postpone for later the proof of the following:

Lemma 6.2. We have 1− �Cn�sAn�s�� > 0, where Cn�s is the constant in the
representation formula (2.14).
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Proof of Theorem 1.6 Continued. Thanks to the previous lemma we can obtain (6.6)
from (6.12) by estimating the terms in the right hand side of this inequality. Recall
that by (5.4) and (5.5),

�I1� ≤ C� �I2� ≤ C (6.13)

for some C independent �→ 0 and �→ �∗.
By the Cauchy–Schwarz inequality

�I�� ≤ �

(∫
��≤1/2�0≤y≤R�

y1−2sv2��
−2� dx dy

)1/2 (∫
��≤1/2�0≤y≤R�

y1−2s�2+2�

��2 + y2 + ���+2
dx dy

)1/2

The last integral can be estimated by

∫
��≤1/2�0≤y≤R�

y1−2s�2−2�

��2 + y2 + ���+2
dx dy ≤

∫ �

0

∫
��≤1/2�

y1−2s�2�

��2 + y2��+1
dx dy�

We change variables y = �t for � > 0. Since � > 0, we have

∫
��≤1/2�0≤y≤R�

y1−2s�2+2�

��2 + y2 + ���+2
dx dy ≤

∫
��≤1/2�

�2�−2�−2s dx
∫ �

0

t1−2s

�1+ t2��+1
dt

and this integral is finite if 2�� + s − �� < n. The integral
∫
��≤1/2�0≤y≤R� y

1−2sv2�
�−2� dx dy remains bounded as �→ 0 and �→ �∗ by (5.3), provided � satisfies (5.2).

Thus, if � satisfies (5.2) and 2�� + s − �� < n we deduce that

�I�� ≤ C (6.14)

with C independent of � > 0 and � ∈ �0� �∗�.
Therefore, from (6.12), (6.13) and (6.14), and using a uniform bound for u� in

B1\B1/2 we deduce (6.6).

Step 2. Conclusion.

(a) Assume first that n < 2�s + 2+√
2�s + 1��. Then, n/2− s < 1+√

n− 1
and we can choose � satisfying n/2− s < � < 1+√

n− 1. Thus, n− 2s < n/2+ �−
s and we may choose � = n− 2s in (6.6), which implies that

∫
B1
f�u���

−n+2s dx ≤ C

with a constant independent of �. By (6.1) we have

u��0� ≤ Cn

∫
B1

�−n+2sf�u�����dx ≤ C�

Since u� is radially decreasing, we conclude that u� is uniformly bounded in B1 as
�→ �∗.

(b) Now assume that n ≥ 2�s + 2+√
2�s + 1��. Suppose 1 < � < 1+√

n− 1,
� > 0, and 2�� + s − �� < n. Then, using that f ′ > 0, that u� is radially decreasing,
as well as the estimate (6.6), we have for � ≤ 1/2

c�n−�f�u����� = f�u�����
∫
B2�\B�

�x�−� dx ≤
∫
B1

f�u���x�−� dx ≤ C
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where c > 0. This yields

f�u����� ≤ C��−n for 0 < � ≤ 1

where C is independent of �. Using (6.1), this implies that if additionally � < n− 2s,
then

u��x� ≤
C

�x�n−�−2s
for all x ∈ B1�

Since we have the restrictions � < n/2+ �− s and � < 1+√
n− 1, we see that for

any � > n/2− s − 1−√
n− 1, there is C independent of � such that

u��x� ≤
C

�x�� for all x ∈ B1�

By letting �→ �∗ in the last expression we conclude the proof. �

Finally, it only rest to give:

Proof of Lemma 6.2. Let h ∈ L���n� be radial and have compact support, and
u�x� y� = u��� y� be a solution of


div�y1−2s�u� = 0 in �n × �0�+��
u�x� y�→ 0 as ��x� y�� → �
−y1−2suy = h�x� on �n × �0
�

(6.15)

Now, we claim that, for any 0 < � < n

0 = �1− �Cn�sAn�s���
∫
�n
h�x��−� dx + �

∫
�n×�0�+��

y1−2sr−�−2�u� dx dy� (6.16)

Assuming the claim for a moment we prove the lemma. Choose a smooth radially
decreasing function h ≥ 0, h �≡ 0 with compact support. Let u be the solution of
(6.15). By (2.14), u can be explicitly given by a convolution kernel. In turn, this
shows that u is radial with respect to x and non-increasing in �x�. Hence∫

�n×�0�+��
y1−2sr−�−2�u� dx dy < 0

and ∫
�n
h�x��−� dx > 0�

This shows that 1− �Cn�sAn�s�� > 0.
Now we give the argument for (6.16). Let � > 0, � ∈ �0� n+ 2− 2s� and

multiply equation (6.15) by ��2 + y2 + ��−�/2 to get

0 =
∫
�n×�0�+��

div�y1−2s�u���2 + y2 + ��−�/2 dx dy

= −
∫
�n
y1−2suy��

2 + ��−�/2 dx
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+ �
∫
�n×�0�+��

y1−2s��2 + y2 + ��−�/2−1�x · �xu+ y uy� dx dy

=
∫
�n
h�x���2 + ��−�/2 dx + �

∫
�n×�0�+��

y1−2s��2 + y2 + ��−�/2−1�u� dx dy

+ �
∫
�n×�0�+��

y2−2s��2 + y2 + ��−�/2−1uy dx dy�

Using the representation formula

−y1−2suy�x� y� = Cn�sy
2−2s

∫
�n

h�x̃�

�y2 + �x − x̃�2� n+2−2s
2

dx̃

we find

0 =
∫
�n
h�x���2 + ��−�/2 dx + �

∫
�n×�0�+��

y1−2s��2 + y2 + ��−�/2−1�u� dx dy

− �Cn�s

∫
�n×�0�+��

∫
�n
y3−2s��2 + y2 + ��−�/2−1 h�x̃�

�y2 + �x − x̃�2� n+2−2s
2

dx̃ dx dy�

By Fubini, the last integral becomes

∫
�n
h�x̃�

∫
�n×�0�+��

y3−2s

��x�2 + y2 + ���/2+1�y2 + �x − x̃�2� n+2−2s
2

dx dy dx̃�

and by the change variables: y = �x̃�y′, y > 0, x = �x̃�x′, x′ ∈ �n, we find

∫
�n×�0�+��

y3−2s

��x�2 + y2 + ���/2+1�y2 + �x − x̃�2� n+2−2s
2

dx dy = �x̃�−�An�s��
(
�

�x̃�2
)

where

An�s���t� =
∫
�n×�0�+��

y3−2s

��x�2 + y2 + t�
�+2
2 �y2 + �x − x̃

�x̃� �2�
n+2−2s

2

dx dy�

Therefore, from the above computations we get

0 =
∫
�n
h�x���2 + ��−�/2�1− �Cn�sAn�s����/�x̃�2�� dx

+ �
∫
�n×�0�+��

y1−2s��2 + y2 + ��−�/2−1�u� dx dy� (6.17)

Notice that

lim
�→0

An�s����/�x̃�2� = An�s�� for all x̃ ∈ �n

and that this limit is finite for 0 < � < n+ 2− 2s. Moreover An�s�� is independent
of x̃. Since � < n and h is bounded with compact support the function h����−� is
integrable. Hence, by letting �→ 0 in (6.17) we obtain (6.16). �
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