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We consider the Allen—-Cahn equation Au + u(1 — u?) = 0 in R®. We construct
two classes of axially symmetric solutions u = u(|z’|, z3) such that the (multiple)
components of the zero set look for large |2’| like catenoids, namely |z3| ~ Alog |z’].
In Theorem 1, we find a solution which is even in x3, with Morse index one and a
zero set with exactly two components, which are graphs. In Theorem 2, we construct
a solution with a zero set with two or more nested catenoid-like components, whose
Morse index become as large as we wish. While it is a common idea that nodal
sets of the Allen—Cahn equation behave like minimal surfaces, these examples show
that the nonlocal interaction between disjoint portions of the nodal set, governed
in suitably asymptotic regimes by explicit systems of 2d PDE, induces richness and
complex structure of the set of entire solutions, beyond the one in minimal surface
theory. © 2014 Elsevier Masson SAS. All rights reserved.

RESUME

On consideére I'équation de Allen-Cahn Au + u(1 — u?) = 0 dans R3. On construit
deux classes de solutions & symétrie axiale u = u(|z |, z3) telles que les composantes
(multiples) de I’ensemble des zéros ressemblent & des caténoides pour les grandes
valeurs de |z'|, c’est-a-dire pour |z’| ~ Alog |z’|. Le Théoréme 1 donne une solution
paire en x3, d’indice de Morse égal a 1 et un ensemble de zéros ayant exactement
deux composantes qui sont des graphes. Dans le Théoréme 2 on construit une
solution avec un ensemble de zéros & deux ou plusieurs composantes imbriquées,
semblables & des caténoides d’indice de Morse arbitrairement grand. Si on pense
généralement que les ensembles nodaux de I’équation de Allen—-Cahn se comportent
comme des surfaces minimales, ces exemples montrent que l’interaction non locale
entre les parties disjointes de I’ensemble nodal sont régies par des systémes explicites
de deux équations aux dérivées partielles. Ceci montre la richesse et la structure
complexe de I’ensemble des solutions entieres, bien au-dela de la théorie des surfaces
minimales.
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1. Introduction

This paper deals with the discovery of new solutions to the classical Allen—Cahn equation
Au+u(l—u?) =0, inRY (1.1)

when space dimension is N = 3. Eq. (1.1), introduced in [1] to model the allocation of binary mixtures, is
a prototype for the continuous modeling of phase transition phenomena.

In the so-called gradient theory of phase transitions, the function u represents a continuous realization of
the phase, with values making a transition between the pure states —1 and +1 along some thick interface.
The most interesting solutions in that context are therefore those in which this transition wall takes an
identifiable shape.

In the one-dimensional case, there is a standard solution connecting the states —1 and +1 namely

w(t) = tanh(%), t R,

which is the unique solution, up to translations, of the problem
w' +w(l-w?)=0, inR,  w(doo)==l. (1.2)

In 1978, E. De Giorgi raised in [10] a celebrated conjecture: solutions w to problem (1.1) which are
monotone in one direction have the following rigidity property: its level sets [u = A] must be parallel
hyperplanes, at least if N = 8. That is equivalent to saying that for some point p and a unit vector v, u only
depends on the normal coordinate to the hyperplane that passes through p with normal vector v, namely

u(z) =w(t), t=(x—p)- v (1.3)

This rationale behind the conjecture is that level sets of an entire solution of (1.1) monotone in one direction
should have the same rigidity of minimal surfaces that are graphs of entire functions of N — 1 variables.
The latter question is known as the Bernstein Problem, and it is known to be true precisely up to dimension 8,
as established in the works [2,9,16,27] after the original result in 1917 by Bernstein in [4], proving it for
N = 3. Bombieri, De Giorgi and Giusti [5] proved that Bernstein’s statement is false in dimensions 9 or
higher, by constructing a minimal graph in R? which is not a hyperplane.

In [17,3], De Giorgi’s conjecture was established in dimensions N = 2,3. In [25], it was proved to hold
true in dimensions 4 < N < 8 under the additional assumption

leLIriwu(m’7 zy) =+l

On the other hand, in [14] a counterexample was built in dimension N = 9 in the following way: a nontrivial
minimal graph I" as built in [5] is fixed, then a large dilation of it is taken, I, = a~'I", where « is a very
small positive number. Since I, is nearly flat around each of this points, then the quantity w(t), where
t = t(x) is a choice of normal coordinate (signed distance) from z to I, is a good approximation to a
solution of Eq. (1.1). This approximation turns out to have an extra order of accuracy in « thanks to the
fact that I' is a minimal surface. In [14] it is proven that there exists an actual solution u, to (1.1) which
is monotone in one direction and such that

e () = w(t) + o(a)

The zero level set [u, = 0] is then a manifold close to I, therefore non-flat.
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The method in [14] actually applies to more general minimal surfaces. Recently in [12] this approach was
used in dimension N = 3 to construct, for a general embedded minimal surface M with finite total curvature,
that satisfies certain non-degeneracy assumptions, and all small @ > 0, a solution u, with u,(z) = w(z)
where z denotes a choice of normal coordinate to M, = a~!M. The setting of a compact manifold was
considered in [23,20]. See also [22,21,24] for the earlier connection discovered between this problem and
minimal surfaces.

A notable example of such a M is given by a catenoid. In that case, there exists an axially symmetric
solution with zero set constituted by a smooth surface close to M,. Another example are the Costa surface,
and more generally the Costa—Hoffman—Meeks surfaces [19,7,18]. These solutions have finite Morse index.

For a bounded, entire solution u to (1.1), its Morse index m(u) is defined as the maximal dimension of
a vector space E of compactly supported smooth functions such that

B, 1) := / IVy|? + (3u® —1)¢* <0, V¢ € E—{0}.

RN

For the solutions in [12], we have that m(u,) coincides with the number of negative eigenvalues in L>°(R?)
of the linearized operator A + (1 — 3u2). Moreover, it is found that m(u,) = i(M), the index of M, which
under the assumptions in [12] corresponds to the number of negative eigenvalues in L°°(M) of the Jacobi
operator Ays + |Axs|?. That number is indeed finite, because of the finite total curvature assumption. In
particular i(M) = 1 for a catenoid, and ¢(M) = 2¢ + 3 for the Costa—Hoffmann—Meeks surface genus ¢ > 1.

The results in [12] provide a connection between a large class of minimal surfaces in R3 and families of
solutions to the Allen—Cahn equation, where even Morse index is transmitted. The purpose of this paper
is to show that more richness is present in solutions to Allen—-Cahn with transition layers. A big difference
between Allen—Cahn and the minimal surface problem, is that two disjoint surfaces do not interact in the
latter problem, while they do as components of the zero set of solutions to the Allen—Cahh equations. These
nodal sets are actually solving a form of nonlocal minimal surface problem, which is interesting in its own
sake, not just regarding Allen—Cahn as a sort of regularization of the minimal surface problem. We will
show in this paper two results showing that in the simple setting of axially symmetric solutions in R3, very
interesting phenomena in going on.

As remarked in [8], the Morse index is a natural quantity to consider in the classification of entire solutions
o (1.1). It is easy to see that a solution u monotone in one direction is stable, in the sense that m(u) = 0.
For instance, it is natural step beyond De Giorgi’s conjecture, to understand “mountain pass solutions”
namely those with m(u) = 1. The only example available of such a solution seems to be the catenoidal
axially symmetric solution in [12]. More precisely, for x = (2/, x3) we write

We have that

U () = ug(r, z3),

and uq(7) = w(z) + O(a) where z is a choice of signed distance to M, = a~'M. In precise terms, M is
parametrized as

w3 =log(r+Vr2—1), r>1, (1.4)
so that M, becomes

23] = a ' log(ar + Va2r? —1). (1.5)
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ug ~ —1

fa(r) ~ log (L) +log (ar)

log( —w(z — fa)

Q=
S—

ug ~ 1

r >0

Fig. 1. Solutions for Theorem 1. Morse index 1 and two logarithmical sheets as nodal set.

For minimal surfaces, a famous result by Schoen [26] asserts that a minimal surface with embedded ends
and Morse index 1 must be a catenoid. Our first result shows that the structure of Morse index one solutions
of (1.1) is more complicated than dilations of a catenoid: there exists an axially symmetric solution of Morse
index one whose zero set is disconnected.

Theorem 1. For all sufficiently small o > O there exists an smooth azially symmetric bounded solution
ua(r,x3) to Eq. (1.1) for N = 3, with Morse index m(uy) =1 and

Ua(r,z3) = w(2s + qa(r)) —w(zs — qa(r)) — 1+ O(a), uniformly as o — 0, (1.6)

where

2 2 1
da(r) = %(1 + o(a)) log (1 + &®r?) + by + g log —. (1.7)
uniformly, as o — 0. Here by is an explicit constant.

The solution of the above theorem is in addition even in the x3-coordinate. The zero level set of u, of
this result is the union of the graph of a positive radially symmetric function which asymptotically behaves
logarithmically, and its reflection through the plane 3 = 0. We can actually think of this solution as having
a parallel with minimal surfaces: If we take two planes x3 = £ A, their union is a (disconnected) minimal
surface. For no solution of the Allen—Cahn equation the zero set can be close to this two-plane object.
Instead, the Allen-Cahn equation produces (for A large) a nonlocal interaction between the corresponding
components of the nodal set, which can be quantified, making them diverge logarithmically (Fig. 1).

As we shall see, the law governing the interaction of the two components, assumed to be graphs,
x3 = £q4(r), is a perturbation of the Liouville equation

Adq — age V2« =0, in R2. (1.8)
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Then all radial solutions of (1.8) are given by the one-parameter family of functions

aa(r) = glar) + ‘/75 log(é)

where ¢ is given by

1 V2a 2\ 2
q(r) = mlog( 1 O(l—l—r ) > (1.9)

This is how expression (1.7) comes into play.

Until now, two families of Morse index 1 axially symmetric solutions have become known: That with a
connected, catenoidal zero set constructed in [12], and the two-component constructed in Theorem 1. We
believe these solutions correspond to limiting situations of a single one-parameter family of solutions, in a
similar sense to how two-sheet and one sheet revolution hyperboloids are connected by a parameter, where
the family becomes singular in the form of two opposite cones with same vertex for some special value.

The examples found suggest that the richness of the topology of the zero level set may be in accordance
to the size of the Morse index. Our second result exhibits a surprising phenomenon: this is not the case.
In fact we can find axially symmetric solutions whose zero set is the union of any given catenoid-like nested
surfaces, whose Morse index becomes arbitrarily large.

Let M be the catenoid described in (1.4), and its dilation M, = a~'M parametrized by (1.5). We choose
a normal vector field v(y) for y € M, so that v,(y) = v(ay) is the corresponding normal for y € M,,.

Theorem 2. Let N = 3 and M be the catenoid in R3. Then for any m € N, m > 2 and for all sufficiently
small a > 0 there exists a bounded solution us to problem (1.1) such that as « — 0,

() = Z(—l)j_lw(z — hj(ay)) + S E— +o(1), x=y+zv(ay), y€E M,.

- GV
j=1

Here fory = (y/,ys) € M and r = |y,

hi(y) = <l — mT—i-l> [QIOgé — log(logé> +4log(1+7) +O(1)} +o(l)log(l+7), I=1,....,m.

(1.10)

The Morse index of uy, m(us) goes to +00 as a — 0. In fact, it satisfies that

1
m(uq) = co log<a).

The location of the interfaces z = hy(ay) (see Fig. 2) is governed by a Jacobi-Toda system, described
in (3.1). Entire solutions with multiple transition layers to (1.1) in R? were found in [11]. In this case the
nodal set of the solutions consists on multiple asymptotically straight lines, not intersecting themselves,
whose locations are governed by a Toda system of ODEs. A Jacobi-Toda system was introduced in [13] to
find multiple interfaces on a compact manifold, and in [15] in a related traveling wave problem.

This paper is structured as follows. Sections 2 through 8 are concerned with the construction of the
solutions predicted in Theorems 2 and 1, while Section 9 sketches the estimates and computations regarding
information about the Morse index of these families of solutions.
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T3

Uq ~ —1

Fig. 2. Solutions for Theorem 2. The surfaces M, + h(ar)v, correspond to the nodal set of these solutions in the case m = 2.

2. Geometric setting near the dilated catenoid

We begin with the description of the geometrical background needed for the proof of Theorem 2, since the
developments from this section will useful throughout the paper. In this section we compute the Euclidean
Laplacian in R3, in a neighborhood of the dilated catenoid M,.

Let us consider the curve

v(s) = (cosh(s),s), seR.

The set v(IR) corresponds to the catenary curve in R?, for which we can compute the corresponding signed
arch-length as

y(s) = [ |7/ (¢)]| d¢ = sinh(s), s€R.
/

Setting

s(y) =log(y+V1+9?), yeR

we can parameterize v(R) using the mapping

1(s() = (V1+y2log(y+vV1+32)), yeRr

Let us now consider the catenoid M in R?, with v(R) as profile curve. The mapping Y : R x (0, 27) — R?,
defined by

Y(y,0) := (v/14y?cosf,/1+y?sinb,log(y + /14 y?))

gives local coordinates on M in terms of the signed arch-length variable of 4(R) and the angle of rotations
around the x3-axis which, in our setting, corresponds to the axis of symmetry of M. Observe also that for

Yy = (91792793) eM

Please cite this article in press as: O. Agudelo et al., Solutions with multiple catenoidal ends to the Allen-Cahn equation in R?,
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r(y) = |y, 92)| = V1+y?, y=Y(y,0) € M.
We consider local Fermi coordinates
X(y,0,2) =Y (y,0) + 2v(y,0), y<€R, € (0,27), z€R.

This map defines a smooth local change of variables onto the open neighborhood of M, given by

N = {Y(y,&) +zv(y,0): |z| <n+ %log(l + y2)}

for some small, but fixed > 0. Observe that |z| = dist(x, M), for every x € N with x = X (y, 6, z).
Let us compute the Euclidean Laplacian in A/, in terms of these local coordinates, from the formula

1 »
Ax = ————0;(+/det 79:), i,j=uv,0,z,
X = ) (Vdet(9)g"9;), i,i=y

where g;; = 0;X - 9; X corresponds to the ij-th entry of the metric g on N and g% = (g71);;.
Computing the metric g, we find that

gyy 0 0 1+ 152)° 0 0
g=10 g0 0 | = 0 1+y*)(1 - 752)?
0 0 g.. 0 0 1
so that
v VTP =
det =1+ 1—— ).
@ =V (1 )
Since

Ax = ———= [ , (V/det(g)g,, 0y) + 0o (v/det(g)ggg-09) + 0: (1/det(9)d:)],

det(g
we find by a direct computation that

Y 1 2z
0 oo —
T+ 2 T T2 T Ty 2p

Ax = 0.+ Oyy + 0.+ D, (2.1)

where

D = zay(y, 2)0yy + za2(y, 2)0pg + 2b1(y, 2)0y + 2°ba(y, 2)0;,

and the smooth functions a;(y, z), b;(y, z) satisfy

la;| + [yDya;| = O(|y|?), |b1] + [yDybs1| = O(|y|~?),
|b2| + [yDyba| = O(ly|~®) (2.2)

as |y| — oo, uniformly on z in the neighborhood N of M. Actually, it is not hard to check that, inside N
and for ¢ =1,2

Please cite this article in press as: O. Agudelo et al., Solutions with multiple catenoidal ends to the Allen—-Cahn equation in R?,
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ai(y7 Z) = ai,O(y) + Zai,l(y? Z)7 bl (yv Z) = bl,O(y) + Zb171(y7 Z)a

b2(y7 Z) = b2,0(y) + ZZbQ,l(yv Z)a (23)
where
(=2)"! 2y 2
7 = T o\ b = T T o\ b = T o4
a ,O(y) ( + y2)l 1,0(y) (1 + y2)2 2,0(y) (1 4 y2)4
and
laia| + lyDyas 1| = O(|y|_(4+2i))7 [b11| + lyDybi 1| = O(|y|~°),
b2,1] + [yDyba 1| = O(|y|712).

At this point, we remark that since the catenoid is an axially symmetric minimal surface, the functions
a;, b, 1 = 1,2, also share this symmetry and actually they enjoy the additional properties

ai(yaz) = ai(fyaz)a bl(y7z) = 7b1(7y72)3 b?(yaz) = bg(y,Z), x:X(y,G,z) GN'
Let us now consider a large dilation of the catenoid M, given by
M, =a 'M

for a small positive number a.
We parameterize M, by Y, : (y,0) — a~1Y (ay, #) and define associated local Fermi coordinates

Xa(y,0,2) = o 'Y (ay,0) + 2v(ay, 6)

on the neighborhood NV, = =N of M,. Observe that

1
No = {Ya(y,ﬁ) + zv(ay, 0): |z| < g + % log(1 + (ay)z)}-

Scaling formula (2.1) we find that

2 2

a®y «@
9, +
L+ ()2 1+ (ay)?

2022
(14 (ay)?)?

AXQ = Bzz + Byy + 890 - az + Dou (24)

where
Dy = azai(ay, az)dyy + a’zas(ay, az)0g + a’zbi (ay, az)dy, + a*23bs(ay, az)0,

and the smooth functions a;, b;, i = 1,2, satisfy (2.2) and (2.3).
Let us consider next an arbitrary smooth function h : R — R and local coordinates near M,, defined by

Xon(y,0,t) = a Y(ay,0) + (t + h(ay))u(ay, 6)

onto the region N,, which can be described as

No = {Xa,h(y797t)2 |t + h(ay)| < g + élog(m)},

Please cite this article in press as: O. Agudelo et al., Solutions with multiple catenoidal ends to the Allen-Cahn equation in R?,
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Observe that for z € N, we have © = X, (y,0,2) = Xon(y,0,t), which means ¢t = z — h(ay). We will
often emphasize the description of the region N, in terms of the local coordinates X, , by writing Ny, p.
We compute directly, from expression (2.4), the Euclidean Laplacian in these new coordinates.

Lemma 2.1. On the open neighborhood Ny, 1, of My, in R3, in the coordinates x = X 1 (y,0,t), the Euclidean

Laplacian has the following expression:
2 2
= 50y + 2 2
1+ (ay) 1+ (ay)

2 " Yy / 2(t+ h)
-« {h (ay) + Wh (ay) + W}at

— 20k (ay)Opy + ° [h’(ay)]28tt + Doy (2.5)

AXC,’;,, = att + ayy + 899

where

Dy = a(t+ h)a; (ay, at+ h)) (&W — 20l (ay) Oy — b (ay)d; + a? [h’(ay)] 23&)
+ a®(t + h)as(ay, a(t + h))Oge + a*(t + h)bi (ay, a(t + h)) (9, — ol (ay)dy)
+a*(t+ h)ba(ay, alt + h)) 0, (2.6)

and the smooth functions a;, b; are those described in (2.2)—(2.3).

Proof. Set z =t + h(ay) and consider a function U € C%(N,, 5). In the coordinates X, 5 as well as in the
coordinates X, we can write

U(Xa(y, 0, z)) =u(y,0,z) and U(Xa,h(y, G,t)) =(y,0,t)

which means that u(y, 8, z) = v(y, 0,z — h(ay)).
It remains to notice that in the local coordinates X, p

0,u = Oy, 0,,u = Oy,

8911, = 891}, 899’11} = 8@9’07
dyu = Oyv — ah/ (ay)dv,
Dyyu = Oyyv — 2ah’ (ay)dyyv — o*h” (ay)dyv + o [W (ay)] 2Ouv.

Substituting these partial derivatives into formula (2.4) and using that z = ¢t + h, we get the
expression (2.5). O

Remark 2.1. The Laplace—Beltrami operator of the dilated catenoid M,, in the coordinates Y /(y,6),
corresponds to the differential operator

o’y a?
Ap, =0, 0 0
Ve O T T a2 T (a2

a1

with the convention that M = Mj. On the other hand, since each of these dilated catenoids is a minimal
surface, we have that the Gaussian curvature, Kps, of M,, is given by the relation

202
(1+ (ay)?)?’

where |Aps(y)| is the norm of the second fundamental form of the catenoid M.

2
2KMa(y):—a2|AM(ay)‘ =— y €R,

Please cite this article in press as: O. Agudelo et al., Solutions with multiple catenoidal ends to the Allen-Cahn equation in R3,
J. Math. Pures Appl. (2014), http://dx.doi.org/10.1016/j.matpur.2014.03.010




MATPUR:2684

10 O. Agudelo et al. / J. Math. Pures Appl. e e e (6o 06e) o0 e—000

Hence, we can write the Euclidean Laplacian in (2.5), as follows
Ax., = 0u+ Aur, — o {Aah + (t+ h)| Ay [?}0) — 20h/ (ay)Dry + o2 [B (ay)] O + Dan,  (2.7)
where the functions h, Ayrh, |Apr|? are evaluated at ay.
3. Jacobi-Toda system on the catenoid

In the previous section, we discussed the system of coordinates and differential operators that come
into play in the proof of Theorem 2. We continue our discussion providing a detailed description of the
approximate nodal set of the solutions predicted by this theorem. As mentioned in the introduction, the
location of this nodal set is governed by the nonlinear system of PDEs for h = (hy, ha, ..., hy)

a? (AMhl + |AM|2hl) —ag [e‘ﬁ(hl_}”*l) — e_ﬁ(hl+1_hl)] =0, in M, (3.1)
where ag > 0 is a constant, & > 0 is a small parameter and with the convention that
—o0o=hg < hy <- <hpy <hper =o0.
In this section we provide a complete proof of the following proposition:

Proposition 3.1. For every a > 0 small enough there exists an azially symmetric and smooth vector function
h=(hy,...,hy) solving system (3.1) and satisfying

m+1 1 —2 ~
hy=(l———||oa+|1— log(|A +hy, =1,...,m, 3.2
l ( 2 M ° ( \/iaa) Al )|+ 52
where o, ~ log(a™!) and the functions Iy satisfy the estimates

|Bl(y)| <Ko i 10g(2 + r(y)), y e M,

(14 r(y))’ DDRy <Kjo it: 1=1..m, j=12...

HLoo(M)

for some large constant K > 0, independent of o > 0. In addition h is even respect to the arch-length
variable of the catenoid M

We split the proof of Proposition 3.1 into a series of steps, each of which is presented as a subsection.
8.1. Decoupling procedure and the approzimate solution

We look for a solution h = (hq, ha, ..., hy) to (3.1) having the form

1
hl:<1—%>aa+ql, I=1,....m (3.3)

where the constant ¢ = o, solves the algebraic equation

2 \/50

a’o = age

so that o, is a smooth function of «, satisfying the asymptotic expansion
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2 2 log log log =5
oo = log \/_;10 — log| log \/_go + 0O Lgl"ﬁ .
« «a loglog ==
In what follows, we omit the explicit dependence of o respect to o and we set § = o~ 1.
Plugging (3.3) into (3.1) and dividing by o, we obtain the system for (g1, ..., ¢n)

5(AM(]1 + |AM‘2QI) - [eiﬂ(qlfqlfl) — e*\/i(tnﬂ*qz)]
1
+<l—%)|AM|2:O, in M, l=1,....m. 5.0

Before solving system (3.4), let us introduce some useful notation. Consider the invertible m x m real
matrix

o o
o |
—
| =
—
o o
o o

o
o
O e
I
_
—

and the auxiliary functions

q1

() (2) o

We notice that the I-th entry of the constant vector B~! - 1 corresponds to [ — WT'H
Let us introduce also the notation

dm—1

eVl 1

eVm—1 1

2 1 0 - 0
1 -2 1 0

C= (3.6)
0 1 -2 1
0 0 1 -2

With this notation, system (3.4) can be written as

(5(AMv+|AM\2V)+C-e‘ﬁv+|AM|2-]l=O, in M (3.7)
A + | Ay 0 =0, in M (3.8)

Since the matrix B in (3.5) is invertible, any information about system (3.7)—(3.8) has a direct translation
into system (3.4) and vice versa.
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Taking v, = 0 in (3.8), we only need to take care of system (3.7). In order to solve this system, let us set
E(v,8,y) := 6(Anv + [Ap|>V) + C - e VP 4 | Ay 1. (3.9)

We want to find an approximate solution vq to (3.7) such that E(vg,d,y) is as close to zero as possible.
Writing
vo(y,0) = wo(y) + dwi(y)

expression (3.9) becomes

E(vo,8,y) = C-e V2 4 [Ap 21 + 6 (Apwo + |Anr[>wo) + 3Dy (C - e V) “wy

V=wo

+ 52 (AMwl + |AM\2w1) +C- [e_ﬂ(w()—i_&wl) — B_ﬁw(] — 60D, (e‘ﬁv) wl} . (310)

V=wo
Proceeding formally by taking § — 0, we find that wy must solve the algebraic equation
C.-e V20 4 AyP1=0, (3.11)

where we recall that in local coordinates

2 2
A =, =Y (y,0).
From this we write wy = (wo.1, - - .,wo,m—1) where
_ b

1
wo,i(y) = ﬁlog<2|AM(y)|2(ml)l), 1<li<m-1

so that

1
V2

for some constant vector ¢y. A direct computation yields that

wWo

log(|Anm| %)L + ¢o (3.12)

Answo + |AnrPwo = |An2(2 - 1+ wp). (3.13)

With this choice of wy, dividing expression (3.10) by § and taking 6 — 0, we find that w; must solve the
algebraic equation

DV (C . e_ﬂv) 0 s w1+ (AMWO + |AM|2LUO) =0. (314)

V=wi

Observe that

- - ((m—j)j
Dy(C-e ‘/ﬁv)vzwg = —V2/Ay*C- dzag(T
(m—1)x(m—1)
—2&1 a9 0
ay —2(12 0
0 a2 72(13 0
= \/§|AM|2 I (3'15)
0
0 0 PN Am—3 —2am,2 Am—1
0 0 .. 0 Am—2 —2am,1
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where
a; =

Directly from (3.15) we find that

—-C. diag(@) 1 =1.
(m—1)x (m—1)

and consequently (3.14) becomes
V2C - diag(w> w1 = (214 wp).
2 m—1
It follows that
1
wlz—\/§~]l—§log(\AM|_2) 14+ (3.16)
for some constant vector ¢;. Therefore, our choice of the approximation to (3.7) is
1
val:8) = 5 (1= 55 ) osn)] ) | £ ] +eo+ e
2 V2 )
and observe that

E(V07(5, y) — 62 (AMWI + |AM‘2(U1) +C- [e—\/i(wo+5w1) — e_\/ﬁwo — §Dv(e_\/§v) woéwl]. (317)

v=

From (3.12), (3.16), (3.17) and a direct computation we get the pointwise estimate in M
B0, 5.9)] < OV A P91 + (14| + O (log (4 ) )] 318)
for some € > 0 small. To verify estimate (3.18), first recall that
r) =Wl y=w)eM

which in the local coordinates y = Y (y, 0) reads as r(y) = /1 + y2.
Next, using a Taylor’s expansion up to second derivatives in the region of M, where

510g(|AM\2) < Ky
we get that
e~ V2(wotdwr) _ o=V _ 0D, (e7 V) bwi| < C8? A |? |wi]?
| v=wq ’

where K is independent of ¢ and y. Since |Ay|?> ~ O(r(y)~*), this actually occurs in the large region
determined by

Ky
5

ry) <ew, yeM
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while in the remaining part of M, we use the fast decay of |Axs|? to get that

|67\/§(w0+6w1) _ e*\/iwo — 6D, (e*\/i\/) w05w1| < C|AM‘2€5 log(r*(y)) < T(y)fﬁef%

V=

which is exponentially small in §, provided that we choose 8 so that 0 < 8 < 4 — 44. Clearly, (3.18) follows

at once from these remarks.

3.2. Solving the Jacobi—Toda system

Next, we linearize system (3.7) around the approximate solution vo(y, §) we have described in the previous

subsection.

Let us first introduce the topologies that will be used to set up our functional analytical scheme.

For functions g and ¢ defined in M, 1 < p < 0o and 8 > g we consider the norms
lgllp,s = (|1 + 7)) gl 1o ary:

¢l 00 = B0 oy + 82 [[ (14 () DE o gy + 108 (r(6) +2) "¢l ey

1Clls.p,8 == 5||D2<||p,3 Lk 11+ T(y))DCHLOO(M) + [[log (r(y) + 2)71C||L°°(1\/I)'

Next, we study the linearization of system (3.7) around vo(y, d). Recall that

1

) - .
vo(y,d) = % (1 — E) log(|AM(y)| 2) 1 + co + dcq

and we look for a solution to (3.7) of the form

v =vp+C.

Thus, we are led to study the system

S(AmC+1AuPQ) + Dy[C- e _ ¢
= —E(vp,0) = (C-e V20t —C.e7V20 — D [C- e V2] _ (), i M
Let us observe that
DV [C ' efﬁv] v=wo+dw; = Dv [C ' efﬁv] V=wo + C ([Dvei 2V] v=wo+dw1 B v [eiﬁv] v:wo)

Proceeding as in (3.18), it can be checked that

IC - ([Deev™] =D ) ey < €8

v=wo+dow1

for any 0 < 8 < 4 — 44. Consequently, we can write system (3.23) as

Ls5(¢) = —E(vo,d) — Q(vo,¢), in M,

where

(3.19)
(3.20)

(3.21)

(3.22)

(3.23)

(3.25)

(3.26)
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L5(C) = 0(Am¢ + [Anm|*¢) — V2|Au[*C - A(y, 6)C,
A(y,0) := diag<(m_j)j>
2 (m—1)x(m—1)
H|AM|2(A(-,5) - A(~7O))Hoo,5 <05, 0<B<4—45

and

Q(vo, () := C-e V2ot _C.e V2o _ D [C.e VP] _ ¢

V=Vqo

The following proposition provides a suitable linear theory needed to solve the linear equation
Ls5(¢)=g, onM (3.27)
in the class of axially symmetric even functions.

Proposition 3.2. For every § > 0 small enough and any given axially symmetric even vector function §
defined on M, with

19llp,5 < o0

for % <p< oo and % <p<4d- %, there exists a unique azially symmetric even solution ¢ to system (3.27)
satisfying the estimates

_3 .

I<ll6.p,8 < C™2dllp,p: (3.28)
_3 .

[1¢ll5,00 < CO77|G] o0, (3.29)

We remark that the constant C' > 0 in Proposition 3.2 does not depend on ¢ but rather on 8 and p.
We provide the proof of this result in next section.

We finish this section solving system (3.26). Let ¢ = Ts5(g) denote the linear operator provided by
Proposition 3.2. We recast system (3.26) as the fixed point problem for the vector function ¢

(=R, R =Ts[~E(vo,8) — Q(vo,C)]
in the Banach space X of smooth vector functions ¢ with the norm
IClx == lI¢lls,00 < 00
From (3.18) and for any 8 such that 2 < 8 < 4 — 40, we get that
|E(vo,0)|| . 5 < Cs? (3.30)
and consequently, from (3.29) we obtain that
ROy = [T (B0, )] < €87,
On the other hand, proceeding as we did to verify (3.18), for any % < B <4 —46 and any ¢ such that

I¢llx < €6t (3.31)
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it follows that

I5[Qvo, O]l < C6™1(1QMV0. Ol 5 < CI1ICIE = O(57).

Finally, to check the Lipschitz character of Q(vo, ¢) respect to ¢, we simply observe that for (7, (2 satisfying
(3.31), we have

Q(VO, Cl) _ Q(V07 C2) =C- [e—\/i(vo+C1) _ e—ﬁ(V(H-C'z) _ Dv(e—\/iv)v:vo (= <2)]

From this and proceeding again as we did to obtain (3.30), the inequality

1Q(v0, 1) = Qvo, )| 5 < TG = Gallx (3.32)

follows. This implies that
IR(G) = R(G)|[ < C5|Q(vo, 1) = Qvo, &)]| oy < CO2[G = Gl x-

Hence, the function R maps the ball in X of radius K¢§ i onto itself, provided the constant K > 0 is chosen
large enough, but independent of § > 0 small. A direct application of Banach fixed point theorem allows us
to solve system (3.26). We have thus proven the following proposition:

Proposition 3.3. For every § > 0 small and B such that % < B < 4(1 = 6) there exists a unique axially
symmetric even and smooth solution ( to the system

Ls(() = —E(vg,0) — Q(vo,¢), in M

satisfying

5

H<|5,oo <K(§Z, H(l-i—’l“(y))‘]D(J)CHOO <K6%—"

i=12,...

To conclude the proof of Proposition 3.1 simply notice that, from the previous proposition and a direct
computation, the solution h = B~1[vg + (] is such that

hy = (z m;“) [aa i <1 - ﬂl%) 1og(|AM(y){2)] Yhy, l=1,....m

with the Ay as predicted in Proposition 3.1.
4. Jacobi and linearized Jacobi-Toda operators on the catenoid

This section is devoted to prove Proposition 3.2 and the study of the linearization of the decoupled
Jacobi—Toda system around the exact solution we found in the previous section.

4.1. Linearized Jacobi—-Toda operator

We first prove Proposition 3.2. In order to do so, we study the linear system
SAMC + A |?(—V2C - A(y,0) +6I)¢ = g, in M, (4.1)

where we recall that
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Y
Ay, 0) = diag<7( j)j>
2 (m—1)x(m—1)
and the matrix C is given in (3.6). Actually, a direct computation shows that the numbers

m—1

m

1
L= ..,
2

are the m — 1 eigenvalues of the matrix —C, so that —C is symmetric and positive definite. Let us write

N

¢(=[-Cl*y, §=[-C]

g.
System (4.1) becomes
AN+ [Ay 26T+ By =g, in M, (4.2)
where the matrix B is given by
1 1. Ny 1
B= 5[_0] 2 diag((m = 3)7) (1) (m-1) [=C1 -
Next, we consider the eigenvectors €1, ..., é,_1 of the matrix B, i.e.

and we write

m—1 m—1
= e,  G= ) Giés
i=1 i=1

Hence, system (4.2) decouples into m — 1 scalar equations, namely
SAMY; + [Ap PN +0)pi = Gi, in M, i=1,....,m—1. (4.3)

The eigenvalues A1, ..., \,,—1 are positive, a fact that makes invertibility of each equation in (4.3) a very
delicate matter.
Without any loss of generality, we study solvability theory for the model linear equation

Ls(¢) = 6Ane + [Ap [y = g, in M. (4.4)

Since we are working in the class of axially symmetric and even functions, we only need to study
solutions to

L(;’(/)ZO, inMﬁ{.’lﬁg}O}

which in the arch-length variable of M reads as the ODE

50+ TV 0)) + ) =0,y 0. (4.)

Let us denote ys > 0, the real number such that /1 +y2 = %.
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Consider the change of variables y = sinh(¢) and consider the outer region y > ys. Let us choose Ts > 0
so that & cosh?(Tj) = 2. Hence writing solutions to (4.5) in the form 1 (y) = ¢(t), we see that the function
¢ must satisfy

Ond + ps(t)p =0, ps(t) := 20" Lsech?(t) t > Ty (4.6)
The following lemma gives us a precise description of the solutions to (4.6) in the outer region ¢ > Ts.
Lemma 4.1. The linear ODE (4.6) has two linearly independent solutions, ¢1(t), ¢2(t), satisfying that

P1(t) =t + O(1), o (t)=1+0(t""), fort>T;, (4.7)
da(t) =14+ 0(t), Qha(t) =0(t™"), fort>Ts, (4.8)

provided 0 is small enough, which amounts to the fact that Ts is large enough. Even more, ¢2(t) satisfies
the estimate

|012(t)| < ClldllLoe (z5,00P5(t), > Ts. (4.9)
Proof. First let us look for a solution ¢4 (t) to (4.6) of the form ¢ (t) = tv(t). We find that v(¢) must solve
O (tP0wv (1)) + ps(t)t?v(t) = 0.

Setting z(t) = t20;v(t), we obtain the first order IVP for z(¢) and v(t)

Orz(t) = —ps(t)t*v(t), O(t) = t%z(t), 2(Ts) = =0, v(Ts) = vy.

Integrating each equation on the system, we find that

z(t) = 29 — /p(;(T)TQU(T) dr, v(t) = v + / %2(7) dr.

Hence, using this integral formulas and Fubini’s theorem, we obtain the integral representation for z(t)

t t t

2() = 20 — o / po(F)r2dr — / 7_—122:(7') / ps(3)52 ds dr.

Ts Ts T

Next, we prove that z(t) is bounded. First observe that

t [e%e]
0< /p5(7)72 dr < /p5(7)7'2 dr < 05_1T526_2T5 < C’Tf7
Ts Ts

where C' > 0 is independent of §, provided é > 0 is small enough. On the other hand,

2] < (1ol + 57 uol) + [ pa(r)o(r)] dr

and directly from Gronwall’s inequality we obtain that
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|2(8)] < C(120] + 6~ Joo) exp( / ps(7) dr>.
Since

/p5(7’) dr < %e‘”‘;

Ts

then for § small enough, and taking vg = 0, we find that |2(¢)| < C|z|, for t > T5.
Plugging this into the integral formula for z(¢) we observe that

t t

2(t) = ngr/z(T)%/p(;(s)s2 dsdr.

Ts T

Since z(t) is bounded, we obtain that

o0

1
—/p5(5)52 dsdr

T2

z(00) = lim 2(t) = z0 + /Z(T)

t—o0
Ts

and without any loss of generality we write

o0 t
1
z(t) = 1+/Z(T)—2/p5(s)s2dsd7, t>Ts.
T
t T

Observe that
|2(t) — 1| < Cps(t) < Ce 27T ¢ > T5.

From the integral formula for v(t), we obtain that

v(t) = v(c0) + 7z(7);12 dr =v(c0) + 0 (%)

so that, we may choose

p1(t) =t+01), t>Ts, Opp1(t) = v(t) +tow(t) =1+ (9(1)

Using the reduction of order formula, we find the second solution ¢s(t), satisfying

bolt) = 1+ o(i) Dya(t) = o(i)

To find estimate (4.9), observe that d;¢2(c0) = 0. So we obtain from (4.6) that

oo

Ora(t) = —/p5(7)¢2(7) dr, t>T;

t
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from which
|0:02(t)| < ClldallLoe (1y,00)p5(t),  for ¢ > Tj.
This concludes the proof of the lemma. O

Next, we describe solutions to (4.5) in the whole line and in the arch-length variable y. Let 11 (y), 2 (y)
be two linearly independent solutions of (4.5) satisfying

Pi(0) =cin,  Oyi(0) = cind 3, i=1,2, (4.10)

where ¢1,1¢2.2 — ¢1,2¢2,1 = 1, so that the Wronskian is given by

Wh1,99) = —, Yy eR

The following proposition completes the description of the kernel.

Proposition 4.1. The fundamental set {11,192} of (4.5) satisfies the following estimates

[Wi(y)| <C1+92)*,  |owiy)| <Co 2 (1+4%) ", 0<y<uys,
[0i(y)| < 0O~ flog(d)| (L +1yl),  (1+[y))|0yuly)| <C6™ 1, y=>uys.

—~

4.11)

—

4.12)
Proof. We pass to the sphere S? using the stereographic projection

y =tan(f), for 0 <6 < by,
where the number 6 < 05 is such that ys = tan(f;), 0 < 65 < 5. Writing

P(y) = p(0), for 0<6<b

we find that ¢ solves the equation

2
Do p(0) — tan(0)dpp(8) + 5cp(a) =0. (4.13)
Assume further that
P(y) 1 (9> for0 <0< (4.14)
=—+~|—], for . .
Y \/cos(e)’y Vo ’
so that
0ss7(s) + 1+§ +é 2(Vds) |v(s) =0, for0<s< = b
s (s 1 4sec s) |v(s) =0, fo 5 < 85 := 7

We claim that v(s) and 0sy(s) are uniformly bounded in (0, ss). To prove this claim, we consider the
pointwise energy

J(s) = [9uy(s) [ + [1 ; g] y(s)
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for which

0sJ(s) = 72857(5)7(5)2 sec?(Vds).

Hence, for a constant C' > 0 independent of 6 > 0, it follows that

10:J(s)| < CJ(S)% sec?(V/6s)

and consequently

0< J(s) gJ(O)%—C’g/](g)secQ(\/g&)d&, for 0 < s < ss.
0

Using Gronwall’s inequality, we find that

J(s) < J(0)exp (C’% /secz(\/gf) d§>. (4.15)

0
We compute explicitly the integral in (4.15) to find that

55

3 [ sect i) de - V9 tan(Vsy) = 2 tan(5) < co.

0
where ¢y does not depend on § > 0. Hence, we find that
J(s) == |0y (s))* + [1 + é} lv(s)|* < CJ0), 0<s< b5
[ Vv

and so the claim is proven. Pulling back the change of variables given in (4.14) and since

1 +y%)oyu(y) = —= - Y (4.16)

we find that

and consequently we obtain (4.11).

On the other hand, using Lemma 4.1 we may find another fundamental set for (4.5), say {41 (y), ¥2(y)},
such that

Pi(y) =m(1+[y)) +OQ),  (1+[y))dydn(y) =1+ O(m(1+]y) ),
Pay) =1+ 01+ y)) ), (1+[y)dydaly) = Olog(1+ [y])| ),
and with Wronski determinant

0 < W (4, 2) = c(1+4?) 2.
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Let us consider next equation (4.5) for ¢; in the region y > ys. Since y(s), |0s7y(s)| are uniformly bounded,
we find from (4.14) and (4.16) the conditions

Vilys) =O(574),  dyvilys) = O(6%) (4.17)
and we write
Vi(y) = cintn +ciole, y=ys, i=1,2.
A direct computation shows that

el st S ] Loviton)

Ci2
From this we obtain that

1

Ci1 = 0(571), Ci2 = (9((57i ’10g(5)|)
and clearly (4.12) follows at once from these remarks. O

Proof of Proposition 3.2. Using Proposition 4.1 we choose a solution to (4.4) defined by the variations of
parameters formula

P(y) = =673 (y /mwz €) d€ + 0™ 2o (y /\/1+§2w1 (4.18)

In order to estimate the size of 1), we observe that for 2 < p < o0, 5 > g and 0 < y < ys, it holds that

RS

Yy Yy
/\/1+§2}wi(5 )[13(6)] dé < C||9||p6</ 1+ [¢]) “*2 o) d&)
0

0

Directly from this inequality and using (4.11), we find that

<C§72”§”p,ﬁ, iaj:1,27 Z#]

Gi(y) / VT €26;(6)3(6) de
0

and since we are taking § > % and using again (4.11), we get that

321+ 2|0 )] + [p )| < Co~ % glps, 0<y<us. (4.19)

Proceeding as above, we observe that for y > ys
Yy Yy
[ViEew@lalds < Clals + [ ViTelun©lla©) d
0 Ys

and using (4.12) and since 8 > %, we find that for some £ > 0 small
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Yy y o
1 — / ’
[ Vi ©llao)a < c|1og(6>|64||g||p,ﬁ< Ja1e)® " g1+ j1)” )
Ys Ys
< C6|gllp.s-
Hence, using again (4.12), it holds that
ST+ 210 ()] +1og (2 + [yl) T v w)| < COHglps v ws. (4.20)
Putting together, estimate (4.19) and (4.20) we obtain that
VB[ (14 1) D[] e gy + 1082+ 7@) ™ 0 ey < OO 211G .5 (421)

Finally, observe that for 2 < p < 0o, 8 < 3 and some € > 0 arbitrarily small, we have that

/(1+r ) |A |2pw ’pdVM CH log( )+2)_1¢HLOC(M)/(1+T(y))(ﬁ_4_a)pdVM.

M M

Since (f — 4)p < —2, we obtain that
1 Anl?0], 5 < Cll (og(r(y) +2)) ™ 6|y a1y < CT 211G,
and so, from (4.4)

_ 3~
I¥llsp.8 < CI™4||glp,s

where

K8

.5 = 8 DXL, o+ 03 ([ (L 1) DUl gy + [lom(2 4 7(w) ™ el s
The case p = oo is treated in an analogous fashion.

To finish the proof of Proposition 3.2, we simply notice that linear system (4.1) can be written as the
fixed point problem

and as we observed before, it holds that
|||AM‘2(A(75) - A(a 0)) Hp”g < C(Sv

then a direct application of the contraction mapping principle, in both of the norms (3.20)—(3.21) for ¥,
completes the proof of Proposition 3.2. 0O

4.2. The Jacobi operator in M
To study the linearization of the system (3.1), we also need to develop solvability theory for the equation

T (v) = Ayv + |Ay|?v =g, in M. (4.22)
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Operator Jys in Eq. (4.22) corresponds to the linearization around the catenoid M of the mean curvature
operator.

It is well known that the catenoid M is L°°-nondegenerate, in the sense that the functions z; = v - e;, for
1 =1,2,3 are the only bounded solutions to the equation

T (v) = Ayo+ [AyPo =0, in M,

where e1, ez, e3 corresponds to the canonical basis in R3. One can check directly that 23(y), which has the
explicit expression

Y

z3(y) = \/?—yy

is the only bounded axially symmetric Jacobi field. Hence, using the reduction of order formula with

y=Y(y,0) e M

the ansatz

za(y) =1+ s(y)zs(y), y#0

one can also deduce the existence of another axially symmetric element of the kernel of J,;, with logarithmic
growth, associated to the dilations of the catenoid M, namely

2a(y) =Y (,0) - v(y,0) =1 —In(y+ 1+ ¢? ) ———, y=VY(y,0) € M.

NS
We compute the derivatives of z3 and z4, with respect to y, so we get

1

/ _ _ -3
0y 23(y) = il O(lyl™), (4.23)
B,24(y) = —In(y + I+ 42) (1 +12) 7 - #yz =O(ly|™). (4.24)

Since we are working in the class of axially symmetric functions, we use the variations of parameters
formula to define J~1(g) := v, where

o(y) = —2(y) / VIF Eg(6)za(€) de + 2a(y) / VI E9(6)2(€) de (4.25)
0 —00

for any function g satisfying that

lgllp.s = | (1 + 7)) gll Lo ary < 0

Formula (4.25) defines a function v that solves equation (4.22). We remark that, under the orthogonality
condition

/ 5 €29(6)za(€) de = 0 (4.26)

this solution is unique in the class of bounded functions with v’(0) = 0 and the following lemma gives us
an estimate on the size of J 1.

Please cite this article in press as: O. Agudelo et al., Solutions with multiple catenoidal ends to the Allen-Cahn equation in R?,
J. Math. Pures Appl. (2014), http://dx.doi.org/10.1016/j.matpur.2014.03.010




MATPUR:2684

O. Agudelo et al. / J. Math. Pures Appl. e e e (6 006e) o0 e—00e 25

Lemma 4.2. Let g be an azxially symmetric function satisfying condition (4.26), and such that ||gpz < oo,
forl<p<ooand2<6<4—%
symmetric solution to

. Then, the function v, given by formula (4.25), defines an azially
Apv + |AyPv =g, in M,
such that v'(0) = 0 and the following estimate holds true
[0ll2.p,6 < Cllgllp.s; (4.27)
where
[oll2.p,8 = Wl ary + I~ @) VO]l o 0y + 1D, -

The proof of this lemma follows calculations similar to those in the proof of Proposition 3.2, so we leave
details to the reader.

Remark 4.1. To prove Lemma 4.2, we simply notice that an even axially symmetric function g in L'(M),
automatically satisfies the orthogonality condition (4.26). In such a case, formula (4.25) defines an even
function.

5. Approximation of the solution in Theorem 2

To define our approximate solution to problem (1.1), let us first observe that the heteroclinic solution to
w’(s) +w(l—w?) =0, seR, w(£o0) = +1

is given explicitly by

seR

w(s) = tanh(%),

and has the asymptotic properties
w(s) =1—2e "V 4 O(e‘gﬂls‘), s>1,
w(s)=—-1+ 2V 4 0(672\/§|S‘), s < —1,
w'(s) = 2v/2e Vsl L O(e72V21l) s > 1, (5.1)

where w' = %.
S

5.1. The first local approrimation

Let us consider the vector function h = (hq, ..., hy,) given in Proposition 3.1 and solving the Jacobi-Toda
system. Recall that every h; has the form

hi(y) = (l - mTH) [a - \/§<1 ~ 1) log (1 + yQ)] +h(y), yeER, (5.2)

g

where
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[hu(y)| < Ko™t log(2 +r(y)). ye M,
H(l +r(y)) DU hl”LOC(M) < KU_%Jr%’ f=1...,m, jeN,

where ¢ is the unique positive real number that solves the algebraic equation

2 7\/50'

a’o = ape . (5.3)
Let us also consider a parameter vector function v = (vi,...,v,,) satisfying the a priori estimate that
_1 -1 3
o0+ ) Dl e gy + 1052+ ) il oy < Kra? 5.4
for some 79 > 0 small and K7 > 0 a universal constant to be chosen large but independent of o > 0.
Let us consider m normal graphs over M of the axially symmetric functions f; = h; +v; € C?(M),
[=1,...,m. With a slight abuse of notation we write

(Y (y,0)) = fily), (y,0) eRx(0,2n), I=1,...,m.

From (5.2)-(5.4), we observe that

1 _5
fia) = ) > o+ V3(1- 2~ Mo~ )log(1+47), yeR (5:5)
for some positive universal constant M > 0 and for every fixed j =1,...,m — 1.

In the region N, we consider as a local approximation the function

Zw] ) + T ) = (1 (), (5.6

where © = X,(y,0,z) € N,. Observe that for points € N,, for which z is close enough to h;(ay),
we have that

Uo(z) = w;(z — f(ay)).

For [ =1,...,m fixed, we consider the set

Al:{ a(y,0,2): |z — filay)| < %{U—l—\/ﬁ(l—%—MU_%)log(l-i-(ayf)}}.

From (5.2) it is direct to check that A; C N, for every a > 0 small enough. Setting t = z — f;(ay), the
set A; can also be describe in terms of the local coordinates X, f,(y,6,t) as

A — {Xa,fl(ya97t) It < |:o‘ + \/_<1 Y e 4) log(1+ (ay) )}}

g

Next, with the aid of Lemma 2.1, we compute the error
S(Uvo):A(Jv()—l-f?<(Jv())7 inA;,l=1,....m

of the approximation Uy defined in (5.6) and where F(u) = u(1 — u?).
We proceed as in Lemma 2.4 in [13], collecting all the computations in the following lemma:
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Lemma 5.1. Forl=1,...,m and x = X, ;,(y,0,t) € A, it holds that

(71)1715(U0) = *OLQ(AMfl + |AM|2fl)w,(t)
+ 6(1 — w2(t)) [eiﬁtefﬁ(fl*fl—l) _ e\/itefﬁ(fz+1ffz)]

— &P An Pt (8) + @2 [f{] 0 (8) — 0 (¢t + fr)as (ag, alt + £1)) f{'w!(2)
—a? Z (A fj — alt+ fi)ar (ay, ot + fz))fj/-’)w;-(t + fi— 1)
li=>1
+ Ri(ay, t,vi, .oy Vi, D1, .o, D), (5.7)
where Ry = Ry(ay, t,p, q) is smooth on its arguments and
, -4 _
|DyRi(ay, t,p,9)| + [DyRi(ay, t,p,9)| + |Ri(ay, t,p,q)| < Ca®*7 (1 4 |ay|) e ol (5.8)
for 0 < 0 < /2, some 0 <7 <1 and where
p:(V17"',Vm)7 q:(DVh"'vDVm)'
Proof. Denote
By =F((-1)"'0),  By=Ax,, [(-1)""Us(z)].

We first compute E7. We begin noticing that

m m

F(Uo) =Y F(wi(t+ fi = f)) + | F(Uo(@)) = > F(wj(t+ fi = 7).

j=1 j=1
Since F(u) = u(1 — u?), for u € R, we find that
0< Flu) < |1 —ul|ll+ul, Yuel[-1,1]. (5.9)

On the other hand, for |j — 1] > 1, we have that
1
=gl ==l = VE(1= 2+ 0 ) tog(1 + (o)?)

and recall that

Vao.

a’o = ape

Hence, we obtain for [j —{| > 1 and for € € [0,1) that
1 5
e+ 1= 5> =l + vE(1= 2+ 0 ) tou(1 + () - 1

> (|j—l — 1;5> [a+\/§<1— %) log(l-i-(ozy)?)} + elt|.

Assume for the moment that 2 << m — 1. For z = X, ,(y,0,t) € A; and 1 < j <, it holds that
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t+ filoy) — fi(oy) > %{H \/§<1 L Mo‘i) log(1 + (ay)z)}

g

while for | < 7 < m, it holds that

i)~ flan) <~ |+ VE(1- 2~ btoE ) og(1+ (@)

g

Using the asymptotic behavior of w(s) from (5.1), we find that

wit+ fi—f)=1- 2e~ V2 VUi 1i) 4 O(eiQﬁ‘Hfl*fjl), 1<j<d,
wit+fi—f;)=-1+ 2eV2teV2Ni=1i) 4 (’)(eiQﬂ\Hf’*f-”‘), I<j<m.

From (5.9) and the remarks made above, we conclude that

> F(wj<t+fz—fj>>\ C g o™ VAHITDL < 0ot (14 fag]) emel
. J
[i=11>2

for some 0 < o < v/2 independent of & > 0 and 0 < 7 < 1 depending only on ¢ > 0.
From the previous estimate we also observe that

(-1t P

ZF w;(t+ fi — fj))]
j=1

= (-1 l 1F(Uo ) + F( (t+ fi — fl_l)) — F(w(t)) + F(w(t + fi— f[+1))
+ Rilay, t,vi, ..., Vi),

where
|DPRl(ayatap)| + |Rl(ay7tvp)| < COZ2+T(1 + |0zy|)74679‘t|.

for p= (vi,..., V).
Let us now denote

ar =w(t+ fi— fio1) -1, az =w(t+ fi — fiq1) + 1.

From the mean value theorem, we can choose numbers s; € (0,1), for ¢ = 1,2, 3, such that
/ 1 " 2
F(w(t+ fi— fi-1)) = F(1) + F'(1)a; + §F (1+ s1a1)af,

F(w(t+ fi = fir1)) = F(=1) + F'(=1)as + %F”(—l + spaz)a,

(—)'7'F (Un(2) = F(w) = F'(w)(ay +az) + F'(w) Y (=17 [w(t + fi = f;) = sign(l - j)]

li—11>2

1 " -1
b 3Pt s5((-1) Uow)}( 3

li—11=1

Hence, using that F’(1) = F’(—1), we obtain that

(5.10)

2
(fl)jﬂw(t + fi — fj) — sign(! j)) .
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(—D)TTEU0) = > ()T F (wit + fi - f5))

=1

<

+ 6(1 _ wQ(t)) [e—\/ite—ﬁ(fl—fl—l) _ e\/ite—\/i(fhrl—fl)]

+Rl(ay7t7vla"'7vm)7 (511)

where for p = (v1,...,vp)

| Dy Ri(ay, p)| + [Rilay, t,p)| < Ca® (1 + |ay|) el (5.12)
The remaining cases, namely [ = 1 and | = m, are treated in an similar fashion, replacing the term

e—\/ite—\/ﬁ(fz—fzfl) _ eﬁte—ﬁ(fz+1—fz)

by the respective terms

_e\/ite_\/i(f2_fl)’ e_ﬁte_ﬂ(fnl_fnl—l).

So far, we have only written the term F; in a convenient way. We still have to compute Fs. In order to

do so, we write

By =Ax, ,w(t) + Z Ax, (=) w;(t + fi = f;)] = Eo1 + Eaa.
[7=1>1

Directly from Lemma 2.1, we obtain that

Eo =w"(t) — & (Anmfi + |Am | i) w' (t) — o?| Ay [t () + o [fl']Qw”(t)
—a®(t + fi)ar (ay, alt + ) { fw'(8) — [f]]*w" ()}
—a®(t+ fby (ay, ot + fi)) hjw'(t) — ot + f;)3bs (o, ot + fi1))w'(t).

Using assumptions (5.2)—(5.4), we can write Fo; as follows:

Bay = w' (t) — &2 (A fi + |Ant P F) 0 (8) — 02| A [Pt () + o> [f1] 2 w” (£)
—a3(t+ fa (o, alt + f1)) b/ w' (t) + Qa1 (ay, t,vi, Dvy), (5.13)

where
Qa1 = Qa1(ay, t,p,q)
and
1D, Qa1 (ay, £,p,9)| + |DyQa1(ay, t,p,q)| + |Qa1(ay, t,p, q)| < Ca®(1 + |ay|) e el (5.14)

for some 0 < o < /2.
Next, we compute Eos. A direct computation yields that
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(—)'"'Ep= ) wit+fi—f)

li—11>1

—a® 7 ([Anedy + [ AuP Ui+ O)wj(e + fi = £;) = [ )+ fi = hy)

li—t1=1

—a®(t+ fas(ay,alt+ ) S (Fwlt+ fi— f) = (S w0l + fi — £7)

l7—11=>1

— a3 (t+ fi)bi(ay, ot + f1)) Z (Fjw) = a(t + f1)*ba (ay, a(t + fi))w(t + fi = f;))-

li—11=1

Using the fact that for e € (0,1) and |[j — 1| > 1

1+4¢ 1
and proceeding as above, we can write Eyo as follows

(—D)'" ' En =w](t+ fi— f;)
—a? Z (Anfj — alt+ fi)ar (ay, ot + fl))f]’-')w;-(t—i— fi— 1)

—il>1
+ Qoo(ay,t, v, .., Vi, Dvi, ..., Dvyy), (5.15)
where
Q22 = Q22(ay, t,p, q)
and
|DpQa2(ay, t,v,q)| + | DgQaz(ey, t, p, q)| + Q22| < Ca®¥7 (1 + |ozy|)_4e_9‘t| (5.16)

forsome0<g<\/§andsomeO<T<1.
Setting R; = R; + Qa1 + Q22, we have that R; = Ry(ay, t, p, q) is smooth on its arguments and

|D,Rilay.t,p,q)| + | DgRilay, t,p.q)| + |Ri(ay. t,p, q)| < Ca® T (1 + |ay|) eel

for 0 < o < v/2 and 0 < 7 < 1. Putting together (5.11)(5.15) and using that wf + F(w;) = 0, we obtain
expressions (5.7) and (5.8) and the proof of the lemma is complete. O

5.2. Improvement of the local approximation

For subsequents developments, it will be useful to have more precise information about the asymptotics
of the solution we are looking for, so we improve our first approximation Uy. In order to do so, we write

6(1— wg(t))e_‘/it = apw’(t) + go(t), /go(t)w’(t) dt = 0. (5.17)
R

Using (5.17), the fact that the vector function h is an exact solution of the Jacobi-Toda system in M
and Lemma 5.1, we observe that
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(—1)'71S(Uo) := —a® (Anvi + [An|*vi)w'(t)
+ go(—t)e V=R _ go )=Vt 02 [P0 (1) — 02| Ap P (t)
+ 6(1 . wz(t))e—\/ite—\/i(m—hl,l) [e—\/i(vl—vl,l) . 1]
—6(1— wz(t))eﬁtefﬁ(h’“*h’) [ef‘/ﬁ(v"“*‘”) —1]
+ oV (2h) + v))w” (t) — &3 (t + fi)ar (ay, ot + f1)) fw' (1)
—a Z (Anfj —alt+ fi)ar (ay, at + 1) f] )w)(t + fi = f5)

l7=11>1

+ Ri(ay,t,v1, ..., vin, Dv1, ..., Dvy,), (5.18)

where R; = R;(ay, t, p, q) is smooth on its arguments and satisfies (5.8) for 0 < o < V2 and some 0 < 7 < 1.
Let us consider ¥(t) to be the bounded solution to the equation

Auto(t) + F' (w(t))vo(t) = go(t), teR

given explicitly by the variations of parameters formula

) / W (s)"2 / W (€)g0(€) de ds. (5.19)
0 s

From (5.19), we obtain the estimate

(14 €2 x(150y) t(j)wOHLOO(]R) <G, JjeEN

Let us also consider functions v (t) and 2 (t) so that

Outh1 (t) + F'(w(t)) v (t) = —w"(t), teR, (5.20)
Outha(t) + F' (w(t))ho(t) = tw'(t), tE€R. (5.21)

Proceeding as before, we see that

t)/tw'(S)z 7£w’(§)2d€d8
0 s

and 11 (t) = —$tw'(t), from where the following estimate follows at once

|}€9|“3t(j)¢il|Loc<R) <0, i=1,2 j€N 0<p< V2

So, we consider as a second approximation in the region N, the function
m
=Uo + Z ®5,0 (5.22)
j=1

where for every | = 1,...,m and in the coordinates X, ¢,
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(—1)l_1¢l70(y’t) = _e—ﬁ(hl—hz—l)wo(_t) + e_ﬂ(h’“_h’)wo(t)
+a? [h;(ay)]Zz/)l(t) + aQ‘AM(ozy)’ng(t)
The new error created reads as
S5(Uh) == S(Uo) + Zatt¢j,0 + F'(w;(t))¢5.0
=1

+ Z A, bj0 + Bi(¢s0) + [F'(UL) — F' (w;(t))] d0-

j=1
Directly from (5.18) in each one of the sets A;, the error reads at main order as follows:

(—D)ILS(U) = —a® (Anvi + [Au|*v) W' (t)
-|-6(1 U) ) —V2t —\[(hz hl—l)l:e—\/i(V[—Vl,l) _1}

6(1 ) V2t f\/_(hz+rhz,)[6*\/§(w+1fvl) _ 1]
+a?v] (2h; +vp)w" (t) = o (t + fi)ar (ay, a(t + f1)) f[{'w'(t)
—®(Anf — ot + fi)ar (ay, alt + £)) )W)t + fi — ;) + R, (5.23)
where
R, = f{l(ay, tyViy ooy Vin, DV1, ..o, D)
and

|DpR(ay, t,p, 9)| + [DgR(ay, t,p,q)| + [R(y, t,p, )| < Ca® ra(y)~te el (5.24)
forsome0<Q<\/§andsome0<7'<1.
5.8. Global approrimation
The approximation U; is so far defined only on the neighborhood N, of M,. To define our global

approximation, we use the non-negative function 5 € C*°(R) from the previous sections to define the
cut-off function

Ba(z) = ,6’<z| — g —2V2(m + 1) log(r(ay)) + 3), r=Xu(y,0,2) € Ny

for which we observe that is supported in a region that expands logarithmically in r,(y). With the aid of
this function, we set up as approximation in R3, the function

w(z) = Ba()Ur + (1 = Ba(z))H, zeR’ (5.25)
where H is the function
1 St
H(z) = { ’ T E S
(_l)mv T < S(;
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and ST = a~1S*, ST being the two connected components of R® — M for which S* is the component

containing the x3-axis.
We compute the new error as follows

S(w) = Aw + F(w) = Ba(2)S(U1) + E
where
E =2VB,VU; + ABo (U — H) + F(BaUr + (1 — Ba)H) — B F(Uy).

Due to the choice of 8, (x) and the explicit form of the error the term E, the error created only takes
into account values of 3, for z € R? in the region

Ui

T = Xa(ya972)7 |Z| = = +41n(ra(y)) - 27
«

and so, we get the following estimate for the term F
|DyE| + |E| < Ce™wr(y).

We observe that the error E decays rapidly and is exponentially small in « > 0, so that its contribution
is basically negligible.

6. Proof of Theorem 2

Since the proof of Theorem 2 is fairly technical, first we sketch the steps of the proof and then leave the
detailed proofs of the propositions and lemmas mentioned here to subsequent sections.

First, we introduce the norms we will use to set up an appropriate functional analytic scheme for the
proof of Theorem 1. Let us recall the notation

r(x) =1/2? + 23, x=(x1,22,23) € R®

and let us define for a > 0, x> 0 and f(z), defined in R?, the norm

£ llp,pum = gﬂg(l + 7)) || fllLo(Bya)y, P> 1. (6.1)

x

We also consider 0 < ¢ < v/2, > 0, @ > 0 and functions g = g(y,t) and ¢ = ¢(y,t), defined for every
(y,t) € M, x R. Let us define the norms

Igllp e = sup  (1+r(ay) e gllLo (s, ) (6.2)
(y,t)EMqo xR

[8lloc 1,0 = || (1+ 7"(O‘y)“)egm‘ZSHLM(M@x]R) (6.3)

I6ll2s0e = [ D], , + 1Dl 0 + [@llocne- (6.4)

Finally, for functions v and § defined in M, we recall the norms

13llp.5 =[] (1 + r(y)B)gHLP(M) (6.5)

I¥lls0. := 81DV, 5 + 3% [ (14 7)) DYy oy + N0 (r(w) +2) V]| o (6.6)
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Now, in order to prove Theorem 1, let us look for a solution to Eq. (1.1) of the form

Ulz) = w(z) + ¢(2),

where w(z) is the global approximation defined in (5.25) and ¢ is going to be chosen small. Hence, since
F(u) = u(1 — u?), for U(z) being a genuine solution to (1.1), we see that ¢ must solve the equation

Ap+ F'(w)p+ S(w)+N(p) =0, inR?
or equivalently
Ap + F'(w)p = =S(w) = N(¢) = =aS(U1) = E — N(¢), (6.7)
where
N(p) = F(w+¢) - F(w) — F'(w)p.
6.1. Gluing procedure

In order to solve equation (6.7), we consider a non-negative function 8 € C°°(R) such that

and define for [ = 1,...,m and n € N, the cut off function for z = X, ,(y,0,t) € No p,

Qm@):BOt—%Pﬁw@(r—l—ﬂﬂf%>bqr+mwﬂ]+n>. (6.8)

a

Observe that for k # [ and n € N, (5, - Ck,n, = 0. Observe that for k # [, ;. - Crn = 0.
Now we look for a solution ¢(x) in the particular form

p(z) =Y Gal)ei(y, 2) +b(x),
j=1

where the functions ¢;(y, z) are defined in M, x R and the function ¢ (z) is defined in the whole R3. So,
from Eq. (6.7) and noticing that (j 2 - (3 = (; 3, we find that

D GalAnaes + Fl(Gaw)es + (aSw) + GaN(e; + 1) + Ga(F' (w) + 2)]
j=1

+ A —

2-(1—§:g3>gwwy+@

w + (1 - Z Cj,3> S(W)

v+ Giapi

i=1

+) 2VGis - Ve +9iAGs + (1 (a)N =0.

j=1

Hence, to construct a solution to (6.7), it suffices to solve the system of PDEs
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A — |2 - (1 -> Cm) (F'(w) +2) ¢ =~ (1 -3 Cm) S(w) =Y 2V(2- Va0 — 90
=1 =1 =1
— (1 — Z(jﬁg) N [ZCZ72@2 + ’LZ) 5 in Rg (69)
j=1 i=1
An, o1+ F'(Gaw)er = —(2S(w) — G2 N(er + 1)
- CZ,Q(F’(W) + 2)1,&, for ’z - fl(ay)| <paly), 1=1,...,m, (6.10)
where

paly) = {o—a + \/_(1 - —) log(1 + (ay) )} y=Ya(y,0) € M,.

e

1
2
Now, we extend Eq. (6.10) to the whole M, x R. First, let us introduce the differential operator
By = Q2[An, 5, — O — Aw,]

for [ =1,...,m. Recall that A, is nothing but the Laplace-Beltrami and which in the local coordinates
Y. (y,0), has the expression

Clearly, B; vanishes in the domain

[e3%

It] > % [aa + 2(1 - ;) In(1+ (ay)z)} —1.

We look for a solution to (6.10) having the form

¢l(y’t) = @l(yat+fl(ay))a T :Xa,fl(yﬁeat)

and so, instead of Eq. (6.10), we consider the equation

i+ Ani, ¢+ F' (wi(t)) r = =Si(w) — Bi(¢n) — [F'(Gaw) — F' (wi(t))]

= G2 (F'(w)+2)¢ — G2N(¢ + 1), in Mg xR, (6.11)
where we have denoted
(=118 (w) = —a® (Anpvi + \AMPVZ) '(t)
+ (1 'LU ) \/_tCl V2(hi—hi—1) [efﬁ(vzfvz—l) _ 1]
(1 ) \/_tCl \/_(hz+1fhz)[e*\/§(w+rvz) _ 1]
2

+a Vz(Qh/+Vz) () + Ga[—a’(t + fi)ar(ay, alt + fi) f]'w' (1)
—®(Anf; — alt + fi)ay(ay, alt + £)) f) it + fi = £;) + Ri], (6.12)

where we recall that
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R, = Ri(ay,t,vi, ..y Vi, Dvi, ..., Dvy)
and
|DyR(ay, t,p,q)| + |[DeR(ay, t,p,q)| + |[R(y. t,p,q)| < Ca®TTro(y) teeM (6.13)

for 0 < o < v/2 and 0 < 7 < 1. Observe that S;(w) coincides with S(U;) where C2 = 1, but we have
basically cut-off the parts in S(U7) that, in the local coordinates X, j,, are not defined for all t € R.
Using (6.12) and (6.13) and since the support of (; 2 is contained in a region of the form

] < % {aa - 2(1 - i) In(1+ (ay)Q)]

Oa

we compute directly the size of this error to obtain that

51 (w < Ca?tm (6.14)

)Hp,2,g

for some 0 < o < /2, some constant C' > 0 and some 0 < 7; < 7y small, independent of a > 0.

Hence we solve system (6.9)—(6.11). We first solve equation (6.9), using the fact that the potential
2—(1- Z;n:l (j3)(F'(w) + 2) is uniformly positive, so that the linear operator there behaves like Ags — 2.
A solution ¢ = (1, ..., ¢m) is then found using contraction mapping principle. We collect this discussion
in the following proposition, that will be proven in detail in Section 7.

Proposition 6.1. Assume 0 < 0 < /2, 1 >0, p > 2 and let the functions f|s be as in (5.2)(5.4). Then, for
every a > 0 sufficiently small and for m fixed functions ¢1, ..., ¢m, satisfying that

||¢l||27P7H7@ <1, I=1....m

Eq. (6.9) has a unique solution ¥ = ¥ (¢1,...,¢m). Even more, the operator 1 = W (d1,...,dm) turns out
to be Lipschitz in every ¢;. More precisely, 1 = ¥(¢1,...,¢n) satisfies that

[0l = (1%, 5 o + 1L+ 77 (@) DY e sy + [ (L + 77 (02)) 9] o )

Dy~

< O<a2+f§—s +a%—52 ||¢j||27p%g>’ (6.15)

j=1
where 0 < fi < min(2u, 4+ 0v/2,2 + 0v/2) and
|@(¢5) —¥(0))]| x < Cavai™= s — djllap.c- (6.16)
Hence, using Proposition 6.1, we solve Eq. (6.11) with ¢ = ¥ (1, ..., dm). Let us set

NP1, Pty Om) == Bi(dr) + [F'(Gaw) — F' (w(t)) ]|y
+ Q2 (F'(W) +2)#(¢1,. .., Im) + Q2N o1+ (1, dm)].

So, setting @ = (¢1,...,¢m), we only need to solve
Oy + AMQ(ZSI + F (wl(t))qﬁl = 7SZ(W) — Nl(@), in M, xR (617)

forevery I =1,...,m.
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To treat system (6.17), we solve a nonlinear and nonlocal problem for ¢;, in such a way that we eliminate
the parts of the error that do not contribute to the projections onto w’(t). This step can be though as an
improvement of the approximation w. We use the fact that the error has the size

(|51 (w <t (6.18)

)Hp,Q,g

and as we will see in Section 7 for 0 < 71 < 79, N;(¢) satisfies

Ny (@) < Ca®tm, (6.19)

Hp,4,g

NG (D1) — Ny (@) || < Cal|®1 — P2||2,p.2,0, (6.20)

4,0

for @1,P5 € B, a ball of radius O(a**™) in the product norm [|@||2p 2, A direct application of the
contraction mapping principle allows us to solve the projected system

i+ Anr, ¢+ F' (wi(t))r = =Si(w) — Ny(®) + ci(y)w'(t), in My xR, (6.21)
/gbl(y,t)w'(t) dt=0, l=1,...,m, (6.22)
R
where
/ W)+ N(@)]w(B)dt, Vi=1,....m
R
This solution ¢;, defines a Lipschitz operator ¢; = ®;(v1,...,vy) for the product norm

|6,p,

[CoPrmpe H(Spﬁ ZHVJ

This information is collected in the following proposition:
Proposition 6.2. Assume 0 < 1 < 2,0 < o < /2 and p > 2. For every a > 0 small enough, there
exists a universal constant C > 0, such that system (6.21)—(6.22) has a unique solution (P1,...,¢0m) =
D(v1,...,Vm), satisfying
12,2, < Ca®*™

and

P01 vm) = P Ty < COP (Ve vim) = (1 ¥
for some fized B € (5,4 — 49).
6.2. Solving the Jacobi—Toda system to adjust the nodal sets

First, to estimate the size of the error of the projected problem, we borrow a result from Section 8 in [12].

Lemma 6.1. Assume g(y,t) is a function defined in M, x R and for which
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sup (14 T(ay)#)eglt‘||g||LP(B1(y,t)) < o0
(y,t)EM o XR

for some o, 10 > 0 and p > 2. The function defined in M as
L Yy /
o) = [ Lt)wea
R

satisfies

lallps <C  sup (1 +r(y)#)eg‘tlHg”LP(Bl(y,t))
(y,t)EMqy xR

provided
2
w> [+ —.
p

.., Vm) in such a way that

To conclude the proof of Theorem 2, we choose the vector function v = (vq,.

cl(y):/[Sl(w)—f—Nl(di)]w’(t)dt:O, Wi=1,. . m.

Using (6.12), we find that making these projections zero is equivalent to solve the nonlinear and nonlocal

system of equations

o? (Anvi + [Au*vi) — V2a0 [e*mhﬁhl—l)(vl — i) — e V2 h) (g vi)] = ?Qi(v), (6.23)

where

QI(V) = Gl’l(V) + Gl_g(v)

@G (v ./@ 3t + fy)ar (ag, alt + 7)) £ ()

—a*(Apfi — alt + fo)ar (ay, ot + f)) [ )w)(t + fr = f;) + RyJw'(t) dt

Oefﬁ(hthl—l) (6*\/§(Vl*v1—1) — 14+ \/i(vl _ Vl—l))

+ a0€_\/§(hl+1—h1) (e_ﬁ(vlﬂ—‘”) -1+ \/Q(Vl'i-l N Vl>)

- /6(1 —w?(t))e V(1 = Go)w! (t) dt e VA=) [e=V2(imvicy) ]

R
+ / 6(1 — w?(t))eV2 (1 = Go)w!(t) dt e~ V2(hera=hi) [o=V20ira—v) _q]

R
G a( /Nl

where we set & = (P4,...,P,,) and

ag = Hw’HZE(R) /6(1 - wz(t))efﬂtw’(t) dt.
R

Please cite this article in press as: O. Agudelo et al., Solutions with multiple catenoidal ends to the Allen-Cahn equation in R®
J. Math. Pures Appl. (2014), http://dx.doi.org/10.1016/j.matpur.2014.03.010




MATPUR:2684

O. Agudelo et al. / J. Math. Pures Appl. e e e (6 006e) o0 e—00e 39

Direct computations using (6.12) and Lemma 6.1 yield the estimates

|GLaW)]l, 5 < Ca™
|G1a(¥) = G @], 5 < Ca™lv = ¥l

for some 0 < 79 < 1 fixed independent of o > 0.
From (6.19) and Lemma 6.1 we also have that for any p > 2 and 0 < § < 4 — %

1
< Caltm,

1GLa)]], 5 < a™?
p,B

/ N (®)w'(t) dt
R

On the other hand, it is direct to check from (6.20) and Proposition 6.2 that

HGLQ(V) — Gl72(\7)

|p,ﬁ < Caltm IV —%ls,8

Hence we find that

QW) == (Q1(v,), ..., Qm(v,))

satisfies

HQ(V)HM < Ca™
[Q(v) — Q%)

5 S ca™|v-7%

‘p’ |6.0.8-

Since we are linearizing the Jacobi-Toda system (6.23) around the exact solution h, we can proceed as
in the proof Proposition 3.1 to solve this system. We see that using Propositions 3.2 and 3.3 and a direct
application of contraction mapping principle in a ball of radius O(ama%) in the product topology ||v|ls,p.3
yields the existence of functions vy, ..., v, satisfying (5.4), so that

cl(y):/[sl<w)+Nl(¢)}w'(t)dt=o, Wi=1,.. . .m

and this completes the proof of the theorem. We omit the details since the procedure is similar to the
decoupling developed in Section 3.2.
In Section 7 we will carry out the proofs of the auxiliary results mentioned in this section.

7. Gluing reduction and solution to the projected problem

In this section, we prove Propositions 6.1 and 6.2. The notations we use in this section have been set up
in Sections 4 and 5.

7.1. Solving the gluing system

Given fixed functions ¢, ..., ¢, such that ||¢|l2p e < 1 for I = 1,...,m, we solve problem (6.9).
To begin with, we observe that there exist constants a < b, independent of «, such that

0<a<Qq(z)<b, forevery x € R?
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where we set

m
Qalz) =2 — (1 - ng) [F'(w) +2].
j=1
Using this remark, we study the problem

AY = Qu(@) = g(z), =R’ (7.1)

for a given g = g(z) such that
I9llp.an~ = suﬂg)s(l + Rﬂ((w» 91l e (B1 (2))-
EAS

Solvability theory for Eq. (7.1) is collected in the following lemma whose proof follows the same lines as
in Lemma 7.1 in [12] and [14].

Lemma 7.1. Assume p > 2 and j1 = 0. There exists a constant C > 0 and ag > 0 small enough such that for
0 < a < oy and any given g = g(z) with ||g||p,u,~ < 00, Eq. (7.1) has a unique solution v = 1(g), satisfying
the a-priori estimate

[llx < Cligllp.p.~s

where

[9llx = D¢, , . + 1L+ 7(a2)(2)) DY|| o gay + 11+ 77 (@) 0] o

D,f,~

Now we prove Proposition 6.1. Denote by X, the space of functions ¢ € W2 (R3) such that |||/ x < co

loc
and let us denote by I'(g) = ¢ the solution to Eq. (7.1) from the previous lemma. We see that the linear
map I is continuous, i.e.

11°(g Cllg]

x < Clgllp,i~

with 0 < i < min(2u, & + 0v/2,2 + 0v/2). Using this we can recast (6.9) as a fixed point problem, in the
following manner
), (2

)= ((1—292) +gl+<1—2<ﬂ>N[igg¢i+w

j=1 i=1

where
g1=> 2V Vé; + 6,Al0.
=1

Under conditions (5.2)(5.4) and maxi<i<m ||@ill2,p,u,0 < 1, we estimate the size of the right-hand side
n (7.2).
Recall that S(w) = f4(x)S(U1) + E, where

|DyE|+ |E| < Ce™ ar 4(y)
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So, we estimate directly using (8.32), to get

(1 -y @) S(w)
j=1

<O 0P (1+ra(y) Ze (1)

Jj=1

< Ca’ Vi gaE (14 1o (y)) 2T

this means that

< Ca** V3 (14 Ry(w)) 20V

| <1 - Z Cﬂ(@) S(w)

Consequently we get, for 0 < ji < 2(1 + %) that

< Ca*tm e

H (l _i@%?) S(w)

for some ¢ > 0 sufficiently small.
As for the second term in the right-hand side of (7.2), the following holds true

Dy~

2V (2 V; + ¢ A2 < C(1— (o) (1 + T“(ay))_le_m“”(bﬂ

Q Qe

C
o —1
< CaViga2vz (1 + T“+ﬁ(04y)) 150120

2,p,1,0

Wl

This implies that

m

12V¢52 - V5 + 8 8G 0l ova—en < CaV2 Y (152,000
=1

Finally we must check the Lipschitz character of (1 — 377", (2)N[D2/L, Giagi + ). Take 1,902 € X.
Then

(1 - cha) ‘legm + 1
j=1 i=1
< (1 — Z Cj2>
j=1
< C<1 - ié}z) sup
j=1

s€10,1]

_N[Z<i2¢i + 2

i=1

F<W +> g+ ¢1> - F<W +) Cadi+ 1/)2> — F'(w) (41 — )

i=1 i=1

D Giadi + st + (1 - 5)¢hs

i=1

91 — 9o

3

< COZQE( [Dilloo,pe + [Pl x + ||¢2||X> |1h1 — 2

i=1
So, we see that

[N .

j=1 i=1

- (1 -3 <j2> N [Z Giadi + 12
j=1

i=1

D,2f,~

©Q__
< Cava™ iy — Yalloo -
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In particular, we take advantage of the fact that N(p) ~ ¢?, to find that

(5o (Ee)

Consider I : X — X, I' = I'(1) the operator given by the right-hand side of (7.2). From the previous
remarks we have that I" is a contraction provided « is small enough and so we have found ¢ = I’ (v) the
solution to (6.9) with

m
< Ca?ee Z 165113, 5.11.0-

D,24,~ J=1

m
or e _ o _
[llx < C(Ot TR pave EZ ||¢j||2,p7mp>'

Jj=1

We can check directly that ¥(®) = ¢ is Lipschitz in @ = (41, ..., ¢m), i.€

|@(2) — 2)|[y <C (1 - Zm: Cj2> N(i Giahi1 + W(¢1)> - N(i Giz®iz + ¥7(¢2)>
j=1 i=1 i=1 P2p,~
< Ca?™ ([ 0(21) = (D) || + P2 — Poll2pue)-
Hence for a small, we conclude
[ (81) = (2)|| ¢ < CaT||[ D1 — Pal2,p, .00
7.2. Solving the projected system (6.21)-(6.22)
Now we solve system
Ot + Anr, o + F' (wi(t)) g1 = =Si(w) = Ni() + ci(y)w'(t), in My x R.
/ iyt -0
To do so, we need to study solvability for the linear equation
O+ Dar, &+ F'(w(t)) ¢ = g(y,t) + c(y)w'(t), in My xR, (7.3)
/¢(y,t)w’(t) dt = 0. (7.4)

R

Solvability of (7.3)—(7.4) is based upon the fact that the heteroclinic solution w(t) is nondegenerate in
the sense, that the following property holds true.

Lemma 7.2. Assume that ¢ € L>°(R?) and assume ¢ = ¢(x1,x2,t) satisfies
L(¢) == Ou¢ + Ap2p+ F'(w(t)) ¢ =0, in R? x R. (7.5)
Then ¢(xz1,x2,t) = Cw'(t), for some constant C € R.
For the detailed proof of this lemma we refer the reader to [12,14] and references therein.

The linear theory we need to solve system (6.22), is collected in the following proposition, whose proof
is again contained in essence in Proposition 4.1 in [12] and [14].
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Proposition 7.1. Assume p > 2, 0 < 0 < /2 and > 0. There exist C > 0, a universal constant and ag > 0
small such that, for every a € (0,ap) and any given g with ||g
solution (¢, c) with ||¢|

poo < 00, problem (7.3)—(7.4) has a unique
pase < 00, satisfying the a priori estimate

HD2¢H + 1 DBl oo,,0 + 19lloo,0 < Cllgllp,,o-

Poins0
Using Proposition 7.1, we are ready to solve system (6.21)—(6.22). First, recall that as stated in (6.14)
I, 5, < Ca?*™ 70

for some 0 < 71 < 79 small enough.

From Proposition 6.1 we have a nonlocal operator ¢ = ¥(¢y, ..., ¢n). We want to solve the following
problem:

Recall that for @ = (¢1,...,dm),

Ni(P) == Bi(¢1) + [F'(Caw) — F' (wi(t))] 1 + G2 [F' (W) + 2]¥ (D) + (2N (¢ + ¥ (D)).

Let us denote

Ni(®) := Bi(dr) + [F'(Gaw) — F' (wi(t))] ¢1,
No(®) == o [F'(w) + 2] W(),
N3(®) := (2N (¢ + ¥ (D)).

We need to investigate the Lipschitz character of N;, i = 1,2,3. We begin with N3. Observe that

|N3(®1) — N3(®2)| = G| N (11 + & (@1)) — N (2 + (D))
< CQe Z%p1]|T(¢ll + (1)) + (1 —7) (2 + (di2))| - |pr1 — prz + ¥ (1) — ¥ (Ds)]

S O[|@(@2)] + o1 — prz| + [F(P1) — U(Pa)| + |2 ] - [|601 — duz| + [#(P1) — ¥(P2)]].
This implies that

| N3 (P1) — N3(2)||

D,2H,0
m m m
2+L,
< Cla I dsillome + Y ||¢j2||oo,u,9] D ldsn = djalloc e
j=1 j=1 j=1

Now we check on Ny (®). Clearly, we just have to pay attention to B;(¢;). But notice that B;(¢;) is linear
in ¢; and

2
iton) = ~a*{ ) + 5 en) + o D o
— 2af] (ay) Oy 1 + [fl/(ay)]gatt¢l + Do, 5, (01),

where the differential operator Dq y, is given in (2.6). From assumptions (5.2)(5.5) made on the functions
f]s, we have that

| N1(P1) — Ni(,)]| < Cal|Py = Pofl2,p,pu,e-

p,2+p,0
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Then, assuming that maxi<j<m [|@j]l2,p,u,0 < Aa®*T™, we have that

< Ca3+‘rl )

HNZ(QS)Hp,2+,u,g =

Letting T'(g) = ¢ be the linear operator given by Lemma 7.1, we recast problem (6.21) as the fixed point
problem

qf)l = T(*SI(W) - Nl(é)) = 7;(45), = 1,. o, m
in the ball
By i ={P=(¢1,...,0m): ||®]lx < AP, j=1,...,m},

where clearly we are working in the space of function @ € Wﬁ)’f (M, x R) endowed with the norm

m
[B]lee =Y 5112920
j=1

Observe that

Hﬁ(q’l) - 77(432)“** < OHNl(@ﬂ — Nl(QSz)H < Cal||Py — Pollss, D1, P2 € B,

p.4,0

On the other hand, because C' and K; are universal constants and taking A large enough independent
of a > 0, we have that

I17i(@)]

< C(HS[(W)H + ||Nl(¢)Hp,4,g) < Aa2+71, é € Ba,.

ok D;2;0

Hence, the mapping 7 = (71, ..., Trm) is a contraction from the ball B, onto itself. From the contraction
mapping principle we get a unique solution

S=P(vi,...,Vm)
as required. As for the Lipschitz character of @(vq,...,v,,) it comes from a lengthy by direct computation

from the fact that

p,2,0

[B(v1s e Vim) = D1, )|y, < C D S5 (w, Vi Vi) = Si(w, %1, V) |
j=1

* ZHNJ (P(v1,- Vi) = NG Tm)) [y

We left to the reader to check on the details of the proof of the following estimate

m
[B(v1s s vm) = B, Ty n , S CATTEY vy = V508
=1

for (vi,...,vm) and (¥1,..., ¥y ) satisfying (5.2) and (5.4). This completes the proof of Proposition 6.2 and
consequently the proof of Theorem 2.
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8. Proof of Theorem 1

This section is devoted to the construction of the solutions predicted in Theorem 1. We skip details that
are similar to the proof of Theorem 2. We begin by describing the location of the nodal set of the solutions
predicted by this theorem.

8.1. Toda system in R? and its linearization
In this part we describe the way we solve the Toda System of PDEs

Af + aoe_ﬁ(frfl) =g, inR? (8.1)
Afy — aoe_ﬁ(frfl) =gy, in R? (8.2)

where

ag = Hw'H;QQ(R) /6(1 — wz(t))eﬁtw'(t) dt > 0.
R

A decoupling procedure similar to the one performed in Section 3, implies that system (8.1)—(8.2) becomes

A(fo — f1) = 2a0e V221 = gy — g, I R?, (8.3)
A(fr+ f2) = g1+ 92, inR% (8.4)

Let us look for a radially symmetric smooth solution to (8.1)—(8.2) having the form
fi (a:’) =q (x') + v (x’), f2 (x') =q (a:’) + vy (x'), z € R?, (8.5)
where the vector function (g1, ¢2) solves the system of PDEs

Aqi + age V2@—a) =0 in R?, (8.6)
Ags — age” V2 @=a) =0, in R2. (8.7)

Since we are looking for an axially symmetric nodal sets that are also symmetric respect to the zz-axis,
we assume that go = —¢1 = ¢, so that the system (8.6)—(8.7) reduces to a Liouville equation, namely

Aq —age V21 =0, in R2. (8.8)

It is known that every radially symmetric solution to (8.8) is given by

q(2’,p,v) = 2—\1/5 log(;gg:g (1+ p2|aﬂ’|2y)2> - (7\;;) log(|z']), r>o0. (8.9)

Since we are looking for smooth solutions to (8.8) with the initial conditions
q(0)=a>0,  Vuq(0)=0

this forces v = 1, so that
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1 2
a(+'0) = 575 log<\j;;;0 (1 +p2|z/|2)2>, p>0. (8.10)

From the fact that ¢(0) = a > 0, we obtain

lo <\/§a0> _2_a
5\ 42 V2

Remark 8.1. Observe that p is a free parameter that determines the conditions at the origin in (8.8). Without

any loss of generality we assume that p = 1, but it is important to keep in mind that the function ¢ is smooth
respect to this parameter p > 0. We also remark that in the case when p lies in a fixed and compact interval
of R4, the topologies considered and the procedure we carry out below, can be done independent of p.

Decoupling and linearizing (8.1)—(8.2) around the exact solution (g1, g2) as we did in Section 3.2, we obtain
the nonlinear system

Ay + 2v/2a0e 2V 2y, + N(v1) = g1, inR?% (8.11)
Avy = §p, in R?, (8.12)

where we consider right-hand side functions §; such that
||§j||p,ﬁ = H(1 + ‘x/|6)ngLp(R2) <oo, j=1,2 (8.13)
for some p > 1 and S > 0 and where we have denoted
N(v) = —e 2V [67\/51]1 -1+ \/51)1]. (8.14)
Let us consider first the linear system associated to (8.11)—(8.12), namely

Avy + 2\/§aoe*2‘/§qvl =g, inR? (8.15)

Avy = Gy, in R% (8.16)

Since our setting is radially symmetric, we deal with this system using variations of parameters formula.

We solve first Eq. (8.15). Taking derivatives in (8.9) respect to v and p, for v = 1 and p = 1, we find that
the functions ¢, (r) = 9,q(r,1,1) and ¥2(r) = 0,q(r,1,1) span the set of radially symmetric solutions to

A+ 2v2age 2V = 0, in R?,

where
_log(r)(r? — 1) -1
V2 (1) = oy 1, V2o (1) = oy (8.17)
Observe that 1, is clearly singular at the origin. Observe also that
—1+ 7%+ 4r2log(r) 2v/2r
Or = , Oy = — 8.18
’(/Jl(T) \/5’/“(1 —|—T‘2)2 wg(T) (1+7,.2)2 ( )

so that from (8.18) we find that
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c C Cr
- < |0 < —, Oy < —F, 0. 8.19
Sl < S o) < fomp 1> (8.19)

We compute the Wronskian

W(’lpla 1;/}2) = wlarwg — 1/)28T1/)1 — f217

and we observe that the function

ur(r) = 2451 (r) / €0 (€)1 (€) dE + 2 (r) / (O3 (€) de (.20)
0 r

defines a smooth solution to Eq. (8.15). From (8.17) and (8.18), we directly check that 9,v1(0) = 0 and that

[orllep.p < Cllgillp.e, .5 > 2,

where
[vill2,p,6 == HD%HP,;; +][(1+ ’xl|)DU1HLOC(R2) +[[log (2 + |$ID_1”1HLW(R2)' (8.21)

Next, we observe that (8.16) has a radially symmetric smooth solution given by

valr) = / £ log(€)g2(€) de + log(r) / £Ga(6) de. (8.22)

Taking p, 8 > 2, we see directly from this formula that

[vall2.p.6 < Cllg2llp,p-

We are now in position to invert the linear system (8.11)—(8.12). We collect this information in the

following lemma:
Lemma 8.1. Assumep>2,0< <4 — 12—) and consider a vector function (g1, g2) satisfying
195llp.s < Ca”™, j=1,2

for some small parameter o > 0 and some k1 > 0. Then, the vector function (v1,vs) defined (8.20)—(8.22)
is the solution to the system (8.11)—(8.12) and satisfies that

lojllzp.6 < € max |igellps, J=1,2
Even more this solution turns out to be Lipschitz in the vector function (g1, g2), namely
[0 = 83l < € s G = Gellpss 5= 1,2
The proof of this lemma is straightforward from the previous comment, proceeding as in Section 4. Let us
remark that in the case where g;, j = 1,2, are nonlocal operators in (vq, v2) having small Lipschitz constant

a direct application of Banach fixed point theorem will also lead to the existence of a unique solution to
(8.11)—(8.12).
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Remark 8.2. When looking for solutions to (8.4)—(8.3) that are symmetric respect to the zz-axis, i.e. fo = —f1
then g = 0 and consequently the function v defined in (8.22) is zero. Hence, we deal only with the single
linear equation (8.15).

8.2. Approzimate solution to the projected problem

Now that we have described the location of the nodal set of our solution, we proceed to set up our
approximation. Consider a radially symmetric solution (g1, ¢g2) to the system

Aq + aoe_\/i(‘h_‘“) =0, Ago — aoe_‘/i(qr‘“) =0, inR? (8.23)

where

oo = o2y [ 60 wt?)e¥2 0y .
R

Recall from the previous section that we have chosen —q; = g2 = ¢, and the function ¢ is a solution to
the Liouville equation

Aqg — aoe_Q‘/iq =0, inR?

given explicitly by

q(z',p) = ﬁlog<%(l+p2‘z/|2)2>, (8.24)

and observe that, for every a > 0 the vector function (q1a,q2+), defined by

1 1 1 1
dia(z’) = “575 log<§> —q(az’), Q.. () = WG log($> +q(az’), r>0

are also smooth radially symmetric solutions to (8.23).
Now, for o > 0 small, consider a parameter function v, satisfying

lellope = 1020l 5+ [1(1+ &) Dol e oy + (o (2 4+ 27]) 0] o oy < K flog(@)]  (8:25)

p,B
for some K > 0 that will be chosen later and independent of o > 0 and consider the functions
fia(z') = Qo (2') +via(2'), 1=1,2, (8.26)

where vo, = —Vi4 = v, and v, (2) = v(az’).
Proceeding as in the proof of Theorem 2, we consider as local approximation the function

Up(x) = ’U}(CE3 — fia (x')) + w(xg — foa (m’)) -1, zeR (8.27)

As in Section 5.1, let us consider the sets

(fa (a) — fm(x’))}, =12

| =

R S——

Writing z = t + fj(2'), we notice that A; can be described as
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A= {x = (@ 1): 11 < 3 (fan(e) —fm(x’))}, =12

Hence, we can estate the following lemma regarding the error of this approximation in the set A;.

Lemma 8.2. For 1 =1,2 and every x € A;, x = (2, t), we have that

(—1)718(Up) = —Agefiaw!(t)
+ |Vfla|2 "(t) — Apefjow (t + fio — fja) + [VEja*0" (t + fia — fia)
+ (=116 (1 — w(1)) +12(1 + (=Dhw(t)) ] e 2202V 2 (e ~fia)
+Rl(ax t,v, Dv), (8.28)

+( ) ( —w%t))e(_l)lﬂ\/ite_\/i(f%“_fl“)

where Ry = Ry(ay, t,p,q) is smooth on its arguments and
|DpRi(az’,t,p,q)| + |DgRi(aa’,t,p,q)| + |Ri(ea’, t,p,q)| < Ca* 7 (14 {ax’|)74e’9|t‘ (8.29)
for some 0 < 7 < 1 small and some 0 < o0 < /2 and where p = v and ¢ = Dv.

Proof. The proof of this lemma follows the same lines of Lemma 5.1, with no significant changes and actually
with easier computations. So, we only remark that in the set A;

Uop(2',t) = w(t) —w(t + fra — f2a) — 1,
where the function w(s) is the heteroclinic solution to
w” + F(w) =0, w(+oo) =+1, w >0
having the asymptotic expansion

w(s)=1-— 2 V25 4 06~ 2V2s 4 0(672\@5\)7 s> 0,

w(s) = —1+2eV? — 2.72V2 L (732, s <0, (8.30)

where these relations can be differentiated. Using that F'(+£1) =0,

F(UQ) = F(w(t)) - F(’U}(t + floc - fga)) - (F/(U)(t)) - F/(—l)) [w(t + fla - fga) + 1]
+ %(F”(w(t)) + P (=) [w(t + fra — faa) + 1]° + O([w(t + fra — f20) + 1]°).
From (8.30) we obtain that
F(Up) = F(w(t)) — F(w(t + f1a — fon)) — 6(1 — w?(t))eV?te™V2(Ea=fia)
+6[(1—w?(t)) +2(1— w(t))]eQﬁte_Qﬂ(fza_f“’) + (’)(e_?’ﬁltJrf‘“_f?al).

Similar computations hold true in the set A; and this completes the proof of the lemma. O

Using the fact that the vector function q = (q1,¢2) is an exact solution to the Toda system in R? and
using the function for gg described in (5.17), we can write expression (8.28) as
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(—1)'71S(Up) = —Apaviaw! (£) + (~1)16(1 — w?(t))el "D V2 V2(a2a—d10) (¢=VEV2a—via) _ 1)
+ (_1)lgo((_1)lt)e_\/§(q2.a_ch,a) + |vqla|2w//(t)
+ VVia(2Vdia + vvlo‘)w”(t) o ARijOéw/(t + fla — fja) + |ija|2w//(t +f10 — fjoz)
L1601~ B (0) + 1201+ (-Dfu() el A
+ Ry (am’,t,v,Dv). (8.31)

Next, we improve the approximation by considering the function

Up (2, 23) = Up (2, 23) + ¢1,0(2', 23 — f1a) — p2,0(2', 25 — f20)

and

(—1)l+1§01,0(l’/7t> — e—\/ﬁ(%a—ma)wo((_l)lt) + |V0ua\2w1(t)7

where the functions t(t) is the one described in (5.19) and 1 (t) = —5tw’(t).
We recall that

) = 0 0) = 5o () 5 s (0 0+ o)
so that

2
e_\/i(q2a_q1a) — @ 4

aov/2 (14 |aa’|?)?"

Proceeding as in Section 5.2 and setting z = t + f},,, we compute the new error created in the region A;

—1)!7IS(U) = —Apeviaw'(t 1)'6(1 eVHD T VR (@a—aia) [ VE(Vza—Via) _ g
(-1)
+ Vvia (QVQla Vvla)w ( ) ARz ( + {10 — fja) + |ija|2w”(t + {10 — fja)
+ (=116 (1 — w?(1)) +12(1 + (=Dhw(t))]e D2V 2V Bafia) LR, (8.32)
where
Rl Rl(ozx t,v, Dv)
and

|D,Ry(ea’,t,p, q)| + |DyRi(aaa’, t,p,q)| + |Ri(az’, t,p,q)| < Ca®T7 (1 + |ax'|)74e’9|t‘ (8.33)
for some 0 < o < v/2 and some 0 < 7 < 1. Actually, from the proof of Lemma 8.2 we have that
|f{l (az’,t,v, Dv)| < Ce3V2t+fa—faal = i A
The next step, consists on defining the global approximation to the solution. We consider again the

smooth cut-off function 8 € C°(R), such that B(t) = 1, for |¢| < 1/2 and B(¢) = 0, for |t| < 1. Now, for
o > 0 small we define the cut-off function

Balx) := B<x3| - g — 4log(|aa’| —i—3))7 z = (2/,z3) € R®.
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We see that 3, is supported in a region that expands logarithmically in |az’| and we consider as global
approximation the function

w(z) = Ba(@)U1(2) + (1 = Ba(z))(-1). (8.34)
Recalling that F'(u) = u(1 — u?), we compute the new error as follows

S(w) = Aw + F(w) = fa(2)S(U1) + E,

where
E = 2VBaVUi + ABa(Us +1) + F (Bl = (1 = Ba)) = BaF(Un).
Due to the choice of 84 (z), the error term E only takes into account values of 3, for x € R? in the region
|zs| > g +4In(jaa’|+3) =2, z=(2/,23) €R?
and so, we get the following estimate for the term F
IVE| + |E| < Ce % (1 + |aa’]) "

We observe that the error E' decays rapidly and is exponentially small in o > 0, so that its contribution
is negligible.

Remark 8.3. The local approximation U; is clearly axially symmetric and even in the z-axis. This is due to
the fact that the graph of the function fi, is a reflection through the z-axis of the graph of the function fa,.
Of course, this is also true for the global approximation w. Observe also that for the moment, we are
omitting the role of the parameter p > 0, but clearly the approximations U; and w and the error created
depend smoothly on it.

8.8. Outline of the Lyapunov-Schmidt reduction

Let us consider first an appropriate functional setting to work with. Consider the norms
1fllp..~ = Suﬂgg(l + |’ ) I FllLeBi @y, P> 1 (8.35)
S

and

[9ll2.p.pn = ([ D], ;. + 1DV lloo i + [¥lls0,m (8.36)

D5y~
where 0 < 1 < min(2p, it + 0v/2,2 + 0v/2).

We also consider 0 < o < v/2, u > 0, a > 0 and functions g = g(z’,t) and ¢ = ¢(y,t), defined for every
(y,t) € M, x R. Let us set the norms

lgllpue:=saup (1+ ’a:v'|)”eg|t‘||g||Lp(Bl(z/,t)) (8.37)
(2',t)ER? xR

1611000 = [ (1 + |ax/‘#)eg‘t|¢)“L°°(R2><R) (8.38)

18l.ps00 = [1D6]] .+ 1Dl cn + Dl (3.3
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Finally, for functions v and § defined in R?, recall the definition of the norms

~ By ~
s = 10+ 121°) 310y (8.40)
— |Ip2? -1
102,58 := [[D?0]], 5 + |1+ [']) Dvl| o gy + (08 (2] +2) 0[] o o) (8.41)
Observe that the functional setting we are considering in this part is basically the same one used for the
proof of Theorem 1.
Let us recall that our goal is to find an axially symmetric solution to Eq. (1.1) which is close to the
function w defined in (8.34).

We proceed as in Section 6, with no significant changes, so we rather prefer to give an outline of the
scheme. We consider for [ = 1,2 and n € N; the cut off function

() = B(Itl - %[fga (') = fia(2)] + n) x=(2',t+1fio) € R (8.42)

A crucial observation we make is that, under assumptions (8.25), directly from Lemma 8.2 and the choice
of the functional setting, the error

(=118 (W) i= —Ageviaw! () — (=1)'6(1 — w(t))eV2 D" e VR2(aa—aia) ¢, [¢~VE(V2a—v1a) _ 1]
+ VVia 2V + VVia) 0" (1) — GoAgrefjaw’ (t + fio — fja) + G| Ve *w" (t + fio — fja)
F Ga[(=1)116 (1 — w3 (1)) + 12(1 + (1) w(t)) ] D" 2V2em2V2(a—fa) | ¢ R,
(8.43)

has the size
[Siw)|[, ., < Ca®Fm. (8.44)

where 0 < o < V2 and 0 < 71 < 1 is arbitrarily close or equal to 1, in which case g goes or equals 0,
independently of « > 0. The following proposition collects estimates regarding (8.44).

Proposition 8.1. Assume o € (0,+/2) and that the functions f;, satisfy condition (8.25). Then there exist a
constant C > 0 and a small number 0 < 7, < 1, both independent of o > 0, such that

151 )], ., < Ca® (8.45)
and
[Si(w, v) = Si(w, )], , < CO® v = Bl|2,p,5, (8.46)
where
[ollop = 100, 5 + (1 2/ [) Dl e oy + Mo (2 4 [a]) ™0l e ey (8.47)

As before, we look for a solution to (1.1) of the form

U=w+ (@)1 (2,23 — f1a) — Cos(x)d2 (2, 23 — f2n) + 1) (8.48)

so that we fall into a system of elliptic PDEs for ¢1, ¢2 and 4 similar to (6.9)-(6.11).
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The linear theory needed to solve this problem is a copy of the one sketched in Section 7, but applied to
the system

Ap(z) — 2¢(2) = h(z), =R, (8.49)
Oy (m’,t) + Agz ¢y (x',t) + F' (w(t))gi)l (I/,t) =gq (m’,t) + ¢ (m’)w'(t), inR? xR (8.50)

in the class of axially symmetric functions and in the topologies induced by the norms set above. In partic-
ular, the nonlinear nonlocal system of equations for the functions ¢; reads as

O + Apadyy + F'(w(t)) ¢y = —Si(w) — Bi(dr) — [F'(Gaw) — (=1)! 7 F'(w(t)) ]
— GQ2(F (W) +2)Y — @2N(¢+¢), inR’>xR (8.51)

with
By(¢1) := —Agef100: 1 — 2V11, V0 Os iy + | Vi |*0re i
and
N(d+1) = F(w+¢1) — F(w) — F'(w)(¢1 + ),

from where we get that

loill2.p,2,0 < Ca*tm, /qSl (z/,t)w’(t) dt=0, =12, (8.52)
R

with 7 as above.
As we already saw, the Lyapunov—Schmidt reduction scheme is based upon the fact that we can find
functions vy, v9 satisfying (8.25) such that the functions ¢;(2’), I = 1,2 in (8.50) are zero.

8.4. Solving the reduced problem
Let us recall that

w(z) = fa(2)V1(2) + (1 = fal@)) (-1) (8.53)

where

Ur(z) = w(zs — f1a(2')) —w(zs — fan(2")) = 1+ ¢1,0(2, 25 — fia(2'))
— ¢a0(2", 23 — faa (")) (8.54)

where for [ = 1,2
dro(a,t) = (—1)HlemV2aza i)y (—1)H1E) 4 V0|21 (1) (8.55)

the functions v, ¥ are those described in (5.19) and (5.20).

Next we make use of the symmetries we have assumed for the nodal set and the local and global approx-
imations. From the structure of Eq. (1.1) and using the fact that the approximation w is axially symmetric
and even respect to the xs-axis, we find that the functions ¢1, ¢2 and ¢ share also this symmetry.
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In this setting the error S;(w) in the region A; and in terms of the parameter function v, reads as

S1 (W) = AR2VQw/(t) — 6(1 — wQ(t))eﬂte—Q\/ﬁ‘h o [6—2\/§Va _ 1}
+ Vva(2Vda + Vv )w” (t) + G oApefaw’ (t — 2fy) + G o| VEL [P0 (t — 2£,)
+G2[6(1 —w? (1)) + 12(1 —w(t))] Ve V2 1 (R (8.56)
with similar computations in the set As.

In what comes next, we derive the system that governs the location of the interfaces, namely a system
of PDE’s that will guarantee that

Since the error S(w) is also axially symmetric and even in the wxs-variable, we easily verify that
co(2') = —c1(2') = e(a).

In order to determine the function ¢(a’), for I = 1, we multiply Eq. (8.51) by w and integrate in ¢ to get
that at main order

- / Sy (wyw(t) dt — O(at (1 + |az’|) %) = e(a) / W' dr.
R R

This can be done since in inequality (8.45) as 7p approaches to 1, the constant ¢ goes to zero, while the
constant C' > 0 remains uniformly bounded.
Hence using Lemma 8.2, and setting

= /|w/(t)|2dt, ag = ||w/||;22(R) /(1 - wQ(t))w'(t)efﬁt dt
R R

we find that
c(ac’) = " Ap2vy + 0*2\/§a0672\/§qava

+ A]R2fa / (1,2w’(t — 2fa)w’(t) dt + ‘Vfa|2 / CLQU)H(t — 2fa)w’(t) dt
R R

B

A
et a0l — uP(0) +2(1 - w(n) ] e de
R

c
+ c*age 2V [6_2‘/5“* —1] /6(1 - wQ(t))eﬂtw/(t)(Cl,z —1)dt
R
— ¢*age 2V [e_zﬁv" —142V2v,] + O (1 + |0zx")_3) (8.57)

and using Lemma 8.1 one finds that
C(gj’) + c*Aszla (:)3’) + 2\/§c*aoe—\/§(q2a—qm)va

is Lipschitz in the parameter function v,. Actually it is not hard to check from Lemma 8.2 that its Lipschitz
constant is of order O(a**7), for some 0 < 7 < 71 small. Hence we see that making c¢(z’) = 0 is equivalent
to a nonlinear and nonlocal equation of the form
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Av + 2v/2age V21 = G(v), inR? (8.58)

where we conclude from (8.57) that A + B 4 C is the leading order term in the expression for G(v).
In order to give a more precise expression for the nonlinear term G(v), we recall that w(s), the heteroclinic
solution to

w” + F(w) =0, w(too) ==+1, w' >0
has the asymptotic behavior

w(s)=1-— 2e7 V25 4 972V 0(672\/5'5‘), s> 0,
w(s) = =14 2eV? — 2722 L 0(e=3V2) 5 <0, (8.59)

and these relations can be differentiated.
Since in the set A;

w'(t — 26,) = 22V e 2V2Me 4 0(6—2\/§\t—2fa|>

we obtain that

Be2V2fa 4 O(e~2V2lt g=2v2a)), t>0

Iy / _
w'(t — 2f,)w' () {862\/§t62\/§fa 4 O(e~3V2l =2V 4 <,

Hence it is direct to check that
A =8Af,e 2V (f, + O(1)).
Proceeding in the same fashion, we obtain in the set A; that

8\/56*2\@& + 0(672\/§|t|672\/§fa), £>0
8v/2e2V2t e —2V2Ha +O(673ﬁ\t|6—2\/§m)’ t<0

w” (t — 2f,)w'(t) = {
so that
B = 82|V, [2e 22 (£, + O(1)).
Finally, we directly check using again (8.59) that

96v/2 + O(e V2, >0,

w2 —w 62\/§th _
[6(1 —w?(t)) +2(1 — w(t))] ®) { O(e=5V), t<0,

from where
C = 96v2e~ V2 (£, + O(1)).
Hence, we obtain that
—a?G(v) = e VL, [BAL, + 8V2|VEL |2 + 96v2e 2V ] + O(a (1 + |aa’|) 7).

From this expression, we obtain that
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2

60 = 35— (55108 5z ) + ) ) ol + O (1o’ ).

where

/12
Ro(2') = —[8Aq+8V2|Vq|* + 96\/56_2‘/§q]e_2\/§q = —Lm(lj|—i/—|z)i\ﬁ.

Since, so far the scheme involves the same estimates as those in Proposition 6.2, we find that the function
G satisfies

16@)] 5 < Ka?[log(a)]
IG(v) -

@[]0 5 < Ca™l[o ~ Dlaps.

A direct application of Lemma 8.1 and the Banach fixed point theorem completes the construction of
the solutions predicted in Theorem 1. We leave further details to the reader.
Using the integral formula (8.20) and the last remarks, and since

1(r) = 5 (log(r) = 1) + O(log(r)), a7 =

we can actually describe the asymptotic behavior for the function v(z’) as |2’| — oo, namely
o2

v(@) =

2&0

[bg( >ﬁ0+0( }log(’x'”—&—(’)(a log(a)|'| * log (|'])) (8.60)

and
B ::/cngOdczl—lz(smﬂpo
0

Next, we study the smooth dependence of this family of solutions respect to the parameter « in order to
obtain useful information about some elements of the kernel of the linear equation

Apsd + F'(uy)p =0, in R (8.61)
This information is collected in the following proposition:

Proposition 8.2. For every o > 0 small, the functions O, uq(2’,23), for i =1,2,3 are bounded solutions to
Eq. (8.61). Besides, u,, is smooth respect to « and the following asymptotic formulae hold true

2
Dt Uy (2/,2) = @by, q(az’) [W' (x5 — f1a) + W' (23 — f20)] + 0420<Z€Qw3f1“|> , i=1,2

=1

2
Ongtia (2, 33) = [w' (w3 — f10) — W' (x5 — f2u)] + a2(9<z e—gm—%l) ,

=1

2
Datia (2, 23) = 0a(da + Vo) [ (25 — f1a) + W' (23 — f20)] + €O < Z eglmf"*> )

=1
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Proof. From the smoothness of these solutions we readily check the first two equalities. So, we only need to
take care of the last assertion.

Smoothness respect to a > 0 small is a direct consequence of the Implicit Function Theorem. We remark
that following step by step the construction and taking into account the dependence on p ~ 1 of this family
of smooth solutions we have the asymptotic behavior

uap(x) = ’U.)(l'g - flocp (lL'/)) - ’w(.’ﬂg - fQOzp (xl)) -1+ ¢1,0 ($/7 T3 — flocp (1'/)) - ¢2,0 (.T/, T3 — f2ap (xl))

2
+a2 N O((1+ |apa![) e elmafian@l) (8.62)
=1

with 0 < o < /2.

Provided p is taken in a small, bounded and fixed interval around one, we can recast the fact that the
functions v = (v1,v2), @ = (¢1,¢2) and ¥ in (8.48) yield a solution to Eq. (1.1) as a system for (p, v, P, )
of the form

@—H(p,v,@,d})zo, ¢—ﬁ(PaV7¢J/J):0;
V_T(p7va¢aw) :Oa

where smooth dependence on each one of the variables, in the respective topologies described in
(8.36), (8.39) and (8.41), is readily check from the scheme of the construction of this family of solutions.
Solvability theory of the linear problems implies that the derivative of this system respect to (v, ®, 1) is
an isomorphism and consequently, we obtain a smooth dependence of the solution respect to p. Uniqueness
from the fixed point argument in our proof guarantees that these solutions correspond to those ones given
by the Implicit Function Theorem.

In order to find the asymptotics of Jyuq, we first notice from (8.62) that at main order

Datia (', 23) = aU1 (7', 3) + Oatr — Oata. (8.63)

We need to find the size of J,¢; in terms of o > 0 in the sets
/ 2 1
AZZ{(Z‘,ZL‘3)€R x R: |x3_fla|<§|f2a_fla|}; [=1,2

and to fix ideas, let us localize ¢ in A;. Consider cut-off functions ¢; supported in the set A;.
Set Tr3 = t+ fla

L*(aoz(bl) = attaad)l + ARanszl + Fl(w(t))aa¢l + B(aoz(bl)a

where B(0,¢;) is a small differential operator in d,¢;. We find that inside A;, d,¢; solves at main order an
equation of the form

L*(aa(m) + Bl(aa(bl) = Ela in BoflR(O) X Rv
where
Bl = =G (A0.Ur + F'(ua)0:U1).

Since we have symmetry respect to the z-axis we only focus the developments for the set A, where
Notice for instance that in A;
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G (AU + F'(ua)0aUr)
= _A]R"’aavlaw/(t) _ 6(1 _ w2(t))aa (e\/i(_l)lilte_\/i(cha_cua) I:e_\/i(VZOL_Vla) _ 1])

+ 00 (2Vdia - Via + |Vvla\2)w”(t) + O(a2+” (1+ ’am’|2+%7€)716_9|t|). (8.64)

From (8.26) and (8.64) we observe that

‘8ava( )| Calog< ) log(2+ |a:1: |)
so that and from (8.32) it is direct to check that
18 (A0 + F'(ua)al1 )|, 5, < Cal*™.

Consider functions k1, ko defined by the integrals

w(t + f1o — f2q)w'(t) dt

/8ad>1(x’,t)w’(t)dt:k (z )/( ")) dt + ks (2
R

w(t + foq — f1o)w' (t) dt

/aaqﬁz(m/,t)w’(t):kg( )/( "0)2dt+ b (a
R

so that in the set A; we have the decomposition

1= k( k() "(t+ f1a — f2a) + 1

Analogously, in Ay, we have

P2 = ko (x")w'(t) + Cokr (2/)w' (t + fon — f10) + @2

We recall that

and taking derivative respect to « in these orthogonality condition for ¢;, keeping in mind that ¢t = xz3 —f1,,
we obtain

/6‘a¢lw’(t) dt = —0afa (2') /qslw“(t) dt + 07 (14 |aa']) %), 7>,

so that

[ 2t 0] = 017 (14 fo') g2 + o))
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It is clear that the functions k;(z'), ¢}s are smooth and bounded up to their second derivatives and
actually for any 8 > 0 small

HD%HR%B + | Dkl oo2—p + [killoc2—p < Catt™ 1=1,2.
Dropping the subindexes we have that the equation for the functions ¢; have the form
L.(¢) + B(¢) = Eo — Si0 + B(kuw')
in B,-1z(0) x R, where for instance in A4,

Sy 0= Agzkiw’ + | Vo |*kw

Q
+ F"(w(t)) [~ (26\/§t + zbo(t))e*ﬂ(qm*ql‘*) + | Vaial? 2 (t)] k1w’
Q2
+ ﬁ(F/(w) - F,(l))eﬂte_ﬂ(qza_(hu)k? - w”[A]RQflozkl + 2vz’f1cxvx’k1]

Qs Qs
+ Ot (1 + |ay|*VE79) Temelt) (8.65)

Qs
for some 7 > 71 > 0 small enough. Let us write ¢ = @1 + pg, where
L (¢1) = 0a (2Vdia - VVia + [Vvia|)w” (t) + Q4

with

/¢1w’(t) dt = 0.
R

Then, we obtain the estimate

1D?@1]|, 55, + 1DP1llco,2-p.0 + [P1lloc2-p0 < Ca'T, 7> 7.

Next, we observe that
L.(p2) + B(@2) = g(2',t) + c(2")w'(t),
where
9(2,t) = Ba + 94 (2Vdia - VVia + [Vvia[?)0” (t) = Sio — (Q1 + Q2 + Q3 + Qs) — B(¢1)

and observe that || B(p1)

lp.3—r.0 < Ca?*7. Using the size of E, we obtain that
I9llp2-p,0 < Cal*™

for some 7 > 0 small enough.
Since,
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/¢2w/(t) dt =0

R

we obtain that
ID*G2, 55, + 1DB2ll0,2-5.0 + [P2llp2-5.0 < Ca'*7.
Hence from (8.63), we can write in the set A;

Oalq = _8af1aw/(t) + 8af2aUJ(t — 2fa)
oz (az)w' () + azg (a2 )w(t — 2f,) + O (a7 (14 ‘ax/‘)—Q—IrBe—gltl)

with
lzilloc,2-5 < C

and this completes the proof of the proposition, since the same procedure yields an analogous expansion in
the set Ay. O

9. Morse index of the solutions in Theorems 1 and 2

In this section we provide information about the Morse index of the solutions found in Theorems 1 and 2.
Most of the developments we carry out in this part are motivated by those in Section 11 of [12]. Hence,
we simply remark the key points of the scheme, referring the reader to Sections 10 and 11 in [12] for more
details.

Let us consider the eigenvalue problem
Aph+ (0 + N)|AyPh =0, in M, h € L>®(M) (9.1)
with o ~ log(a~1). Using the stereographic projection 6 = arctan(y), we can recast this problem as
Agzh+2(c+A)h =0, he L>(S?).
By standard spectral theory on the sphere, we know that

1
A= gh(k+1)—o, keN

are the eigenvalues to problem (9.1), so that there are at least O(1/0 ) negative eigenvalues for this problem.
Next, let us consider another related eigenvalue problem, namely

8+ A . 2 2
Apeh+ ——"2 _p—0, inR2, heL®(R?). 9.2
R27 1+ |2'[2)2 m (R?) (9.2)
Using the stereographic projection § = arctan(:z—ﬁ), we can transform (9.2) into the problem

Ageh+ 2+ Mh=0, heL>®(S?)

from where it is also direct to check that problem (9.2) has exactly one negative eigenvalue. On the other
hand, using Fourier decomposition and maximum principle, in Proposition 1 of [6], it was shown that the
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graph of the function described in (8.24) is non-degenerate, in the sense that the space of bounded solutions
to (9.2) for the case A = 0 is spanned only by the functions described in polar coordinates by

—1+7 T
Z0= ———

14727 142

cos(0), sin(f), r >0, 0 < (0,2m). (9.3)

221+7’2

As in [12], we define the Morse index of wu,, m(u,), to be the largest dimension of a vector space E of
compactly supported functions for which the quadratic form

Qi) = / VY — F(ua)i®, v € E— {0} (9.4)
Rfi

is strictly negative.

In this part, we sketch briefly the proof of the inequalities m(u,) > co/c for the solutions in Theorem 1,
and m(u,) = 1 for the solutions in Theorem 2.

To prove both inequalities, we follow the scheme developed in the proof of Theorem 2 in [12], getting
information about the eigenvalue problem

Arsd + F'(uq)¢ + Ap(az)p =0, inR?, ¢ € L™(R?), (9.5)
where p(z) is a function such that

p($> = |AM|27 HAS Na
a b

——— < <—, R3 —
T 2] p(z) T 2] T € N
for the case in Theorem 1 and
8 3
@)= e “€R

for the case in Theorem 2.
In any case, a useful characterization of m(us) is given through the following eigenvalue problem:

Agsd+ F'(ug)d + Ap(az)p =0, in Cg, ¢=0, ondCg, (9.6)
where Cpg is the cylinder
Cr = {(2',23): |2/| < Ra™', |23] < Ra™'}.

Let mpg(uq) denote the number of negative eigenvalues to (9.6), counting multiplicities. Then, as in [12]
it is straightforward to check that

m(uq) = sup mp(uq). (9.7
R>0

9.1. Estimates on the Morse index for solutions in Theorem 2

Regarding solutions of Theorem 1 and to keep computations as clear as possible we consider only the
case of two transitions, namely m = 2. We also recall the definition of the sets
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Al:{ o(0,6,2): |2 — filay)| < 1{aﬂ/ﬁ(l—1—M0-3)1og(1+(ay)2)”.

g

We remark that the solutions we have found in Theorem 1 have the asymptotic expansion for
r=Xu(y,0,2) € Ny

uo () = w(z = filay)) —w(z = falay)) =1+ ¢10(y, 2 = fi(aw)) — ¢2.0(y, 2 — f2(aw))
+ 0> (1 4 |ag|?) e, (9.8)

where for | = 1,2 and t = z — fi(ay)

dro(y,t) = e~ V2ha=h1)y,, (1)) + a2 [h 2]21/}1(15)+a2|AM(04/)|2¢2(t) (9.9)

and the functions v; are those described in (5.19), (5.21) and (5.20).
Using (9.8)—(9.9), we find for instance in the set A; and in the coordinates X, ¢, that

F'(ug)w'(t) = F'(w)w' + F" (w)w' [(—2eV? + o (t))e V22— 1 o2 [n)] 201 (1) + 2| Apr 220 ®)]
+0( (1 4 |ay|?) e, (9.10)

Since F"(w) = —6w, taking derivatives in the equations that the functions 1;(¢) solve, and integrating
against w’(t), we can easily check that

/F”(w)(w’)2 2V 4y (t)) dt = \f/ )eV? ' d :\/iao/(w/(t))th
R

R

/(w')th
/Fu(w)(w/)Q%(t) dt — — /(w,,)z i

R

DN | =

/ F"(w)(w') s (t) dt = / tw'w” dt =
R

R

On the other hand,
Flua)w'(t+ fi = f2) = F'(w(t + f1 = f2))w'(t + f1 = f2)
+ \/§(F/(’LU) _ F/(l))eﬂte—ﬁ(hQ—hl) + O(a2+7'1e—@|t|(1 + |Oéy|)_4+ﬁ)7
and since F'(w) — F'(1) = 6(1 — w?), we obtain that

\/—/ 6(1—w \/_t /()dt:\/iao/(w’(t))th.

R

With the previous remarks, let us now consider a test function v(z) in the region N, defined in local
coordinates x = X, (y,0, z) as

v(x) = k1 (y, )w' (2 — filay)) — ko' (2 — fo(ay)).

Using Lemma 2.1 together with (2.3), (9.8) and (9.9) and carrying out computations similar to those in
Lemma 11.1 in [12], we obtain, for instance in Aj, the validity of the following expression:
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Ax, v+ F'(ug)v = Apg kiw’ — 2| Ak tw” + o [hﬂ 2k1w’” + aay o f10y k1w’

Q1
+ F" (w(t)) [(=2eY2 — o(t)) e V202 1 020y 1241 () + 02| Ang |2 4ho (1) Ry’
Q2
x V2(F'(w) — F'(1))eV?te V2=,
Qs
—w” [aQJM(fl)kl + 2af10,k1 + a*ay o fi (f10yk1 + f1'K1)]
Qa
x atw'[a1,00yyk1 + abioOyki] & (t + f1)?ar1 [0y kiw’ — 2f10ykiw"]

Qs e
+ (’)(a2+n (1 + |ay|2+%75)—1e_g\t|) . o)
Q7
Observe also that
[ Qi /Q“‘"(“ dt + O (a?+7 (14 |ay ™ 7)),
[t|<pa
where
1 1 , 2
pa(y) = 5|00+ V2(1— — = Mo~ 1) log(1+ (aw)?)].

‘We notice also that

/EQl = (An. by + Q2| A PR1 + V2a0e™ V202 (k) 4 ko) + aan o f1Byykn ) /w’(t)zdt

R

and
/(Qe’ +Qr)w'(t) dt = O(a’r(ay)~?)dyyk1 + O(e’r(ay) =) dyks.
R
Combining these computations, we have in the set A; that

/ (Av+ F'(ug)v)w'(t) dt = (Ap, k1 + | Ap |k + aaq o f10yyk1) /w'(t)2 dt
|t‘<Pa R

+ \/iaoe_ﬁ(hr’“)(kl + k2) /w’(t)2 dt + O(a’r(ay) )0y k1
R

+ O(a?’r(ay)_?’)aykl + 0(a2+71r(ay)2+5)k1.

Regarding computations in the set As in the coordinates X, y, and using again (9.8) (9.9), we find in
the set A, that
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Fl(ug)w' = F'(w)w' + F”(w)w’[(Qe_ﬁt - wo(—t))e_ﬁ(hrhl) + a? [h’z]Qz/Jl (t) + | Anr P2 (1)]
+ O (1 + |ay|?) eel) (9.12)

and the interaction term this time is

Flug)w'(t+ fo— f1) = F'(w(t+ fo — f))w'(t+ fo — f1)
_ \/i(F/(w) - F’(l))e_ﬁte_ﬁ(h_fl) + O(G{2+T1€_Q‘t|(1 + ‘ay|)—4+[ﬁ).

Consequently when testing against w’(t) we obtain

/F”(w) (’U}/)2(267\/§t — tho(—1)) dt = \/5/6(1 — wz) 2! dt = v/2aq

R R

so that in the set Aq

/ (Av + F'(ug)v)w' (t) dt = (A, k2 + 2| Ay ko + aay o f10yyks) /w’(t)2 dt

[tI<pa R

+ V2age V22 =h) (4 k) / w' (t)? dt
R

+ O(a2r(ay)_2)8yyk2 + O(a?’r(ay)_3)8yk2 + O(a2+ﬁr(ay)2+5)k2.
Hence, choosing functions ky = —ko = k, with k£ bounded and using the fact that
dr =+/1+ (ay)2(1 —o?(t+ f1)2|AM\2) dy dt
we observe that in the region
Wg = {x e N, r(ax) < R}
it holds that

:/ |Vo|? — F'(ug)v? da
W

= Z/w'(t)2 dt / IV k> — | Ay 2E? + 2V 2age V22— h) g2 AV,

R ME

—i—O(a/ |VMk|2+a2(1+(ay))HﬁdeVMa).
MR

On the other hand, since
e~ V2ha=h) — 261 Ay (a)|® + O(a2o™ (1 + r(ay)) *log(r(ay))?
(ay) (ay) g(r(oy)

we find that
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Qv,v) = 2/(w’(t))2dt / IV k|? — 0?20 + 1)| A (ay)| K2 (y) dVas,

R r(ay)<R
—l—a”(’)( / |VMak|2+a20|AM(ay)‘2k:2).
r(ay)<R

Taking k(y) = z(ay), with z € C?(M) is an eigenfunction associated to a negative eigenvalue of the

problem (9.1) and taking R — oo, we obtain that

Q(v,v) :a2)\/\AM|222 dV+O(a2+Tl/|VMZ|2+U|AM222)
M M

Since we can take at least O(1/0 ) of these eigenfunctions, we conclude that m(uy) > é/o.

9.2. Estimates on the Morse index for solutions in Theorem 1
As for the solutions described in Theorem 1, we have the asymptotic expansion

Uo(x) = w(xs —fia) —w(ws —faa) — 1+ ¢1,0(a’, 23 — f1a) — P20(2, 23 — f2a)

+ (9<a2+71 (1+ |aa:’|2)71 Z egl"”a’f“*'), (9.13)
1=1,2
where for [ = 1,2
(—1)!pro(a’,t) = (_1)l+1e—ﬁ<%—qm>¢o((—1)l+1t) + | Vaia*91 (1) (9.14)

and the functions o, 1, are again those described in (5.19) and (5.20). We also recall the sets
A= {m = (@ 23): [ — 0 ()] < 5 () —fla(:c’))}, =12
We use a test function v(2/, z3) of the form
ot 3) 1= b ()0 (25 — Fra () + ko ()0 (25 — o ().
and proceed as before to obtain in the set A;

Av 4 F'(ug)v = Apekyw’ + |Vqia|2 k1w
Q1
+ F”(w(t)) [7 (Qeﬁt + wo(t))efﬁ(%a*ma) + |vq1a|2w2(t)] k'

Q2
+V2(F'(w) — F'(1))eV?te™V2(aza—ta) jyy — /" [Agafioky + 2Vf10 Varks]
Qa

Qs
+ Ot (1 + |a:c'}2+%7s)fle*9|”) .

Qs

(9.15)

Observe also that
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2 -1
/ Qo' (t) dt = /Q, £y dt + O(a®™ (14 |ay[>T73=) 7Y,
[t <pa

where this time

(f2a (") = fia(2"))-

Paly) ==

l\J|)—‘

We conclude that in the set A;

(Av + F'(ug)v)w' (t) dt = (Arzky + V2age™ V2 —aa) () 4 k2)) /

[t]<pa R

+ (’)(aQT(aaz') _2)D2k1 + (’)(agr(ax’) _S)Vk‘l + (’)(a2+”7“(ax’) 2+’8)k1.
As before, a similar estimate holds estimate holds for the region As, namely
(Av + F'(ug)v)w' (t) dt = (An, ko + ﬁaoe*ﬁ(qz‘fqm)(kl + k2)) /u/(t)2 dt

[t]<pa R

+ O(OLQT(Oéy)72)D2k2 + O(a?’r(ay)*?’)VkQ + O(aﬂﬁr(ay)%ﬁ)kg,
so that for the test function

v(a’,2) = k(@) [0 (25 — f1a(2)) — v (23 = f2a ()]

it holds that

/ / 8 /
Q(v,v) = /(\VU\Q — F'(uq)v?) da’ dzg = 2/(|Vk:|2 - WkQ) dx
R2

R:}
+0 of/ |VE|> + SR SR )
(1+ |az’|?)? '
R2

Taking k(y) = z(ay), with 2 € C?(R?) an eigenfunction associated to a negative eigenvalue of the problem
(9.2) and taking R — oo, we obtain that

Qv,v) = az)\/w'(t)2 dt/p(m')22 dV+0<a2+Tl/|VR22|2 +p(x')22>.
R R? R?

This last expression implies that m(u,) > 1, since the problem (9.2) has exactly one negative simple
eigenvalue.
Let us next prove the following lemma involving the size of negative eigenvalues to problem (9.5).

Lemma 9.1. There exists a universal constant v > 0 such that for any eigenvalue A < 0 for the problem

(9.6) and any R > 0 large enough

A > —pa’. (9.16)
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Proof. To prove this claim, let us consider sets §2; := A; N Cg, | = 1,2, where we recall that

A= {(x’,t): [t| < %‘fga(m’) — fm(x’)|}, z = t+f1a(x').
Observe that it is enough to prove that

@) = [(V0P = F(ua)i?) do’ do > —pa® [ plaayi? ' dz, 112

.Ql -Ql

As in [12], consider the eigenvalue problem

Agsth + F'(u)y + Ap(az)yp =0, in 27 U 2

=0, on |a:r’| =R, Ot = 0, |z — fla(x’)| = %}fga(a:’) — fm(x’)|, 1=1,2.

For a solution % to (9.17), we write in {2

(2, t) = Gk (2))w' (t) + i
and where we can choose the functions k; so that
' (t) dt = 0.
[t|< 3 |f20 —f1al

We write

Q) = Qu(Cike, Gikr) + 2Qi (Goik, i) + Qu(vi-, i) = I + 11, + IIT,.

By a series of lengthy calculations similar to those performed in Section 9.1, we obtain that

I :/w’(t)zdt/ V|2 — A e gy
: T 0t a2
R R2

+ofo< /(|Vkl (@) + mkﬂm’m dﬂ).

R2

Since, ;- satisfies the same boundary conditions as v, we obtain that

> = F'(ug )i da’ dt

111, = / / |0t + |Vt
laz’|<R |t|< 3 f2a —f1al
|2

B / / ‘V%L - WJ_ [@t# + F,(ua)%J_ - Vx/(f2a - fla) : v¢lJ_]

laz’| <R |t|< 2 f2a —f1al

> (3 [l Tt P ot )+ 2o [ 00+ o) 70

>0 [[ (0wt + (v P+ ot ).

67

(9.17)

(9.18)

(9.19)

(9.20)
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As for II;, we proceed as follows. For instance in {27 it holds that
L(k1(2")w' () = Ak (2")w'(t) + F'(ua)k1 (2')0' (t) = Apekiw’ + [Vaial*kiw”
F'(w(t)) [ (26‘/§t + zpo(t))e*‘/i(quqm) + |Vq1a\2¢g(t)} kiw' — w"[Agefiaki + 2V f16 Vi ki)

+ 0?7 (14 |aa!| TV 75) et
and this implies that

I = - / CuaL (ki (a")w' () vi + / 2VC11 - V (ki (2')w' () v1 + Aiaw! (t)ka («) v

Since v satisfies condition (9.18), using Eq. (9.17), we obtain that

II, = —/L(k:1 (2" )w' ()Y da’ dz — /(1 — C1,1) L (k1 (2')w' (1))t da’ dz + 0

2 2

=— /(Gw(t)w’(t) + 3w(t)z/10(t))e\/ite_ﬂ(f%‘_fm)kl (")t da’ dz + 0,

2

where

0 =o(1) /(|Vk1 (z') |2 + o®p(ax)ki(2')) da’ + o(1) /(|¢f|2 + |V¢ﬂ2) dz’ dz.

R2 N

So, we obtain that

|IT;] < Cv~ta? /(1 + |ax’|)_4ki2(:r’) da’ + V/(l + |ax'|)_4|¢ﬂ2 da’ dz. (9.21)
R2 £2;

Putting together estimate (9.19)-(9.21) we get the estimate
—4
Qo (0.0) > —a® [ (14 |aa']) () o'
Then inequality

Qw0 > —pa? [ plaz)u?
follows since a similar procedure can be applied in the region A,. O
9.3. The proof of inequality m(uy) < 1 for solutions in Theorem 1
We begin this subsection by proving that eigenvalues to problem (9.6) that are close to zero are actually

positive and we give a precise estimate on their size. This information is collected in the following lemma,
whose proof proceeds as in Section 11 of [12], but that we include here for the sake of completeness.

Please cite this article in press as: O. Agudelo et al., Solutions with multiple catenoidal ends to the Allen-Cahn equation in R?,
J. Math. Pures Appl. (2014), http://dx.doi.org/10.1016/j.matpur.2014.03.010




MATPUR:2684

O. Agudelo et al. / J. Math. Pures Appl. e e e (6 006e) o0 e—00e 69

Lemma 9.2. Assume that ¢o.r and Ao, r 7# 0 are respectively an eigenfunction and eigenvalue for problem
(9.6) such that

0 rllze@y =1, [Xarl < Ma? (9.22)

for some M — 0 as o — 0. Then there exists a positive universal constant B such that for every a > 0
small and R large enough

Ao = lim Ay g = a’ log<1)3 + O(as)

R—o0 (e%

and

ba,r (2, 23) = Z(az') [w' (23 — f1a) — W' (x5 — f2a)] + (’)( Z e_glﬁ_f"*),

1=1,2
where Z(x') is a scalar multiple of the function zo(x') described in (9.3).

Proof. Let us consider a solution ¢ to the problem (9.6). Using assumption (9.22) and a sub and super
solutions scheme, it can be proven that

2
W(x/, z)’ < CZ e—0lz—fia (@)l
=1

for |az’| = Ry and Ry large enough. This inequality basically states that any solution to problem (9.6) can
have values bounded away from zero only in the regions A;.
From inequality (9.22) we can write

)\:)\Q’R:ua,Rag, ta,R = Moy as R — oo.
We consider the sets

Al = {(1‘/,1‘3) S Rz x R: |.123 _fla| < e[fga _fla])}7 0 e (1 1), [l = 1,2

and consider a cut-off function ¢;, supported in the set A;.
We consider a solution to the eigenvalue problem

Arsd+ F'(uq)¢ + o’pp(az’)p =0, in Cr
¢=0, ondCg

and to fix ideas, let us localize ¢ in A; by setting
¢ =GCo
which implies that ¢; must solve the equation

Agsdy + F'(uq)d1 + o’up(az’) g1 = 2V (i - Vg + $1A¢G = Exg.

Since in the set A;
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\D| + |Dg| + |¢| < Ce @, z=t+1f1,, 0<o<V2 (9.23)
we find that
|Bra| < Ceosltle=(=2)eltl < 002 (1+ |O¢:E/|)74+B]‘%(17€)e*@|t|
from where we conclude that

|Era] < Ca'7 (14 ’am/|)_2(1+T)e_@|t‘, in A;.

for some g > 0, % <0 <1and 7 >0 small
Setting x3 =t + f1,, we write inside Ay

Lo($1) = 0 + Aw2dr + F' (w(t)) 61 + B(),
where
B(¢1) = —Apefiadid1 — 2VE1a Ve 0id1 + [VEia]*0udn + [F (ua) — F'(w)] 1.
Hence, q~51 solves the equation
L.(¢1) + CYQMP(OM/)QNH + Bi(¢1) = Fia in Ba-15(0) x R.
Proceeding in the same fashion, localizing ¢ in As, we find that
L.(62) + a®up(az’) s + Bs(fa) = Fao  in Ba-15(0) x R,
where
Eso 1= 2V (2 - Vi + $2A¢

and

Bs(¢h2) := —Apafandyds — 2VEaa Vs 012 + [Viza]*0udo + [F' (ua) — F'(w)] po.

Consider functions k1, ko defined by the integrals

/él(x/,t)wf(t)dtzkl(x)/( '(8))° dt + ks (z

t+ fla - f2o¢)w/(t) dt

w(t + faq — f1a)w'(t) dt

/&2(95/,15)@0/(75):]‘12( )/( '(t)) dt+k1

so that in the set A; we have the decomposition
q;l = kl (x/)w'(t) + glkg (x')w’(t + fla - fQQ) + ©1,

/golw/(t) dt = 0.

R

Analogously, in Ay, we have
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(52 = ko (x’)w’(t) + 52]@1 (l'/)w/(t +foq — fla) + ¥2,

/Lpgw'(t) dt = 0.

R

From (9.23), it is clear that the functions are smooth and bounded up to their second derivatives.
We perform the subsequent developments for ¢, only, since for ¢ is the procedure is the same.
Dropping again the subindexes we have that the equations for the function ¢ have the form

L.(p) + ’up(az’)o + B(p) = Sip+ Ea + B(kw'), in B,-15(0) x R,
where

S*,M = ARZklw/ + |Vq1a|2k1w”'

Q1
+ F”(w(t)) [_ (26\/§t —I—Q/JO(t))e*ﬁ(qz“iqM) + ‘vq1a|2’¢2(t)] k'
Q2
+\/§(F’(w) _F/(l))eﬂte—ﬁ(%a—qm)kz_w//[Aszlakl +2Vm’f1avm’kl]
Qs Qa
247 2+ J5 ey ool
+ 0o (1 + |ay[Tva) e M) (9.24)

Qs

for some 7 > 0 small enough. Observe that ki (z'), k2(z') are bounded in C?-norm, in B,-15(0).
Testing this equation against w’, we observe that

Ap2ky + ﬂaoe_\/ﬁ(q“_qm)(kl + ko) + oz2,up(ax’)k:1

= B+ 0(0?r(0a') ) D% + O(0™r(0a') )Tk + O(a*7r(0a!) ™ b,

where

- 1
B:WR/W'

We will prove that B ~ O(a*7) for some 7 > 0 small enough.
Let us write ¢ = @1 + @2, where

Li(¢1) + &®pp(aa’)p1 = Qu, /nﬁlw’(t) dt =0.
R

Then, we obtain the estimate

1026, 1., + 1081110 + (@1 ]l201.0 < Ca

Next, we observe that

L.(2) + o pp(ax) @2 + B(@2) = g(a',t) + c(z')w' (),

Please cite this article in press as: O. Agudelo et al., Solutions with multiple catenoidal ends to the Allen-Cahn equation in R3,
J. Math. Pures Appl. (2014), http://dx.doi.org/10.1016/j.matpur.2014.03.010




MATPUR:2684

72 O. Agudelo et al. / J. Math. Pures Appl. e e e (6o 06e) o0 e—000

where

g(2',t) = Eq — &®pp(az’)kiw'(t) — (Q1 + Q2 + Qs + Qs) — B(41),

and

/¢2w’(t) dt = 0.
R

Observe that ||B(@1)]|p.2—r.0 < Ca?. Using the size of E, we obtain that
Igllp2—r. < Cat*™
for some 7 > 0 small enough, so that we conclude
1|

P,2—T,0 + HD¢2||py27T79 + H¢2||p,277,g < CO{lJrT

and consequently

HB(<‘52) Hp,SfT,Q < CO{2+T.

So, we decompose
- - - 1 ~
B = B; + By, B = 45— B(or),
o?|lw ||L2(]R) J

where
|Bl| < C, |B2| < Ca’.

Even more, keeping into account the procedure for ps and setting z;(ax’) = k;(2'), for I = 1,2, and using
elliptic estimates in the system of equations for 21, zo we find that

1D, + (14 [2') T D2|, < Ca
from which
1Qallp2—r, < Ca?
and so
1@1llp2-70 < Ca®,  ||Billps—r < C||Bllp2—r < Ca®
and so
1B| < Ca?*.

At this point we recall that ¢ = ¢, r has a uniform C' bound and that

2
ba,r (¥, x3) = k10,5 (2 )0 (3 — f10) + k2,01 (2") 0 (23 — f20) + O <a Z egz3f-7'“> (9.25)

Jj=1
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so that
Pa,R — Pa, as R — 00
uniformly on compact sets and
Agsdo + F'(ua)pa =0, in R

with

2
o (.’13/7 :1:3) = kl,a (x’)w’(gjg - fla) + ka,a (x’)w’(mg - fga) + O <a Z e_0|963—fja|> .

j=1
Observe also that z; o r(z') = leQ,R(%) satisfies

)

Ag2210.r + \/567\/5(1127(11)(22,04,}1 — 21,a,R) + ﬂa,RP(x/)ZLa,R = O(O‘T (1 + |x’})727ﬁ)
Agzzz,or + V2e V2R (25 o gt 21 0. R) + fia,rP(2) 22,08 = O(aT (14 |2/[) 7 77)
so that, after passing to the limit R — oo, we obtain the estimates
21,0 £ 22,0l ®2) < Clll21,0 £ 22,0l (/< ro) + O(a7)] (9.26)
or equivalently

||k1,a + kz,aHLw(RQ) < C[”kl,a + k2,oc||L°C(|ar’|<Ro) + O(aT)]‘

From (9.27) we know that ki o & k2, cannot be simultaneously zero. Then we obtain the limit system

Apezy + V2 VR0 (5 4 21) =0,
Apezy +V2e V2R~ 0) (5 4 21) =0,

hence, for every a > 0 small and R large enough we have the asymptotics
2
ba,r (2, x3) = 21 (a2’ )w' (x5 — f10) + 22 (a2’ )w' (x5 — f20) + O (a Z e olws— j"')
j=1
and the functions z = z1 + 22, £ = 21 — 23 are bounded, no simultaneously zero and solve the system
Apzz + 2v/2e VA0, = 0, A2 =0, inR?
Since the bounded kernel of the operator
Age +2\/§e—\/§(Q2—Q1)
is described in polar coordinates in (9.3)

_ —1+r? _ r _ T ,
zZo = W, zZ1 = m COS(&)7 Z9 = m sm(&), r> O, S (0, 271')7
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we find that

2
Z(ZE/) = Z ﬁiii (ZL‘/), Bi € R.
i=0
Since we are assuming A # 0, we may also assume from spectral theory that
/p(am’)(ﬁ%R cpdr' dz =0
Cr

for every bounded ¢ solving
A¢+ F'(uy)p =0, in Cg, $=0, ondCg,
and from Proposition 8.2 we know that the functions
Oz Uar, Oy Ua, O0xUq
are bounded solutions to the equation
A+ F'(uy)p =0, inR3.

Passing to the limit, we obtain that
/p(ax’)@a (¢',23) Z (2’ 23) da’ dws = 0
R3
for any Z having the form
3
Z =Y BiOsua, Bi€R, i=123.
i=1
From the asymptotic expansion
.
Onatia (2, 23) = W' (23 — f1a) — W' (w3 — f20) + O (a(l + |a33'|)_ Z e_"“_fj“)
j=1
we can pass to the limit as & — 0, in the orthogonality condition respect to 0,u,, to obtain that
/p(:pl)é dx’ =0
R2
so that from Liouville theorem we get that z5 = 0. This implies that
1 2
ba,r (2, x3) = iz(aac') [w' (3 — f10) + (az’)w' (25 — f20)] + O (az egwi"ff“).
j=1

Proceeding similarly, but this time using the asymptotic expansions
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AT (z',2) = @by, q(az’) [w'(z — f1a) — W' (z — f20)] + O(az), i=1,2

and orthogonality conditions respect to 0, u,, we find that

R2
Consequently, z(z’) must be a scalar multiple of Zy(«’) and with no loss of generality we write
2
ba,r (2, 23) = 2o (') [w' (w3 — f1a) + (a2’ 0 (23 — f2a)] + O (a Z e"l”fﬂ'“I).
j=1

To finish the proof of the lemma, let us consider again the sets {2, = A; N Cpr defined in Lemma 9.1 and
notice that

>l / p(am’)a@aua o dx’ drs = o / Voo - VOutia — F'(Ug)da - Ontia
£21 rRUS22 R 21, rRUS2> R

=« / haOn(Onue) dS.

B(QI,RUQQ,R)
Observe first that
a3 g / p(az’) o - Oaua da’ drs = 202 1, / p(az’)zo (oz:zc')2111’(15)2 dx' dt + O(a”)
21, rRUS22 R laz’|<R, [t|< 5 (f2a—f1a)

= ”an/Hi? / p(2')z3 da’ + O(a”) = copa,a + O(a”), o> 0.

lz'|<R

On the other hand,

a / 69,000 (Outie) dS = / + / 6500 (Oute) -

0(£21,rU2,R) laz'|=R,|t|< 5 (f2a—f1a)  |a@/|<R,|t|=3 (f2a—f1a)

I 17

Clearly, the largest contribution in this integral comes from the first term, which from the asymptotic
formula (8.60), yields that

I= 27ra_1RHw'Hiz,éo(R)[aa,«,aqa + Oéar_’ava]‘m/‘:a—lR + O(al'”)
= Boalog(é> + O(a)

with 3y > 0. Hence, taking R — oo, we find that p, ~ alog(a)B for some 3 > 0 and this completes the
proof of the lemma. O
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9.4. Proof of inequality m(u,) < 1 for solutions in Theorem. 1

To sketch the proof of inequality m(us) < 1 we proceed as in the proof of Lemma 9.2. From the
characterization of m(u,) in (9.7), we can take an eigenfunctions ¢, g, associated to strictly negative
eigenvalue A\, r < 0, which from the variational characterization of the eigenvalues can be chosen to be
decreasing in R. We also may assume that

pe.rlloo =1, /p(x/)QSmRQEmR de'dz=0 (9.27)
R3

for ¢o.r an eigenfunction to problem (9.6) associated to a different eigenvalue. From inequality (9.16) we
can write

2
Aa,R = O lia,Rs o, R — o <0, as R — oo.

Proceeding as above, we find the asymptotics for ¢, r

2
ba,r (7', x3) = 21 (az’)w' (x5 — f1a) + 22 (aa’)w' (x5 — f2u) + O(aZe_glrf’_f"“l)

J=1

with

ARQZl + \/567\/5(%7(11)(22 + Zl) + ;Lp(x’)zl = O,
Agz 2y + V2 V20270 (2 4 2) 4 pp(z')z2 =0,

where p < 0.

The case p = 0 is discarded with the help of Lemma 9.2, which states that there are not strictly negatives
eigenvalues close to zero. Hence, u < 0 and we observe that the equation for the difference Z = z; — 25,
reads as

Agz2+pp(z')2 =0, |[2]o < o0. (9.28)

Since the eigenspace associated to the eigenvalue in (9.28)  is spanned by exactly one simple and positive
eigenfunction and using as in the proof of Lemma 9.2 the orthogonality condition against 0,,u., we find
that

/p(m’)é dx' =0
R3
which implies that 2 = 0. So we have the asymptotic expansion
2
ba,r (2, 23) = z(0a’) [w' (x5 — fra) + W' (x5 — f20)] + a0 ( Z e‘gm?’_fj“) ,
j=1

where

Agez + 2y/2e V2 @—a) 5 pp(')z =0, |z]lLe(rs) < oo.
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From condition (9.27) for eigenfunctions associated to the same eigenvalue and since there is exactly one
negative eigenvalue for problem (9.6), we conclude that this eigenvalue must be simple so that m(u,) < 1
and this concludes the proof of Theorem 1.
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