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We consider the problem ¢ u = ¶ f (u) in « , u(x) tends to + 1 as x approaches @ « .
Here, « is a bounded smooth domain in RN , N > 1 and ¶ is a positive parameter. In
this paper, we are interested in analysing the role of the sign cha n ges of the function
f in the number of solutions of this problem. As a consequence of our main result, we
¯nd that if « is star-shaped and f behaves like f (u) = u(u ¡ a)(u ¡ 1) with
1
2

< a < 1, then there is a solution bigger than 1 for all ¶ and there exists ¶ 0 > 0
such that, for ¶ < ¶ 0 , there is no positive solution that crosses 1 and, for ¶ > ¶ 0, at
least two solutions that cross 1. The proof is based on a p r io r i estimates, the
construction of barriers and topological-degree arguments.

1. Introduction and main results

Let « be a bounded regular domain in RN , N > 1. This paper deals with the study
of multiple solutions for the boundary-value problem

¢u = ¶ f(u) in « ;

u(x) ! +1 as d(x) ! 0;

)
(P ¶ )

where d(x) denotes the distance of x to @« and ¶ is a positive parameter. The
study of this type of problem dates back to 1916, with the work of Bieberbach [7],
who established existence and uniqueness for f(u) = eu and N = 2. This result was
later improved to N = 3 by Rademacher [20].

Di¬erent aspects have then been addressed by various authors: the existence of
solutions, the uniqueness (or multiplicity) and the asymptotic behaviour close to
the boundary.

The question of existence of positive solutions of (P ¶ ) was  rst studied by Keller
[13] and Osserman [18]. They gave a su¯ cient condition on f for the existence of
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positive solutions,

f is locally Lipschitz continuous and non-decreasing on [0; 1);

f(0) > 0 and
R 1

F ¡1=2 < 1, where F (u) =
R u

0
f (t) dt:

This includes the case where f (u) = eu, which corresponds to results in electro
hydrodynamics.

The question of uniqueness has been studied related to that of asymptotic behav-
iour near the boundary. It was analysed by Loewner and Nirenberg [16] for the spe-
cial case f(u) = u(N + 2)=(N¡2) and N > 2, which appears in geometrical problems.
Bandle and Marcus [3, 4] and Lazer and McKenna [15] extended the results of [16]
to a much larger class of nonlinearities, including f(u) = up, p > 1, and convex
nonlinearities. For other works concerning uniqueness, see [10, 14].

In this paper, we deal with the question of multiplicity of positive solutions for a
nonlinearity f(u), which is not monotone. A study of multiple solutions was made
in [1] for functions f behaving like jujp when u tends to ¡ 1: the existence of a pos-
itive and a sign-changing solution using a topological-degree argument was proved
when f(0) = 0. Nevertheless, if f has no zero, then there are two solutions for small
¶ and no solution for large ¶ . When f has several zeros and N = 1, the existence
of multiple solutions was investigated in [2] using ordinary di¬erential equations
techniques, and bifurcation curves were drawn. When the boundary condition is
the Dirichlet condition u = 0 and ¶ is large, the study of the number of solutions
depending on the zeros of f was made by several authors (see [8,9,11,12,17]). Their
techniques do not apply directly to our problem, because of the in nite boundary
condition. Here, we are interested in the case of multiple solutions according to the
behaviour of f and the value of ¶ . The proof is based on a priori bounds, sub and
supersolutions and topological-degree arguments.

To illustrate our main result, let us consider the model cubic nonlinearity
f(u) = u(u ¡ a)(u ¡ 1), with 1

2 < a < 1, so that the area of the positive bump is
bigger than that of the negative bump. By the result of Keller and Osserman, there
is a solution u > 1 for all ¶ , and the question is whether other solutions exist.
The following result holds: problem (P¶ ) has no solution with minimum value less
than 1 for small ¶ , while it has at least two such solutions for all su¯ ciently large
¶ . It turns out that when « is star-shaped, the sets of number ¶ where one solution
and at least three solutions exist are connected.

More precisely, we make the following hypotheses.

(H1) f : [0; 1) ! R is locally Lipschitz continuous.

(H2) f is positive, non-decreasing on (1; +1), f(1) = 0 and
R 1

F ¡1=2 < 1, where
F (u) =

R u

0
f (t) dt.

(H3) There exists 0 < a < 1 such that f(0) = f(a) = 0, f > 0 in (0; a), f < 0 in
(a; 1) and F (1) > 0.

Assumptions (H1) and (H2) ensure, after the works of Keller and Osserman,
the existence of at least one solution, whose minimum value is larger than 1. The
hypothesis F (1) > 0 is needed to ensure the existence of solutions that cross 1. It
already appeared in the Dirichlet problem [9, 11,12].
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Figure 1. The function f (s).
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Figure 2. The bifurcation curve.

A picture of the behaviour of f is illustrated in  gure 1. We want to justify the
corresponding bifurcation diagram for solutions ( gure 2). Our main result is the
following.

Theorem 1.1. Let « » RN be a bounded domain with boundary of class C2.
Assume that f satis¯es (H1){(H3). Then, for any ¶ > 0, there exists a solution ·u ¶ ,
with

min
x2 «

·u ¶ (x) > 1;

which satis¯es
lim

¶ ! + 1
·u ¶ (x) = 1 and lim

¶ ! 0
·u ¶ (x) = +1

uniformly on compact subsets of « .
Moreover, there exist numbers 0 < ¶ 0 6 ¶ 1 such that the following hold.

(i) For 0 < ¶ < ¶ 0, only solutions with minimum value greater than 1 exist.

(ii) For ¶ > ¶ 1, there are at least two positive solutions, u ¶ and u ¶ , whose mini-
mum value is less than 1. u ¶ is the minimal positive solution of (P ¶ ) and it
satis¯es

lim
¶ ! + 1

u ¶ (x) = 0
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uniformly on compact subsets of « . The minimum value of u ¶ stays uniformly
away from 0 when ¶ ! +1.

(iii) When « is star-shaped, we have ¶ 0 = ¶ 1. Moreover, for this value of ¶ , at
least one positive solution with minimum value less than 1 exists.

A generalization of theorem 1.1 to a nonlinearity f having several zeros holds.
Let us consider the alternative assumption.

(H30) There exist numbers (bi; ai), 1 6 i 6 n, with bi < ai < bi¡1, b0 = 1, such
that f(bi) = f(ai) = 0 and f > 0 in (bi; ai), f < 0 in (ai; bi¡1). Moreover,R bi ¡ 1

bi
f(s) ds > 0.

For simplicity, we only state the result in the star-shaped case.

Theorem 1.2. Let f satisfy (H1), (H2) and (H30) and additionally that « is star-
shaped. Then there exists ¶ i such that, for ¶ < ¶ i, there is no solution that crosses
bi. For ¶ = ¶ i, there is a solution that crosses bi and stays above bi+ 1. For ¶ > ¶ i,
there are at least two solutions that cross bi and stay above bi + 1. The lower solution
u ¶ ;i is the minimal solution bigger than bi+ 1 and is decreasing with ¶ . When ¶ tends
to 1, u ¶ ;i converges to bi+ 1 uniformly on every compact subset of « .

In order to complete the bifurcation diagram, one has to take into account the
behaviour of f at ¡ 1. If f is negative for s < bn, then there is no other solution
than the ones mentioned above. If we assume that

(H4) there exists p in (1; N ¤ ) such that 0 < lims! ¡1 (f(s)=jsjp) < 1,

then it follows from [1] that, for all ¶ , there is a solution that crosses bn and min u ¶

tends to ¡ 1 as ¶ tends to 0. For other behaviours of f , the problem is open.
It is worthwhile mentioning that, in the case f(u) = u(u ¡ a)(u ¡ 1), 1

2 < a < 1
as ¶ ! +1, but, for  nite boundary data, a solution exhibiting a single spike and
tending to zero elsewhere, except near the boundary, can be constructed via the
mountain-pass lemma. It was found in [9, 17] that the concentration point is at a
maximal distance from the boundary. It seems an interesting question to see whether
such a peak solution can be found in our setting. In the language of theorem 1.1,
such a behaviour would correspond to the solution u ¶ approaching asymptotically 1
almost everywhere, but with a spike shape at the minimum value. The proofs in
the above-mentioned work do not seem to extend to our setting, since one would
need to  nd estimates independent of the boundary value.

The rest of this paper is devoted to the proof of the main results. Section 2 is
devoted to the study of the solution bigger than 1. Then we prove in x 3 the non-
existence of solutions that cross 1, when ¶ is small. In x 4, we study the minimal
solution for ¶ large. Finally, a topological-degree argument allows us, in x 5, to get
existence of two solutions for ¶ large.

2. Preliminaries and the solution ¹u¸

In this section, we assume that f satis es (H1), (H2). We will construct a solution
bigger than 1 for all ¶ > 0 and obtain some of its properties. We de ne the approx-
imate problems (P ¶ ;c), where the in nite boundary condition in (P ¶ ) is replaced by
the Dirichlet boundary condition u = c.
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Lemma 2.1. Let c > 1. There is a unique solution ·u ¶ ;c of (P ¶ ;c), which is bigger
than 1, and is increasing with c.

Proof. If u is a solution of (P ¶ ;c), then, by the maximum principle, u 6 c in « . We
have u ² 1 as a subsolution and u ² c as a supersolution, so (P ¶ ;c) has a maximal
solution bigger than 1. Moreover, for c1 < c2, ·u ¶ ;c1 is a subsolution of (P ¶ ;c2 ) and
c2 is a supersolution. Thus the maximal solution ·u ¶ ;c2

is bigger than ·u ¶ ;c1
.

Since f is increasing, the maximum principle holds for the equation for the dif-
ference of two solutions. Hence it implies uniqueness.

Lemma 2.2. Let ¿ ¬ be the solution of

¿ 00
¬ =

¶

N
f( ¿ ¬ );

¿ ¬ (0) = ¬ ; ¿ 0
¬ (0) = 0;

9
=

; (2.1)

where ¬ > 1. Then there is a maximal interval (0; R¬ ), where ¿ ¬ exists,

lim
x! R ¬

¿ ¬ (x) = 1;

with

R¬ =

Z 1

¬

dsp
(2 ¶ =N )(F (s) ¡ F ( ¬ ))

:

R ¬ decreases with ¬ ,

lim
¬ ! 1

R ¬ = 1 and lim
¬ ! 1

R ¬ = 0:

Moreover, ¿ ¬ is increasing and

¢ ¿ ¬ 6 ¶ f (¿ ¬ ) in BR ¬ : (2.2)

Proof. There is a maximal interval (0; R ¬ ) in which the solution ¿ ¬ exists, it is
increasing in this interval, and ¿ 0

¬ and ¿ 00
¬ are also increasing, since f(s) is increasing

for s > 1. This yields

¢ ¿ ¬ = ¿ 00
¬ +

N ¡ 1

r
¿ 0

¬ 6 N ¿ 00
¬ :

In particular, equation (2.2) is satis ed.
Multiplying the equation by ¿ 0

¬ and integrating gives

¿ 02
¬ =

2¶

N
(F (¿ ¬ ) ¡ F ( ¬ ));

where F is such that F 0 = f . Hence we get the expression of R ¬ . The properties of
R ¬ are proved in [1] (see also [2]).

Lemma 2.3. Given ·¶ > 0, ¯ > 0 and any 0 < ¶ < ·¶ , there exists a constant
M = M ( ¯ ; ·¶ ) such that, for any c > 1 and any solution u of (P ¶ ;c) or of (P¶ ), we
have

sup
d(x)>¯

u(x) 6 M:
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Proof. This result is essentially due to Keller [13]. Let u be a solution of (P ¶ ;c).
Let x0 2 « be such that d(x0) > ¯ and let » < ¯ . Thus B» (x0) » « . Let us choose
¬ > 1 so large that R ¬ 6 » . This is possible, since R¬ ! 0 as ¬ ! +1. Since
f(s) is non-decreasing for s > ¬ , we can apply the maximum principle in the set
fx0 2 BR ¬

(x0)=u(x) > ¬ g using the previous lemma and derive u(x) 6 ¿ ¬ (jx ¡ x0j)
in BR¬

(x0). A compactness argument then yields the desired result.

As it may be expected, the previous result implies that, as c ! +1, a sequence
of solutions of (P ¶ ;c) converges up to extraction of a subsequence, to a solution
of (P ¶ ).

Proposition 2.4. Let ¶ be ¯xed and u ¶ ;c be a sequence of positive solutions
of (P ¶ ;c). Then, as c tends to in¯nity, u ¶ ;c converges up to the extraction of a
subsequence to a solution u of (P ¶ ).

Proof. We recall the proof in [1]. Let ·u ¶ ;c be the solution of (P ¶ ;c) constructed
above. Let u ¶ ;c be any other positive solution. We are going to prove that

u ¶ ;c > ·u ¶ ;c ¡ A; (2.3)

where A is some constant and c is large enough. Since f is increasing for s > 1, there
exists A > 1 such that f(s) 6 f(A) for s 2 (0; A), so that f(s) 6 f(s + A) 8s > 0.
We let vc = u ¶ ;c + A. Then we have ¢vc 6 ¶ f(vc) and vc is in the range where f is
increasing. The maximum principle then yields ·u ¶ ;c 6 vc, which is precisely (2.3).

Now, by lemma 2.3, ·u ¶ ;c and u ¶ ;c are uniformly bounded above on compact
subsets of « , hence they are bounded in C1;¬ and converge locally uniformly to ·u ¶

and u ¶ , which are solutions of the equation. The blow-up boundary condition is
satis ed for ·u ¶ because ·u ¶ ;c is increasing with c and for u ¶ ;c because of relation (2.3).

By virtue of the previous proposition, we may de ne a solution ·u ¶ of (P ¶ ) as

·u ¶ (x) ² lim
¶ ! + 1

·u ¶ ;c(x);

where ·u ¶ ;c is the unique solution of (P ¶ ;c), c > 1, whose minimum value is greater
than 1. We observe that ·u ¶ is then the minimal solution of (P ¶ ) with the property
min ·u > 1. Let us establish limiting properties of this solution.

Proposition 2.5. Let ·u ¶ be the minimal solution of (P ¶ ) with minimum value
greater than 1. Then

lim
¶ ! 0

min
«

·u ¶ = 1; lim
¶ ! 1

max
K

·u ¶ = 1

for any compact subset K of « .

Proof. Limit when ¶ ! 1. Assume that the ball B is contained in « . Let ¿ ¬ ( ¶ )(s)
be the solution of (2.1) that blows up on @B. In B, we have ¢ ¿ ¬ ( ¶ ) 6 ¶ f( ¿ ¬ (¶ )),
so that elliptic comparisons imply that ·u ¶ 6 ¿ ¬ ( ¶ ) in B.

When ¶ tends to in nity, ¬ ( ¶ ) = ¿ ¬ ( ¶ )(0) tends to 1. As a consequence, min ·u ¶

tends to 1 as well.
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Let K be a compact subset and B a ball of radius less than dist(K; @« ). Thus
K can be covered with such balls B and the previous argument yields ·u ¶ 6 ¿ ¬ ( ¶ )

in B. In particular, for all x in K, x is the centre of a ball B, so, by moving around
the ball, we get ·u ¶ (x) 6 min ¿ ¬ ( ¶ ), so that ·u ¶ tends to 1 uniformly in K.

Limit when ¶ ! 0. Let B be a ball containing « . Let w ¶ ;c be the maximal
solution of (P ¶ ;c) in B. Then w ¶ ;c is a subsolution of (P ¶ ;c) in « . Hence w ¶ ;c 6 ·u ¶ ;c

and

w ¶ = lim
c! 1

w¶ ;c 6 ·u ¶ in « ¶ :

Assume by contradiction that when ¶ tends to 0, min w ¶ is bounded. Let ¿ ¬ be the
solution of (2.1) with ¬ = w ¶ (0). It follows from the Sturm comparison principle
that ¿ ¬ blows up before w¶ . If w ¶ (0) is bounded when ¶ tends to 0, it implies that
¬ is bounded, and hence R¬ tends to 1. But R ¬ is less than the radius of B, which
provides a contradiction.

3. Non-existence of solutions with least value less than 1 for ¸ small

In this section we prove the following proposition, which contains part of the state-
ment of theorem 1.1.

Proposition 3.1. There is a number ¶ 0 > 0 such that, for any 0 < ¶ < ¶ 0, there
is no solution of (P ¶ ) with minimum value less than 1.

Proof. Assume that there is a solution u to (P ¶ ) such that min« u < 1 and consider
the set ! = fx j u(x) < 1g. Then u satis es

¢u = ¶ f(u) in !;

u = 1 on @!:

)
(3.1)

Let h = 1 ¡ u > 0. Then h is a solution of ¢h + ¶ c(x)h = 0 with 0 boundary value,
where

c(x) = ¡ f(u) ¡ f (1)

u ¡ 1
:

Let ’ be a positive  rst eigenfunction of the Laplacian in !. Then
Z

!

( ¶ 1(!) ¡ ¶ c(x))h’ = 0:

Let ¶ 0 = ¶ 1( « )=jcj 1 . Since h; ¿ > 0, if ¶ < ¶ 0, this provides a contradiction, since
¶ 1(« ) < ¶ 1(!).

4. The minimal solution u¸

Proposition 4.1. Let f satisfy assumptions (H1){(H3). Then there exists a num-
ber ·¶ > 0 such that, for all ¶ > ·¶ , there is a minimal positive solution u ¶ of (P ¶ )
whose minimum value is less than 1. Moreover,

lim
¶ ! + 1

max
K

u ¶ (x) = 0 (4.1)



232 A. Aftalion, M. del Pino and R. Letelier

for any compact subset K of « . If « is star-shaped, then the set of values ¶ > 0
such that there exists a positive solution with minimum value less than 1 exists is
a closed unbounded interval [¶ 0; +1), with ¶ 0 given by proposition 3.1.

Proof. We will construct a minimal solution of the problem that has minimum value
less than 1, provided that ¶ is su¯ ciently large.

We begin by considering the problem in a ball B = B̄ , ¯ > 0. Let us extend f
by setting f(s) = 0 for s 6 0. Let us  x a number c0 > 1 and consider the problem
of minimizing the functional

J(u) =

Z

B

jruj2 + ¶ F (u)

over all functions in H1(B) with boundary value c0. Here, we have denoted
F (u) =

R u

0 f(s) ds. Note that, since (H3) holds, we have J(u) > 0. Moreover, J
is coercive and weakly lower semicontinuous, and therefore has a minimizer in the
corresponding class. Let u ¤ be one minimizer of J(u) with boundary value c0, which
we also choose to be radially symmetric. We are going to build a test function in
order to prove that min u ¤ tends to 0 as ¶ ! 1. We choose a test function that is
equal to 0 in B ¯ ¡1=¶ 1=2 and extended linearly to reach the value c on the boundary.
This yields

0 6 J(u ¤ ) < D¶ 1=2;

where D depends on c0 and ¯ . It follows that

0 6
Z

B

F (u ¤ ) 6 D¶ ¡1=2 ! 0

as ¶ ! 1, and hence u ¤ ! 0 almost everywhere in B. In particular, the minimum
of u ¤ , which is at the centre, goes to 0. From now on, we assume that ¶ is su¯ ciently
large so that min u ¤ < 1.

Let us take an arbitrary c > c0. In B2 ¯ , we are going to build a supersolution
of (P ¶ ;c). We let w(x) = u ¤ in B̄ and w(x) = Á(jxj) in B2 ¯ n B̄ , where Á is a
one-dimensional solution of Á00 = ¶ =Nf(Á) with Á( ¯ ) = c0 and Á0 (̄ ) = 0. We know
that Á blows up at some number R ¶ . When ¶ is large enough, R ¶ tends to 0 and
hence it is less than 2¯ . Hence min(w; c) is a supersolution of (P ¶ ;c) for all ¶ > ·¶ ,
where ·¶ does not depend on c > c0. Since 0 is a subsolution of the problem, we
obtain the existence of a minimal positive solution u ¶ ;c of (P¶ ;c) that is less than
u ¤ in B ¯ , and hence has a minimum value less than 1.

We deduce that u ¶ ;c 6 u ¤ in B̄ . Let us consider now a compact set K » « whose
distance to @« is larger than ¯ . Then moving the centre of the ball B ¯ around K
implies that

sup
K

u ¶ ;c 6 inf
B ¯

u ¤ :

In particular, supK u ¶ ;c converges to 0 uniformly in K and in c > c0.
Given ¯ and ·¶ , let us consider any number ¶ > ·¶ . Proposition 2.4 allows us to

pass to the limit in c,

u ¶ (x) = lim
c! + 1

u ¶ ;c(x); (4.2)
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is the minimal solution of problem (P ¶ ), since any solution of (P ¶ ) is a superso-
lution of (P ¶ ;c) and, by de nition, must lie above u ¶ ;c. Moreover, equation (4.2)
implies (4.1).

Now we want to establish the following fact. If « is star-shaped, then the set of
values ¶ > 0 such that a positive solution with minimum value less than 1 exists is a
closed unbounded interval. We let « ¶ =

p
¶ « and v¶ (x) = u(x=

p
¶ ). The function

v ¶ solves

¢v ¶ = f(v¶ ) in « ¶ ;

v¶ (x) ! 1 as x ! @« ¶ :

)
(Q ¶ )

We observe that if « is star-shaped around the origin, then « ¶ 1 »» « ¶ 2 for ¶ 1 < ¶ 2.
Let · be such that there is a positive solution of (P · ) with minimum value less

than 1, which we call u · . We are going to prove that the property holds for any
¶ > · . Let v · (x) = u · (· ¡1=2x). It is a solution of (Q · ). It then follows that, for
any c > 1, the function minfv· ; cg, extended by c on « ¶ n « · , is a supersolution
of (Q ¶ ;c) for any ¶ > · . Since 0 is a subsolution, there exists of a minimal solution
whose minimum value is less than that of v · , and is thus less than 1. By rescaling
to « , this provides a solution u ¶ ;c of (P ¶ ;c) that crosses 1 and, passing to the limit
in c, a solution u ¶ of (P ¶ ) that crosses `. In fact, one can show that the minimum
value of u ¶ is a decreasing function of ¶ . Let ¶ 0 be the in mum of the ¶ such
that there is a positive solution with minimum value less than 1. Then ¶ 0 > 0 by
proposition 3.1. We claim that, for ¶ = ¶ 0, there is a solution of (P ¶ 0 ). Let ¶ n be a
decreasing sequence tending to ¶ 0. Then there is a solution vn;c of (Q ¶ n;c). As ¶ n

decreases to ¶ 0, vn;c converges locally uniformly to v0;c on every compact subset
of « ¶ 0 by proposition 2.3. Moreover, since « ¶ =

p
¶ « , on @« ¶ 0 , vn;c converges to

c. Hence v0;c is a solution of (Q ¶ 0;c). It follows that min v ¶ 0;c 6 1. Passing to the
limit as in proposition 2.4 yields the result.

5. A second solution with minimum value less than 1

The remaining part of theorem 1.1 is given by the following result.

Proposition 5.1. There exists a number ¶ 1 > 0 such that, for all ¶ > ¶ 1, there
exist at least two positive solutions of (P ¶ ) with minimum value less than 1. If «
is star-shaped, we have ¶ 1 = ¶ 0, where ¶ 0 is the number found in proposition 3.1.

Proof. We will use a topological-degree argument that is similar to that used in [1]
(see also [5, 6, 19]). Let c > 1 be  xed and let us choose a number · 0 > 0 such
that (P · 0;c) has no solution with minimum value less than 1.

We introduce the operators Ft, 0 6 t 6 1, as follows. For

v 2 Cc( ·« ) = fv 2 C( ·« ); v = c on @« g;

we de ne w = Ftv to be the unique solution of the problem

¢w ¡ · w = (t· 0 + (1 ¡ t) ¶ )f(v)) ¡ · v in « ;

w = c on @« ;

)
(5.1)



234 A. Aftalion, M. del Pino and R. Letelier

where · = sup[0;c] jf 0j. Then Ft de nes a compact operator from (t; v) 2 [0; 1] £
Cc( ·« ) into Cc( ·« ). Since the function s 7! t· 0 + (1 ¡ t) ¶ f(s) ¡ · s is non-decreasing
in [0; c], Ft is order preserving on functions v whose values lie in [0; c].

Let us consider the following sets,

B =
n

v 2 Cc( ·« )=v < c in « ; min
«

v 2 (0; 1)
o

;

O = fv 2 B; v < Á0 in « g;

where Á0 is a supersolution of (P ¶ ;c), de ned as follows. Fix a number ·¶ (the
existence follows from proposition 4.1) such that there exists u·¶ , a minimal solution
of (P·¶ ). Assuming that 0 2 « , then we choose ¶ 1 su¯ ciently large so that, for
¶ > ¶ 1, ( ¶ ¡1·¶ )1=2 « » « . We observe that if « is star-shaped around zero, then
we may choose ·¶ = ¶ 1 = ¶ 0, where ¶ 0 is the number in proposition 3.1. Then the
function u0(x) = u·¶ (·¶ ¡1 ¶ )1=2x),

¢u0 = ¶ f (u0) in (¶ ¡1·¶ )1=2 « » « :

Then we set Á0 = minfu0; cg, extended by c to all of « . Thus Á0 is a supersolution
of (P ¶ ;c).

We are going to prove that d(I ¡ F0; B; 0) = 0 and d(I ¡ F0; O; 0) = +1, where
d denotes the Leray{Schauder degree. This will imply

d(I ¡ F0; B n ·O; 0) = d(I ¡ F0; B; 0) ¡ d(I ¡ F0; O; 0) = ¡ 1; (5.2)

and hence there is a solution with minimum value less than 1, which is somewhere
larger than the supersolution Á0, so that it is di¬erent from the minimal solution
u ¶ ;c. The result of the proposition then follows by taking the limit (up to subse-
quences) c ! +1. The limiting functions u ¶ and u ¶ are di¬erent since u ¶ 6 u0

and u ¶ crosses u0.
To prove the above, let us observe that v = Ft(v) means that v solves

¢v = (t· 0 + (1 ¡ t) ¶ )f(v) in « ;

v = c on @« :

)
(5.3)

Then, since c > 1, the strong maximum principle prevents v belonging to @B. Hence
d(I ¡ Ft; B; 0) is well de ned for all t 2 [0; 1] and hence it is constant in t. But since,
by the choice of · 0, F1 cannot have any  xed point, we get

d(I ¡ F0; B; 0) = d(I ¡ F1; B; 0) = 0:

Let us now show that d(I ¡ F0; O; 0) = +1.
We have already proved the existence of a solution ·v ¶ ;c in O. Let us de ne

Ht = tF0 + (1 ¡ t)·v ¶ ;c; t 2 [0; 1]:

Let us suppose that v in ·O is such that v = Htv. Then kvkC1( ·« ) < M . Recall that
F0 is order preserving in O by the de nition of · . By the strong maximum principle,
we have, in fact, that v 2 O. Thus d(I ¡ Ht; O; 0) is well de ned and hence constant
in t. As ·v¶ ;c is in O, we get

d(I ¡ F0; O; 0) = d(I ¡ ·v¶ ;c; O; 0) = +1:
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This yields (5.2) and the result of the proposition follows.

Proof of theorems 1.1 and 1.2. The result of theorem 1.1 is contained in those in
propositions 2.4{5.1. For the proof of theorem 1.2, one just has to replace the
interval (0; 1) by (bi+ 1; bi).
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