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AMERICAN MATHEMATICAL SOCIETY 
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MULTIPLE SOLUTIONS FOR 
A SEMILINEAR ELLIPTIC EQUATION 

MANUEL A. DEL PINO AND PATRICIO L. FELMER 

ABSTRACT. Let Ql be a bounded, smooth domain in RN, N > 1. We con- 
sider the problem of finding nontrivial solutions to the elliptic boundary value 
problem 

Au +)Au = h(x)IuIP-lu in Q, 

u=0 onOQ, 

where h > 0, h # 0 is Holder continuous on Q and p > 1, A are constants. 
Let Qlo denote the interior of the set where h vanishes in Q . We assume 

h > 0 a.e. on Q\K1o and consider the eigenvalues Ai(K2) and Ai(0o) of the 
Dirichlet problem in Q and Qlo respectively. We prove that no nontrivial 
solution of the equation exists if A satisfies, for some k > 1, 

Ak (90) < A <_ Ak+ I(Q) 

On the other hand, if, for some nonnegative integers s, k with s > k + 1, A 
satisfies 

As(Ql) < A < Ak+1(00) , 
then the equation above possesses at least s - k pairs of nontrivial solutions. 

For the proof of these results we use a variational approach. In particu- 
lar, the existence result takes advantage of the even character of the associated 
functional. 

0. INTRODUCTION 

Let Q be a bounded, smooth domain in RN, N > 1. We consider the 
problem of finding nontrivial solutions to the elliptic boundary value problem 
(0.1) Au + Au = h(x)IuIP"'u in Q, 
(0.2) u = 0 on aQ, 
where h is a nonnegative, not identically zero Holder continuous function de- 
fined on Q and p > 1, A are constants. 

Ouyang [5] studied existence and uniqueness of positive solutions to problem 
(0.1 )-(0.2) and also of its corresponding analogue on a compact Riemannian 
manifold. That paper mainly focused on studying the effect of vanishing of the 
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4840 M. A. DEL PINO AND P. L. FELMER 

function h, a question originally raised by Kazdan and Warner [4] who consid- 
ered the problem on a compact manifold and proved, among other results, that 
for strictly positive h there is a unique positive solution for any A > 0. Simi- 
larly, a unique positive solution to (0.1 )-(0.2) exists for any A > AI (Q) , where 
AI (Q) denotes the first Dirichlet eigenvalue of the Laplacian in Q2. An integra- 
tion by parts easily yields that this condition is also necessary for existence of 
a nontrivial solution to (0.1 )-(0.2). 

Let Qo denote the interior of the set where h vanishes in Q. We will 
assume henceforth that Qo is nonempty and that h > 0 a.e. on Ql\Q2o. Then 
the following result holds; see [5] and also [3] for an alternative proof. 
Theorem 0.1. There exists a unique positive solution uA to problem (0.1 )-(0.2) 
if AI()<A < AI (Qo). Moreover, 

liM IIuAIIL2 =+00 
A, (AI o) 

and no positive solution exists in case that A. > Al (20o) 
Ouyang actually proves that the set of all pairs (A, u) with u a positive solu- 

tion of (0.1 )-(0.2) is constituted exactly by the first bifurcation branch starting 
at (Al (a), 0) and that this branch continues to exist until A reaches Al (Ao) 
where it blows up. We should remark that a very different behavior of this 
branch takes place in case that h changes sign (see [6]). 

Now, it follows from standard bifurcation theory that a branch of nontrivial 
solutions of (0.1 )-(0.2) starts at each eigenvalue of the Laplacian, provided 
that this eigenvalue is e.g. simple. Thus, the natural question arises: Will 
branches associated with higher eigenvalues exhibit a similar behavior to that 
of the first one? This paper is mainly motivated by this question. Giving a 
complete answer may be very hard. However, our first result, Theorem 0.2 
below, partially recovers the picture of the first branch: it shows, in particular, 
that if the Dirichlet eigenvalues of both 92 and Q20 are simple, then for each 
positive integer k there exists a family of pairs (A, ?uk) with uk a nontrivial 
solution of (0.1)-(0.2), defined for A E ('k(Q) , )k( O)), with the property that 
jluAk1IL2 blows up as A approaches Ak () . Moreover, these "branches" do not 
intersect each other in the sense that, if . belongs to j intervals of the form 
(0k(Q), Ak(90)) then at least j pairs of nontrivial solutions exist. 

To state our first result in the general case, we consider the sequences of 
Dirichlet eigenvalues for Q and Q0, 

Al (Q) < A22(Ql) < 23 (Q) < Al4 (Q)< 
Al (Qo) < A2(Q2o) < A33(QO) ?< 

where a given eigenvalue in the above sequences appears as many times as its 
multiplicity indicates. If flo is a general open subset of Q2, with no regular- 
ity assumed on its boundary, its Dirichlet eigenvalues can be naturally defined 
considering the closed subspace H. (Q20) of Ho' (Q) given by 

H.'(C4)= {u E Ho' (f7)Iu = 0 a.e. on \QC}. 
It is well known that H'(20) - Ho' (0o) if Q20 has, for example, a Lipschitz 
continuous boundary. We define the sequence of Dirichlet eigenvalues of Q2o 
as those of the problem 

u=).Tu, uEHJ(92o), 
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MULTIPLE SOLUTIONS FOR A SEMILINEAR ELLIPTIC EQUATION 4841 

where T is the compact, selfadjoint operator so that v = Tf is the unique 
element of H. (no) satisfying 

JVvV(k=J f4 Vk E H* (Co). 

Note that the variational characterization of the eigenvalues yields 

(0-3) Ak (9i) < Ak (LO) vk > 1. 
Our first result is the following 

Theorem 0.2. Assume that there exist nonnegative integers s, k with s > k + 1 
such that A satisfies 
(0.4) As (Q2) < A < Ak+ I (QO) 
Then there exist at least (s - k) distinct pairs of nontrivial solutions ?u,j1, 
?AUi2 . u.s., ?Ui to (0.1)-(0.2) . Moreover, if q is the multiplicity of Ak+1 (Io), 
then the above families can be selected in such a way that 

(i) 
lim IUA'12 = +0, k +1 <l<min{s, k+q}, 

and 
(ii) IIU IIL2 remains uniformly bounded on A satisfying (0.4) for all 1 satis- 

fying k+q <? <s, in case that q <s-k. 
Observe that among the assumptions of the above result we may also include, 

without loss of generality, 

As+ (Q) > is(Q) and Ak(Qo) <)Ak+1(QO), 

in which case the number of families predicted by the theorem becomes maxi- 
mal. 

Let us notice that if the eigenvalues of lo are simple, this result provides, for 
each k > 1, a family of pairs of nontrivial solutions ul, defined for Ak(fi) < 
A. < Ak (lo), which blows up in L2-norm as ) approaches Ak( 2o). 

It is natural to ask what happens if ) does not belong to any interval of the 
real line covered by the above theorem. It is maybe a little surprising that a full 
answer is possible in this situation: no nontrivial solution of (0.1 )-(0.2) exists. 

Theorem 0.3. Assume that ) satisfies, for some k > 1, 

Ak (Q0) < A _< Ak +I(l) - 
Then (0.1 )-(0.2) possesses only the solution u _ 0. 

The proofs of Theorems 0.2 and 0.3 are based on variational arguments 
applied to the functional 

(0.5) JA(U) = 2i IVuI2-u2 +p 1 L hIuIP+' 

defined on the Banach space 

(0.6) X = {u E Ho(Q)l j hujP+1 < +oo} 
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4842 M. A. DEL PINO AND P. L. FELMER 

endowed with norm 

(0.7) llullx= (j IVuI ) + ( hIuIP+l)P+l 

It is standard to check that JA is of class C1 on X and that its critical points 
correspond exactly to the solutions of (0.1)-(0.2). We should remark that the 
positive solutions correspond precisely to global minimizers of this functional 
as established in [3]. If A > Al (n0) the functional becomes unbounded below. 
We will take advantage of the even character of the functional JA in order to es- 
tablish existence of multiple critical points under the assumptions of Theorem 
0.2. Properties (i) and (ii) will follow from appropriate min-max characteri- 
zations of the associated critical values. Actually, these characterizations give 
that JA(U) -0 c as A approaches Akk+I (Qo), in case (i) and remains locally 
uniformly bounded for A in the range given by (ii). 

On the other hand, the result of Theorem 0.3 actually holds true for a much 
larger class of nonlinearities. In particular, no symmetry is required. See Re- 
mark 1.1 below. 

The rest of this paper will be devoted to the proof of the above results. Its 
outline is as follows. In ? 1 we prove the nonexistence result of Theorem 0.3. 
In ?2 we show that JA satisfies the Palais-Smale condition for any value of A, 
a necessary step for the proof of Theorem 0.2, which we carry out in ?3. 

In what remains of this paper X will always denote the space given by (0.6) 
with its associated norm. In the space Ho' (Q) we consider the usual inner 
product 

(, +) = | VfV+, #, XE Ho'(Q), 

and denote by 11 * I IH its associated norm. Correspondingly, we denote by 11 - IIL2 
the usual norm in L2(Q). 

We also choose orthogonal bases of Ho (Q) and H. (n0) respectively denoted 
by {JJ},1 and {+o}90 such that yi is an eigenfunction associated to Aj(Q) 
and q$ an eigenfunction for Ai(Qo), normalized so that II0ilIL2 = Ik1tiIIL2 = 1. 

1. PROOF OF THEOREM 0.3 

In this section we shall prove that if for some k > 1 one has 
(1.1) Ak(Q2o) < A <? Ak+I (Q), 
then no nontrivial solution of (0.1)-(0.2) exists. We begin with a preliminary 
result. 
Lemma 1.1. For any e > 0 there exist functions: 

(a) y/e, /2e y/ke E Ho'(Q) such that IIVi - yrIIH'1 < e for i= 1,...,k 
and 
(1.2) SPanfl{q,. **, k} n spanf l{ k,** }' = {0}, and 

(b) Xl , ...,$ O E H.((Qo) such that II i - 0 IIHO < e for i= 1,...,k 
and 
(1.3) span{4?, .. ., k} n span y/l, * , }1 = {0}. 

Here, I denotes the orthogonal in Ho' (Q)). 
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Proof. First we prove (a). We need to choose functions ?1, *--, with 
IIiIH < e such that if we set q/if = yi + 1i , then the matrix 

AC = {(Y'if, j)}li,j 

is invertible. Observe that we can find numbers Aij with E j j A; arbitrarily 
small, so that the matrix with coefficients (yi , 4j) + ij is invertible. Let us set 

-E _ )qij,j . For appropriately chosen Aij, the ?1e defined in this way will 
clearly satisfy the desired properties. 

For the proof of part (b), we need to find functions n,..., E E H1 (Q2o) 
with ?jnljH' < e such that the matrix with coefficients (y/j, qj + nje) is invert- 
ible. Note first that the matrix with coefficients fao y'yi/j is invertible. Indeed, 
this is a consequence of the fact that the functions yg1, ..., yvk are linearly 
independent on Q20, as follows from the unique continuation property for a 
linear combination of them. Now choose functions @1,..., @k E Co (Qo) 
such that the matrix with coefficients ffQ iVj~j is still invertible. Finally, as in 
part (a), ni defined as some linear combination of the @/j's with sufficiently 
small coefficients will satisfy the desired requirement. 0 

Proof of Theorem 0.3. First we consider the case 

Ak (Q0) < A < Ak+ 1 42) 

For a small number e to be chosen, we consider functions y, . Yk- as in 
Lemma 1.1, part (a). Let us set V = span{Xlb, ..., 0} and 

Y = ly Ei X(y~ Wit) = 0, i =1, ... } 

For v = Ek tiqi and y E Y we see that 

i=1~~~~= 
JA(V + Y) = JA(Y) + E (Ai(!Qo) -A) + Eti /(VoiVy - Aiy). 

Let u = v + j be a cntical point of JA . We will show that u-O. To do this, 
we see that, for each fixed y E Y, the functional v JA (v + y) has a unique 
critical point v = w (y) = Ek t1(y)4i where 

(1.4) ti(y) = o ;voXiQvy AAfiy, ,.. k. 

Thus, we must have v = w(j). Moreover, y must be a critical point of the 
functional 

(1.5) y21' JA(w(y)+y) = JA(y)+ E (VOVy -A4oy)2 

We will check that the above functional is strictly convex if e is chosen suffi- 
ciently small. To do this, it clearly suffices to show that the quadratic functional 

(1.6) hI(Y) = j jVyj2 _ A jyj2 
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is strictly convex on Y, which is equivalent to verifying that IA(Y) > 0 for 
y :O. Let j7= EkZI(yVi)i, x=y-j7. Then IA(y)=IA(Y)+IA(x), and 
since A < Ak+I (9?), we have 

(1.7) IA() ? ( 
A 

- A (S2)) IIXII12l + ( 
A 

- (Q)) IIII7*- 

But 
k k 

(1.8) |1Y712I = ZI(Y, v1i)12 =Z (y |, _,V-ie)12 < ke2IlyII1, 
i=l i=l 

and hence 

(1.9) IIxIIH, = IIYII, - IIYII2 > (1 - kE2)11y112 

Combining (1.7), (1.8) and (1.9) we obtain, for e sufficiently small, 

IA(Y) > O if y # O. 

It follows that the functional (1.5) has y = 0 as its unique critical point, so 
that x = 0 and hence u = 0, as desired. 

Next let us assume that A = Akk(Q2o) and let q be the multiplicity of 2k( 2). 
In this case, for each y E Y, the functional v ?-4 JA(y + v) has a critial point if 
and only if 

| VOVy -A oy = 0, k <1 < k-q+ 1. 

And in such case the critical points are given by the q-parameter family 

k-q k 

vs(y) =Eti(Y)Oi + E Sioi, s= (Sk-q+l X*--XSk) E R 
i=l i=k-q+l 

where ti(y) is as in (1.4). Then if ui = v; + j is a critical point of JA , then 
v= vs(9) for some s E Rq , and j must be a critical point of the functional 
y -- JA(y + vs(y)) . But, similarly as in the previous case, an appropriate choice 
of e yields that y = 0 is the only critical point of this functional. Thus, 
U = EZ=k-q+ 1i is a critical point of JA and hence satisfies 

(1.10) Au + Ak(o)i = O in n. 

The unique continuation property of the solutions of (1.10) yields that ui = 0, 
as desired. 

It only remains to consider the case A. = Ak+1 (a) . Let l, ..., 0 be as in 
Lemma 1.1, part (b) and consider the decomposition X = V E Y where now 
V = span{Xl, ...-, q'}, and 

Y={yEXI(y, Vi))=O, = 1,...,k}. 
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MULTIPLE SOLUTIONS FOR A SEMILINEAR ELLIPTIC EQUATION 4845 

For v = Ek=l tio5 and y E Y we now have that 
k t2 

(1 11) ~~JA(V +Y)= JA(Y)+ , 2(Ai (QO) -A) 
i=l 

i (JI V?b1VY A01Y 
k k 

( 1. 12) + 2E E ti tj oij (E) 
i=l j=l 

where 
oij(e) = J V(qi + ni )Vnj - )(qi + ?)j 

with tE = q$ - E. From the choice of the functions cb in Lemma 1.1, part 
(b) we certainly have that lim o oij (e) = 0 for all 1 < i, j < k. Recalling 
that, for 1 < i < k, Ai (o) - A < 0 we see that for E > 0 sufficiently small, 
as in the previous cases, ui = v + j will be a critical point of JA if and only if 
vD = w(y) = Ek ti(y)? with t(y) = (tI(y), *--, tk(y)) given by 

t(y) = -(D + O(e))>-'b(y) 

where D = diag(Ai(fo) - A), 0(e) = (oij(e))ij and b(y) = (b1(y), * , bk (y)) 

is the vector with components 

bi(y) = j Vof4Vy - A)qy. 

Moreover, j is a critical point of the functional 

(1.13) y ~ JA(w(Y) + Y) = JA(Y) - 1b(y)T(D + 0(e)) Yb(y). 

But this functional is convex since fa IVy - A IyO2 > O and D + O(e) is 
negative definite for E small enough. Thus, its critical points are all minima 
and then for j, a minimum of (1.13), we have 

| Vj12 -A 1i12 = ?. 

Hence jP = Zi= 'i/'k+i for some = (t, ... , tq) E R , where q is the multi- 
plicity of Ak+l (a). Also, at the minimum j we have 

11 Lh5P+l = 0; 

hence j has its support contained in QO. The unique continuation property 
of the eigenfunctions { y/i} thus yields y = 0, and therefore ui - 0 as desired. 
This concludes the proof. 0 

Remark 1.1. The preceding arguments actually apply to the more general prob- 
lem 

(1.14) Au +Au = h(x)f(u) in Q, 
(1.15) u=O onaQ, 
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where we assume that f is locally Holder continuous, nondecreasing and such 
that uf(u) > 0 for u 5 0. In fact, exactly the same proof yields that if 

Ak(QO) "< A Ak +I (Q) 
then (1.14)-(1.15) possesses only the solution u- 0. 

2. THE PALAIS-SMALE CONDITION 
The proof of Theorem 0.2 involves variational arguments applied to the func- 

tional JA defined on the space X given by (0.6) as 

IAU IVU12 
_ AU2 + 

I 
hUP1 

In this section we will show that the Palais-Smale condition holds for JA for 
any value of A. 

Lemma 2.1. JA satisfies the Palais-Smale condition for any A; that is, any se- 
quence {u,I} C X such that JA(u,) is bounded and JA(u,) -- 0 in X* possesses 
a convergent subsequence in X. 
Proof. As a first step we show that the sequence {u,} as in the statement of 
the lemma is bounded in X. Assume Jk(u,) -+ C E R or 

(2-1) I2 
U 1 vn2- n 

_ 
pU +I1 hjUn1P+l = C + o(l). 

We also have 

(2.2) jVUnV -Aj Un5+j hlunlP1un 0 =o(1)llllx 

for all X E X where o(l) -+ O uniformly on XS. 
Let us assume, by contradiction, jlunllx -- +oo. Then, from (2.1) we see 

that, for some c > 0, 

(2.3) hIUnlIX < CIIfUnIL2 
for large n . 

Let us set fn = unlIlulhIL2. Then, from (2.3), &n is bounded in X and 
hence, we may assume i' -- &', weakly in Ho (Q2) and strongly in L2(Q) to 
some & E X such that 1IISIL2 = 1. 

Choosing X = un in (2.2), combining with (2.1) and using (2.3) we obtain 

(2.4) (2 P 1) n lun = 0(1)jUL2. 

It follows from (2.4) and Fatou's Lemma that 

(2.5) jhl&slP+1 = 0 

and hence &' = 0 a.e. on fl\lo, that is, & E Hl(lo). Fix 0 E COOO(), and 
observe that 
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It follows from (2.2), (2.5) and (2.6) that 

jI vuVb-Rj u = O. 

Hence uz is regular and satisfies 

(2.7) Au' + l = 0 in Q. 

But =_ 0 on KI\Q0 ; thus the unique continuation property of the solutions of 
(2.7) implies u _ 0 on Q. This is a contradiction since I|I|UIL2 = 1; then {u,n} 
is bounded in Ho (Q). Thus we can assume that the sequence {u,} is weakly 
convergent in Ho (2), strongly in L2(Q), and also a.e., to some u E Ho (2) . In 
order to show that the sequence converges in X it suffices to show that uIIulix 
converges to IlulIx. 

From (2.2) with q= u, we obtain 

(2.8) limj IVu,12 + hlu,lP+1 =i u2- 
n-oooQ 

Next, writing JA = I + K where 

I(u) = 2jIVui2+p+ 1 LhIuIP+1 

and using the convexity of I we see that for every v E X 

(I'(Un) - I'(V))(Un- v) = (-K'(Un) + o(l) - I'(v))(un - v) > 0- 

Choosing v appropriately and letting n -+ oc we conclude that 

(2.9) j 1VU12 + JhIuIP+1 = i ju2. 

On the other hand, we have 

|1|VU12 < liminf |n2 jIVUI2?nli*o jIVUn I 

and 
jhIuIP+1 < liminf hIunlP+ I 

From these inequalities and (2.8), (2.9), we finally obtain that IIun lIx converges 
to IlulIx, as desired. O 

3. PROOF OF THEOREM 0.2 
In this section we will prove that the functional JA defined in (0.5) possesses 

at least s - k pairs of critical points when we are under the assumption 

(3.1) As (Q) < A<Ak+ I PO) 

with s > k + 1. 
For this purpose we will use a variant of a result of Clark [2]; see also Ra- 

binowitz [7]. Actually the result we need is a version of a theorem of Benci, 
Theorem 0.1 in [1]. For the reader's convenience we recall the notion of the 
genus, enumerate its main properties and sketch the proof of the critical point 
theorem. 
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We consider the Banach space X. We denote by 9' the class of closed subsets 
A of X\{O} that are symmetric in the sense that x E A implies -x E A. If 
A E 9, then the genus of A is k if there is a continuous odd function 

vo: A -+ Rk\{O} 

and k is the smallest integer with this property. If such a k does not exist, 
we say that the genus of A is oo. We write y(a) for the genus of A. In what 
follows we denote by N6(A) the uniform 5-neighborhood of the subset A of 
X, i.e. N = {x E Xlllx - All < Id}. 

Proposition 3.1. If A, B E 9, then: 
(1) Normalization: If x 7? 0, then y({x} U {-x}) = 1. 
(2) Monotonicity: If (o: A -- B is a continuous oddfunction, then y(A) < 

y(B) . In particular if A c B, then y(A) < y(B). 
(3) Subadditivity: y(A U B) < y(A) + y(B) . 
(4) Continuity: If A is compact, y(A) < oc and there exists 3 > 0 so that 

N3 (A) E g and y(A) = y(N3 (A)). 
(5) Dimension: If A E g, ? is a bounded neighborhood of 0 in Rk, and 

there exists an odd homeomorphism between A and d9Z, then y(A) = k. 
For a proof of these properties we refer the reader to [7, Chapter 7]. Using 

these properties the following lemma can be proved (see Lemma 2.6 in [1]). 

Lemma 3.1. If A E g' is compact and Y is a subspace of X offinite codimen- 
sion, then y(A n Y) > y(A) - codim(Y). 
Proof. Let V be a vector subspace of X so that X = V E) Y and consider 
P: X -- V the projection onto V. Since A is compact, the continuity property 
implies that there exists 3 > 0 so that y(A n Y) = y(N3(A n Y)) . Put N = 
Nj(A n Y). 

Denote by s the codimension of Y and assume that 

y(A n Y) < y(A)-s. 

If we put Al = A n N and A2 = A\N, then 0 V P(A2) and then, by the 
monotonicity and dimension properties of the genus, 

y(A2) < y(P(A2)) < s. 

On the other hand, using monotonicity and subadditivity we obtain 

y(A) < y(Al) + y(A2) < y(N) + y(A2) < y(A) - s + s, 

a contradiction from which the result follows. o 

Next we formulate the critical point theorem to be used in our specific situ- 
ation. 

Theorem 3.1. Let X be a real Banach space. Let I: X -+ R be a C1 functional 
satisfying the Palais-Smale condition. Assume further that 

(1) I is even and I(O)=0. 
(2) There is a closed subspace Y of X so that I is bounded below on Y. 
(3) There is a closed subset S E ' and a constant b > 0 so that I(w) < -b, 

VW E S, and 
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(4) If 50'h = h(S) n Y, then y(50h) > m for all functions h in the class of 
functions 

IF = {h: S -, X\{O}Ih is continuous and odd}. 
Then the functional I possesses at least m pairs of critical points and their 
critical values have a minimax characterization (see (3.2)). 
Proof. Since the proof is rather standard, we will be sketchy. First we define a 
class of sets. Given 1 < I < m we consider the classes X defined as follows: 
A Es if and only if A = h(S)\K such that h e f, y(K) ? m - l and K e F 
is compact. By the monotonicity property of genus we have that Am C Am -I C 

c- Ca1 - 
For 1 < I < m we define the numbers 

(3.2) cl = inf sup I(u). 
AES UEA 

Since the classes X are ordered, we have cl ? c2 < *-- < cm. First we see 
that cl > -oo. From the intersection assumption (4) and the subadditivity 
property we have that, for 1 < I < m, A E V implies A = h(S)\K and 
y(A n Y) = y(,5'h\K) > 1. This and assumption (2) yield cl > -o0. It is also 
clear that cm < 0, since we can take S E S?m . In order to show that the numbers 
cl are critical values we proceed from here in the standard way. Only note that 
the Deformation Lemma will provide an odd homeomorphism ?1: E -+ E and 
if h E F, then ?I 0 h also belongs to IF. See [7]. 0 

In what follows we will prove that in our situation we can use Theorem 3.1. 
For a small number e > 0, to be fixed later, we choose VI'k, -, as in 
Lemma 1.1, part (a) and set 

Vi = span{, ..k., 
l 

It } and V2= span{yfk+l, * ,fs}. 

Also we define 

Y= {YEXIj VyVi =O,i=1,...,k}. 

Then, by construction, we have that VI n Y = {O}, and hence X = VI e Y . For 
small e > 0 we also have VI n V2 = {0}. 
Lemma 3.2. The functional JA defined in (0.5) satisfies 

(1) JA is bounded below in Y, and 
(2) There exist numbers b, p > 0 such that 

JA(w) < -b Vw E V1 E V2 with llwIlx = p. 
Proof. In order to prove (1) it suffices to verify that 

JA(U) -- +00) if I|UIlHoI 
-- +00, u E Y. 

Assume the contrary, that is, the existence of c > 0 and a sequence {u,} c Y 
with Iunl1IHO -l +oo so that JA(un) < c, namely 

(3.3) 2JIVunI2-u+ p + 1 | hl un IP+ <c. 
We observe that IIuflIL2 -- +oo and if we let in = unlIIuflIL2, then 

(3.4) 2 (|V&nL2 n p + 1 f h Ip+P < c 12(V~n2-~ IuLIK ( 1 k?'Il/ Un12 
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Hence u', is bounded in HI (Q) and we may assume that u', -u t' weakly 
in HI (Q2) and strongly in L2(Q) . From (3.4), using Fatou's Lemma we ob- 
tain fa h IuIP+I = 0; hence ut E Hl(Qo) . But ut also belongs to Y, the Ho'- 
orthogonal of span{4l), ... , kl }, hence to the He -orthogonal of this space. On 
the other hand (3.4) also yields 

I Vf412 <1 

which, by the variational characterization of the eigenvalues, implies A > 
Ak+I(20) . This contradicts our hypothesis (3.1) and (1) is therefore proved. 

Next we prove (2). Let 
S 

w = Zti(vi + 171) 
i=l 

where t7, = riE - yi if i = 1,..., k and t7i = 0 if i = k + 1,..., s. We 
compute 

(3.5) (w) = Et(i() - ) + hlwlP+ 

(3.6) + Z E E titj] 
- V(ii + - (i + )j} 

1=1 j=1 

Hence, letting Iw 12 Es= t2 we obtain 

(3.7) JA(W) < -C1 WI2 + C2eIW12 + C31WIP+1 

for certain positive constants cl, c2 and C3, independent of e. From (3.7), 
the result of (2) readily follows after choosing E sufficiently small. 0 

In the rest of this section we will denote 

Sp = {w E V1 E V2IIIwIlx = P} 
where p is chosen as in Lemma 3.2. First we define the class of functions 

r = {h: Sp --+ X\{O}Ih is continuous and odd}. 

We note that if i: X -- X is an odd homeomorphism, then n o h E r for all 
h E r . 

The next lemma gives an intersection result that implies hypothesis (4) in 
Theorem 3. 1. 
Lemma3.3. For h E we let 5h'h h(Sp) n Y. Then y(90h) > s -k. 
Proof. Since Sp c V1 ED V2 is finite dimensional, A = h(Sp) is compact. By 
the dimension property of the genus, y(A) = s. Then Lemma 3.1 gives the 
result. 0 
Proof of Theorem 0.2. Lemmas 3.2 and 3.3 imply that Theorem 3.1 is applicable 
to the functional JA when A satisfies (0.4). Thus there exist pairs of solutions 
?zUk+1, =1,...,s-k,such that 

JA(uk+1 )c = (A) = inf sup JA(u), = 1,...,S-k, 
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where the class of sets X was defined in the proof of Theorem 3.1. Let q be 
the multiplicity of Ak(0o) and denote q = min{q, s - k}. It is easily checked 
that the validity of assertions (i) and (ii) of Theorem 0.2 will follow if we prove 
the following two facts: 

Claim 1. c)(A) -- -cc as A `Ak k+I(00o)- 
Claim 2. If I satisfies q < 1 < s - k, then there is a real number c such 

that cl (A) > c for all A satisfying (0.4). 
For the proof of Claim 1, we need some estimates for JA which we carry out 

next. In the rest of the proof we will assume q = q < s - k, the other case 
being similar. 

Note that the functions 1k+, ... k+q are not solutions of the equation 

(3.8) -Au = Ak+l (Qo)U in Q, 
(3.9) u = 0 on aQ; 

hence the functionals fi E H-1 (2), i = 1, . .. , q, defined as 

(3.10) f(o) = j Vqk+iVVp-k+I(20o)k+io V(P E Ho(Q2) 

are linearly independent. This implies the existence of functions v1, ..., vq E 
Hot (Q) so that the matrix A = {aij} defined as 

(3.11) aij = fi(vj), 1 < i, j < q, 

is invertible. Moreover, we may assume without loss of generality that the 
functions vj satisfy 

(3.12) jVoiVvj =O, 1 < j < q 

and 1 < I < k , k + q + 1 < I < s. 
Let us consider wI E span{ql5, ..., qk} and w2 E span{lk+q+l, *--, . 

For 0, t E Rq with components Oi and ti, 1 < i < q, define v = ei 0vi 
and u = Zi-= t We want to estimate JA(W1 + V + U + W2). Using the 
definition of JA we find that 

(3.13) JA(WI + V + U + W2) = + A 

where 

(3.14) Ai = JA(W1) + JA(W2) + JA((V) (wI + w2)v, 

and 

(3.15) 2 =k+1(20O) ItI2+ E itj IVViVj+k f- )Vij+k. 

Using the matrix A defined in (3.1 1) we rewrite this last term as 

(3.16) 7 = + 2 |2tj2 + (Ak+l I l) E E Oi t |iOj+k + (d, A t) 
i=1 j=1 
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where 1 and (-,*) denote the usual norm and inner product in Rq, and Al 
represents the transpose of A. Then, assuming that 6 is bounded, from (3.16) 
we obtain 

(3.17) 2, <Ak+1 92) (3.17) .2< iki-- (ItI2 + a, jtj) + (6, ATt). 

Here and henceforth we use the notation a,, a2, etc., to designate different 
positive absolute constants. On the other hand, assuming that 6 is bounded, 
from (3.14) we have that 

(3.18) o < Ak2(Q) A IlIW2I2 +a,1fw2f112 +a2jfWl + W2IIL2 +a3 

Next we will find an appropriate function h in r and a set K with y(K) > 
(s - k) - q in order to estimate the critical value cq (A) when A is close to 
Ak+I (2O) . Let us fix a number a > 1. We define the function ha: V1 e V2- X 
in the following manner. For ac E R, 1 < i < s, we put 

k k+q s 

Vl- EaRi vi, V = Z aiVIi, V2= E cxivi 
i= 1 i=k+ 1 i=k+q+1 

and define 
(3.19) ha(vl+U +v2) = a 12wI +v+u+w2 
where 

k k+q k+q s 

WI= E ?ii V= V fliVi-k, U= aqi$i, W2= E aii 
i= 1 i=k+ 1 i=k+1 i=k+q+ 1 

and the coefficients fi are given by 
q 

(3.20) fli = - ajiaj. 
j=1 

Next define, for a small v > 0 and ha as in (3.19), the compact set 
(3.21) Kv = {ha(vl+v + V2)1IIIv +v + +V2IIX p, IIV2IIX > V} 
It is easy to see that y(Kv) = y(KI ) and then y(Kv) =s - (k + q) = (s - k) - q . 
On the other hand, for z E h,(Sp)\Kv, equations (3.17), (3.18) and (3.20) 
imply that 

JA(Z) < (1k+ 1(QO) - A)a cF -aa2 1v12X 
(3.22) + (Ak(io) - 1_)ojjV1 112L2 + all2a3 + a4. 
If llUllx > p/4, from (3.22) we find that 

(3.23) JA(Z) < (Ak+1 () - A)a1 Ic2 -_ opa2 + a3Co1/2 + a4 

and if fLUIIx < p/4, A > 1 > 2kk(Q2o) and v < p/4, we have from (3.22) that 

(3.24) JA(z) < (Ak+I (Q0) - A)a, 12 _ a2CP2 + a3a1/2 + a4. 
Now, combining (3.23) and (3.24) we observe that an appropriate choice of a 
will yield 

JA (Z) < _ b2 _ + b2 VZ E ha,(Sp)\Kv, 
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for A close to Akk+I (Q2o), where the positive constants bI and b2 may depend 
on p put not on A. The definition of Cq () as a minimax implies that 

(3.25) Cq(A) < sup{JA(z)Iz E hcy(Sp)\Kv} 
from which the validity of Claim 1 follows at once. 

Next we prove Claim 2. If we define 

Yq {yExI VyVqi =0, 1 < i <k+q 

then the same argument given for the proof of Lemma 3.3 will imply that 

(3.26) y(5?h,q) >s-(k+q) VhEF 

where 50h,q = h(Sp) n Yq . Consequently, for I > q + 1 we will have that 

y(h(Sp)\K n Yq) > I - q > 1. 
Thus, for every A E X there is y E A such that y E Yq. Following the 
estimates that led us to Lemma 3.2, part (1) we will find that JA is bounded 
below by a constant independent of A, for A satisfying (0.4). Thus cl(A) > c 
for all q + 1 < I < s if A < Ak+i(Q2o), as desired. Thus Claim 2 is established, 
and the theorem follows. 0 

Remark 3.1. It should be noticed that the above proof does not require ho- 
mogeneity of the nonlinearity, and will therefore apply to the more general 
problem (1.14)-(1.15) as long as f is odd, increasing and satisfies appropriate 
polynomial growth restrictions near 0 and 00. 
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