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128 M. DEL PINO AND P. L. FELMER

RESUME. - Dans cet article, on considere 1’etude des solutions de ondes

permanentes d’une equation de Schrodinger nonlinéaire. Ce problème se
reduit a la recherche de solutions non negatives de

avec une energie finie. Ici c est un parametre petit, SZ est un domaine lisse
qui peut etre non borné, fest une fonction superlineaire appropriee et V
est un potentiel positif borne hors de zero.

L’objectif de cet article consiste a obtenir des solutions a pics multiples
dans le cas de puits multiples. Nous trouvons des solutions qui montrent
une concentration pour tout ensemble choisi fini de minima locaux du

potentiel, qui peuvent etre degeneres.
La demonstration se base sur des arguments variationnels, ou une methode

de penalisation est developpee pour identifier les solutions cherchees.

© Elsevier, Paris

0. INTRODUCTION

The nonlinear Schrodinger equation in 

has been object of extensive research in recent years. In this paper we

consider the study of standing waves of equation (o.1 ), namely of special
solutions of the form ~~(~;. t) = where v(x) > 0. It is

easily checked that a 03C8 of this form satisfies equation (0.1) if and only if
the function 2l ( ~~ ) solves the elliptic equation

The problem we will study in this paper is that of existence of positive
solutions with finite energy to this equation when is strictly positive.
away from zero, and the potential W exhibits multiple wells, namely
several, possibly degenerate local minima. 11, will be regarded as a small
parameter. After absorption of the parameters by scaling, the problem
under consideration may be rewritten as

cle I ’ht.stittrt Analyse non linéaire



129MULTI-PEAK BOUND STATES FOR NONLINEAR SCHRODINGER EQUATIONS

where V > a > 0 in N > 1. In [5], Floer and Weinstein consider
the case N = 1 and p = 3. For a given nondegenerate critical point of the
potential V, assumed globally bounded, they construct a positive solution
r._ to (0.3), provided that c is sufficiently small. This solution concentrates
around the critical point as ~ - 0, in the sense that its shape is a sharp
peak near that point, while it almost vanishes everywhere else.

Their method, based on an interesting Lyapunov-Schmidt finite

dimensional reduction, was extended by Oh in [8], [9] to conclude a

similar result in higher dimensions, provided that 1  p  ~_±2.
Oh restricts himself to potentials with "mild oscillation" at infinity, name-

ly belonging to a Kato class. In case that V is bounded this restriction is

not necessary as noticed by Wang in [14]. Wang also observes that if V
is nonconstant and nondecreasing in one direction, then equation (0.3) has
no solutions which tend to zero at infinity.
The method in [5] and [8] seems to rely in essential way on the

nondegeneracy of the critical points. In [ 11 ], Rabinowitz lifted partially this
requirement introducing a global variational technique to find a solution
with "minimal energy" for all small ~, when 1  p  N±~ and

Rabinowitz’s approach actually covers a broader class of nonlinearities and
the smallness of ~ is not required in case that the limit in the left of (0.4)
is -f- ~c. In [14], Wang established that this least energy (mountain pass)
solution indeed concentrates around a global minimum of ‘T in the special
case of equation (0.3), as c - 0.

In [3], the authors succeeded in proving the local analogue of Wang’s
result. It is shown that if for an open, bounded set one has

then (0.3) possesses solutions ~c~ with just one local maximum, which
concentrates around a minimum of V in A. This local minimum may
exhibit arbitrary degeneracy.

Concerning solutions with multiple concentration points, in [10] Oh

applies the approach developed in [5] and [8] to construct a family of
solutions ~u= with peaks concentrating around any prescribed finite set of
nondegenerate critical points of V when N = 1, and indicates how to

proceed in higher dimensions where 1  p  ~~.
It is the purpose of this article to obtain multi-peak solutions of (0.3) in

the "multiple well case", exhibiting concentration at any prescribed set of

Vol. 15. n ~ 2-1998.



130 M. DEL PINO AND P. L. FELMER

possibly degenerate local minima of the potential, namely on K disjoint
sets A where (0.5) holds.

We will actually consider a more general semilinear elliptic problem in
a smooth domain SZ, possibly unbounded, of the form

The potential V will be assumed throughout this paper locally Holder
continuous and bounded below away from zero, say

We will also assume that f : f~+ -~ l~ is of class Cl and satisfies the

following conditions.

(f4) The limiting equation

possesses a unique solution, up to translation, for any given b > 0.
Our main result for equation (0.6) is the following.

THEOREM 0.1. - Assume that there are bounded domains i, mutually
disjoint, compactly contained in SZ, i = 1.... , K, such that

Then there is an ~0 > 0 such that for every 0  ~  ~0 a positive solution
u~ E H10 (03A9) to problem (0.6) exists. Moreover, u~ possesses exactly K local
maxima x~,i with x~,i in Ai. We also have that ~ infAi V, and

for all x ~ 03A9B~j~ij, where cx are certain positive constants.

Amules de 1’Irrstitrrt Henri Poincaré - Analyse non lindaire



131MULTI-PEAK BOUND STATES FOR NONLINEAR SCHRODINGER EQUATIONS

We observe that no restriction on the global behavior of V is required
other than (0.7). In particular, V is not required to be bounded or to belong
to a Kato class.

On the other hand, the hypotheses on f are milder than those required
in [10]. In particular, hypothesis (f4) is satisfied by a large class of

nonlinearities f including p > 1. See the work in Kwong and Zhang [6],
and Chen and Lin [ 1 ]. Moreover, this assumption can be further relaxed to

(f4’) The mountain pass value in of the energy functional

associated to (0.9) is the smallest nontrivial critical value and it is isolated.
See the remark at the end of §2.
It is interesting to observe the relationship between the result of

Theorem 0.1 and the work by Coti-Zelati and Rabinowitz [2] on multi-

bump solutions in spatially-periodic problems. For the case of equation
(0.3), 1  p  l~r~~’ , and V periodic on each of its variables, it follows

from their results that for a fixed, not necessarily small ~, solutions in

with exactly K bumps exist for each integer K, provided that
the associated energy functional satisfies the so-called (*) nondegeneracy
condition. This assumption states that all critical points at energy levels in
~c. c + 8) are isolated, where c denotes the mountain pass minimax value of
the associated functional, and 8 > 0. These solutions have energy level close
to Kc. On the other hand, Theorem 0.1 is applicable to construct a K-bump
solution in this situation when 6- is small, just assuming that V possesses
one local minimum. We do not know whether (*) holds in this case.

The proof of Theorem 0.1 is variational, and uses ideas in the spirit of
those in our previous work [3], where a penalization method enabling the
identification of local mountain passes was developed. Roughly speaking,
the main argument there consists of defining a suitable modification of the
nonlinearity for which the mountain pass theorem is directly applicable to
the associated energy. Then, taking advantage of the energy-minimality of
the mountain pass solution, one finally shows that it becomes a solution to
the original problem with the desired characteristics when E is sufficiently
small.

Our current framework is more delicate, since the solutions we look for
are at higher energy levels. They are not just rough mountain passes, so
that energy-minimality is lost. We are able to overcome this difficulty by
adding a new penalization term. In fact, we introduce a modification of
the nonlinearity similar to that in [3] in order to prevent the occurrence of
concentration outside the open sets and then a new term which provides
a "balance" among the energies inside the distinct in order to obtain

exactly K-bumps. The solution is captured as a simple minimax quantity

Vol. 15. n ~ 2-!998.



132 M. DEL PINO AND P. L. FELMER

on a class of K-dimensional maps, and eventually shown to be a solution
to the original equation with the appropriate features.

Finally, we would like to mention that the construction of solutions of
(0.3) with an infinite number of bumps (hence not with finite energy)
has been recently carried out by Thandi [13] in the nondegenerate case.
Infinite-bump solutions in the framework of [2] were found by Spradlin
in [12].
The organization of this paper is as follows: In §1 I we define the

modification of the functional needed for the proof of Theorem 0.1, and
prove some preliminary results. §2 is devoted to the proof of Theorem 0.1.

1. PRELIMINARIES

This section is devoted to the definition and preliminary study of the
penalized functional.
We introduce an appropriate penalization so that the concentration outside

the sets 11~ is avoided and an adequate balance in the concentration is

achieved. Then we prove that the penalized functional satisfies the Palais
Smale condition (P.S.), and we set up the minimax scheme in order to obtain
critical points of it. We provide next some estimates on the critical points.

In the framework of Theorem 0.1, associated to equation (0.6) we have
the "energy" functional

which is well defined for u G H, where

H becomes a Hilbert space, continuously embedded in when

endowed with the inner product

whose associated norm we denote 

In the definitions above, and in what follows we assume that f , V and Q
satisfy the hypotheses of Theorem 0.1, and that the function f is extended

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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as 0 on the negative axis. Under those assumptions it is standard to check
that the nontrivial critical points of ~~ correspond exactly to the positive
classical solutions in of equation (0.6).
Next we define the first modification of our functional. Let 0: be as in

(0.7), and let us choose a > 0 so that

This choice of a can be made since (fl) and (f3) hold. Let us set

and define

where A = ~Ki=1i, with the bounded domains Ai as in the assumptions
of Theorem 0.1, and x,1 denoting its characteristic function. It is easy to

check that (fl)-(f3) implies that g defined in this way is a Caratheodory
function and it satisfies the following

Here we have denoted G(x, ~) _ ~ fo T)dT.
Now we define the modified functional J~ : j~f -~ R as

The functional J~ is of class Cl in H and its critical points are the positive
solutions of the equation

Next we introduce the second modification of the functional. For this

purpose we assume, without loss of generality, that the sets A~ have smooth

Vo). 15. rr 2-1998.



134 M. DEL PINO AND P. L. FELMER

boundary. We define the numbers b.l = E and we let

8 > 0 be so that

We will need the ’limiting functional’ I b : -~ f~ defined as

whose mountain pass critical value will be denoted by c(b) . Critical points of
Ib are the solutions of (0.9). We define Ci = and (Ti = c(bi + 8) - ci.
We assume that

This can be achieved by making Ai and 8 smaller if necessary. It will be

convenient to consider mutually disjoint open sets Ai compactly containing
Ai, for all i = 1,..., K. Then we define on H the functional

and the penalization

The constant M will be chosen later. Finally the penalized functional
E- : H ~ f~ is defined as

The functionals ~~ and P are of class C1 and so is E~. We show next
that E~ has good compactness properties, that is E~ satisfies the Palais

Smale condition.

LEMMA 1.1. - Let {un} be a sequence in H such that E~(un) is bounded
and E’~(un) ~ 0. Then un has a convergent subsequence.

Annales de l’Institut Henri Poincaré - Analyse non lindaire
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Proof - We first prove that the sequence is bounded in H. Using
property (g3) we easily see that

from where, using (g3) again, we obtain

In a similar fashion we find

We observe that (1.13) still holds if we replace B by any number 8 E (2, B).
Then, for the penalization functional we have

From where there exists a constant C so that

We observe that the constant C is a multiple of 

Thus, it follows from (1.12), (1.15) and the assumptions on that

this sequence is bounded as desired.

Let us choose a subsequence, still denoted by weakly convergent
to u in H. This convergence is actually strong. Indeed, it suffices to show

that, given q > 0, there is an R > 0 such that

where BR denotes the ball with center 0 and radius R. We may assume
that R is chosen so that A c 

Vol. 15, nv 2-1998.



136 M. DEL PINO AND P. L. FELMER

Let r~~ be a cut-off function so that 1JR = 0 on = 1 on

S2 ~ BR.O  rlR  1 and  Since is a P.S. sequence,
we have that

where on (1) - 0 as n -~ oc . Then, i s bounded

We conclude that

from where (1.16) follows. D

The previous lemma makes possible to use Critical Point Theory to

find critical points of the functional E~. We will formulate an appropriate
minimax problem for E~.
We start defining a class of functions r over which we minimax. A

continuous function 03B3 : [0,1]K ~ H is in F if there are continuous

functions gi : [0, 1] ~ H, u = 1, ... , K such that

(i) C Ai for all T E [0,1],
(ii) ~(T~, ..., Th ) _ ~~1 ~ gl (Tl,~ for all (Tl, ..., Th’~ ~ (~[~, l,Ii ~
(iii) g1 (0) = 0 and ~Ic (g~ (1))  0

(iv) E~ (’Y(t) )  ~ ‘~ (~ ~ c~ - ~r) for all t E c~~0, l~ ~ ,
where 0  z = 1, .... K ~ is a fixed number.

We can define the minimax value associated to the class r as follows

In the following lemma we provide the key estimates on the minimax value
C~. In particular we show that F is nor empty.

LEMMA 1.2.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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and in what follows, we denote by o(1) a quantity approaching zero
-~ 0.

The proof of this lemma will require the study of an auxiliary Neumann
problem. We may consider the the functional J1 on Hl (11i ) . Let d~ be the
mountain pass value of namely

where F, is the class of all continuous curves : [0, 1] -~ H1 (11.~, ) such
that ~yl (0) = 0 and  0. Then we have

LEMMA 1.3. - The mountain pass critical value df of the Neumann
problem satisfies

For the sake of continuity in the arguments, we postpone the proof of
this lemma to the Appendix.

Proof of Lemma 1.2. - Since ci is the mountain pass value for the limiting
functional given any 8 > 0 there exists a path 03B3i : [0, 1] ~ H1 (RN)
such that ~y.z(0) = 0, Ibi (~y2(1))  0 and

We assume from now on that 8  miry ~, Next, given ~ > 0, we
define the path §.1 : : [0,1] -~ H as

Here x.i E Ai satisfies b.L = Y(xi), and ~i is a C°° cut off function with

compact support in A,, taking the value 1 except for a small neighborhood
of It is not hard to check that

with o( 1 ) independent of T E ~0, 1].
Now we define the continuous function 1’0 : ~0. l~ ~’ -~ H as

Vol. 15. nr 2-1998.



138 M. DEL PINO AND P. L. FELMER

The function fO belongs to F. In fact, properties (i)-(ii) are trivially true,
and (iii)-(iv) are satisfied in view of (1.19) and (1.20), when E is small

enough. Thus, the minimax value C’l is well defined as a real number, for
all E > 0 small enough.
We observe that, by the choice of 6 and from (1.19) and (1.20), the

penalization term in jE~ vanishes on for all t G ~0. l~ ~’ .
We also obtain from (1.19) and (1.20), that for small E

so that

As 6 is arbitrary, we obtain the upper estimate C~  ~l~’T ( ~.~ 1 cL + o( 1 ) ) .
We prove the lower estimate next. First we observe that given any r E F

and any curve c(s) joining ~0~ x ~0, with ~T ~ x ~0, T~~’ -1, the path

and then it follows from Lemma 1.3 that

We have an inequality of this form for every Ii = 1,..., K. Thus we can

repeat the argument given by Coti-Zelati and Rabinowitz in [2] in the proof
of Proposition 3.4 to obtain, for every "( G F, the existence of a point
t E ~0 . T ~ ~’ such that

From here, and from the form of ~T‘ outside the A;’s, we have

finishing the proof. D

Annales de l’Institut Henri Poincaré - Analyse non linéaire



139MULTI-PEAK BOUND STATES FOR NONLINEAR SCHRODINGER EQUATIONS

The functional E~ satisfies the Palais Smale condition, the class r is not

empty, and estimate (1.17) holds, then there exits a critical point ~c~ E H
of E~ such that E¿( UE) = CEo
We define the local weight

and then the function

The critical point ~c~ is a weak solution of the equation

so that ~c~. satisfies

for every set 0 ~ 03A9 not intersecting ~(~Ki=1i).
We define the sets ~ = {?/ e A~ = (y e ~ e AJ

and = ~ ~ E E 11.L ~ . We rescale the function ~c~ as

v~(y) = for y E This function v~ belongs to and

then to and it satisfies in a weak sense the equation

and over sets 0, subsets of 5~~. not intersecting the function

~ satisfies

Finally, proceeding as in the first part of the proof of Lemma 1.1, we obtain
from the estimates on C~ given in Lemma 1.2 that

and then for the function v~ we have the uniform H1-estimate

Vol. 15, rr 2-1998.
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2. PROOF OF THEOREM 0.1

In this section we will carry out the proof of Theorem 0.1. Using the
estimates obtained in the previous section, we will show that if M in the
definition of E~ is chosen a priori sufficiently large, then u~ will be a

critical point of the original functional 7~ whenever ~ is sufficiently small.
Toward this end, the following lemma constitutes a crucial step. It tells

us in particular that if M was large then the penalization term P~ (u~ )
becomes zero for all sufficiently small ~.

LEMMA 2.1. - If in the definition of E~ in (1.10) and (l.ll ), M > 0 was
chosen sufficiently large, then

For the proof of this result some preliminaries are required. It is useful to
work with the rescaling of u~ given by Vé, as defined at the end of the last
section. Given R > 0, we denote by the Aé)  R~,
a similar definition has the set The next lemma states that Vc: is

small in H1-norm away from the set ~ = 

LEMMA 2.2. - There exists a C > 0 such that, given R > 0, one has

for all E sufficiently small.

Proof - Given R > > 0, we may choose smooth cut-off functions

0 ~  1 such that

and ]  Then set r~~ = 1 - Using the test function
in (1.24), equation satisfied weakly by ~F, one gets

where w= is given by ( 1.21 ). Observe that w= is uniformly bounded, by a
bound possibly depending on ~~I. Using this, the choice of the fact that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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VE is uniformly bounded in and the definition of j, the desired
estimate (2.2) follows immediately from (2.4). D.

A second preliminary result we will need is given in the following
lemma inspired by the work in [4].

Proof - We begin by showing that uJ  a on {:rl = 0~. Standard

regularity arguments yield that v is in C1 ( f~ ~ ) n ~I2 ( f~’~’ ) . Moreover,
~c ~ ( :z~ ) . Wu ( ~; ) -~ 0 as I -~ ~c .

Using ~- as a test function in equation (2.5), we obtain

But the first summand in the above quantity is zero, while F (.5 ) > F ( s ),
with equality only if s  a. Thus, v(o, ~t;’)  a. Finally, to prove
that  a for x~ 1 > 0, we just consider the test function

cP == (v - in equation (2.5), and the conclusion
0 readily follows. D

Proof of Lemma 2.1. - We will base the proof in an indirect argument.
Thus, assume that (2.1) does not hold, namely that for some sequence
~~ - 0 we have

We will see that (2.7) is impossible provided that AI was chosen sufficiently
large. In fact this is a consequence of the following claim, main step in
the proof: if (2.7) holds, then

Vol. 15, n’ 2-1998.
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We will show (2.8). We start proving that the sequence concentrates
somewhere near more precisely, we show that there exist numbers
S > 0, p > 0 such that

To see this, we first observe that from (2.7), there is a A > 0 such that

then, Lemma 2.2 imply that for all R > 0 large enough

Now assume that (2.9) is false. Then we may assume that for all S > 0

we have

for all S > 0. Moreover, is a bounded sequence in Then

applying the concentration compactness principle (see Lemma 1.1 in [7] or
Lemma 2.18 in [2]), we obtain that

for each R > 0, then, in particular

where s is as in (f2). Using vR as a test function in (1.25), the equation
satisfied we get

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Hence, choosing R and j large enough, we obtain from the above estimate,
an immediate contradiction with (2.10). This shows the validity of (2.9).
Thus, we may assume there is a sequence ?/j G with

Let us now write = + y). Since v~ is a bounded sequence in

we may assume it converges weakly to a v E H~ (l~=~~). Assume
first that

Set ~ == G A-~ and assume that ;r~ 2014~ .c G A~. Since f~ satisfies in

{-~} + A~ the equation

it follows that v satisfies in 

where b = V(x). Moreover, v t. 0, thanks to (2.13). On the other hand,
if  C  we will have that v satisfies an equation of
the form (2.5), so that Lemma 2.3 implies that v satisfies (2.15). In both
cases v is the unique critical point of the functional I~ defined in (1.7),
with b  sup{V(x) x G 1~ i ~  bi + 8. Then we have

On the other hand, elliptic regularity implies, in particular, that vv~
converges strongly in the H1-sense over compacts. Passing to a further
subsequence if necessary, we may find a sequence of positive numbers

-I- ~c such that

Thus, combining (2.7) and (2.16) we find that there exists r] > 0 such
that for all large j

Vol. 15. n ’ 2-1998.
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Using (2.17) and applying a concentration-compactness argument, similar
to that we used above, to the sequence obtained after multiplying by
a suitable cut-off function vanishing on (~~~ ), we will end up with the
existence of an S > 0 and a sequence E 11.1-’ B such that

Thus, we have again, after passing to a subsequence, the weak convergence
of ( - + ~~ ) to a nonzero E Moreover, w satisfies the equation

where b = V() , with  E 11.i . From (2.18)  ~ 0, hence I() ~ ct .

Our next claim is that

To verify this, we recall satisfies on the equation

We use in this equation a test function of the form

where 03C8 is a function = 0 for s  1 and = 1 for

s > 2. Denoting = U the conclusion we

obtain, after a direct estimate is that

Then, it follows that

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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so that

from where (2.19) follows since R is arbitrary, and the claim (2.8) is

thus checked.

We observe that a similar argument applies to the functional J~, so we
also have

The definition of the total functional E~ in (1.10) and (1.11), thus yields

But, using the upper estimate in the critical value C~~ = E~~ (~c~? ) provided
by Lemma 1.2, and the inequality above, we obtain

Therefore, if M was such that

we obtain that our original assumption (2.7) was impossible. This concludes
the proof of Lemma 2.1. D

We assume in the rest of this section that M was chosen so large that
Lemma 2.1 I holds true. Our next lemma is

LEMMA 2.4

Proof - We begin by showing

Yo!. 15. n ~ 2-1998.
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Notice that it suffices to show that

In fact, concentration arguments similar to those employed in the proof of
Lemma 2.1 give that then

where b = with ~z; E 

Then assume that (2.23) does not hold for some i, say i = 1. Then,

along a sequence ~~ ~ 0 we get

But Lemma 2.1 I implies that, for all i. = 1; ... , _K

The definition of E~, together with (2.25), (2.26), and Lemma 2.2 then yields

that is certainly impossible by the choice of the ~.t made in (1.8). This
concludes the proof of (2.22).

Next we show that (2.21) holds. Assume that for Ii = 1 we have along
a sequence that

Then we will get, from estimate (2.22) and Lemma 2.1,

which is impossible. This concludes the proof of Lemma 2.4. 0

Conclusion of the Proof of Theorem o.1. - To begin with, we show that

In fact, otherwise there would exist a sequence ~~ -~ 0 and E ~11~ with
> b > 0. Assuming -~ ~z~ E c~,11, and using Lemma 2.3, v~-e

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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obtain that the sequence + converges weakly in H~
to a nonzero solution 2J of

Since b = Z~(~ ) > bi, we have that I~ (v) > c,. But this imply that

which is impossible in view of Lemma 2.4. Hence (2.29) holds. Note that
(2.29) implies, in particular, that ~c~.  a on for all i = 1..... K, if

ê is sufficiently small.

Thus the function ~) = (uc - is in Ho (SZ), and we can use it

as a test function in (1.22), the equation satisfied by IUC’ We immediately
conclude that actually 03C6 ~ 0, in other words, u ~ a on fl B A. The
conclusion is that ~u~ is actually a solution to the original equation (0.6) for
all small c, one of the desired features of 

Finally, the fact that = cl, > 0 implies that

concentration must occur around some x G A.;. We must then have

Ij(~z; ) = bi, for otherwise a contradiction similar to (2.28) would arise.
The concentration fact implies the presence of at least one local maximum

in each A;, so that ~u~ is a K-peak solution. The uniqueness of these maxima,
as well as the remaining decay assertions of the theorem follow similarly
to their analogues shown in [3] for the one-peak case. This concludes the
proof of the theorem. D

Remark 2.1. - If instead of hypothesis (f4) we assume (f4’), as indicated
in the introduction, the proof of Theorem 0.1 can be carried out in a similar
way, after choosing a-1 i so small that no critical value of the functional IV,
other than c(b), exist in (0, ct + 3~1 ), for all b E (bl . bl + b), ~i, = 1..... K.

We modify the penalization as

and choose M so that i is large enough.

3. APPENDIX

We devote the Appendix to the proof of Lemma 1.3. Since many steps
in the proof use arguments already given in Section 2, at certain points
we don’t give all details.

Voi. i5. n 2-1998.
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Pr oof of Lemma 1.3. - An upper estimate of the form

follows from the use of a test path constructed as in the beginning of the
proof of Lemma 1.2.

On the other hand, it is standard to check that the functional ~T~ satisfies
P.S. in H~ (11.z ), so that the Mountain Pass Theorem implies that d~ is a

critical value for it. Let w~ be an associated critical point. Then w~ is a

nonzero solution of the equation

We begin by observing that the definition of g(x, u) and the Maximum
Principle makes it impossible that w‘ attains a local maximum somewhere
in Ai. Thus let x~ E Ai be a maximum of w~. Then we have
w~ > b > 0, uniformly in E. We consider the rescaling of w~ given by
v~ (~) = ~ ~~), and take a sequence ~~ ~ 0. Then, for a subsequence
of ~~ which we relabel in the same way, we have that ~ :.~,~ G A,.
Moreover, estimate (3.1) and the fact that w~ solves equation (3.2) imply

1  or equivalently, ~v~~H1 ~ C. This fact and elliptic
estimates allow us to assume, without loss of generality, that v~~ J --~ ?;

weakly in H1 and locally strongly in the C1-sense, where v is a nontrivial
solution of an equation of the form (2.5), so that Lemma 2.3 is applicable
to conclude that v satisfies

Set b = y’ ( ~z; ) . Then b > b.i and, using arguments as in the proof of Lemma
2.1, we must have

where It’ was defined in (1.7).
But b = ~T (:~ ) > b; , so we have that IL (~) > Since we have established

that every sequence --~ 0 has a subsequence such that (3.3) holds, we
then conclude di~ > (c, + as desired. This finishes the proof. D
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