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ON THE SHORT-TIME BEHAVIOR OF THE FREE
BOUNDARY OF A POROUS MEDIUM EQUATION

CARMEN CORT/itZAR, MANUEL DEL PINO,
AND MANUEL ELGUETA

1. Introduction and preliminaries. Let f be a domain in RN, N > 2, with
a bounded, smooth boundary and m > 1. In this paper, we study the following
initial-boundary value problem for the porous medium equation,

ut AUm in f x (0, +)

u(x, t)= 1 in tf x (0, +), (1.1)

u(x, O) O inn.

Problem (1.1) models the flow of a gas into a porous container shaped as f. Ini-
tially, the container is empty, and then the density of the gas, represented by u, is
kept constant and equal to one at the boundary.
An important feature of the solution to (1.1), whose existence and uniqueness

is guaranteed by the standard theory for the porous medium equation, is that it
propagates with finite speed. By this we mean that if x0 is an interior point of ,
then there exists a positive time T(xo) such that u(x0, t) 0 for 0 < < T(xo)
and u(xo, t) > 0 for T(xo) < t. See [A].
A natural question is that of estimating the value of T(xo). Of course, this

quantity may depend strongly on the geometry of the domain, and it would be
hard to provide a general precise estimate for it. This question was considered in
ICE], where Neumann rather than Dirichlet boundary conditions were imposed,
and a general upper estimate for T(xo) was derived in the case when f is
bounded and convex. The estimate in ICE], involving certain integral quantities
depending globally on the domain and the boundary condition, is however not
sharp.
Our purpose in this paper is to find a precise estimate for T(xo) when the

point x0 lies sufficiently close to the boundary of f. When this is the case, it is
natural to expect an answer that depends only on the local geometry of f near
X0.
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It is reasonable to think that the curvature of f near x0 should play a role in
the estimate. Indeed, one would expect T(xo) to be larger in the case when the
domain is "negatively curved" near x0 than when this curvature is positive, since
in the former case "the gas has more space to escape." This heuristic remark
takes precise form in Theorem 1.1 below, our main result in this paper. To state
it, we consider a point e 0f and denote by n the unit inner normal at , so
that for all e > 0 sufficiently small, the point

xo Y + en (1.2)

lies in f.

THEOREM 1.1. If xo is given by (1.2), then

T(xo) e2{T0 H(.)Tle + o(e)} (1.3)

where To and T1 are positive constants depending only on rn and H(Yc) denotes
(N- 1) times the mean curvature of the boundary at

The constants To and T1 are characterized precisely in terms of the solutions
of certain ordinary differential equations, as we will see in the course of this
paper.

Let us observe an interesting intuitive implication of the above result. In the
two-dimensional case, the boundary of the support of u(., t), sometimes called
the free boundary, tends to "convexify" for small times since it advances faster
the bigger the curvature is. In particular, this seems to imply that if f is convex,
then the free boundary is a convex curve for all small times. It would be inter-
esting to study whether this property indeed holds for small and larger times.

In related issues, we should mention that Angenent and Aronson have studied
in [AA1] and [AA2] the way the support "closes" at the origin in the radially
symmetric case, the so-called focusing problem.

Regularity and behavior of the support when the domain is the whole of Rv

and the initial data is compactly supported have been studied in [CF] and
[CVW].
The proof of Theorem 1.1 is based on the careful construction of a super- and

a subsolution for the problem, for which the asymptotic estimate (1.3) holds.
This construction is based on finding a suitable formal first approximation to the
solution after conveniently rescaling the parameter e in it. It should be men-
tioned that in these arguments, the fact that the boundary condition is constant
is not crucial, and we just assume this for simplicity. In fact, a similar formula
can be derived in case the boundary condition is a smooth positive function
whose value at : equals one. A positive Neumann boundary condition can also
be treated with entirely similar methods. Concerning the regularity of the boun-
dary, it will be apparent from the arguments in the rest of the paper that Ca is
what we will actually be using, even though this may not be crucial.
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In most of what follows, it will be more convenient to express (1.1) in terms of
the normalized pressure, which is the quantity v defined as

mum-l(x,t)o(x, t)

It is easily checked that u satisfies (1.1) if and only if v satisfies

vt Av2- 2[Vvl 2 in fl x (0,

v(x, t) C in t3f x (0, +o), (1.4)

v(x,0) 0 infl,

where 2 2(m- 2)/(m- 1) and C m/2 > O.
Since we are interested in the behavior of v at the point given by (1.2), and in

light of the natural scaling of space-time for this equation, it seems natural to
consider the function

V,(, S, t) V(,, S, t, e) V(: +/:Srl, 2t),

where e t and s > 0. Then

T( + end) e2T(),

where T()= inf{tlv(Y,l,t)> 0}. Thus establishing Theorem 1.1 amounts to
showing the validity of the expansion

To + (1.5)

for appropriate constants To and T1 depending only on m. In the rest of this sec-
tion, we will identify these constants at the formal level and define the elements
necessary to build a first-order approximation in e for v..
To begin with, we observe that v satisfies an equation of the form

dv---2 Ls(v) =- A(vs) + e2R(v)
dt

(1.6)

in a region of the form D {(,s, t)l df,s (0, 2), and e (0, T)}, where T is
independent of e for e small.
We proceed now to show how to compute A(v) and e2R(v) in local coor-

dinates. Let us fix a point e f. After a rotation and a translation, we may
assume that is the origin, and that in a neighborhood of , t is described as
the set of points for which XN > ,(x’), x’ (x l, ..., Xs-1), where ff is a smooth
function such that (0)= 0, V(0)= 0, and A(0)= n(). Then, using the
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change of variable (y’,eyn) (x’,xn- (x’)) and the fact that the coordinate Yn
coincides with s when y’= 0, we get that, at a point of the form (O’,s), with
s e (0, 2), one has

OZv.z Ov.2 IOv.A(v)(O’, s) (0’, s) n() -ffs (0’, s)
2

(0’, s) (1.7)

and

R.(v.)(O’,s) Zi:I Ikx/2- (y’,y,)=(0,,s)

where

(y’, y., t) v((y’, y,,), s(y’, y.), t).

Here (y’, yn), s(y’, Yn) are defined implicitly by the relation

(y’, eyn) Yc + esn.

Now, letting formally e---) 0 in equation (1.6) and recalling the initial and
boundary conditions, we are left with a problem independent of of the form

1)o)t 2(0),,- ’((0),)

vo(s, O) -= 0 (1.9)

vo(O, t) C,

that is, with a one-dimensional porous-medium equation, which is well known to
possess a unique solution vo(s,t). Thus, assuming v(,s,t) vo(s,t) in some
appropriate sense, we should also have that T() ---) To, where To is the time it
takes the support of v0 to reach the point s 1, a number dependent on m only.
Next we find the second term in the e-expansion of T(). To do this, we dif-

ferentiate implicitly the relation

v.(, 1, T.()) 0

with respect to e to get

(o./o.)(, , 7"0)1,=0
(vo)t(1, To) (1.10)
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Differentiating (1.6) with respect to e and setting e 0, we obtain that

Ov___ (, s, t)l-o H(Yc)z(s, t)

where z satisfies

zt 2(voZ)s 22(VO)sZs- (v)

z(s, O) =0 (1.11)

z(O,t) =o.

We observe that the equation in (1.11) is meaningful only where v0 does not vanish.
In fact, we will see in 3 that this equation possesses a unique solution which
behaves reasonably near the boundary of the support of v0, namely, that its
extension by zero away from the support of v0 (the only reasonable extension, since
v should vanish identically there for small e) becomes a global distributional so-
lution. In fact, we shall prove the desirable fact that z(1, To) > 0, so that the term
T1, dependent only on m in the expansion (1.3) for T(), becomes

z(1, To)T (vo)t(1, To)"

Note then that the e-derivative of v8 at e 0 becomes a discontinuous function.
The above formal computations are based, of course, on the possibility of taking
the function v0(s, t) + eH()z(s, t) as a "good" approximation to v, near the point
(, 1, To), a rather delicate issue because of the discontinuity of z.
The rest of this paper will be devoted to giving an actual proof of formula

(1.3).
In 2 we study some properties of the solution v0 of (1.9), which is well

known to be self-similar, obtained from a corresponding ordinary differential
equation.
We devote 3 to the study of equation (1.11), which inherits the self-similarity

of v0; this eventually leads to our desired unique solution z in a certain class.
In 4, we construct a super- and a subsolution of (1.6), enclosing the actual

solution. This construction is based on the formal first approximation of v, and
the precise properties of vo and z collected in the previous sections.

2. The first-order term.
the form

It is known that the solution v0 of problem (1.9) is of

vo(s, t) -0
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where f satisfies

(f2()),, 2
m- 2

(0, o)n- 1
(f,())2 +f,() 0 for

f(o) O, (fm/(m-1))t(O) 0 and f(0) C.

(2.1)

Moreover, f() > 0 for [0, 0).
We note that, since f() > 0, (2.1) is equivalent to

)’ (0, 0)(fm/(m-1)())n + m_(fl/(m-1) () 0 for

f(o) O, (fm/(m-1))’(O) 0 and f(0) C.

(2.2)

We review now some properties of the function f that will be used later. Inte-
grating the equation in (2.2) from to 0, we get

fV(m-)(s)d (2.3)
4 +fl/(m-1)({)

From (2.3) we get at once the following lemma.

LEMMA 2.1. We have
m- 1 I(a) -(m- 1)o < f,() < ft/(m-)(s)dsfor all [0, o]"

4 4C1/(m-l)

(b) f"() is bounded and neoative for all [0, o];
(c) f’(0)= -(m- 1)0 and f"(o)= -(m- 1)

4 4m

We will also need the following.

LErtA 2.2. Let h({) (f’({)+ ((m- 1)/4){)/f({). Then
(a) h < 0 in (0, {0);
(b) the function h is bounded in (0, {0);
(c) the function h’ is bounded in (0, {0)-

Proof From (2.3) we get

(m- 1) fl/(m-1)(s)dsh()= 4fm/(m_)()
(2.4)

and hence (a). Part (b) follows by an application on the second mean value
theorem.
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As for part (c), we differentiate (2.4) to get

mfm/(m-1)() + f,() fU(m-1)(s)ds

h’() (m- 1)
4 f(2m-1)/(m-1) ()

and we apply again the second mean value theorem.

3. The second-order term.
solution, so we set

We study now problem (1.11). We seek a similar

and observe that z satisfies (1.11) if g satisfies

1 f2), (0, 0)2(f()g())" 4m 2
f,()g,() + (g()), g() () for

g(O) O. (3.1)

Moreover, we impose the additional boundary condition

[( ) 1(g() )]lim 2 fl/(m-1)()g(),+_ f(m-2)/(m-1)() --0. (3.2)
--,0

Since f() > 0 in (0, 0), using (2.2) we have that (3.1), (3.2) is equivalent to

1/. g() )’ g()2(fl/(m-1)()g())" +- ,gf(m-2)/--l)() --f(m-2)/(m-1)()

2 (m-, 1) (fm/(m-i)),() for e (0, o)
m

[ ( ), 1(g() )J:O.g(0) =0, 01im 2 fi/(m-1)()g() + f(m-2)/(m-i)()

(3.3)

It is a straightforward calculation to check that g is a C2 solution of (3.3) if
and only if g satisfies

1 e_n() J en(r) If g(s)
g() + - fl/(m-1)(r) f(m-2)/(m-1)(s)

(m m-- 1) e_n() I en(s) f(s) ds

ds dr

(3.4)



140 CORTZAR, DEL PINO, AND ELGUETA

where

H()
m 1 h(s) ds,

with h as in Lemma 2.2.
We now define the operator T" C([0, 0]) C([0, 0]) by

1 e_n() l en(O [G0 __# (s)(Tg)() fl/(m-1)(r) Jr f(m-2)/(m-1)(s)
and we set

F() (m- 1) e_/(0 I en(l f(s) ds.

With this notation, (3.4) reads

g() + (Tg)() F(). (3.5)

ds dr,

As we have seen in 2, the function h is bounded. Therefore the operator
T" C([0, 0]) C([0, 0]) is continuous and compact when C([0, 0]) is endowed
with the supremum norm.
We need now the following lemma.

LEMMA 3.1. The operator Id + T: C([0, o]) C([0, 0]) is injective.

Proof. Let g, g2 e C([0, 0]) be such that (Id + T)(gl) (Id + T)(g2). Then
the function p gl g2 belongs to C2 and satisfies

1
2(f()p())" 4

m 2
f,()p,() + (p()), p() 0 for e (0, o)

m-1
(3.6)

We claim that p cannot attain a positive maximum at a point e (0, 0).
Indeed, if so, at this point, one has p() > 0, p’() 0, and p"(1) < 0. Evalu-
ating (3.6) in 1, one gets a contradiction, and the claim is proved.

In a similar fashion, one proves that p cannot attain a negative minimum in
(0, 0). Since p(0)= 0, it follows that p does not have a zero in (0, 0) unless
p=0o
We observe that p also satisfies

2(fl/(m-1)()P())n +- f(m-2)/(m-1)() --f(m-2)/(m-1)() 0 for e (0, 0)

lim 2(fV(m-)()p()) + - (m-2)/(m-1)()’ 0
-o

(3.7)

p(0) 0.
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Now, integrating the equation in (3.7) from to 0, using the boundary con-
ditions, and multiplying the resulting equation by f(m-2)/(m-1), one gets

2 1
2f’()p(d) + f()p,() + p() +f(m-2)/(m-1) I ds 0

p s)
m- 1 - () J f(m-2)/(m-1)(s)

(3.8)

If p > 0 in (0, 0), then, since f’ is bounded and f(0) C > 0, letting ---, 0 in
(3.8), one obtains that there exists 2 (0, 0) so that P’(2) < 0. This contradicts
the fact that p cannot attain a positive maximum in (0, 0) since p(0) 0. It is
proved analogously that the assumption that p < 0 in (0, 0) leads to a contra-
diction. Consequently, p 0, and the lemma follows.

In view of the Fredholm’s alternative and Lemma 3.1, we have the following
theorem.

TI-IEORV.M 3.1. Problem (3.1), (3.2) has a unique solution.

In the remaining part of this section, we study some properties of the solution
of problem (3.1), (3.2). So from now on we will denote by the solution of this
problem.

LEMMA 3.2. We have g > 0 in [0, 0].
Proof We claim first that 0 cannot attain a negative relative minimum in

(0,0). Indeed, assume negative minimum is attained at 1 e (0,0). Then

’(1) 0, and from (3.1) one gets

1
2f"(1)g(1) + 2f(1)g"(1) -+" (g(l))’ g(l) (f2)’(1)" (3.9)

Since g(l) < 0 and g"(l) >/ 0, the left-hand side of (3.9) is positive. On the
other hand, the right-hand side of (3.9) is negative by Lemma 2.1. This contra-
diction proves the claim.
Now if it is not true that g > 0 in (0, 0), then there exists 2 e [0, 0) SO that

(2) 0 and ’() < 0 for (2, 0). Integrating (3.3) from 2 to 0, using the
boundary conditions, we get

[o g(s) ds- 2 (m- 1) (fm/(m_l))(2). (3 10)0 < J2 f(m-2)/(m-1)(s) m

This is a contradiction, and the lemma is proved.

LEMMA 3.3. We have (0) > 0.

Proof By integration in (3.3), one gets

1 fo _g(s)2g’() 2 (mm- 1) f() m-2 1
h()g() -fl/(m_l)() j f(m-2)/(m-1)(s)

ds.

(3.11)
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To see that 9(0) > 0, assume for contradiction that #(0)= 0. Since h < 0,
from (3.11) we get

2g’() > 2 (m- 1)f()_ 1 f0 #(s)
m fl/(m-1)() J f(m-Z)/(m-)(s

ds.

Or, using Lemma 2.1(a), there exist positive constants a and A such that

0’() > A(o ) a
1 I O(s)

ds,
(0 )1/(m-1) (0 $)(m-2)/(m-l)

which implies O’() > 0 for near o since O(o) 0. This is a contradiction, and
the lemma is proved. []

LEMMA 3.4. We have

2m- 1
lim 9’() exists and lim 9’()--.o --,o mo

Proof. The proof consists of taking the limit as --, 0 in (3.11).

LEMMA 3.5. We have 0"() is bounded in (0, 0).

Proof Differentiating (3.11) we get

II

20"() 2
m -____1 f,() 2
m m- 1

[h()g’() + h’()g()]

fl/(m-)()9() + m" i J f(m-2)/(m-1)(S)
fm/(m-1)()

Therefore it suffices to show that

m- 1 J f(m-2)/(m-1)(S)
fm/(m-1)()

d$

is bounded. This can be done by an application of the second mean value theorem,
and the lemma follows.

4. The main result. We would like to start by giving the idea behind the
construction of a supersolution of (1.6) for small values of e. If we formally
expand the function v(,s, t,e)= ve(,s, t) in a Taylor series in e at e 0, we
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obtain

v(, s, t, e) vo(s, t) + H()z(s, t)e + O(1)e2

Therefore the function w(, s, t, e) v0(s, t) + n(Yc)z(s, t)e should satisfy

wt L(w) O(1)e2,

where L is given by (1.6). Now, if it did happen that wt > c > 0, then
w(, s, t(1 +/35/4),/3) satisfies

t Ze() c/35/4 -+- O(1)/32

and its positive part + should be a supersolution for/3 small.
Unfortunately, it is only true that wt > 0. Moreover, in the case that H() > 0,

an extra difficulty arises. That is, at such a point the function w, which is only
defined for 0 < s < 0v/, does not vanish there. This last problem is overcome
(for each fixed and t) by extending w in s beyond 0V as a suitable parabola.
The rest of this section is devoted to the construction of the supersolution. The

construction of the subsolution is the same with some obvious changes. Finally,
we would like to warn the reader that the function w defined below is a slight
modification of the one defined above. This seems necessary to overcome some
technical difficulties.
We start with the observation that, by a comparison argument, all the times

involved in the arguments that follow are bounded above by a time T indepen-
dent of /3. Therefore, for the rest of this section, we will always have that
1/x/= O(1/t).
We redefine now the function w. For any (, s, t) D, let us set

s, t, ,,o(s, t) + o,z(s, t), (4.1)

where

o Iz(,/3) --/3H()(1 +/31/2H()).

Recalling that vo(s, t) =f(s/x/i) and z(s,t) x/-iO(s/V), w can be written as

(4.2)

With the notation s/x/i, one has

1 0
(4.3)
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Using the equations and the properties of the functions f and g, a rather
lengthy but straightforward calculation shows that, with our choice of a,

1
wt- Ae(w) -e3/2H2()(f2)’()--+ e20(1). (4.4)

Moreover, since H C2, we have

Re(w) eEg()O(1). (4.5)

We set ? t(1 +/35/4), S/X/: and define

w(, s, t, ) w(x, s, L )

at points where < 0. We can state now the following lemma.

LEMMA 4.1. There exists eo so thatfor any 0 < e < co, the function satisfies

,- L() > o,

at points where < o.
Proof. From (4.3), (4.4), and (4.5), we get

:t L :) es/4 ( 1 )-f’()+-0()-g’() +

1e3/2n2(yc)(f2)’()--+ e20(1) + e20()0(1).
(4.6)

We recall that f’ < -b < 0 on [0, 0] for some b > 0. Pick a fixed 1 SO that
0< <0.
For e [1, 0) we obtain from (4.6) that

t- L() -e5/41f’() + o(e5/4)0 (4.7)

therefore, t L() > 0 for e small enough.
As for the range (0, ], we observe that since (0) 0 and #’ is bounded,

there exists a constant K so that I9()l < K. Therefore,

2f’() + ’O()--O’()+ e20()0(1) > 0
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for small values of e. Consequently,

1
t Le() >/ e,3/2n2(yc)(f2)t()--+ e20(1) (4.8)

and, as (f2())/> c > 0 for some c > 0 for e [0, 1], we have again t-
Le() > 0 for e small. The lemma is proved.

So far we have constructed a supersolution to our differential equation in the
region De {(,s,t)/O < s < 0x}. To have a supersolution for the boundary
value problem, we need to extend this function beyond De. This will be achieved,
for any fixed and t, by fitting a suitable parabola in the direction of s.
To be more precise, let us define

p p(,s,t,e) (m- 1) (s- ov/)2

8mr

(1
Recalling that f’(o) -((m 1)/4)o and 0’(o) -((2m 1)/m)(9(o)/o),

p can be written in the form

(m- 1)(s- 0Vq)2

p(, s, t) 8m

(m- 1) 1 (2m- 1) 9(0) (s 0Vc/) + x/O(0) (4.9)4 0+m J
By an elementary computation, we get

(m-1)(-o)2 (m2-1)o(-)+Pt 8m "+ 8-
(3m- 1)
2m

g(o)+(m- 1)
8

(4.10)

and straightforward computation gives

(m- 2)
Pt- (p2)ss- 2

(m- 1)
(ps)2

1 (m- 1) :2 (d do)2

16 m2 t
(m- 1)(2m- 1) (o)(_ o)2m2 v’q o

2(2m- 1)2 g2(O) 2
(m- 1)m2 (4.11)
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We define

p p(, s, t, ) p(x, s, L,).

LEMMA 4.2. There exists e so thatfor any 0 < < thefunction satisfies

L(p) > 0

in the domain {(x,s, t)l > 0 and p(Yc, s,t,e) > 0).

Proof We observe first that if > o and/5(, s, t, e) > 0, then I- 01 < Ke
for some K independent of e. Therefore, using (4.10), (4.11), and the definition of
L, we get

/, L(/5) e5/3 _.+dg O(tl) 2
which proves the lemma.

We extend the function as follows:

f (, s, t, e)
(,s,t,) /

(Yc, s, t, e)

if <o
if o<.

We observe that the function , so extended, is continuous, and also the par-
tial first derivatives 8/ds and d/Oxj for j 1, ..., N 1 are continuous.
We study now the set where is positive. This is contained in the next lemma.

LrMMA 4.3. There exists eo so that for any 0 < e < o, the function s -- h(s)
(, s, t, e) vanishes exactly at one point s 0(, e)x/.

Moreover,

(o) + o().0(,) Jo tV/ff(0
Proofi We have h(0) > 0 and h(s) < 0 for s large enough. Also for small,

the function h is strictly decreasing. Hence, for e small, h vanishes exactly once.
Let f/v r/(, s)x/ be the zero of . We distinguish three cases. First assume

H() < 0. In this case f/< 0. We have

for some 2 I (/, 0)" As there exists b > 0 so that If’l > b, we get, after recalling
the definition of , that I0- f/I O(e). Taking one more term in the Taylor
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expansion, we get

v/g(0) (f’(0) + vg’(0))(0 /) + (f"(3) + Vg"(3))(0 )2

for some 3 (, 0), and consequently,

a(0) + o().r/= 0 v/f,(0)
The case when H() > 0, and hence 0 > 0, is dealt with in a similar way.

Actually, in this case, can be explicitly computed from the formula of the
parabola. In the case when H() 0, we get 0 0.
We summarize the previous results of this section in the following proposition.

PROPOSITION 4.1. There exists a function (, s, t, e) and eo > 0 so that for any
< e < eo, its positive part +(, s, t,e) is a weak supersolution of wt Le(w) in
Moreover, (, 0, t, e) C, andfor its positivity set we have

where

> o} < s <

- (0)O(,e)=0-en(x)Vt,/0,j + ()"

Proof. We have already observed that at points where is positive and
0, one has t L(2) > 0. On the other hand, at points where is pos-

itive and 0, the function and the partial derivatives dw/ds and dw/cxj for
j 1, ...,N- 1 are continuous. Moreover, at the free boundary, s (, e)v/,
+(,s,t,e) is continuous, and the partial derivatives dw2/ds and dw2/cxj for
j 1,..., N 1 are also continuous and equal to zero, due to the fact that cw/ds
and cw/cxj exist and are bounded at such a point. This is all that is needed to
check that + is a weak supersolution.
The statement about the positivity set is just a rephrasing of Lemma 4.3.

If in all the previous arguments, we use for the value =eH().
(1 eS/4H()) (notice the change of sign) and t t(1 e5/4) instead of ?, we can
construct a function w that provides us with a subsolution for small values of e.
We state this in the next proposition, whose proof is omitted.

PROPOSITION 4.2. There exists a function w(, s, t, e) and eo > 0 so that for any
0 < e < eo, its positive part w+(, s, t, e) is a weak subsolution of wt L(w) in f.
Moreover, w(, 0, t, e) C, andfor its positivity set we have

{(Yc, s,t)/w_.(Yc, s,t,e) > O} {(Yc, s,t)/O < s < r/(/, e)_t)
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where

(o)_(, ) 0 ’/() ,-7- + o().

Since we can now compute the constants To and T1 in (1.3), we rephrase and
prove now our main result, Theorem 1.1.

THEOREM 4.1. If xo is given by (1.2), then

T(xo) e2( H()

Proof.
that

It follows, by a comparison argument, from Propositions 4.1 and 4.2

_w+(,s, t,e) < v(,s,t,e) < +(,s,t,).

Now the time T+ (, e) that it takes the support of + to reach the point (, 1)
can be directly computed to get

1 2(o) + o(0.

Analogously,

1 2a(o)T{w+(, e) - + H() 04f,(o
e+ o(e).

Since T+(, e)< T()< T_+(, e), f’(o)=-((m- 1)/4)o, (1.5)follows with
To 1/ and T1 8g(0)/(m- 1). This proves the theorem.
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