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Minimality and Nondegeneracy of Degree-One

Ginzburg-Landau Vortex as a Hardy’s Type Inequality

Manuel del Pino, Patricio Felmer,

and Michał Kowalczyk

1 Introduction

We consider the complex-valued Ginzburg-Landau equation in the plane

∆w +
(
1 − |w|2

)
w = 0, in R

2. (1.1)

The standard one-vortex solution of degree one in the plane is the solution w(x) of (1.1)

of the form

w(x) = U(r)eiθ, (1.2)

where (r, θ) designate usual polar coordinates x1 = r cos θ, x2 = r sin θ, and U(r) is the

unique solution of the problem

U ′′ +
U ′

r
−
U

r2
+
(
1 −U2

)
U = 0, in (0,∞),

U(0) = 0, U(+∞) = 1.

(1.3)

It is known thatU ′(0) > 0 and that

U(r) ∼ 1 −
1

r2
, U ′(r) ∼

2

r3
, as r → +∞, (1.4)
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1512 Manuel del Pino et al.

see, for instance, [3]. An important feature of this solution is its locally minimizing char-

acter. The energy functional associated to equation (1.1) is given by

E(v) =
1

2

∫
R2

|∇v|2 +
1

4

∫
R2

(
1 − |v|2

)2
. (1.5)

While E(w) = +∞, it turns out that for any φ smooth and compactly supported, E(w) −

E(w +φ) ≤ 0, which implies B(φ,φ) ≥ 0 for all such φ, where B is the bilinear form given

by the (formal) second variation of E around w,

B(φ,φ) =

∫
R2

|∇φ|2 −

∫
R2

(
1 −U2

)
|φ|2 + 2

∫
R2

∣∣Re(w̄φ)
∣∣2. (1.6)

We observe that B(φ,φ) = 〈L(φ), φ〉, where here and in what follows

〈u, v〉 = Re
∫

R2

uv̄, (1.7)

and L is the linearization of (1.1) around w,

L(φ) = ∆φ +
(
1 −U2

)
φ − 2Re(w̄φ)w, in R

2. (1.8)

Direct substitution shows that

L

(
∂w
∂x1

)
= L

(
∂w
∂x2

)
= L(iw) = 0, (1.9)

which accounts for the invariance of equation (1.1) under space translations of the so-

lution and under multiplication by complex scalars of absolute value one, which intro-

duces degeneracy of this minimizer.

The locally minimizing character of w, B(ψ,ψ) ≥ 0, follows by combining known

results in the literature as pointed out to us by Mironescu. A local minimizer vwith v(0) =

0 can be found by considering global minimizers of the Ginzburg-Landau energy in a

ball with large radius and boundary condition eiθ. The analysis in [1] shows that (taking

as the origin one of their zeros) these functions converge, up to subsequences, locally

over compacts of R
2 to a solution of (1.1) with v(0) = 0, clearly a local minimizer which,

besides, satisfies
∫

R2(1− |u|2)2 < +∞. From [2, 12], it follows that v has a degree at infinity

which is equal to 1 or −1. From [9], v is necessarily radial so that it must be equal to w or

to its conjugate. Stability of radial solutions in a ball was previously studied in [7, 8].

A different proof of this result was obtained by Ovchinnikov and Sigal [10] who

analyzed the spectrum of the operator L in L2 and found that it had 0 as its lower limit.
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Ginzburg-Landau Degree-One Vortex and a Hardy’s Inequality 1513

More specifically, see also [4, 6] for related results and methods, B(φ,φ) is positive if φ

lies in an L2-orthogonal to the space

Z = span

{
∂w
∂x1

,
∂w
∂x2

, iw

}
. (1.10)

Spectral theory for Schrödinger operators and a form of Perron-Frobenius method ap-

plied for spectral analysis of each element of a block decomposition of the operator L are

the ingredients used in [4, 6, 10].

An observation we should make however is that, in principle, L2 is not an ideal

environment space for L since Z is not contained in L2. In particular, a decaying solution

of L(φ) = h for, say h, compactly supported, should not decay in general at a faster rate

than that of ∇w. Thus, it is not obvious how to produce a satisfactory solvability theory

for this problem from the L2-information.

The purpose of this paper is to present an elementary direct proof of the strict

minimizing character of w for perturbations φ in the “natural” Hilbert space H for the

bilinear form B of all locallyH1 functions for which

‖φ‖2
H =

∫
R2

[
|∇φ|2 +

(
1 −U2

)
|φ|2 +

∣∣Re(w̄φ)
∣∣2] < +∞. (1.11)

Theorem 1.1. The following inequality holds:

B(φ,φ) ≥ 0 ∀φ ∈ H. (1.12)

Besides, if φ ∈ H is such that B(φ,φ) = 0, then

φ = c1
∂w
∂x1

+ c2
∂w
∂x2

, (1.13)

for certain real constants c1, c2. �

The proof of this result uses the standard observation that B can be decomposed

in an additive way among different Fourier modes in θ. We decompose φ into the form

φ = φ0 +

∞∑
j=1

φ1
j +

∞∑
j=1

φ2
j , (1.14)

where

φ0 = eiθ
[
φ0

1(r) + iφ0
2(r)

]
,

φ1
j = eiθ

[
φ1

j1(r) sin jθ + iφ1
j2(r) cos jθ

]
,

φ2
j = eiθ

[
φ2

j1(r) cos jθ + iφ2
j2(r) sin jθ

]
.

(1.15)
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1514 Manuel del Pino et al.

Then, we get that

B(φ,φ) = B
(
φ0, φ0

)
+

∞∑
j=1

B
(
φ1

j , φ
1
j

)
+

∞∑
j=1

B
(
φ2

j , φ
2
j

)
. (1.16)

This decomposition is naturally associated to the elements of Z since

iw = eiθ
[
0 + iU(r)

]
,

∂w
∂x1

= eiθ

[
U ′(r) cos θ − i

U(r)
r

sin θ

]
,

∂w
∂x2

= eiθ

[
U ′(r) sin θ + i

U(r)
r

cos θ

]
.

(1.17)

We need to establish nonnegativity of each of the individual terms in (1.16). The most

delicate step is to establish that B(φ�
1, φ

�
1) ≥ 0, � = 1, 2, and that equality holds only if

respectively φ1
1 = ∂w/∂x2, φ

2
1 = ∂w/∂x1. We present a novel proof of this fact which

amounts to a Hardy’s type inequality for vector-valued functions (Proposition 2.1 be-

low), which is interesting in its own right and has an elementary proof.

As a corollary, we will show that the following Fredholm alternative for the oper-

ator L holds.

Theorem 1.2. Consider the equation

L(φ) = h, in R
2, (1.18)

where it is assumed that for certain σ > 0,
∫

R2 |h|2(1 + r2+σ) < +∞. If additionally

〈
h,
∂w
∂x1

〉
=

〈
h,
∂w
∂x2

〉
= 〈h, iw〉 = 0, (1.19)

then (1.18) has a solution φ0 ∈ Hwhich satisfies

∥∥φ0

∥∥2

H
≤ C

∫
R2

|h|2
(
1 + r2+σ

)
. (1.20)

Moreover, all solutions φ ∈ H have the form

φ = φ0 + c1
∂w
∂x1

+ c2
∂w
∂x2

, (1.21)

with c1, c2 ∈ R. �
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Ginzburg-Landau Degree-One Vortex and a Hardy’s Inequality 1515

A solvability theory for the linearized operator is of crucial importance in the

use of singular perturbation methods for the construction of vortex solutions of prob-

lems where the rescaled vortex w provides a canonical profile. This is a subject broadly

developed in [11], where an entirely different approach is used with respect to the issue.

The present paper was originally motivated by the authors’ study of the existence

of vortex lines in three-dimensional domains. In this case, Fredholm alternative for the

three-dimensional profiles which are built up from two-dimensional vortices depends on

the application of Theorem 1.2. Another area where our results could potentially be used

is the question of orbital stability of vortex solutions in R
2. In this context, the positivity

of the bilinear form corresponding to Ginzburg-Landau energy E appears to play the key

role as shown in [5], where orbital stability of magnetic vortices is analyzed.

We devote the rest of this paper to the proof of Theorems 1.1 and 1.2.

2 Nondegeneracy of w

We first consider a smooth functionφ compactly supported,whose support does not con-

tain the origin. It is convenient to define ψ by the relation

φ = iwψ, (2.1)

and introduce the bilinear form

B(ψ,ψ) = B(iwψ, iwψ). (2.2)

Then we have, writing ψ = ψ1 + iψ2,

B(ψ,ψ) =

∫
R2

U2|∇ψ|2 − 2Re
∫

R2

iU2

r2
∂ψ

∂θ
ψ̄ + 2

∫
R2

U4
∣∣ψ2

∣∣2. (2.3)

On the other hand, defining φ0 = iwψ0 and φ�
j = iwψ�

j for j ∈ N and � = 1, 2 and using

(1.16), we find

B(ψ,ψ) = B
(
ψ0, ψ0

)
+

∞∑
j=1

B
(
ψ1

j , ψ
1
j

)
+ B

(
ψ2

j , ψ
2
j

)
. (2.4)

We set

ψ0 = ψ0
1(r) + iψ0

2(r),

ψ1
j = ψ1

j1(r) cos jθ + iψ1
j2(r) sin jθ,

ψ2
j = ψ2

j1(r) sin jθ + iψ2
j2(r) cos jθ.

(2.5)
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1516 Manuel del Pino et al.

We consider functions ϕ : [0,∞) → R
2 and the bilinear forms

B�
j(ϕ,ϕ) =

∫∞
0

rU2|ϕ ′|2 +

∫∞
0

rU2B�
jϕ ·ϕ, (2.6)

where B�
j is the matrix

B�
j =

1

r2

(
j2 (−1)�2j

(−1)�2j j2 + 2U2r2

)
. (2.7)

With these definitions, it is direct to check that the following fact holds:

B
(
ψ�

j , ψ
�
j

)
= πB�

j

(
ϕ�

j , ϕ
�
j

)
, � = 1, 2, (2.8)

where

ϕ�
j(r) =

(
ψ�

j1(r), ψ�
j2(r)

)
, � = 1, 2. (2.9)

At the core of the proof of Theorem 1.1 is the positivity of the bilinear forms B1
1,

which can be written as

B1
1(ϕ,ϕ) =

∫∞
0

rU2

[
|ϕ ′|2 +

1

r2
|ϕ|2 −

4

r2
ϕ1ϕ2 + 2U2

∣∣ϕ2

∣∣2] ≥ 0. (2.10)

This inequality is a vector-valued form of Hardy’s inequality. In fact, Hardy’s inequality

for radially symmetric functions in R
N,N ≥ 3, asserts that

∫∞
0

|u ′|2rN−1dr −

(
N − 2

2

)2 ∫∞
0

|u|2

r2
rN−1dr ≥ 0. (2.11)

We observe that B1
1(ϕ,ϕ) ≥ 0 for ϕ = (v,−v) means that

∫∞
0

|v ′|2U2r dr −

∫∞
0

|v|2

r2
U2r dr +

∫∞
0

v2U4r dr ≥ 0. (2.12)

Near r = 0, U2(r)r ∼ r3. Replacing v by u(r/δ) with u compactly supported and taking

limit as δ → 0, we obtain

∫∞
0

|u ′|2r3dr −

∫∞
0

|u|2

r2
r3dr ≥ 0, (2.13)

which is precisely the optimal Hardy’s inequality in dimension N = 4. In precise terms,

the result we obtain is the following proposition.
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Ginzburg-Landau Degree-One Vortex and a Hardy’s Inequality 1517

Proposition 2.1. For any R
2-valued smooth functionϕwith compact support away from

the origin,

B1
1(ϕ,ϕ) =

∫∞
0

U2r
∣∣ϕ ′ −A1(r)ϕ

∣∣2dr, (2.14)

whereA1(r) is a 2×2matrix of smooth functions in (0,∞) with the property that the only

solutions of the system ϕ ′ = A1(r)ϕ such that
∫1

0
|ϕ|2U2r dr < +∞ are given by constant

multiples of ϕ0(r) = (1/r,U ′/U). �

Proof of Proposition 2.1. We will write B1
1(ϕ,ϕ) in the form

B1
1(ϕ,ϕ) =

∫∞
0

U2r
∣∣ϕ ′ −A1(r)ϕ

∣∣2dr, (2.15)

where A1(r) is a 2× 2 symmetric matrix of functions which we will determine next. First

we expand

∫∞
0

U2r
∣∣ϕ ′ −A1(r)ϕ

∣∣2 =

∫∞
0

rU2|ϕ ′|2 − 2

∫∞
0

rU2A1ϕ
′ ·ϕ +

∫∞
0

rU2A2
1ϕ ·ϕ. (2.16)

Now,

2

∫∞
0

rU2A1ϕ
′ ·ϕ =

∫∞
0

d

dr

(
rU2A1ϕ ·ϕ) −

∫∞
0

(
rU2A1

) ′
ϕ ·ϕ. (2.17)

Since ϕ is compactly supported in (0,∞), we get

∫∞
0

U2r
∣∣ϕ ′ −A1ϕ

∣∣2 =

∫∞
0

rU2|ϕ ′|2 +

∫∞
0

(
rU2A1

) ′
ϕ ·ϕ +

∫∞
0

rU2A2
1ϕ ·ϕ. (2.18)

Thus, the requirement (2.15) is equivalent to

(
rU2A1

) ′
+ rU2A2

1 = B1
1, (2.19)

where B1
1 is the matrix defined in (2.7) with j = 1. We write

A1 =

(
a c

c b

)
. (2.20)

We write ϕ0 = (ρ1, ρ2). Since B1
1(ϕ0, ϕ0) = 0, the matrix A1 should satisfy

ϕ ′
0 = A1ϕ0. (2.21)
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1518 Manuel del Pino et al.

This yields the relations

a =
ρ ′

1 − cρ2

ρ1
, b =

ρ ′
2 − cρ1

ρ2
. (2.22)

Now, substituting these relations into (2.19), direct inspection leads to the fact that

(2.19) holds if and only if

(
U2rc

) ′
= U2rc2

(
ρ2

ρ1
+
ρ1

ρ2

)
−U2rc

(
ρ ′

1

ρ1
+
ρ ′

2

ρ2

)
−
2U2

r
, (2.23)

where, we recall ρ1 = 1/r, ρ2 = U ′/U. Expanding the above equation, we find

c ′ = −c

(
U ′′

U
+
U ′

U

)
+ c2

(
ρ2

ρ1
+
ρ1

ρ2

)
−
2

r2
. (2.24)

This is a Ricatti equation. We observe that if u satisfies the equation

(
p(r)u ′) ′ + q(r)u + p(r)z(r)u ′ = 0, (2.25)

then c = −pu ′/u satisfies

c ′ = −
(pu ′) ′

u
+ p

u ′2

u2
= q(r) +

c2

p
− cz. (2.26)

We set

p =
ρ1ρ2

ρ2
2 + ρ2

1

, q = −
2

r2
,

z =

(
U ′

U
+
U ′′

U ′

)
.

(2.27)

Then c = −pu ′/u satisfies equation (2.24) on (0,∞) if u is a positive solution of(
ρ1ρ2UU

′

ρ2
2 + ρ2

1

u ′
) ′

−
2UU ′

r2
u = 0, r ∈ (0,∞). (2.28)

Observe that

ρ1ρ2UU
′

ρ2
2 + ρ2

1

=
U ′2r

1 +
rU ′

U

. (2.29)

It is easy to check that equation (2.28) has a solution u(r) which decays to zero and it is

positive as r → +∞. In fact, as r → +∞, this equation resembles

(
r−5u ′) ′ − 2r−5u = 0, (2.30)
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Ginzburg-Landau Degree-One Vortex and a Hardy’s Inequality 1519

or

u ′′ −
5

r
u ′ − 2u = 0, (2.31)

which is a Bessel-type equation with a decaying solution u(r) ∼ r5/2e−
√

2r. We can find

with the use of barriers a solution u(r) of (2.28) with this property. We observe that then,

u(r) is actually positive all over r ∈ (0,∞), since equation (2.28) satisfies the maximum

principle. As r → 0, the equation gets similar to (ru ′) ′ − (4/r)u = 0, or

r2u ′′ + ru ′ − 4u = 0. (2.32)

Hence, the behavior of u is like u(r) ∼ r−2 as r → 0. In fact an application of Frobenius

method for equation (2.28) provides this fact. Summarizing, we conclude that equation

(2.24) has a globally defined positive solution c(r), r ∈ (0,∞), where c = −pu ′/u. Since

from its definition, p(0+) = 1/2, we get c(r) = 1/r + o(r−1) as r → 0. The matrix A1 as

desired has thus been built. Moreover, the following property for A1(r) is automatically

checked:

A1(r) =

−
2

r

1

r

1

r
−
2

r

 + o
(
r−1
)
, (2.33)

as r → 0. The system ϕ ′ = A1(r)ϕ has as a solution ϕ0(r) = (1/r,U ′/U). Let ϕ1(r) be a

second linearly independent solution. Then Liouville’s formula for the Wronskian gives

W
(
ϕ0, ϕ1

)
= Ce−

∫r0
r

tr[A1(s)]ds
∼
C

r4
. (2.34)

It follows that |ϕ1(r)| ≥ C/r3 for all small r > 0. The conclusion is that the unique solu-

tions of ϕ ′ = A1(r)ϕ for which
∫1

0
|ϕ(r)|2U2r dr < +∞ are scalar multiples of ϕ0, and the

proof of the proposition is complete. �

Corollary 2.2. For any R
2-valued smooth function ϕ with compact support away from

the origin,

B2
1(ϕ,ϕ) =

∫∞
0

U2r
∣∣ϕ ′ −A2(r)ϕ

∣∣2dr, (2.35)

whereA2(r) is a 2×2matrix of smooth functions in (0,∞) with the property that the only

solutions of the system ϕ ′ = A2(r)ϕ such that
∫1

0
|ϕ|2U2r dr < +∞ are given by constant

multiples of ϕ0(r) = (1/r,−U ′/U). �
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1520 Manuel del Pino et al.

Proof. It is enough to apply Proposition 2.1 with ϕ = (ϕ1,−ϕ2) and consider

A2 =

(
a −c

−c b

)
, (2.36)

where a, b, and cwere defined in the proof of the proposition. �

Proof of Theorem 1.1. We have to estimate from below the quantities B�
j(ϕ

�
j , ϕ

�
j), j ≥ 1,

� = 1, 2, with Bj the bilinear form given by (2.6) and ϕ�
j defined by (2.9). We assume that

j ≥ 2. Then

B�
j(ϕ,ϕ) =

∫∞
0

rU2|ϕ ′|2 +

∫∞
0

rU2B�
jϕ ·ϕ, (2.37)

where B�
j is given by (2.7). We observe that

(
B�

j − B�
1

)
ϕ ·ϕ ≥ j − 1

r2

(
j + 1 (−1)�2

(−1)�2 j + 1

)
ϕ ·ϕ ≥ (j − 1)2

r2
|ϕ|2. (2.38)

Hence, we find

B�
j(ϕ,ϕ) ≥ (j − 1)2

∫∞
0

U2

r2
|ϕ|2r dr. (2.39)

Gathering the above estimates, we find the following inequality:

∞∑
j=1

B
(
ψ�

j , ψ
�
j

) ≥ ∫∞
0

∣∣ϕ�
1
′ −A�(r)ϕ�

1

∣∣2U2r dr +

∞∑
j=2

(j − 1)2

∫
R2

U2

r2

∣∣ψ�
j

∣∣2, (2.40)

� = 1, 2. On the other hand, we observe that

B
(
ψ0, ψ0

)
=

∫
R2

U2
∣∣∇ψ0

∣∣2 + 2

∫
R2

U4
∣∣ψ0

2

∣∣2. (2.41)

These facts give the following inequality. Whenever φ is smooth and compactly sup-

ported away from r = 0with φ = iwψ, we have

B(φ,φ) ≥
∫

R2

U2
∣∣∇ψ0

∣∣2 + 2

∫
R2

U4
∣∣ψ0

2

∣∣2
+

2∑
�=1

∫∞
0

∣∣ϕ�
1
′ −A�(r)ϕ�

1

∣∣2U2r dr

+

2∑
�=1

∞∑
j=2

(j − 1)2

∫
R2

∣∣ψ�
j

∣∣2U2

r2
.

(2.42)
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Ginzburg-Landau Degree-One Vortex and a Hardy’s Inequality 1521

We claim that inequality (2.42) remains true for smooth φ and with compact support

now containing the origin. Let η(s) be a smooth cutoff with η = 0 for s < 1 and η = 1 for

s > 2, and set ησ(r) = η(r/δ), then (2.42) is valid for φ replaced by ηδφ. Now,

∫
R2

∣∣∇(ηδφ
)∣∣2 =

∫
R2

η2
δ|∇φ|2 + 2

∫
R2

ψηδ∇ηδ∇φ +

∫
R2

ψ2
∣∣∇ηδ

∣∣2. (2.43)

Integrating by parts,

2

∫
R2

φηδ∇ηδ∇φ = −

∫
R2

φ2
∣∣∇ηδ

∣∣2 −

∫
R2

φ2∆ηδ. (2.44)

Now,

∫
R2

φ2∆ηδ =

∫
R2

φ2(δx)∆ηdx. (2.45)

Thus,

lim
δ→0

∫
R2

ψ2∆ηδ = φ2(0)
∫

R2

∆η = 0. (2.46)

Combining the above computations, we find

lim
δ→0

∫
R2

∣∣∇(ηδφ
)∣∣2 =

∫
R2

|∇φ|2. (2.47)

Using this, a density argument, and Fatou’s lemma, inequality (2.42) is readily obtained

not only for φ compactly supported but actually for any φ ∈ H. In particular, B(φ,φ) ≥ 0
for any φ ∈ H.

Finally, we assume that φ ∈ H is such that B(φ,φ) = 0. Inequality (2.42) then

clearly implies that ψ0 = 0, ψj
� = 0, for all j ≥ 2, � = 1, 2. Besides, we also have for r > 0,

the validity of the differential equations

ϕ�
1
′(r) = A�(r)ϕ�

1(r). (2.48)

On the other hand, φ ∈ H implies that
∫1

0
|ϕ�

1|2U2r dr < +∞. We then get ϕ�
1 = c�(1/r,

(−1)�(U ′/U)). This translates exactly into the desired form for φ, thus concluding the

proof. �
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3 Fredholm alternative: proof of Theorem 1.2

Finding a solution of L(φ) = h in H corresponds to finding a critical point in H of the

functional

J(φ) =
1

2
B(φ,φ) − 〈φ,h〉. (3.1)

Assume that h has the form described in Theorem 1.2. We decompose h in the following

way:

h = h0 +

∞∑
j=1

h1
j +

∞∑
j=1

h2
j , (3.2)

where now

h0 = eiθ
[
h0(r) + ih1(r)

]
,

h1
j = eiθ

[
h1

j1(r) sin jθ + ih1
j2(r) cos jθ

]
,

h2
j = eiθ

[
h2

j1(r) cos jθ + ih2
j2(r) sin jθ

]
.

(3.3)

We decompose φ as in (1.14). Then the equation L(φ) = h is equivalent to solving each of

the individual equations

L
(
φ0
)

= h0, (3.4)

L
(
φ�

j

)
= h�

j , j ∈ N, � = 1, 2, (3.5)

whereφ0,φ�
j have the form in (1.15). We begin by solving problem (3.5) for � = 1, j = 1. Let

H∗ be the space of functions φ̃(r)=(φ̃1(r), φ̃2(r)), r∈(0,∞), such that φ = eiθ[φ̃1(r) sin θ+

iφ̃2(r) cos θ] ∈ H endowed with the norm ‖φ̃‖H∗ = ‖φ‖H. Explicitly, we choose the (equiv-

alent) norm

∥∥φ̃∥∥2

H∗
=

∫∞
0

[∣∣φ̃ ′∣∣2 +
1

r2

(
φ̃1 − φ̃2

)2
+
(
1 −U2

)∣∣φ̃∣∣2 +U2
∣∣φ̃2

∣∣2]r dr. (3.6)

We also set

h̃(r) =
(
h̃1(r), h̃2(r)

)
=
(
h1

11(r), h1
12(r)

)
. (3.7)

Solving (3.5) for � = 1, j = 1 in H corresponds exactly to finding a critical point of the

functional J1 inH∗ defined as

J1
(
φ̃
)

=
1

2
B
(
φ̃, φ̃

)
−

∫∞
0

h̃(r) · φ̃(r)r dr, (3.8)
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where

B
(
φ̃, φ̃

)
= B1

1

(
ϕ1

1, ϕ
1
1

)
, (3.9)

and where B1
1 is given by (2.10) and ϕ1

1 = U−1(φ̃2,−φ̃1). Theorem 1.1, in terms of the

bilinear form B, reads like this: for any φ̃ ∈ H∗, we have the inequality

B
(
φ̃, φ̃

) ≥ 0. (3.10)

Equality holds if and only if φ̃ = C(−U ′, U/r) for some C ∈ R. Set Z0(r) = (−U ′, U/r) and

observe that from the assumptions on hwe get

∫∞
0

h̃(r) · Z0(r)r dr = 0. (3.11)

We will find a minimizer of J1(φ̃) in a suitable subspace ofH∗. To do so we need to estab-

lish the following lemma.

Lemma 3.1. There exists a constant C > 0 such that for any φ̃ ∈ H∗ with

∫∞
0

(
1 −U2

)
φ̃ · Z0r dr = 0, (3.12)

it holds that

C
∥∥φ̃∥∥2

H∗
≤ B

(
φ̃, φ̃

)
. (3.13)

�

Proof of Lemma 3.1. We start by observing the following:

B
(
φ̃, φ̃

)
=

∫∞
0

[∣∣φ̃ ′∣∣2 +
2

r2

(
φ̃1 − φ̃2

)2
−
(
1 −U2

)∣∣φ̃∣∣2 + 2U2
∣∣φ̃2

∣∣2]r dr. (3.14)

Since 1 −U2(r) ∼ 1/r2 for large r, we see that given δ > 0, there exists R > 0 such that for

all r > R, we have

2 − δ

r2

(
φ̃1 − φ̃2

)2
− (1 − δ)

(
1 −U2

)∣∣φ̃∣∣2 + (2 − δ)U2
∣∣φ̃2

∣∣2
≥ 1 − 2δ

r2

∣∣φ̃∣∣2 + (2 − 2δ)
∣∣φ̃2

∣∣2 −
2

r2

∣∣φ̃1

∣∣∣∣φ̃2

∣∣ ≥ 1

2r2

∣∣φ̃∣∣2. (3.15)

It then follows that for certain positive numbers C1, C2, we have

B
(
φ̃, φ̃

) ≥ C1

∥∥φ̃∥∥2

H∗
− C2

∫R

0

∣∣φ̃∣∣2r dr. (3.16)
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Now in order to establish the lemma, we assume the opposite, namely, existence of a

sequence φ̃n with ‖φ̃n‖H∗ = 1 such that
∫∞

0
(1−U2)φ̃n ·Z0r dr = 0 and B(φ̃n, φ̃n) → 0. Let

φ̂ be a weak limit of φ̃n in the sense of ‖ ·‖H∗ . We claim that φ̂ 	= 0. Indeed, φ̃n → φ̂ locally

strongly in L2-sense. Hence, if φ̂ = 0, we would have
∫R

0
|φ̃n|2r dr → 0 and estimate (3.16)

would yield ‖φ̃n‖H∗ → 0, which is impossible. Strong L2-convergence over compacts and

weak lower semicontinuity of L2-norms give B(φ̂, φ̂) = 0. But then, we must have that

φ̂ = CZ0. Weak convergence in ‖ · ‖H∗ norm finally gives
∫∞

0
(1−U2)φ̂ ·Z0r dr = 0 so C = 0,

a contradiction that proves the lemma. �

We consider the problem of minimizing the functional J1 in the closed subspace

ofH∗,

H0 =

{
φ̃ ∈ H∗/

∫∞
0

(
1 −U2

)
φ̃ · Z0r dr = 0

}
. (3.17)

We observe that by assumption on h,

∫∞
0

∣∣h̃∣∣2(1 + r2+σ
)
r dr ≤

∫
R2

|h|2
(
1 + r2+σ

)
(3.18)

and additionally that
∫∞

0
h̃ · Z0r dr = 0. From Lemma 3.1, it easily follows that the func-

tional J1 is continuous, coercive, and strictly convex in H0. Hence, there is a unique min-

imizer φ̃ for this functional. Obviously, φ̃ satisfies

B
(
φ̃, η

)
+

∫∞
0

η · hrdr = 0, (3.19)

for all η ∈ H0. Now, any η ∈ H∗ can be decomposed as η = η1 + CηZ0 with η1 ∈ H0,

therefore, the above equation is actually satisfied for all η ∈ H∗. This by definition means

that φ̃ is a critical point of J1 in the whole H∗. Moreover, by this construction, we easily

see that

∫∞
0

[∣∣φ̃ ′∣∣2 +
(
1 −U2

)∣∣φ̃∣∣2]r dr ≤ C ∫∞
0

∣∣h̃∣∣2(1 + r2
)
r dr. (3.20)

It is straightforward to check that the inherited solution φ1
1 of (3.5), � = 1, j = 1, indeed

satisfies

∥∥φ1
1

∥∥2

H
≤ C

∫
R2

∣∣h1
1

∣∣2(1 + r2+σ
)
. (3.21)
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In an exactly symmetric way, we find a solution φ2
1 of L(φ2

1) = h2
1 with analogous esti-

mate. We will solve the remaining equations (3.5) for j ≥ 2, all at once. We set

h⊥ =
∑
j≥2

h1
j + h2

j , φ⊥ =
∑
j≥2

φ1
j + φ2

j . (3.22)

We then consider the equation

L
(
φ⊥) = h⊥ (3.23)

in the closed subspace H⊥ of all functions φ ∈ H that can be written in the form φ⊥. A

minimizer of the functional

J
(
φ⊥) =

1

2
B
(
φ⊥, φ⊥) −

〈
h⊥, φ⊥〉 (3.24)

inH⊥ automatically gives a solution. Existence of such a minimizer is in this case a direct

matter since we have from (2.42) the inequality

B
(
φ⊥, φ⊥) ≥ c ∫

R2

1

r2

∣∣φ⊥∣∣2, (3.25)

with c > 0, from where it is straightforward to deduce

B
(
φ⊥, φ⊥) ≥ c∥∥φ⊥∥∥2

H
, (3.26)

with c > 0. Finally, we consider the mode-zero case, (3.4). Then, in terms of ψ =

−iw−1φ0 = ψ1(r) + iψ2(r), we get two uncoupled equations:

ψ ′′
1 +

(
1

r
+
2U ′

U

)
ψ ′

1 = g1, (3.27)

ψ ′′
2 +

(
1

r
+
2U ′

U

)
ψ ′

2 − 2U2ψ2 = g2, for 0 < r < ∞, (3.28)

where −iw−1h0 = g1(r) + ig2(r). By the assumption made on h, we have the properties

∫∞
0

rU2g1 = 0,

∫∞
0

rU2g2
1

(
1 + r2+σ

)
dr ≤ C

∫
R2

|h|2
(
1 + r2+σ

)
. (3.29)

The following explicit formula is then directly checked to represent a solution of (3.27):

ψ1(r) = −

∫∞
r

ds

sU2(s)

∫s

0

g1(t)tU2(t)dt. (3.30)
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Moreover, ψ1 satisfies

∫∞
0

[∣∣ψ ′
1(r)

∣∣2 +
(
1 −U2

)
ψ2

1

]
rU2dr ≤ C

∫
R2

|h|2
(
1 + r2+σ

)
. (3.31)

On the other hand, equation (3.28) has a solution which simply minimizes the functional

1

2

∫∞
0

[∣∣ψ ′
1(r)

∣∣2 + 2U2
∣∣ψ2

∣∣2]rU2dr +

∫∞
0

g2ψ2rU
2dr (3.32)

in its naturalH1-weighted space. With these definitions, we inherit for φ0 the estimate

∥∥φ0
∥∥2

H
≤ C

∫
R2

|h|2
(
1 + r2+σ

)
. (3.33)

Adding up the above-constructed solutions, we have found a solution φ0 of Lφ = h with

the required property. The fact that all solutions inH can be written as the sum ofφ0 and

a linear combination of the partial derivatives of w follows immediately from Theorem

1.1. This concludes the proof.
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