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The equation −∆u = λeu posed in the unit ball B ⊆ R
N , with homogeneous Dirichlet

condition u|∂B = 0, has the singular solution U = log 1
|x|2 when λ = 2(N − 2). If N ≥ 4

we show that under small deformations of the ball there is a singular solution (u, λ)
close to (U, 2(N − 2)). In dimension N ≥ 11 it corresponds to the extremal solution —
the one associated to the largest λ for which existence holds. In contrast, we prove that
if the deformation is sufficiently large then even when N ≥ 10, the extremal solution
remains bounded in many cases.
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1. Introduction

We consider the Gelfand problem [17], namely the equation{
−∆u = λeu in Ω

u = 0 on ∂Ω,
(1)

where Ω ⊂ R
N is a bounded open set with smooth boundary and λ ≥ 0 is a

parameter.
Equation (1) and many variants have been widely considered in the literature,

see for instance [6, 8, 12, 13, 18, 19], from which the following general properties
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are known:

Proposition 1.1. There exists λ∗ ∈ (0,∞) such that

• (1) has a smooth solution for 0 ≤ λ < λ∗,
• (1) has a unique weak solution for λ = λ∗,
• (1) has no solution for λ > λ∗ (even in the weak sense).

Above we have used the following definition: a function u ∈ L1(Ω) is a weak solution
to (1) if eudist(x, ∂Ω) ∈ L1(Ω) and

−
∫

Ω

u∆ζ = λ

∫
Ω

euζ, ∀ζ ∈ C2(Ω̄), ζ = 0 on ∂Ω.

It is also known that for 0 ≤ λ < λ∗, there exists a minimal solution uλ which
is smooth. uλ depends smoothly on λ and is monotone increasing with respect to
this parameter. Also, uλ is stable in the sense that the linearized operator at uλ is
positive, i.e.

inf
ϕ∈C∞

0 (Ω)

∫
Ω

|∇ϕ|2 − λ

∫
Ω

euλϕ2∫
Ω

ϕ2
> 0. (2)

The monotone limit u∗ := limλ↗λ∗ uλ is the weak solution for λ = λ∗ and satisfies

λ∗
∫

Ω

eu∗
ϕ2 ≤

∫
Ω

|∇ϕ|2, ∀ϕ ∈ C∞
0 (Ω). (3)

It is then natural to ask the following question: given a smooth bounded domain,
is u∗ a smooth solution?

Joseph and Lundgren [18] studied the case where Ω is a ball and completely
determined the structure of the radial solutions of (1). In particular, they showed
that if Ω = B1 then u∗ is bounded if and only if N < 10, and in the case N ≥ 10
then u∗ = log 1

|x|2 and λ∗ = 2(N − 2). It was shown later in [13, 22] that if N < 10
then for any smooth and bounded domain Ω, the extremal solution u∗ is bounded.
Brezis and Vázquez [8] gave an interesting alternative proof of u∗ = log 1

|x|2 when
Ω = B1 in the case N ≥ 10, making use of Hardy’s inequality, which we recall
below: if N ≥ 3 then

(N − 2)2

4

∫
RN

ϕ2

|x|2 ≤
∫

RN

|∇ϕ|2, ∀ϕ ∈ C∞
0 (RN ).

Thus far, the ball in dimension N ≥ 10 is the only domain where it is known that
u∗ is singular.

In this work we consider (1) in a domain that is sufficiently close to a ball in
the following sense. Let ψ : B̄1 → R

N be a C2 map, t > 0 and define

Ωt = {x + tψ(x) : x ∈ B1}.
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We choose henceforth t so small that Ωt is a smooth bounded domain diffeomorphic
to B1 and we consider the Gelfand problem in Ωt:{

−∆u = λeu in Ωt

u = 0 on ∂Ωt.
(4)

Our main result is the following:

Theorem 1.2. Let N ≥ 11. Given t > 0 small, let u∗(t) denote the extremal
solution to (4) (defined by Proposition 1.1).

Then there exists t0 = t0(N, ψ) > 0 such that if t < t0, u∗(t) is singular. In
addition, there exists ξ(t) ∈ B1 such that ‖u(x, t) − log 1

|x−ξ(t)|2 ‖L∞(Ωt) → 0 as
t → 0.

In fact, one can construct a singular solution of Problem (4) in any dimension
N ≥ 4:

Theorem 1.3. Let N ≥ 4. Then there exists t0 = t0(N, ψ) > 0 and a curve
t 
→ (λ(t), u(t)), defined for t ∈ [0, t0), such that (λ(t), u(t)) is a solution to (4)
and λ(0) = 2(N − 2), u(0) = log 1

|x|2 . Moreover u(t) is singular and there exists
ξ(t) ∈ B1 such that ‖u(x, t) − log 1

|x−ξ(t)|2 ‖L∞(Ωt) → 0 as t → 0.

The behavior of the singular solution at the origin is characterized as follows:

Corollary 1.4. Fix t < t0 and let (λ(t), u(t), ξ(t)) denote the solution of (4) given
by Theorem 1.3. Then,

u(x, t) = ln
1

|x − ξ(t)|2 + ln
(

λ(0)
λ(t)

)
+ ε(|x − ξ(t)|), (5)

where lims→0 ε(s) = 0.

Remark 1.5. If N ≥ 5, the curve t 
→ (λ(t), ξ(t), u(t)) given by Theorem 1.3 is
differentiable in the following sense: for any x �∈ ξ([0, t0)), the limit

lim
τ→0

u(x, t + τ) − u(x, t)
τ

exists.

Theorem 1.2 is a consequence of this more general result and is obtained thanks
to a lemma of Brezis and Vázquez [8] which asserts that a singular solution in H1

which is stable must be the extremal solution.

Remark 1.6. The natural restriction on the dimension in Theorem 1.2 should
perhaps be N ≥ 10. We do not know whether Theorem 1.2 holds in dimension
N = 10.
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A similar result (which proof we omit) can be obtained for power-type nonlin-
earities: given p > 1, consider the problem{

−∆u = λ(1 + u)p in Ωt

u = 0 on ∂Ωt.
(6)

When t = 0, i.e. when the domain is the unit ball, it is known (see e.g. [8]) that
the extremal solution is unbounded and given by u∗ = |x|−2/(p−1) − 1 if and only
if N ≥ 11 and

N ≥ 6 +
4

p − 1
+ 4
√

p

p − 1
.

We have:

Theorem 1.7. Let N ≥ 11 and p > 1 such that

N > 6 +
4

p − 1
+ 4
√

p

p − 1
.

Given t > 0 small, let u∗(t) denote the extremal solution to (6). Then there exists
t0 = t0(N, ψ, p) > 0 such that if t < t0, u∗(t) is singular. In addition, there exists
ξ(t) ∈ B1 such that ‖u(x, t) − (|x − ξ(t)|−2/(p−1) − 1)‖L∞(Ωt) → 0 as t → 0.

Concerning Theorem 1.3, we point out the work of Rébäı [25], who produced
singular solutions of (1) in the ball, having a prescribed singularity at a point ξ �= 0
sufficiently close to the origin, whenever N = 3. According to the author, this result
was also proved by Matano.

When the boundary condition is not prescribed (i.e. u = 0 may not hold on ∂Ω),
Pacard [23] proved that for N > 10, there exist a (dumbbell shaped) domain Ω and
a positive solution u of −∆u = eu in Ω having prescribed singularities at finitely
many points. Rebäı [26] extended this result to the case N = 3. Bidaut-Véron
and Véron [9] studied the behavior of solutions to the Gelfand problem around an
isolated singularity and at infinity in dimension 3.

When the exponential nonlinearity is replaced by f(u) = uα, Mazzeo and Pacard
proved that for any exponent α lying in a certain range and for any bounded domain
Ω, there exist solutions of −∆u = uα in Ω with u = 0 on ∂Ω, with a non-removable
singularity on a finite union of smooth manifolds without boundary. Further results
in this direction are provided in [27, 24] and their bibliography.

Returning to (1), one may be tempted to conjecture that if Ω is any smooth
bounded domain and N ≥ 10, u∗ is singular. But if Ω is an annulus it is easily seen
that with no restriction on N the extremal solution u∗ is smooth. This lead Brezis
and Vázquez [8] to stating the following question: is it true that if N ≥ 10 and Ω
is a convex smooth, bounded domain then u∗ is singular?

Added in proof: after completing this work, we have been informed that this
question had already been answered by E. N. Dancer (see [14] pp. 54–56).

As in [14], we provide a negative answer to the question of Brezis and Vázquez
by considering some thin domains. Let Ω ⊂ R

N be a bounded open set with smooth
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boundary. We assume furthermore that Ω is convex and ∂Ω is uniformly convex,
i.e. its principal curvatures are bounded away from zero. Write R

N = R
N1 × R

N2

and x = (x1, x2) ∈ R
N with x1 ∈ R

N1 , x2 ∈ R
N2 . For ε > 0 set

Ωε = {x = (y1, εy2) : (y1, y2) ∈ Ω} (7)

and consider the Gelfand problem in Ωε:{
−∆u = λeu in Ωε

u = 0 on ∂Ωε.
(8)

Theorem 1.8. Let N = N1+N2 ≥ 10. Given ε > 0, let u∗
ε be the extremal solution

to (8).
If N2 ≤ 9 then there exists ε0 = ε0(N, Ω) > 0 such that if ε < ε0, u∗

ε is smooth.

The proof of Theorem 1.8 is given in Sec. 4.

Remark 1.9. Let Ω = B1 in dimension N ≥ 11 and let Ωε be as in (7) with
N2 = 1. Combining Theorems 1.2 and 1.8 we can say that for ε close to 1, u∗ is
singular while for ε close to 0, u∗ is regular.

The proof of Theorem 1.2 is based on the study of the following model equation{
−∆u = λeu + f(x, t) in B

u = 0 on ∂B
(9)

where B = B1(0) ⊂ R
N with N ≥ 11. Here f : Ω̄ × R → R is a smooth function

such that f(·, 0) ≡ 0.
For each t ≥ 0, there exists an extremal parameter λ∗(t) and an extremal

solution u∗(t).

Theorem 1.10. Let u∗(t) denote the extremal solution to (9). There exists t0 =
t0(N, f) > 0 such that if t < t0 and N ≥ 11 then u∗(t) is singular.

Let us sketch the main idea of the proofs of Theorems 1.2 and 1.10. For simplicity
we do this for (9) assuming that for all t the function x → f(x, t) is radially
symmetric so that u∗(t) may only be singular at the origin.

We know that u∗(0)(x) = log 1
|x|2 and λ∗(0) = 2(N − 2). Assume that u∗(t) and

λ∗(t) are differentiable functions of t, differentiate (9) with respect to t and evaluate
at t = 0. Writing for convenience v = du∗

dt (0), λ′ = dλ∗
dt (0) and c∗ = 2(N − 2) we

find −∆v − c∗

|x|2 v = λ′ 1
|x|2 +

∂f

∂t
(x, 0) in B

v = 0 on ∂B.
(10)

Since in dimension N ≥ 11 we have c∗ < (N−2)2

4 , by Hardy’s inequality the operator
−∆ − c∗

|x|2 is invertible in H1
0 (Ω). This suggests that the extremal solution of (9)

C
om

m
un

. C
on

te
m

p.
 M

at
h.

 2
00

7.
09

:6
39

-6
80

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

A
U

C
K

L
A

N
D

 L
IB

R
A

R
Y

 -
 S

E
R

IA
L

S 
U

N
IT

 o
n 

02
/1

6/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



October 3, 2007 16:26 WSPC/152-CCM 00257

644 J. Dávila & L. Dupaigne

can be constructed (for small t) by means of the implicit function theorem and we
shall indeed use a similar scheme.

As observed by Brezis [5] one must be careful in this situation. To illustrate
the difficulty, let Ω = B in dimension N ≥ 10 and F (λ, u) = −∆u − λeu. Then,
informally, DuF (λ∗, u∗) = −∆− c∗

|x|2 . As mentioned earlier this operator is invertible
from H1

0 (B) to H−1(B) if N ≥ 11 (and one may use another space if N = 10).
Nonetheless, by Proposition 1.1, there are no solutions to F (λ, u) = 0 for λ > λ∗.
As observed in [8], this phenomenon can be thought of as a lack of appropriate
functional spaces to set up the implicit function theorem: good spaces for the linear
operator seem to be H1

0 (B) and H−1(Ω) but u 
→ eu is not well defined from H1
0 (Ω)

to H−1(Ω) (recall that N ≥ 10). See [7] for similar situations in other nonlinear
problems.

Going back to (10) we observe that besides the difficulty mentioned above, this
equation apparently does not give any information on λ′. Thinking of λ′ as a given
parameter we will examine closer equation (10) in Sec. 2 and we will show that
there exists a unique value of λ′ for which the solution v is bounded. This is the
good value of λ′ = dλ∗

dt (0). Then for small t we look for a solution to (9) of the form

u(x) = log
1

|x|2 + φ.

Writing λ = λ∗(0) + µ Eq. (9) is equivalent to−∆φ − c∗

|x|2 φ =
c∗

|x|2 (eφ − 1 − φ) + µ
1

|x|2 eφ + f(x, t) in B

φ = 0 on ∂B

where the unknowns are φ, µ. The objective is to find for t small a solution with
‖φ‖L∞(B) and |µ| small. This can be done using a fixed point theorem, where at
each iteration we select the good value of µ, i.e. the one for which the solution is
bounded. We explain this and prove Theorems 1.2 and 1.10 in Sec. 3.

2. A Linear Equation with the Inverse Square Potential

We study the linear equation−∆φ − c

|x − ξ|2 φ = g in B

φ = h on ∂B,
(11)

where B = B1(0), ξ ∈ B and c is any real number. Later on, we shall state results in
more general domains, which we are able to prove only for values of c in a restricted
range.

As mentioned in the introduction, we would like to obtain bounded solutions of
equations of the form (11). In general, this cannot be achieved without assumptions
on the data. For example, if c > 0 and g, h are nonnegative functions, φ, if it
exists (and is nontrivial), is always singular (this was first observed by Baras and
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Goldstein [3]. See also [16]). We will establish a result saying that if the functions
g and h satisfy orthogonality conditions with respect to appropriate functions then
(11) is uniquely solvable in a suitable space.

Such conditions will not come as a surprise to the reader, taking into account
that the operator L = −∆ − c

|x|2 is symmetric and that it has a nontrivial kernel,
as the following paragraph shows:

2.1. The kernel of L = −∆ − c
|x|2

Recall the following properties of the Laplace–Beltrami operator −∆ on the sphere
SN−1. The eigenvalues of −∆ on SN−1 are given by

λk = k(N + k − 2), k ≥ 0.

See [4]. Let mk denote the multiplicity of λk and ϕk,l, l = 1, . . . , mk the eigenfunc-
tions associated to λk. We normalize these eigenfunctions so that {ϕk,l : k ≥ 0, l =
1, . . . , mk} is an orthonormal system in L2(SN−1). We choose the first functions
to be

ϕ0,1 =
1

|SN−1|1/2
, ϕ1,l =

xl(∫
SN−1

x2
l

)1/2
=
(

N

|SN−1|
)1/2

xl, l = 1, . . . , N.

We seek solutions of

−∆w − c

|x|2 w = 0 in R
N \{0} (12)

of the form w(x) = f(r)ϕk,l(σ), where r = |x| and σ = x/r for x ∈ R
N \{0}. This

is equivalent to asking that f solves the following ordinary differential equation:

f ′′ +
N − 1

r
f ′ +

c − λk

r2
f = 0, for r > 0. (13)

Equation (13) is of Euler type and it admits a basis of solutions of the form f(r) =
r−α±

k , where α±
k are the roots of the associated characteristic equation, i.e.

α±
k =

N − 2
2

±
√(

N − 2
2

)2

− c + λk.

Note that α±
k may have a nonzero imaginary part only for finitely many k’s. If k0

is the first integer k such that α±
k ∈ R then

· · · < α−
k0+1 < α−

k0
≤ N − 2

2
≤ α+

k0
< α+

k0+1 < · · · ,

whereas, if k < k0, we denote the imaginary part of α+
k by

bk =

√
c −

(
N − 2

2

)2

− λk.

C
om

m
un

. C
on

te
m

p.
 M

at
h.

 2
00

7.
09

:6
39

-6
80

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

A
U

C
K

L
A

N
D

 L
IB

R
A

R
Y

 -
 S

E
R

IA
L

S 
U

N
IT

 o
n 

02
/1

6/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



October 3, 2007 16:26 WSPC/152-CCM 00257

646 J. Dávila & L. Dupaigne

For k ≥ 0, l = 1, . . . , mk, we have just found a family of real-valued solutions of
(12), denoted by w1 = w1

k,l, w2 = w2
k,l and defined on R

N \{0} by

if
(

N − 2
2

)2

− c + λk > 0: w1(x) = |x|−α+
k ϕk,l

(
x

|x|
)

,

w2(x) = |x|−α−
k ϕk,l

(
x

|x|
)

,

if
(

N − 2
2

)2

− c + λk = 0: w1(x) = |x|− N−2
2 log |x|ϕk,l

(
x

|x|
)

,

w2(x) = |x|− N−2
2 ϕk,l

(
x

|x|
)

,

if
(

N − 2
2

)2

− c + λk < 0: w1(x) = |x|− N−2
2 sin(bk log |x|)ϕk,l

(
x

|x|
)

,

w2(x) = |x|− N−2
2 cos(bk log |x|)ϕk,l

(
x

|x|
)

.

(14)

Each of the functions Wk,l defined by
if
(

N − 2
2

)2

− c + λk > 0: Wk,l(x) = w1(x) − w2(x),

if
(

N − 2
2

)2

− c + λk ≤ 0: Wk,l(x) = w1(x),

(15)

then solves (12) and

Wk,l|∂B = 0.

2.2. Functional setting

Our results are stated for functions behaving like a power of |x− ξ|. More precisely,
we shall work in the following functional setting (see [25, 2, 11]).

Given Ω a smooth domain, ξ ∈ Ω, k ≥ 0, 0 < α < 1, 0 < r ≤ dist(x, ∂Ω)/2 and
u ∈ Ck,α

loc (B̄\{ξ}) we define:

|u|k,α,r,ξ = sup
r≤|x−ξ|≤2r

k∑
j=0

rj |∇ju(x)| + rk+α

[
sup

r≤|x−ξ|,|y−ξ|≤2r

|∇ku(x) −∇ku(y)|
|x − y|α

]
.

Let d = dist(ξ, ∂Ω) and for any ν ∈ R let

‖u‖k,α,ν,ξ;Ω = ‖u‖Ck,α(Ω̄\Bd/2(ξ))
+ sup

0<r≤d
2

r−ν |u|k,α,r,ξ.

Define the space

Ck,α
ν,ξ (Ω) = {u ∈ Ck,α

loc (Ω̄\{ξ}) : ‖u‖k,α,ν,ξ;Ω < ∞}.
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One can easily check that Ck,α
ν,ξ (Ω) is a Banach space. It embeds continuously in

the space of bounded functions whenever ν ≥ 0.
From now on, given h ∈ C(∂B) and g ∈ C(B\{ξ}), we shall say that a function

φ ∈ Ck,α
ν,ξ (B) (k ≥ 2) solves (11) whenever the boundary condition φ|∂B = h holds

and −∆φ(x) − c
|x−ξ|2 φ(x) = g(x) for all x ∈ B\{ξ}.

2.3. The case ξ = 0

In the case Ω = B and ξ = 0, we have the following

Lemma 2.1. Let c, ν ∈ R and assume

∃k1 such that α−
k1

∈ R and − α−
k1

< ν < −α−
k1+1. (16)

Let g ∈ C0,α
ν−2,0(B) and h ∈ C2,α(∂B) and consider−∆φ − c

|x|2 φ = g in B

φ = h on ∂B.
(17)

Then (17) has a solution in C2,α
ν,0 (B) if and only if∫

B

gWk,l =
∫

∂B

h
∂Wk,l

∂n
, ∀k = 0, . . . , k1, ∀l = 1, . . . , mk. (18)

Under this condition the solution φ ∈ C2,α
ν,0 (B) to (17) is unique and it satisfies

‖φ‖2,α,ν,0;B ≤ C( ‖g‖0,α,ν−2,0;B + ‖h‖C2,α(∂B)) (19)

where C is independent of g and h.

Remark 2.2. Under the hypotheses of Lemma 2.1 we have

ν > −α−
k1

≥ −N − 2
2

, (20)

where the last inequality follows from the discussion in Sec. 2.1. This implies that
the integrals in the left-hand side of (18) are finite.

Remark 2.3. By taking k1 sufficiently large, one can choose ν ≥ 0 in the above
lemma. In particular, the corresponding solution φ is bounded.

Corollary 2.4. Assume (16)–(18) hold. Assume in addition that ν ≥ 0.
If |x|2g is continuous at the origin, then so is φ.

Proof of Lemma 2.1. Write φ as

φ(x) =
∞∑

k=0

mk∑
l=1

φk,l(r)ϕk,l(σ), x = rσ, 0 < r < 1, σ ∈ SN−1
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Then φ solves −∆φ − c
|x|2 φ = g in B\{0} if and only if φk,l satisfies the ODE

φ′′
k,l +

N − 1
r

φ′
k,l +

c − λk

r2
φk,l = −gk,l 0 < r < 1, (21)

for all k ≥ 0 and l = 1, . . . , mk, where

gk,l(r) =
∫

SN−1
g(rσ)ϕk,l(σ) dσ, 0 < r < 1, σ ∈ SN−1.

Note that if φ ∈ C2,α
ν,0 (B) then there exists a constant C > 0 independent of r such

that

|φk,l(r)| ≤ Crν . (22)

Furthermore, φ = h on ∂B if and only if φk,l(1) = hk,l for all k, l, where

hk,l =
∫

SN−1
h(σ)ϕk,l(σ) dσ.

Step 1. Clearly, sup0≤t≤1 t2−ν |gk,l(t)| < ∞ and observe that (18) still holds when
g is replaced by gk,lϕk,l and h by hk,lϕk,l. We claim that there is a unique φk,l that
satisfies (21), (22) and

φk,l(1) = hk,l. (23)

We also have

|φk,l(r)| ≤ Ckrν

(
sup

0≤t≤1
t2−ν |gk,l(t)| + |hk,l|

)
, 0 < r < 1. (24)

Case k = 0, . . . , k1. A solution to (21) is given by:

• if α±
k,l �∈ R

φk,l(r) =
1
b

∫ r

0

s
(s

r

)N−2
2

sin
(
bk log

s

r

)
gk,l(s) ds, (25)

• if α+
k,l = α−

k,l = N−2
2 :

φk,l(r) =
∫ r

0

s
(s

r

)N−2
2

log
(s

r

)
gk,l(s) ds, (26)

• if α±
k,l ∈ R, α±

k,l �= N−2
2 :

φk,l(r) =
1

α+
k − α−

k

∫ r

0

s
((s

r

)α+
k −

(s

r

)α−
k
)
gk,l(s) ds. (27)

In each case, (24) holds and (23) follows from (18).
Concerning uniqueness, suppose that φk,l satisfies (21) with gk,l = 0 and (23)

with hk,l = 0. Then φk,l is a linear combination of the functions w1, w2 defined in
(14). By (16), (20) and (24), φk,l has to be zero.
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Case k ≥ k1 + 1. Observe that (21) is equivalent to

−∆φ̃k,l +
λk − c

|x|2 φ̃k,l = g̃k,l in B\{0},

where φ̃k,l(x) = φk,l(|x|) and g̃k,l(x) = gk,l(|x|). Since α±
k ∈ R we must have

λk − c ≥ −(N−2
2 )2 and hence the equation

−∆φ̃k,l +
λk − c

|x|2 φ̃k,l = g̃k,l in B

φ̃k,l = hk,l on ∂B,
(28)

has a unique solution φ̃k,l ∈ H , where H is the completion of C∞
0 (B) with the norm

‖ϕ‖2
H =

∫
B

|∇ϕ|2 +
λk − c

|x|2 ϕ2,

see [28].
To show (24), observe that for some constant C depending only on N , λk and ν,

Ak,l(r) = rνC

(
sup

0<t≤1
t2−ν |gk,l(t)| + |hk,l|

)
is a supersolution to (28) and −Ak,l is a subsolution. To see this, we emphasize
that the condition −α−

k > ν > −(N − 2)/2 implies ν2 + (N − 2)ν + c − λk < 0. It
follows that |φ̃k,l(x)| ≤ Ak,l(|x|) for 0 < |x| ≤ 1.

To show that φ̃k,l is uniquely determined, we simply observe that any solution
w of (28) such that |w(x)| ≤ C|x|ν must belong to H (where uniqueness holds).
Indeed, by scaling, it can be checked that |∇w(x)| ≤ C|x|ν−1 (see Claim 1 below)
and this together with (20) implies w ∈ H1(B), which is contained in H .

The computations above also yield the necessity of condition (18). Indeed,
assuming a solution φ ∈ C2,α

ν,0 (B) exists, since φk,l satisfies the ODE (21) we see that
for k = 0, . . . , k1 the difference between φk,l and one of the particular solutions (25),
(26) or (27) can be written in the form ck,lr

−α+
k + dk,lr

−α−
k . Since |φk,l(r)| ≤ Crν

and ν > −α−
k1

we have ck,l = dk,l = 0 and this implies (18).

Step 2. Define for m ≥ 1

Gm =

{
g =

m∑
k=0

∑
l

gk,l(r)ϕk,l(σ) : |x|2−νg(x) ∈ L∞(B)

}
and

Hm =

{
h =

m∑
k=0

∑
l

hk,lϕk,l(σ) : hk,l ∈ R

}
.

Let gm ∈ Gm, hm ∈ Hm be such that (18) holds. Write gm(x) =∑m
k=0

∑
l gk,l(r)ϕk,l(σ) and hm(σ) =

∑m
k=0 hk,lϕk,l(σ). Let φk,l be the unique solu-

tion to (21)–(23) associated to gk,l, hk,l and define φm(x) =
∑m

k=0

∑
l φk,l(r)ϕk,l(σ).
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We claim that there exists C independent of m such that

|φm(x)| ≤ C|x|ν
(

sup
B

|y|2−ν |gm(y)| + sup
∂B

|hm|
)

, 0 < |x| < 1. (29)

By the previous step, (29) holds for some constant C which may depend on m.
In particular, choosing m = k1, we obtain a bound on the first components φk,l,
k = 0, . . . , k1. Hence, it suffices to prove (29) in the case gk,l ≡ 0 and hk,l = 0,
k = 0, . . . , k1. Working as in [25] (the argument already appeared in unpublished
notes of Pacard), we argue by contradiction assuming that

‖φm |x|−ν‖L∞(B) ≥ Cm(‖gm |x|2−ν‖L∞(B) + ‖hm‖L∞(∂B)),

where Cm → ∞ as m → ∞. Replacing φm by φm/‖φm|x|−ν‖L∞(B) if necessary, we
may assume

‖φm|x|−ν‖L∞(B) = 1,

‖gm|x|2−ν‖L∞(B) + ‖hm‖L∞(∂B) → 0 as m → ∞.
(30)

Let xm ∈ B\{0} be such that |φm(xm)||xm|−ν ∈ [ 12 , 1]. Let us show that xm → 0
as m → ∞. Otherwise, up to a subsequence xm → x0 �= 0. By standard elliptic
regularity, up to another subsequence, φm → φ uniformly on compact sets of B̄\{0}
and hence −∆φ − c

|x|2 φ = 0 in B\{0}

φ = 0 on ∂B.

Moreover φ satisfies |φ(x0)||x0|−ν ∈ [ 12 , 1] and |φ(x)| ≤ |x|ν in B. Writing

φ(x) =
∑

k≥k1+1

∑
l

φk,l(r)ϕk,l(σ),

we see that φk,l solves (13). The growth restriction |φk,l(r)| ≤ Crν and the explicit
functions w1, w2 given by (14) rule out the cases α±

k �∈ R, α−
k = α+

k and force φk,l =
ak,lr

−α−
k . But φk,l(1) = 0 so we deduce φk,l ≡ 0 and hence φ ≡ 0, contradicting

|φ(x0)||x0|−ν �= 0.
The above argument shows that xm → 0. Define rm = |xm| and

vm(x) = r−ν
m φm(rmx), x ∈ B1/rm

.

Then |vm(x)| ≤ |x|ν in B1/rm
, |vm(xm

rm
)| ∈ [ 12 , 1] and

−∆vm(x) − c

|x|2 vm(x) = r2−ν
m g(rmx) in B1/rm

\{0}.

But

r2−ν
m |g(rmx)| ≤ ‖gm(y)|y|2−ν‖L∞(B)|x|ν−2 → 0, as m → ∞
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by (30). Passing to a subsequence, we have that xm

rm
→ x0 with |x0| = 1, vm → v

uniformly on compact sets of R
N \{0} and v satisfies

−∆v − c

|x|2 v = 0 in R
N \{0}.

Furthermore, |v(x)| ≤ |x|ν in R
N \{0} and |v(x0)| �= 0. Write

v(x) =
∞∑

k=0

∑
l

vk,l(r)ϕk,l(σ).

Then |vk,l(r)| ≤ Ckrν for r > 0. But vk,l has to be a linear combination of the
functions w1, w2 given in (14), and none of these is bounded by Crν for all r > 0.
Thus v ≡ 0 yielding a contradiction and (29) is proved.

Step 3. Fix an integer d ≥ 3(N − 2)/2 + 1. Suppose now that g ∈ C∞(B̄\{0})
and |∇ig(x)| ≤ C|x|ν−2−i for 0 < |x| < 1 and for i = 0, . . . , d. Let h ∈ C∞(∂B)
such that (18) holds. We will show that there exists φ ∈ C2,α

ν,0 (B) solution to (17),
satisfying the estimate

‖φ|x|−ν‖L∞(B) ≤ C(‖g|x|2−ν‖L∞(B) + ‖h‖L∞(∂B)). (31)

To prove this, define for m ∈ N

gm(x) =
m∑

k=0

∑
l

gk,l(r)ϕk,l(σ) and hm(σ) =
m∑

k=0

∑
l

hk,lϕk,l(σ).

We have∑
l

|gk,l(r)| =
∑

l

∣∣∣∣∫
SN−1

g(rσ)ϕk,l(σ) dσ

∣∣∣∣ =
∑

l

1
λk

∣∣∣∣∫
SN−1

g(rσ)∆ϕk,l(σ) dσ

∣∣∣∣
≤ Cmkr2d

λd
k

sup
|x|=r

|∇2dg(x)| ‖ϕk,l‖L∞(SN−1)

≤ Crν−2k−2d+2(N−2),

where we used integration by parts d times to obtain the inequality and the facts:
λk ∼ k2 as k → ∞, |ϕk,l| ≤ CkN−2 in SN−1 and mk ≤ CkN−2, where mk is the
multiplicity of λk, see [1]. It follows that gm(x)|x|2−ν converges uniformly in B to
g(x)|x|2−ν and hence ‖gm|x|2−ν‖L∞(B) → ‖g|x|2−ν‖L∞(B) as m → ∞. Similarly
hm converges uniformly to h on ∂B and thus limm→∞ ‖hm‖L∞(∂B) = ‖h‖L∞(∂B).

Now gm ∈ Gm and hm ∈ Hm verify the orthogonality conditions (18). By the
previous step, the associated solution φm satisfies

‖φm|x|−ν‖L∞(B) ≤ C(‖gm|x|2−ν‖L∞(B) + ‖hm‖L∞(∂B)).

Using elliptic regularity, up to a subsequence, φm → φ uniformly in B \{0}, for
some φ satisfying the equations −∆φ − c

|x|2 φ = g in B\{0}, φ = h on ∂B and the
estimate (31).
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Claim 1. φ is a solution to the equation in the whole ball B.

To see this, it suffices to prove that

|∇φ(x)| ≤ C|x|ν−1 for x ∈ B1/2. (32)

Recall that ν − 1 > −N
2 . This implies that φ ∈ H1(B) and thus solves the equation

in B (since cap({0}) = 0 whenever N ≥ 3).
Let x0 ∈ B1/2, d = |x0| and for x ∈ B3/4, v(x) = φ(x0 + dx). Then,

−∆v − cd2

|x0 + dx|2 v = d2g(x0 + dx) in B3/4.

Observing that 0 ≤ c d2

|x0+dx|2 ≤ 16c for x ∈ B3/4, it follows by elliptic regularity
that for some constants C independent of d,

|∇v(0)| ≤ C(‖d2g(x0 + dx)‖L∞(B3/4) + ‖v‖L∞(B3/4))

≤ Cdν(‖g|x|2−ν‖L∞(B) + ‖φ|x|−ν‖L∞(B))

≤ C|x0|ν(‖g|x|2−ν‖L∞(B) + ‖h‖L∞(∂B)),

where we used (31) in the last inequality. Hence, |∇φ(x0)| ≤ C′|x0|ν−1, which is
the desired result.

Step 4. We assume now that g ∈ C0,α
ν−2,0(B) and h ∈ C2,α(∂B) satisfy (18). For

ε > 0 let hε be the convolution product of h with a standard mollifier on the sphere
∂B. Let ρε be a standard mollifier in R

N and define gε(x) = |x|ν−2ρε(x)∗(g|x|2−ν ),
where g is first extended by zero outside B. Since g(x)|x|2−ν ∈ L∞(B), we have
gε ∈ C∞(B̄\{0}) and

|∇igε(x)| ≤ C(i, ε)|x|ν−2−i.

Moreover, gε → g a.e. in B, hε → h a.e. on ∂B as ε → 0 and

‖gε|x|2−ν‖L∞(B) ≤ ‖g|x|2−ν‖L∞(B) and ‖hε‖L∞(∂B) ≤ ‖h‖L∞(∂B).

From this and (18), we deduce that for all k = 0, . . . , k1 and l = 1, . . . , mk,∫
B

gεWk,l −
∫

∂B

hε
∂Wk,l

∂n
→ 0 as ε → 0.

Let

a
(ε)
k,l =

1∫
∂B

Wk,l
∂Wk,l

∂n

(∫
B

gεWk,l −
∫

∂B

hε
∂Wk,l

∂n

)

and

h̃ε = hε +
k1∑

k=0

mk∑
l=1

a
(ε)
k,lWk,l.
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Then gε, h̃ε satisfy the orthogonality conditions (18). Let φε ∈ C2,α
ν,0 (B) denote the

solution to (17) with data gε, h̃ε. We have

‖φε|x|−ν‖L∞(B) ≤ C(‖gε|x|2−ν‖L∞(B) + ‖h̃ε‖L∞(∂B))

≤ C(‖g|x|2−ν‖L∞(B) + ‖h‖L∞(∂B)).

As in the previous step, from here we deduce that φ = limε→0 φε is a solution to
(17) with data g, h. In addition, (31) holds.

Finally, the estimate (19) is obtained by scaling, working as in Claim 1.

Proof of Corollary 2.4. Let (αn) denote an arbitrary sequence of real numbers
converging to zero, g̃(x) = |x|2g(x) and φn(x) = φ(αnx) for x ∈ B1/αn

(0). Then φn

solves

−∆φn − c

|x|2 φn =
g̃(αnx)
|x|2 in B1/αn

(0).

Also, (φn) is uniformly bounded so that up to a subsequence, it converges in the
topology of C1,α(RN \{0}) to a bounded solution Φ of

−∆Φ − c

|x|2 Φ =
g̃(0)
|x|2 in R

N \{0}.

Now Φ + g̃(0)/c is bounded and solves (12), so it must be identically zero. It fol-
lows that the whole sequence (φn) converges to −g̃(0)/c. Let now (xn) denote
an arbitrary sequence of points in R

N converging to 0 and αn = |xn|. Then,
φ(xn) = φn( xn

|xn|) and up to a subsequence, φ(xn) → −g̃(0)/c. Again, since the
limit of such a subsequence is unique, the whole sequence converges.

2.4. The case ξ �= 0

As we observed earlier, one cannot expect to obtain bounded solutions of (11) for
general data g and h. But Lemma 2.1 suggests that one can modify the data so
that the necessary orthogonality conditions hold. This is what we prove below, in
the more general case where ξ may be chosen different from the origin.

Let indeed ε0 > 0 and η ∈ C∞(R) such that 0 ≤ η ≤ 1, η �≡ 0 and supp(η) ⊂
[14 , 1

2 ]. For ξ ∈ B1/2 we construct functions Vk,l,ξ (k ≥ 1, l = 1, . . . , mk) as

Vk,l,ξ(x) = η(|x − ξ|)Wk,l

(
x − ξ

1 − 2ε0

)
. (33)

We prove:

Proposition 2.5. Assume

∃k1 such that α−
k1

∈ R and − α−
k1

< ν < −α−
k1+1. (34)

Then there exists ε0 > 0 such that if |ξ| < ε0 and g0 ∈ C0,α
ν,ξ (B) satisfies

‖g0 − 1‖L∞(B) < ε0,
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then given any g ∈ C0,α
ν,ξ (B) and h ∈ C2,α(∂B), there exist unique φ ∈ C2,α

ν,ξ (B) and
µ0, µk,l ∈ R (k = 1, . . . , k1, l = 1, . . . , mk) solution to−∆φ − c

|x − ξ|2 φ =
g

|x − ξ|2 + µ0
g0

|x − ξ|2 +
k1∑

k=1

mk∑
l=1

µk,lVk,l,ξ in B

φ = h on ∂B.

(35)

Moreover we have for some constant C > 0 independent of g and h

‖φ‖2,α,ν,ξ;B + |µ0| +
k1∑

k=1

mk∑
l=1

|µk,l| ≤ C(‖g‖0,α,ν,ξ;B + ‖h‖C2,α(∂B)). (36)

Proof. We work with 0 < |ξ| < ε0 where ε0 ∈ (0, 1/2) is going to be fixed later
on, small enough. Let R = 1 − 2ε0. This implies in particular that BR(ξ) ⊂ B.

We define an operator T1 : C2,α(∂BR(ξ)) → C1,α(∂BR(ξ))×R as follows: given
φ0 ∈ C2,α(∂BR(ξ)), find φ ∈ C2,α

ν,ξ (BR(ξ)) and γ0, γk,l the unique solution to

−∆φ1 − c

|x − ξ|2 φ1 = γ0
g0

|x − ξ|2 +
k1∑

k=1

mk∑
l=1

γk,lVk,l,ξ in BR(ξ)

φ1 = φ0 on ∂BR(ξ).

(37)

and set T1(φ0) = (∂φ1
∂n , γ0). This can be done (see Step 1 below) by adjusting

the constants γ0 and γk,l in such a way that the orthogonality relations (18) in
Lemma 2.1 are satisfied. Similarly, there is a unique φ̃1 ∈ C2,α

ν,ξ (BR(ξ)) and γ̃0, γ̃k,l

such that−∆φ̃1 − c

|x − ξ|2 φ̃1 =
g

|x − ξ|2 + γ̃0
g0

|x − ξ|2 +
k1∑

k=1

mk∑
l=1

γ̃k,lVk,l,ξ in BR(ξ)

φ̃1 = 0 on ∂BR(ξ).

(38)

Given φ̃1, γ̃0 as in (38), we define φ̃2 by

−∆φ̃2 − c

|x − ξ|2 φ̃2 =
g

|x − ξ|2 + γ̃0
g0

|x − ξ|2 in B\BR(ξ)

∂φ̃2

∂n
=

∂φ̃1

∂n
on ∂BR(ξ)

φ̃2 = h on ∂B.

(39)

We also define an operator T2 : C1,α(∂BR(ξ)) × R → C2,α(∂BR(ξ)) by

T2(Ψ, γ0) = φ2|∂BR(ξ)
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where φ2 is the solution to
−∆φ2 − c

|x − ξ|2 φ2 = γ0
g0

|x − ξ|2 in B\BR(ξ)

∂φ2

∂n
= Ψ on ∂BR(ξ)

φ2 = 0 on ∂B.

(40)

As we shall see later (see Step 2), Eqs. (39) and (40) possess indeed a unique solution
if ξ is sufficiently small, because the domain B\BR(ξ) is small.

We construct a solution φ of (35) as follows: choose φ0 ∈ C2,α(∂BR(ξ)), let φ1

be the solution to (37) and let φ2 be the solution to (40) with Ψ = ∂φ1
∂n and γ0 from

problem (37) . Then set

φ =
{

φ1 + φ̃1 in BR(ξ)
φ2 + φ̃2 in B\BR(ξ),

and µ0 = γ0 + γ̃0, µk,l = γk,l + γ̃k,l. If we have in addition

φ1 + φ̃1 = φ2 + φ̃2 on ∂BR(ξ), (41)

then φ, µ0 and µk,l form a solution to (35).
With this notation, solving Eq. (35) thus reduces to finding φ0 ∈ C2,α(∂BR(ξ))

such that (41) holds i.e.

T2 ◦ T1(φ0) + φ̃2 = φ0 in ∂BR(ξ).

The fact that this equation is uniquely solvable (when ξ is small) will follow once
we show that ‖T2‖ → 0 as ε0 → 0, while ‖T1‖ remains bounded.

Step 1. Given φ0 ∈ C2,α(∂BR(ξ)) there exist γ0 and γk,l such that (37) has a
unique solution φ1 in C2,α

ν,ξ (∂BR(ξ)).
In this step we change variables y = x− ξ and work in BR(0). Solving for γ0 in

the orthogonality relations (18) yields

γ0 =

1
R

∫
∂BR

φ0
∂W0,0

∂n

( y

R

)
∫

BR

g0(y + ξ)|y|−2W0,0

( y

R

) (42)

and a computation, using ‖g0 − 1‖L∞(BR) < ε0 shows that∫
BR

g0(y + ξ)|y|−2W0,0

( y

R

)
= Rν+N−2C(N, c) + O(ε0),

where C(N, c) �= 0. In particular this integral remains bounded away from zero as
R → 1 (R = 1 − 2ε0 and ε0 → 0) and hence γ0 stays bounded.
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Regarding γk,l we have

γk,l =

1
R

∫
∂BR(0)

φ0
∂Wk,l

∂n

( y

R

)
− γ0

∫
BR

g0(y + ξ)|y|−2Wk,l

( y

R

)
∫

BR

η(|y|)Wk,l

( y

R

)2 . (43)

and we observe that
∫

BR
η(|y|)Wk,l( y

R )2 is a positive constant depending on k, l and
R (which stays bounded away from zero as R → 1). Using Lemma 2.1, it follows
that ‖T1‖ remains bounded as R → 1 i.e. when ε0 → 0.

Step 2. For ξ small enough Eq. (40) is uniquely solvable and ‖T2‖ ≤ C|ξ|. Let z0 =
1 − |x|2. Then z0(|γ0| supB\BR(ξ)

|g0|
|x−ξ|2 + sup∂BR(ξ) |Ψ|) is a positive supersolution

of (40). This shows that this equation is solvable and that for its solution φ2 we
have the estimate |φ2| ≤ C|ξ|(|γ0| + sup∂BR(ξ) |Ψ|). This and Schauder estimates
yield ‖φ2‖C2,α(∂BR(ξ)) ≤ C|ξ|(|γ0|+‖Ψ‖C2,α(∂BR(ξ))), which is the desired estimate.

Finally, estimate (36) follows from (19) and formulas (42), (43).

2.5. Differentiability

Suppose now that for each ξ ∈ Bε0 we have functions g0(·, ξ), g(·, ξ) ∈ C0,α
ν,ξ (B)

and h(·, ξ) ∈ C2,α(∂B). By Proposition 2.5, there is a unique φ(·, ξ) ∈ C2,α
ν,ξ (B)

solution to (35). We want to investigate the differentiability properties of the map
ξ 
→ φ(·, ξ).
Proposition 2.6. Assume the following conditions:

∃k1 such that α−
k1

∈ R and − α−
k1

< ν < −α−
k1+1,

ν > −N

2
+ 2 (44)

and

ν − 1 �= −α−
k1

.

Let ε0 > 0 and for ξ ∈ Bε0 , let g0(·, ξ), g(·, ξ) ∈ C1,α
ν,ξ (B) be such that

A0 := sup
ξ∈Bε0

(‖g0(·, ξ)‖1,α,ν,ξ;B + ‖Dξg0(·, ξ)‖0,α,ν−1,ξ;B) < ∞ (45)

and

A := sup
ξ∈Bε0

(‖g(·, ξ)‖1,α,ν,ξ;B + ‖Dξg(·, ξ)‖0,α,ν−1,ξ;B) < ∞.

Let h(·, ξ) ∈ C3,α(∂B) with

sup
ξ∈Bε0

(‖h(·, ξ)‖C3(∂B) + ‖Dξh(·, ξ)‖C2,α(∂B)) < ∞.
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Let φ(·, ξ) denote the solution to (35). Then there exists ε̄0 > 0 and a constant C

such that if ε0 < ε̄0 and if ‖g0(·, ξ) − 1‖L∞(B) < ε0, |t| < ε0 and ξ1, ξ2 ∈ Bε0 then

‖φ(· + ξ2, ξ2) − φ(· + ξ1, ξ1)‖2,α,ν−1,0;B1/2 ≤ C|ξ2 − ξ1|. (46)

Moreover the map ξ ∈ Bε0 
→ φ(·; ξ) is differentiable in the sense that

Dξφ(x, ξ)η = lim
τ→0

1
τ

(φ(x, ξ + τη) − φ(x, ξ)) exists for all x ∈ B\{ξ} (47)

and η ∈ R
N . Furthermore Dξφ(·, ξ) ∈ C2,α

ν−1,ξ(B), the maps ξ ∈ Bε0 
→ µ0, µk,l ∈ R

are differentiable and

‖Dξφ(·, ξ)‖2,α,ν−1,ξ;B + |Dξµ0| +
k1∑

k=1

mk∑
l=1

|Dξµk,l|

≤ C(‖g(·, ξ)‖0,α,ν,ξ;B + ‖Dξg(·, ξ)‖0,α,ν−1,ξ;B

+ ‖h(·, ξ)‖C2,α(∂B) + ‖Dξh(·, ξ)‖C2,α(∂B)).

(48)

Remark 2.7. For simplicity we have stated Proposition 2.6 under the assumption
ν − 1 �= −α−

k1
. A similar result also holds if ν − 1 = −α−

k1
, but estimate (46) has to

be replaced by:

‖φ(· + ξ2, ξ2) − φ(· + ξ1, ξ1)‖2,α,ν̄−1,0;B1/2 ≤ C|ξ2 − ξ1|,

where ν − δ < ν̄ < ν for some δ > 0 and with the constant C now depending on ν̄.
Similarly, (48) is replaced by

‖Dξφ(·, ξ)‖2,α,ν̄−1,ξ;B + |Dξµ0| +
k1∑

k=1

mk∑
l=1

|Dξµk,l|

≤ C(‖g(·, ξ)‖0,α,ν̄,ξ;B + ‖Dξg(·, ξ)‖0,α,ν̄−1,ξ;B

+ ‖h(·, ξ)‖C2,α(∂B) + ‖Dξh(·, ξ)‖C2,α(∂B)).

Proof. We change coordinates y = x − ξ ∈ B − ξ. Then (35) is equivalent to
finding φ ∈ C2,α

ν,0 (B − ξ) such that−∆φ − c

|y|2 φ =
g(y + ξ, ξ)

|y|2 + µ0
g0(y + ξ, ξ)

|y|2 +
k1∑

k=1

mk∑
l=1

µk,lVk,l,0 in B − ξ

φ = h(y + ξ, ξ) on ∂B − ξ.

(49)

This equation can also be seen as the fixed point problem:

T2(T1(φ0, ξ), ξ) + φ̃2(y; ξ) = φ0, φ0 ∈ C2,α(∂BR) (50)
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where R = 1 − 2ε0 and

• the operator T1 : C2,α(∂BR) × Bε0 → C1,α(∂BR) × R is defined by T1(φ0, ξ) =
(φ1, γ0) and φ1, γ0, γk,l is the unique solution in C2,α

ν,0 (B − ξ) to−∆φ1 − c

|y|2 φ1 = γ0
g0(y + ξ, ξ)

|y|2 +
k1∑

k=1

mk∑
l=1

γk,lVk,l,0 in BR

φ1 = φ0 on ∂BR.

(51)

• T2 : C1,α(∂BR(ξ)) × R × Bε0 → C2,α(∂BR(ξ)) is defined by

T2(Ψ, γ0, ξ) = φ2|∂BR

where φ2 is the solution to
−∆φ2 − c

|y|2 φ2 = γ0
g0(y + ξ, ξ)

|y|2 in (B − ξ)\BR

∂φ2

∂n
= Ψ on ∂BR

φ2 = 0 on ∂B − ξ.

(52)

• φ̃2(x; ξ) is the solution defined in (39) and can be computed by solving for φ̃1 ∈
C2,α

ν,ξ (BR(ξ)) and γ̃0, γ̃k,l such that−∆φ̃1 − c

|y|2 φ̃1 =
g(y + ξ, ξ)

|y|2 + γ̃0
g0(y + ξ, ξ)

|y|2 +
k1∑

k=1

mk∑
l=1

γ̃k,lVk,l,0 in BR

φ̃1 = 0 on ∂BR,

(53)

and then φ̃2 is given by

−∆φ̃2 − c

|y|2 φ̃2 =
g(y + ξ, ξ)

|y|2 + γ̃0
g0(y + ξ, ξ)

|y|2 in (B − ξ)\BR

∂φ̃2

∂n
=

∂φ̃1

∂n
on ∂BR

φ̃2 = h(y + ξ, ξ) on ∂B − ξ.

(54)

We shall derive the following Lipschitz estimate for T1, where we write
(φ1(·, ξi), γ

(i)
0 ) = T1(φ0, ξi) (i = 1, 2):

‖φ1(·, ξ2) − φ1(·, ξ1)‖2,α,ν−1,0;BR + |γ(2)
0 − γ

(1)
0 | +

k1∑
k=1

mk∑
l=1

|γ(2)
kl − γ

(1)
kl |

≤ C|ξ2 − ξ1|. (55)
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Indeed, by formulas (42) and (43) and condition (44) we deduce

|γ(2)
0 − γ

(1)
0 | +

k1∑
k=1

mk∑
l=1

|γ(2)
kl − γ

(1)
kl | ≤ C|ξ2 − ξ1|. (56)

Now write τ = |ξ2 − ξ1|, φ ≡ φ1(·,ξ2)−φ1(·,ξ1)
τ . Then

−∆φ − c

|y|2 φ =
1
τ

[
γ

(2)
0

|y|2 g0(y + ξ2, ξ2) − γ
(1)
0

|y|2 g0(y + ξ1, ξ1)

]

+
k1∑

k=1

mk∑
l=1

γ
(2)
kl − γ

(1)
kl

τ
Vk,l,0 in BR

φ = 0 on ∂BR.

By (36) we have

‖φ‖2,α,ν−1,0;BR ≤ C
∥∥∥γ

(2)
0 g0(y + ξ2, ξ2) − γ

(1)
0 g0(y + ξ1, ξ1)

τ

∥∥∥
0,α,ν−1,0;BR

≤ C + C
∥∥∥g0(y + ξ2, ξ2) − g0(y + ξ1, ξ1)

τ

∥∥∥
0,α,ν−1,0;BR

where we have used (56). Using (45), we obtain that∥∥∥g0(y + ξ2, ξ2) − g0(y + ξ1, ξ1)
τ

∥∥∥
0,α,ν−1,0;BR

≤ C.

This implies (55).
Similarly we have

‖φ̃1(·, ξ2) − φ̃1(·, ξ1)‖2,α,ν−1,0;BR + |γ̃(2)
0 − γ̃

(1)
0 | +

k1∑
k=1

mk∑
l=1

|γ̃(2)
kl − γ̃

(1)
kl |

≤ C|ξ2 − ξ1|. (57)

Using standard local elliptic regularity arguments, applied to u ≡ φ̃2(·, ξ2)−φ̃2(·, ξ2)
in B1(−ξ2) ∩ B1(−ξ1)\BR, we have

‖φ̃2(·, ξ2) − φ̃2(·, ξ1)‖C2,α(∂BR) ≤ C|ξ2 − ξ1| (58)

and similarly

‖T2(Ψ, γ
(2)
0 , ξ2) − T2(Ψ, γ

(1)
0 , ξ1)‖C2,α(∂BR) ≤ C(|ξ2 − ξ1| + |γ(2)

0 − γ
(1)
0 |). (59)

Using the fixed point characterization (50) of φ0 and estimates (55), (57)–(59) we
deduce

‖φ0(·, ξ2) − φ0(·, ξ1)‖C2,α(∂BR) ≤ C|ξ2 − ξ1|.
The solution φ to (49) is then given by

φ =

{
φ1 + φ̃1 in BR

φ2 + φ̃2 in (B − ξ)\BR

and thanks to (55), (57) we obtain (46).
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Let us show now that (47) holds. We return to the problem (35), without trans-
lating, and let φ(·, ξ) denote the solution to (35). Let x �= ξ and write

φ(x, ξ + τη) − φ(x, ξ) = φ(x, ξ + τη) − φ(x + τη, ξ + τη)

+ φ(x + τη, ξ + τη) − φ(x, ξ).

Since φ(·, ξ + τη) ∈ C2,α
ν,ξ+τη(B) by the mean value theorem

φ(x, ξ + τη) − φ(x + τη, ξ + τη)
τ

= −∇φ(x + sη, ξ + τη)η

for some |s| < |τ | and letting τ → 0 we see that limτ→0
φ(x,ξ+τη)−φ(x+τη,ξ+τη)

τ =
−∇φ(x, ξ)η. For the other term, changing variables y = x − ξ we have

φ(x + τη, ξ + τη) − φ(x, ξ)
τ

=
φ(y + ξ + τη, ξ + τη) − φ(y + ξ, ξ)

τ

=
φtr(y, ξ + τη) − φtr(y, ξ)

τ
, (60)

where now φtr(·, ξ) denotes the solution to the shifted problem (49). From estimate
(46) we deduce that∥∥∥φtr(·, ξ + τη) − φtr(·, ξ)

τ

∥∥∥
2,α,ν−1,0;B1/2

≤ C (61)

with C independent of τ .
Observe now that the quotient φ(x,ξ+τη)−φ(x,ξ)

τ is uniformly bounded in B\B1/4

which can be seen from estimates (55), (57)–(59). It follows from standard
local elliptic regularity arguments that this quotient is uniformly bounded in
C2,α(B\B1/4).

Fix 0 < β < α. Then for any sequence τn → 0 we can extract a subsequence
(denoted the same) such that φ(x,ξ+τnη)−φ(x,ξ)

τn
converges in C2,β(B\B1/4). Set

ψ1 = lim
n→∞

φ(x, ξ + τnη) − φ(x, ξ)
τn

−∇xφ(x, ξ)η in B\B1/4

so that ψ1 ∈ C2,α(B\B1/4). Note that

ψ1(x) = lim
n→∞

φ(x + τnη, ξ + τnη) − φ(x, ξ)
τn

= lim
n→∞

φtr(x − ξ, ξ + τnη) − φtr(x − ξ, ξ)
τn

∀x ∈ B\B1/4. (62)

In addition, from (61) we find ψ2 ∈ C2,α
ν−1,0(B1/2) such that∥∥∥∥φtr(·, ξ + τnη) − φtr(·, ξ)

τn
− ψ2

∥∥∥∥
2,β,ν−1,0;B1/2

→ 0 as τn → 0.
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Set

ψ(x) =

ψ1(y + ξ) y ∈ (B\B1/4) − ξ

ψ2(y) y ∈ B1/2.

Clearly ψ belongs to C2,β
ν−1,0(B − ξ). Moreover by (42), (43) and similar formulas

for γ̃0, γ̃k,l we have that the functions µ0(ξ), µk,l(ξ) are differentiable and hence

−∆ψ − c

|y|2 ψ =
Dxg(y + ξ, ξ)η + Dξg(y + ξ, ξ)η

|y|2 +
∂µ0

∂η

g0(y + ξ, ξ)
|y|2

+ µ0
Dxg(y + ξ, ξ)η + Dξg(y + ξ, ξ)η

|y|2 +
k1∑

k=1

mk∑
l=1

∂µk,l

∂η
Vk,l,0

in B − ξ

ψ = Dyφtr(y, ξ)η + Dξh(y + ξ, ξ)η for y ∈ ∂B − ξ.

The boundary condition is obtained by observing that for fixed x ∈ ∂B, we have
φtr(x − ξ, ξ) = h(x, ξ) and differentiating with respect to ξ.

To show the convergence of (60) (as τ → 0), it suffices to verify that ψ is uniquely
determined. Let µ0(ξ), µk,l(ξ) be the constants associated to φ(·, ξ) in (35). This
equation possesses at most one solution ψ ∈ C2,α

ν−1,0(B) by Proposition 2.5.
Estimate (48) now follows from the formulas (42), (43) and the equation satisfied

by Dξφ.

2.6. Perturbations of the operator −∆ − c
|x−ξ|2

We wish to extend Proposition 2.5 to an operator of the form −∆ − Lt − c
|x−ξ|2

where Lt is a suitably small second order differential operator. We will take Lt of
the form

Ltw = aij(x, t)Dijw + bi(x, t)Diw + c(x, t)w. (63)

Lemma 2.8. Suppose that the coefficients of Lt satisfy: aij(·, t), bi(·, t), ci(·, t) are
Cα(B̄) and for some C it holds

‖aij(·, t)‖Cα(B̄) + ‖bi(·, t)‖Cα(B̄) + ‖c(·, t)‖Cα(B̄) ≤ C|t|.

Assume

∃k1 such that α−
k1

∈ R and − α−
k1

< ν < −α−
k1+1.

Then there exists ε0 > 0 such that if |ξ| < ε0, |t| < ε0 and g0 ∈ C0,α
ν,ξ (B) satisfies

‖g0 − 1‖L∞(B) < ε0, then given any g ∈ C0,α
ν,ξ (B) and h ∈ C2,α(∂B), there exist
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unique φ ∈ C2,α
ν,ξ (B) and µ0, µk,l ∈ R (k = 1, . . . , k1, l = 1, . . . , mk) solution to

−∆φ − Ltφ − c

|x − ξ|2 φ

=
g

|x − ξ|2 + µ0
g0

|x − ξ|2 +
k1∑

k=1

mk∑
l=1

µk,lVk,l,ξ in B

φ = h on ∂B.

(64)

Moreover

‖φ‖2,α,ν,ξ;B + |µ0| +
k1∑

k=1

mk∑
l=1

|µk,l| ≤ C(‖g‖0,α,ν,ξ;B + ‖h‖C2,α(∂B)). (65)

Proof. Fix h ∈ C2,α(∂B) and |ξ| < ε0, where ε0 is the constant appearing in
Proposition 2.5. For g ∈ C0,α

ν,ξ (B) let φ = T (g/|x − ξ|2) be the solution to (35) as
defined in Proposition 2.5. Then (64) is equivalent to φ = T (g/|x − ξ|2 + Ltφ).
Define

T̃ (φ) = T (g/|x − ξ|2 + Ltφ).

We apply the Picard Fixed Point Theorem to the operator T̃ in a closed ball BR of
the Banach space C2,α

ν,ξ (B) equipped with the norm ‖ · ‖2,α,ν,ξ;B.
Note that by Proposition 2.5 we have ‖T (g/|x−ξ|2)‖2,α,ν,ξ;B ≤ C(‖g‖0,α,ν,ξ;B +

‖h‖C2,α(∂B)). Using this inequality, for ‖φ‖2,α,ν,ξ;B ≤ R we have

‖T̃ (φ)‖2,α,ν,ξ;B ≤ C(‖g‖0,α,ν,ξ;B + ‖Ltφ‖0,α,ν−2,ξ;B + ‖h‖C2,α(∂B))

≤ C(‖g‖0,α,ν,ξ + |t|R + ‖h‖C2,α(∂B)) ≤ R,

where the last inequality holds if we first take t so small that C|t| ≤ 1
2 , and then

choose R so large that C(‖g‖0,α,ν,ξ;B + ‖h‖C2,α(∂B)) ≤ R
2 .

For ‖φ1‖2,α,ν,ξ;B ≤ R, ‖φ2‖2,α,ν,ξ;B ≤ R we have

‖T̃ (φ1) − T̃ (φ2)‖2,α,ν,ξ;B ≤ C‖Lt(φ1 − φ2)‖0,α,ν−2,ξ;B

≤ C|t| ‖φ1 − φ2‖2,α,ν,ξ;B,

and we see that T̃ is a contraction on the ball BR of C2,α
ν,ξ (B) if t is chosen small

enough.

We now extend the results of the previous section on differentiability to per-
turbed operators of the form −∆ − Lt − c

|x−ξ|2 .

Proposition 2.9. Assume the following conditions:

∃k1 such that α−
k1

∈ R and − α−
k1

< ν < −α−
k1+1

ν > −N

2
+ 2,
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and

ν − 1 �= −α−
k1

. (66)

Let ε0 > 0 and for ξ ∈ Bε0 let g0(·, ξ), g(·, ξ) ∈ C1,α
ν,ξ (B) be such that

A0 ≡ sup
ξ∈Bε0

(‖g0(·, ξ)‖1,α,ν,ξ;B + ‖Dξg0(·, ξ)‖0,α,ν−1,ξ;B) < ∞

and

A ≡ sup
ξ∈Bε0

(‖g(·, ξ)‖1,α,ν,ξ;B + ‖Dξg(·, ξ)‖0,α,ν−1,ξ;B) < ∞.

On the operator Lt we assume

‖aij(·, t)‖C1,α(B̄) + ‖bi(·, t)‖C1,α(B̄) + ‖c(·, t)‖C1,α(B̄) ≤ C|t|.
Let h(·, ξ) ∈ C3,α(∂B) with

sup
ξ∈Bε0

(‖h(·, ξ)‖C3(∂B) + ‖Dξh(·, ξ)‖C2,α(∂B)) < ∞

and let φ(·, ξ) denote the solution to (64). Then there exist ε̄0 > 0, C > 0 such that
if ε0 < ε̄0, ‖g0(·, ξ) − 1‖L∞(B) < ε0, |t| < ε0 and ξ1, ξ2 ∈ Bε0 , we have

‖φ(· + ξ2, ξ2) − φ(· + ξ1, ξ1)‖2,α,ν−1,0;B1/2 ≤ C|ξ2 − ξ1|. (67)

Furthermore,

Dξφ(x; ξ)η = lim
t→0

1
t
(φ(x; ξ + tη) − φ(x; ξ)) exists ∀x ∈ B\{ξ}, ∀η ∈ R

N ,

the maps ξ ∈ Bε0(0) 
→ µ0, µk,l ∈ R are differentiable and

‖Dξφ(x; ξ)‖2,α,ν−1,ξ;B ≤ C(‖g(·, ξ)‖0,α,ν,ξ;B + ‖Dξg(·, ξ)‖0,α,ν−1,ξ;B

+ ‖h(·, ξ)‖C2,α(∂B) + ‖Dξh(·, ξ)‖C2,α(∂B)). (68)

Proof. To prove this result we use again a fixed point argument. Consider the
Banach space X of functions φ(x, ξ) defined for x ∈ B, ξ ∈ Bε0 , which are twice
continuously differentiable with respect to x and once with respect to ξ for x �= ξ,
for which the following norm is finite

‖φ‖X = sup
ξ∈Bε0

(‖φ(·, ξ)‖2,α,ν,ξ;B + ‖Dξφ(·, ξ)‖2,α,ν−1,ξ;B) .

Let BR denote the closed ball of radius R in X where R > 0 is to be chosen. For
ξ ∈ Bε0 , g(·, ξ) ∈ C0,α

ν,ξ (B), h(·, ξ) ∈ C3,α(∂B) let φ = T (g(·, ξ)/|x − ξ|2, ξ) be
the solution to (35) as defined in Proposition 2.5 with g0(·, ξ) in place of g0. Let
T̃ : BR → X be defined by T̃ (φ) = T (g(·, ξ)/|x − ξ|2 + Ltφ(·, ξ), ξ). Then

‖T̃ (φ)‖2,α,ν,ξ;B ≤ C(‖g‖0,α,ν,ξ;B + ‖Ltφ‖0,α,ν−2,ξ;B + ‖h‖C2,α(∂B))

≤ C(‖g‖0,α,ν,ξ + |t|R + ‖h‖C2,α(∂B)) ≤ R,
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if |t| is small and R large. Moreover from (48) we have

‖DξT̃ (φ)‖2,α,ν−1,ξ;B ≤ C(‖g‖0,α,ν,ξ;B + ‖Dξg‖0,α,ν−1,ξ;B

+ ‖Ltφ‖0,α,ν−2,ξ;B + ‖LtDξφ‖0,α,ν−3,ξ;B

+ ‖h(·, ξ)‖C2,α(∂B) + ‖Dξh(·, ξ)‖C2,α(∂B))

≤ C(A + |t|‖φ‖X + ‖h(·, ξ)‖C2,α(∂B) + ‖Dξh(·, ξ)‖C2,α(∂B))

≤ R (69)

if we take |t| small enough and then R large. Taking the supremum over ξ ∈ Bε0

then yields the estimate

‖T̃ (φ)‖X ≤ R ∀‖φ‖X ≤ R.

That T̃ is a contraction is proved in a similar manner as in the previous lemma.
For ‖φ1‖X ≤ R, ‖φ2‖X ≤ R we have

‖T̃ (φ1) − T̃ (φ2)‖2,α,ν,ξ;B ≤ C‖Lt(φ1 − φ2)‖0,α,ν−2,ξ;B

≤ C|t|‖φ1 − φ2‖2,α,ν,ξ;B,

and using (48)

‖Dξ(T̃ (φ1) − T̃ (φ2))‖2,α,ν−1,ξ;B ≤ C(‖Lt(φ1 − φ2)‖0,α,ν−2,ξ;B

+ ‖LtDξ(φ1 − φ2)‖0,α,ν−3,ξ;B)

≤ C|t|‖φ1 − φ2‖X ,

and it follows that

‖T̃ (φ1) − T̃ (φ2)‖X ≤ C|t|‖φ1 − φ2‖X .

Thus T̃ is a contraction on the ball BR of X if |t| is chosen small enough.
To prove (68) we observe that, if φ = T̃ (φ) then as in (69) we have

‖Dξφ‖2,α,ν−1,ξ;B = ‖DξT̃ (φ)‖2,α,ν−1,ξ;B

≤ C(‖g‖0,α,ν,ξ;B + ‖Dξg‖0,α,ν−1,ξ;B

+ |t|(‖φ‖0,α,ν,ξ;B + ‖Dξφ‖0,α,ν,ξ;B)

+ ‖h(·, ξ)‖C2,α(∂B) + ‖Dξh(·, ξ)‖C2,α(∂B)).

Combining this and (65) we deduce (68).

2.7. Additional results when 0 < c < (N−2)2

4

The purpose of this section is to extend Lemma 2.1 to a general bounded, smooth
domain Ω of R

N , N ≥ 3 and general ξ ∈ Ω, by redefining the functions Wk,l which
appear in (18). For this we restrict ourselves to values of c in the range

0 < c <
(N − 2)2

4
which guarantees α−

0 < N−2
2 < α+

0 .
Take g ∈ C0,α

ν−2,0(Ω) ∩ H−1(Ω) and h ∈ C2,α(∂Ω).
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Hardy’s inequality and the condition c < (N−2)2

4 ensure that equation−∆φ − c

|x − ξ|2 φ = g in Ω

φ = h on ∂Ω,
(70)

has a unique solution φ ∈ H1(Ω). If we do not impose a restriction on φ of the form
φ ∈ H1(Ω) then uniqueness in (70) is lost, see for instance [15, 16].

We define Wk,l,ξ, which will play the same role as in (18), to be smooth functions
in Ω\{ξ} satisfying

−∆Wk,l,ξ − c

|x − ξ|2 Wk,l,ξ = 0 in Ω\{ξ}

Wk,l,ξ = 0 on ∂Ω

Wk,l,ξ(x) ∼ |x − ξ|−α+
k ϕk,l

(
x−ξ
|x−ξ|

)
x ∼ ξ.

(71)

Let indeed

Wk,l,ξ(x) = |x − ξ|−α+
k ϕk,l

(
x − ξ

|x − ξ|
)
− ψk,l,ξ(x), (72)

where ψk,l,ξ ∈ H1(Ω) is the unique solution to
−∆ψk,l,ξ − c

|x − ξ|2 ψk,l,ξ = 0 in Ω

ψk,l,ξ = |x − ξ|−α+
k ϕk,l

(
x − ξ

|x − ξ|
)

on ∂Ω.

Observe that for C > 0 large enough, C|x−ξ|−α−
0 and −C|x−ξ|−α−

0 are respectively
a super and a subsolution of the above equation, whence by the maximum principle
(which is valid in virtue of Hardy’s inequality and the restriction c < (N−2)2

4 ),
|ψk,1,ξ| ≤ C|x − ξ|−α−

0 and Wk,l,ξ satisfies (71).

Remark 2.10. If Ω = B1(0) and ξ = 0, our definition is consistent with (15), since

ψk,l,ξ = |x|−α−
k ϕk,l

(
x

|x|
)

and Wk,l,ξ = (|x|−α+
k − |x|−α−

k )ϕk,l

(
x

|x|
)

. (73)

Theorem 2.11. Let c ∈ R and assume

∃k1 ≥ k0 − α−
k1+1 > ν > −α−

k1
. (74)

Let Ω a smooth bounded domain of R
N , N ≥ 3, ξ ∈ Ω, g ∈ C0,α

ν−2,ξ(Ω) ∩ H−1(Ω)
and h ∈ C2,α(∂Ω). If∫

Ω

gWk,l,ξ =
∫

∂Ω

h
∂Wk,l,ξ

∂n
, ∀k = 0, . . . , k1, ∀l = 1, . . . , mk (75)

then there exists a unique φ ∈ C2,α
ν,ξ (Ω) ∩ H1(Ω) solution to−∆φ − c

|x − ξ|2 φ = g in Ω

φ = h on ∂Ω,
(76)
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and it satisfies

‖φ‖2,α,ν,0 ≤ C( ‖g‖0,α,ν−2,0 + ‖h‖C2,α(∂B)) (77)

where C is independent of g and h.

By translating the domain we consider from now on ξ = 0. By Lemma 2.1, a
straightforward scaling argument implies that Theorem 2.11 holds when Ω = BR(0)
and ξ = 0. In this case Wk,l,0 takes the form

W̃k,l(x) =

(( |x|
R

)−α+
k

−
( |x|

R

)−α−
k

)
ϕk,l

(
x

|x|
)

. (78)

This is obtained by scaling the functions in (73) and is the same as in definition
(72) except for a multiplicative constant.

Proof of Theorem 2.11. As mentioned earlier, we shall give the proof in the case
ξ = 0. Take R > 0 small such that BR(0) ⊂ Ω. Then the unique solution φ ∈ H1(Ω)
of (76) satisfies (77) if∫

BR

gW̃k,l =
∫

∂BR

φ
∂W̃k,l

∂n
, ∀k = 0, . . . , k1, ∀l = 1, . . . , mk, (79)

where W̃k,l is defined in (78). Since W̃k,l satisfies

−∆W̃k,l − c

|x|2 W̃k,l = 0 in R
N \{0},

multiplying this equation by φ and integrating in Ω\BR we obtain∫
∂Ω

(
∂W̃k,l

∂n
φ − W̃k,l

∂φ

∂n

)
−
∫

∂BR

∂W̃k,l

∂n
φ =

∫
Ω\BR

gW̃k,l (80)

where n denotes the exterior normal vector to ∂Ω and ∂BR. Adding (79) and (80)
we see that (79) is equivalent to∫

∂Ω

(
∂W̃k,l

∂n
φ − W̃k,l

∂φ

∂n

)
=
∫

Ω

gW̃k,l. (81)

Let ψ̃k,l ∈ H1(Ω) be the solution to−∆ψ̃k,l − c

|x|2 ψ̃k,l = 0 in Ω

ψ̃k,l = W̃k,l on ∂Ω.

Multiplying this equation by φ and integrating by parts yields∫
∂Ω

(
∂ψ̃k,l

∂n
φ − ∂φ

∂n
ψ̃k,l

)
=
∫

Ω

gψ̃k,l.
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Subtracting this equation from (81) we obtain that (79) is equivalent to∫
∂Ω

∂(W̃k,l − ψ̃k,l)
∂n

φ =
∫

Ω

g(W̃k,l − ψ̃k,l).

Up to multiplicative constant W̃k,l − ψ̃k,l is the same as Wk,l,0 as defined
in (72).

3. Solution to the Nonlinear Equation

We first study (4). Recall

Ωt = {x + tψ(x) : x ∈ B1},
where t is small and ψ : B̄1 → R

N a C2 map.
We change variables to replace (4) with a problem in the unit ball. The map

id + tψ is invertible for t small and we write the inverse of y = x + tψ(x) as
x = y + tψ̃(y, t). Define v by

u(y) = v(y + tψ̃(y, t)).

Then

∆yu = ∆xv + Ltv

where Lt is a second order operator given by

Ltv = 2t
∑
i,k

vxixk

∂ψ̃k

∂yi
+ t
∑
i,k

vxk

∂2ψ̃k

∂y2
i

+ t2
∑
i,j,k

vxjxk

∂ψ̃j

∂yi

∂ψ̃k

∂yi
.

We look for a solution of the form

v(x) = log
1

|x − ξ|2 + φ, λ = c∗ + µ,

where c∗ = 2(N − 2). Then (4) is equivalent to

−∆φ − Ltφ − c∗

|x − ξ|2 φ =
c∗

|x − ξ|2 (eφ − 1 − φ) +
µ

|x − ξ|2 eφ

+ Lt

(
log

1
|x − ξ|2

)
in B

φ = − log
1

|x − ξ|2 on ∂B.

(82)

We observe that if N ≥ 4 then N − 1 < c∗ < 2N and hence α−
1 > 0, α−

2 < 0.
We fix from now on ν = 0 and k1 = 1. We may thus apply Proposition 2.5 and

Lemma 2.8, since (34) is satisfied. In dimension N ≥ 5, since (44) and (66) hold,
we may also apply Propositions 2.6 and 2.9.

We simplify our notation and write

V,ξ := V1,,ξ � = 1, . . . , N,

where V1,,ξ is defined in (33).
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Define

f̃(x, t) = Lt

(
log

1
|x − ξ|2

)
and note that

‖f̃(x, t)|x − ξ|2‖0,α,−2,ξ ≤ C|t|. (83)

Concerning (82) we prove:

Lemma 3.1. Write c = c∗ = 2(N − 2). Then there exists ε0 > 0 such that if
|ξ| < ε0, |t| < ε0, there exist φ ∈ C2,α

0,ξ (B) and µ0, . . . , µN ∈ R such that

−∆φ − Ltφ − c

|x − ξ|2 φ =
c

|x − ξ|2 (eφ − 1 − φ) + µ0
1

|x − ξ|2 eφ

+ f̃(x, t) +
N∑

i=1

µiVi,ξ in B

φ = − log
1

|x − ξ|2 on ∂B.

(84)

If N ≥ 5, we have in addition that:

• the map ξ ∈ Bε0 
→ φ(·, ξ) is differentiable in the sense that

Dξφ(x, ξ)η = lim
τ→0

1
τ
(φ(x, ξ + τη) − φ(x, ξ)) exists for all x ∈ B\{ξ}

and η ∈ R
N .

• for ν̄ < 0 small, Dξφ(·, ξ) ∈ C2,α
ν̄−1,ξ(B), the maps ξ ∈ Bε0 
→ µ0, µi ∈ R are

differentiable and there exists a constant C independent of ξ such that

‖Dξφ(·, ξ)‖2,α,ν̄−1,ξ;B + |Dξµ0| +
k1∑

k=1

mk∑
l=1

|Dξµk,l| ≤ C. (85)

Proof. Case N ≥ 5. Let ε0 be as in Lemma 2.8. Consider the Banach space
X of functions φ(x, ξ) defined for x ∈ B, ξ ∈ Bε0 , which are twice continuously
differentiable with respect to x and once with respect to ξ for x �= ξ for which the
following norm is finite

‖φ‖X = sup
ξ∈Bε0

‖φ(·, ξ)‖2,α,0,ξ;B + λ‖Dξφ(·, ξ)‖2,α,ν̄−1,ξ;B,

where λ > 0 is a parameter to be fixed later on and ν̄ < 0 is close to zero.
Let BR = {φ ∈ X | ‖φ‖X ≤ R}. Using Lemma 2.8 we may define a nonlinear

map F : BR → X by F (ψ) = φ, where φ(·, ξ) is the solution to (64) with

g = c(eψ − 1 − ψ) + |x − ξ|2f̃(x, t), g0 = eψ, h = − log
1

|x − ξ|2 . (86)
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We shall choose later on R > 0 small. Observe that in Lemma 2.8 the constants C

in (65) and ε0 associated to g0 = eψ, stay bounded and bounded away from zero
respectively as we make R smaller, since e−R ≤ eψ ≤ eR for ψ ∈ BR.

Let us show that if t is small then one can choose R small and λ > 0 small so
that F : BR → BR. Indeed, let ψ ∈ BR and φ = F (ψ). Then by (65), (83) we have

‖φ‖2,α,0,ξ;B ≤ C(‖c(eψ − 1 − ψ) + |x − ξ|2f̃(x, t)‖0,α,0,ξ;B + |ξ|)

≤ C(R2 + |t| + |ξ|) <
R

2
, (87)

provided R is first taken small enough and then |t| and |ξ| < ε0 are chosen small.
Similarly, recalling Remark 2.7,

‖Dξφ‖2,α,ν̄−1,ξ;B ≤ C(‖c(eψ − 1 − ψ) + |x − ξ|2f̃(x, t)‖0,α,0,ξ;B

+ ‖cDξ(eψ − 1 − ψ) + Dξ(|x − ξ|2f̃(x, t))‖0,α,ν̄−1,ξ;B + 1)

≤ C

(
R2 + t +

R2

λ
+ 1
)

≤ R

2λ
,

if we choose now λ small enough.
Next we show that F is a contraction on BR. Let ψ1, ψ2 ∈ BR and φ = F (ψ),

� = 1, 2. Let µ
()
i , i = 0, . . . , N be the constants in (64) associated with ψ. By (65)

and repeating the calculation in (87)

N∑
i=0

|µ()
i | ≤ R. (88)

Let φ = φ1 − φ2. Then φ satisfies

−∆φ − Ltφ − c

|x − ξ|2 φ = c

(
eψ1 − 1 − ψ1

|x − ξ|2 − eψ2 − 1 − ψ2

|x − ξ|2
)

+ µ
(2)
0

eψ1 − eψ2

|x − ξ|2 + (µ(1)
0 − µ

(2)
0 )

eψ1

|x − ξ|2

+
N∑

i=1

(µ(1)
i − µ

(2)
i )Vi,ξ in B

φ = 0 on ∂B.

(89)

Apply (65) with g0 = eψ1

|x−ξ|2 , h = 0 and

g := c

(
eψ1 − 1 − ψ1

|x − ξ|2 − eψ2 − 1 − ψ2

|x − ξ|2
)

+ µ
(2)
0

eψ1 − eψ2

|x − ξ|2 , (90)

to conclude that

‖φ‖2,α,0,ξ +
N∑

i=0

|µ(1)
i − µ

(2)
i | ≤ C‖g‖0,α,0,ξ. (91)
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Using (88), we have in particular that |µ(2)
0 | ≤ R and it follows from (90) and (91)

that

‖φ1 − φ2‖2,α,0,ξ ≤ CR‖ψ1 − ψ2‖2,α,0,ξ. (92)

Thanks to (68) we also have the bound

‖Dξ(φ1 − φ2)‖1,α,ν̄−1,ξ;B ≤ C(‖eψ1 − ψ1 − (eψ1 − ψ2)‖0,α,0,ξ;B

+ ‖Dξ(eψ1 − ψ1 − (eψ1 − ψ2))‖0,α,ν̄−1,ξ;B)

≤ CR‖ψ1 − ψ2‖2,α,0,ν;B + CR‖Dξ(ψ1 − ψ2)‖0,α,ν̄−1,ξ;B

(93)

Combining (92), (93) we obtain

‖F (ψ1) − F (ψ2)‖X ≤ CR‖ψ1 − ψ2‖X .

This shows that F is a contraction if R is taken small enough.

Case N = 4. In this case (44) fails for ν = 0 and estimates like (67) or (68) may
not hold. So we work with the Banach space X of functions φ(x, ξ) which are twice
continuously differentiable with respect to x and continuous with respect to ξ for
x �= ξ, for which the norm

‖φ‖X = sup
ξ∈Bε0

‖φ(·, ξ)‖2,α,0,ξ;B

is finite. Working as in the previous case, we easily obtain that F is a contraction
on some ball BR of X .

Proof of Theorem 1.3. We define the map (ξ, t) 
→ φ(ξ, t) as the small solution
to (84) constructed in Lemma 3.1 for t, ξ small. We need to show that for t small
enough there is a choice of ξ such that µi = 0 for i = 1, . . . , N . Let

V̂j(x; ξ) = W1,j(x − ξ)η1(|x − ξ|), j = 0, . . . , N, (94)

where η1 ∈ C∞(R) is a cut-off function such that 0 ≤ η1 ≤ 1,
η1(r) = 0 for r ≤ 1

8
,

η1(r) = 1 for r ≥ 1
4
.

(95)

Multiplication of (84) by V̂j(x; ξ) and integration in B gives∫
B

(
−∆V̂j(x; ξ) − LtV̂j(x; ξ) − c

|x − ξ|2 V̂j(x; ξ)
)

φ

+
∫

∂B

log
1

|x − ξ|2
∂V̂j(x; ξ)

∂n
−
∫

∂B

∂φ

∂n
V̂j(x; ξ)

=
∫

B

c

|x − ξ|2 (eφ − 1 − φ)V̂j(x; ξ) + µ0

∫
B

eφ

|x − ξ|2 V̂j(x; ξ)

+
∫

B

f̃(x, t)V̂j(x; ξ) +
N∑

i=1

µi

∫
B

Vi,ξV̂j(x; ξ).
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When ξ = 0 the matrix A = A(ξ) defined by

Ai,j(ξ) =
∫

B

Vi,ξV̂j(x; ξ) for i, j = 1, . . . , N

is diagonal and invertible and by continuity it is still invertible for small ξ. Thus,
we see that µi = 0 for i = 1, . . . , N if and only if

Hj(ξ, t) = 0, ∀j = 1, . . . , N, (96)

where, given j = 1, . . . , N ,

Hj(ξ, t) =
∫

B

c

|x − ξ|2 (eφ − 1 − φ)V̂j(x; ξ) + µ0

∫
B

eφ

|x − ξ|2 V̂j(x; ξ)

+
∫

B

f̃(x, t)V̂j(x; ξ) −
∫

∂B

log
1

|x − ξ|2
∂V̂j(x; ξ)

∂n
+
∫

∂B

∂φ

∂n
V̂j(x; ξ)

−
∫

B

(
−∆V̂j(x; ξ) − LtV̂j(x; ξ) − c

|x − ξ|2 V̂j(x; ξ)
)

φ.

If this holds, then µ1(ξ, t) = · · · = µN (ξ, t) = 0 and φ(ξ, t) is the desired solution
to (82) (with µ in (82) equal to µ0(ξ, t)).

Observe that

∂

∂ξk

[∫
∂B

log
1

|x − ξ|2
∂V̂j(x; ξ)

∂n

]
ξ=0

= 2
∫

∂B

xk
∂V̂j(x; 0)

∂n
+
∫

∂B

log
1

|x − ξ|2
∂

∂ξk

∂V̂j(x; ξ)
∂n

∣∣∣∣
ξ=0

= 2
∫

∂B

xk
∂V̂j(x; 0)

∂n
. (97)

For j = 1, . . . , N we have W1,j(x) = (|x|−α+
j − |x|−α−

j )ϕj( x
|x|) for x ∈ ∂B, and

hence ∂W1,j

∂n (x) = (α−
j − α+

j )ϕj(x) =
α−

j −α+
j

(
R

SN−1 x2
j)1/2 xj .

Case N ≥ 5. By Lemma 3.1, φ(·, ξ) is differentiable with respect to ξ. We may
then compute the derivatives of the other terms of Hj . For instance

∂

∂ξk

∫
B

c

|x − ξ|2 (eφ − 1 − φ)V̂j(x; ξ)
∣∣∣∣
ξ=0,t=0

= 0

because the expression above is quadratic in φ and the computation can be justified
using estimate (85).

Similarly

∂

∂ξk

[
µ0

∫
B

eφ

|x − ξ|2 V̂j(x; ξ)
]

ξ=0

= 0.
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Finally, using that φ|ξ=0 ≡ 0 and integration by parts, we find

∂

∂ξk

[∫
∂B1

∂φ

∂n
V̂j −

∫
B

(
−∆V̂j − LtV̂j − c

|x|2 V̂j

)
φ

]
ξ=0,t=0

=
∫

∂B

∂V̂j

∂n

∂φ

∂ξk
−
∫

B

(
−∆

∂φ

∂ξk
− c

|x|2
∂φ

∂ξk

)
V̂j . (98)

But when ξ = 0, ∂φ
∂ξk

satisfies
−∆

∂φ

∂ξk
− c

|x|2
∂φ

∂ξk
=

∂µ0

∂ξk

1
|x|2 +

N∑
i=1

∂µi

∂ξk
Vi,0 in B

∂φ

∂ξk
= 2xk on ∂B

(99)

since at ξ = 0, φ = 0 and µi = 0 for 0 ≤ i ≤ N . By the conditions (18) we find
∂µ0
∂ξk

= 0 and

∂µi

∂ξk
= 2

∫
∂B

xk
∂W1,i

∂ν∫
B

Vi,0W1,i

, 1 ≤ i ≤ N. (100)

The integral above is zero whenever i �= k and thus, using (99), (100) in (98) we
obtain

∂

∂ξk

[∫
∂B1

∂φ

∂n
V̂j −

∫
B

(
−∆V̂j − LtV̂j − c

|x|2 V̂j

)
φ

]
ξ=0,t=0

= 2
∫

∂B

xk
∂V̂j

∂ν
− 2

∫
∂B

xk
∂W1,k

∂ν∫
B

Vk,0W1,k

∫
B

Vk,0V̂j = 0

thanks to (95). This and (97) imply that the matrix
(

∂Hj

∂ξk
(0, 0)

)
ij

is invertible.

We may then apply the Implicit Function Theorem, to conclude that there exists
a differentiable curve t → ξ(t) defined for |t| small, such that (96) holds for ξ = ξ(t).
Letting v(x) = log 1

|x−ξ(t)|2 +φ(x, ξ(t)) for x ∈ B and u(y) = v(y+tψ̃(y)) for y ∈ Ωt,
we conclude that u is the desired solution of (4).

Case N = 4. Lemma 3.1 yields no information on the differentiability of φ and µi

with respect to ξ. In particular, we may not apply the Implicit Function Theorem
as above. We use instead the Brouwer Fixed Point Theorem as follows. Define
H = (H1, . . . , HN ) and

B(ξ) = (B1, . . . , BN ) with Bj(ξ) =
∫

∂B

log
1

|x − ξ|2
∂Wj,ξ

∂n
.
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By (97), B is differentiable and DB(0) is invertible. (96) is then equivalent to

ξ = G(ξ),

where

G(ξ) = DB(0)−1 (DB(0)ξ − H(ξ, t)) .

To apply the Brouwer Fixed Point Theorem it suffices to prove that for t, ρ small,
G is a continuous function of ξ and G : B̄ρ → B̄ρ. This is the object of the next
two lemmas.

Lemma 3.2. G is continuous for t, ξ small.

Proof. Observe first that for t, ξ small such that ‖φ‖L∞(B) ≤ R we have

‖φ‖L∞(B) ≤ C(‖c(eφ − 1 − φ) + |x − ξ|2f̃(x, t)‖L∞(B) + |ξ|)
≤ C(R‖φ‖L∞(B) + |t| + |ξ|),

and we deduce (taking R smaller if necessary)

‖φ‖L∞(B) ≤ C(|t| + |ξ|). (101)

Similarly

|µi| ≤ C(|t| + |ξ|), ∀i = 0, . . . , N. (102)

Now let ξk → ξ, φk = φ(ξk, t)µ(k)
i be the solutions and parameters associated to

(84). By (101) and Eq. (84) and using elliptic estimates we see that (φk) is bounded
in C1,α on compact sets of B̄\{ξ}. By passing to a subsequence we may assume
that φk → φ uniformly on compact sets of B̄\{ξ} and by (102) that µ

(k)
i → µi.

Then φ is a solution of (84) with ‖φ‖L∞(B) ≤ R and with parameters ξ and µi.
This solution is unique by Lemma 3.1 and this shows that in fact, the complete
sequence converges. Then all terms in the definition of H(ξ, t) converge. In fact∫

B

c
eφk − 1 − φk

|x − ξ|2 V̂j(x, ξ) →
∫

B

c
eφ − 1 − φ

|x − ξ|2 V̂j(x, ξ) as k → ∞,

by dominated convergence, because∣∣∣∣eφk − 1 − φk

|x − ξ|2 V̂j(x, ξ)
∣∣∣∣ ≤ C

|x − ξ|2 .

Similarly

µ
(k)
0

∫
B

eφk

|x − ξ|2 V̂j(x, ξ) → µ0

∫
B

eφ

|x − ξ|2 V̂j(x, ξ) as k → ∞. (103)
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Lemma 3.3. If ρ > 0 and |t| are small enough then G : B̄ρ → B̄ρ.

Proof. By (101)∣∣∣∣∫
B

c
eφ(ξ) − 1 − φ(ξ)

|x − ξ|2 V̂j(x, ξ)
∣∣∣∣ ≤ C‖φ‖2

L∞(B) ≤ C(|ξ| + |t|)2.

Let σ > 0 to be fixed later. From (103) we have∣∣∣∣∫
B

eφ

|x − ξ|2 V̂j(x, ξ)
∣∣∣∣ ≤ σ

if t and ξ are small enough. Also

|DB(0)ξ − B(ξ)| ≤ C|ξ|2,
and ∣∣∣∣∫

B

f̃(x, t)V̂j(x, ξ)
∣∣∣∣ ≤ C|t|

for some constant C. Thus if |ξ| < ρ and ρ is small we have

|G(ξ)| ≤ C(ρ2 + |t| + σρ).

First fix σ such that Cσ < 1
4 . We can then fix ρ > 0 so small that C(ρ2 + σρ) < ρ

2 .
Then, for |t| small, |G(ξ)| ≤ ρ.

Proof of Corollary 1.4. We have just constructed a solution φ ∈ C2,α
0,ξ (B) of (82),

when ξ = ξ(t). Change variables and let φ̃(y) = φ(x), where x = y + tψ̃(y, t) for
y ∈ Ωt. Then,

−∆yφ̃ =
λ(t)

|x − ξ|2 eφ̃ + ∆y ln
1

|x − ξ|2 in Ωt.

Letting ξ̃ = ξ + tψ(ξ) and Ψ(y) = φ̃(y) + ln |y−ξ̃|2
|x−ξ|2 , the above equation can be

rewritten as

−∆yΨ =
λ(t)

|y − ξ̃|2 eΨ − λ(0)
|y − ξ̃|2 in Ωt,

where we used the fact that ∆y ln 1
|y−ξ̃|2 = − λ(0)

|y−ξ̃|2 . Since Ψ is bounded, it follows
by Corollary 2.4 and the fixed point characterization of Ψ that Ψ is continuous at
y = ξ̃. Define the sequence (Ψn) by

Ψn(y) = Ψ
(

1
n

(y − ξ̃) + ξ̃

)
, for y ∈ Ωn := n(Ωt − ξ̃) + ξ̃.

Clearly, (Ψn) converges pointwise to the constant Ψ(ξ̃). Also, Ψn solves

−∆yΨn =
λ(t)

|y − ξ̃|2 eΨn − λ(0)
|y − ξ̃|2 in Ωn. (104)

Away from y = ξ̃, the right-hand side in the above equality remains bounded. It
follows by elliptic regularity that up to a subsequence, (Ψn) converges to Ψ(ξ̃) in
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the topology of C∞(RN\{ξ̃}). In particular, passing to the limit for y �= ξ̃ in (104),
we obtain

0 =
λ(t)

|y − ξ̃|2 eΨ(ξ̃) − λ(0)
|y − ξ̃|2 ,

whence Ψ(ξ̃) = ln λ(0)
λ(t) . Since the solution u(t) of (4) we constructed is given by

u(t) = ln 1
|y−ξ̃|2 + Ψ, we just have proved Corollary 1.4.

Proof of Theorem 1.2. We recall that if u ∈ H1(Ω) is an unbounded solution of
(1) such that ∫

Ω

|∇ϕ|2 ≥ λ

∫
Ω

euϕ2 for all ϕ ∈ C∞
0 (Ω),

then λ = λ∗ and u = u∗. This result is due to Brezis and Vázquez, see [8].
Given t > 0 small, let u = u(t) denote the solution of (4) obtained in Theorem

1.3. Since N ≥ 11, 2(N − 2) < (N−2)2

4 and it follows from Theorem 1.3 that if t is
chosen small enough,

λ(t)e

‚
‚
‚u−ln 1

|x−ξ(t)|2
‚
‚
‚

L∞(Ωt) <
(N − 2)2

4
.

Hence for ϕ ∈ C∞
0 (Ωt),

λ(t)
∫

Ωt

euϕ2 ≤ (N − 2)2

4

∫
RN

ϕ2

|x − ξ(t)|2 ≤
∫

RN

|∇ϕ|2,

in virtue of Hardy’s inequality. Hence, u(t) is the extremal solution of (4).

4. u∗ is Bounded for Some Thin Domains

Proof of Theorem 1.8. We assume by contradiction that for a sequence εj ↘ 0,
we have u∗

εj
�∈ L∞(Ωεj ). Let M > 0 be a constant to be fixed later. By continuity,

we can select a number λj with 0 < λj < λ∗
εj

such that the minimal solution uj of
(8) with parameter λj satisfies

max
Ω̄εj

uj = M. (105)

Define

vj(y1, y2) = uj(y1, εjy2).

Then vj is defined in Ω̄ and satisfies{
− (ε2

j∆y1 + ∆y2)vj = ε2
jλje

vj in Ω

vj = 0 on ∂Ω,
(106)

where ∆yi denotes the Laplacian with respect to the variables yi, i = 1, 2.
For some constant C0 we have

λ∗
ε ≤ C0

ε2
. (107)
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Indeed, let µε denote the first eigenvalue for −∆ in Ωε with Dirichlet boundary
condition and ϕε > 0 the associated eigenfunction, that is{−∆ϕε = µεϕε in Ωε

ϕε = 0 on ∂Ωε.

We normalize ϕε so that ‖ϕε‖L2(Ωε) = 1. Multiplying (8) by ϕε and integrating by
parts we find

µε

∫
Ωε

u∗
εϕε = λ∗

ε

∫
Ωε

eu∗
ε ϕε.

Since eu ≥ u for all u ∈ R, it follows that λ∗
ε ≤ µε. But changing variables (x1, x2) =

(y1, εy2) we find

µε = inf
ϕ∈C∞

0 (Ωε)
ϕ 	=0

∫
Ωε

|∇ϕ|2∫
Ωε

ϕ2
= inf

ψ∈C∞
0 (Ω)

ψ 	=0

∫
Ω

|∇y1ψ|2 +
1
ε2

|∇y2ψ|2∫
Ω

ψ2
.

Fixing ψ ∈ C∞
0 (Ω), ψ �= 0 we deduce µε ≤ C0

ε2 . Note that C0 = C0(Ω, N) does not
depend on M . We have just proved (107).

Next we show that for some constant C independent of j

‖∇vj‖L∞(Ω) ≤ C. (108)

For this, using the uniform convexity of Ω, find R > 0 large enough so that for any
y0 ∈ ∂Ω there exists z0 ∈ R

N such that the ball BR(z0) satisfies Ω ⊂ BR(z0) and
y0 ∈ ∂BR(z0). For convenience write for ε > 0

Lε = ε2∆y1 + ∆y2 .

Define ζ(y) = R2 − |y − z0|2 so that ζ ≥ 0 in Ω and −Lεζ = 2εN1 + 2N2 (this can
be computed easily by shifting so that z0 is at the origin and writing |(y1, y2)|2 =
|y1|2 + |y2|2). From (107) we have the uniform bound ε2

jλj ≤ C. It follows from
(106) and the Maximum Principle that vj ≤ Cζ with C independent of j and y0.
Since vj(y0) = ζ(y0) = 0, this in turn implies that

|∇vj(y0)| ≤ C ∀j, y0 ∈ ∂Ω. (109)

Recall that the minimal solution uj is strictly stable in the sense that the linearized
operator w 
→ −∆w − λje

uj w has a positive first eigenvalue (i.e. (2) holds). By
changing variables, the same holds true for the linearization of (106) at vj , i.e. the
operator w 
→ −Lεj w−ε2

jλje
vj w has a positive first eigenvalue. This implies that we

have the Maximum Principle in the form: if w ∈ C2(Ω̄) satisfies −Lεj w−ε2
jλje

vj w =
0 in Ω then

max
Ω̄

|w| ≤ max
∂Ω

|w|.

Applying this to the partial derivatives of vj and using (109), we deduce (108). By
(105), (108) and (107) we can find subsequences, denoted for simplicity (vj), (εj)
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and (λj), such that vj → v uniformly in Ω̄ and ε2
jλj → λ0 ≥ 0. Multiplying (106)

by ϕ ∈ C∞
0 (Ω) and integrating by parts twice we find

−
∫

Ω

vj(ε2
j∆y1ϕ + ∆y2ϕ) = ε2

jλj

∫
Ω

evj ϕ.

Letting j → ∞ we obtain

−
∫

Ω

v∆y2ϕ = λ0

∫
Ω

evϕ ∀ϕ ∈ C∞
0 (Ω).

Writing vy1(y2) := v(y1, y2) for (y1, y2) ∈ R
N1 × R

N2 ∩ Ω, we see that for each
non-empty slice

Ωy1 = {y2 ∈ R
N2 : (y1, y2) ∈ Ω},

we have {−∆y2vy1 = λ0e
vy1 in Ωy1

vy1 = 0 on ∂Ωy1 .
(110)

Let yj ∈ Ω denote the point of maximum of vj , that is, vj(yj) = maxΩ̄ vj = M . For
a subsequence, yj → y0 ∈ Ω̄ as j → ∞ and since vj converges uniformly to v, we
have M = vj(yj) → v(y0). Since v|∂Ω = 0, we must have y0 ∈ Ω.

Let y0 = (a, b) and observe that Ωa is non-empty since y0 ∈ Ω. Then va(y2) =
v(a, y2) solves (110) in Ωa. Moreover maxΩ̄a

va = M and va is weakly stable in the
sense that

λ0

∫
Ωa

evaϕ2 ≤
∫

Ωa

|∇ϕ|2, ∀ϕ ∈ C∞
0 (Ωa). (111)

To see this, let ϕ ∈ C∞
0 (Ωa) and χ ∈ C∞

0 (RN1) be such that χ ≡ 1 in a neighborhood
of a and supp(χ(y1)ϕ(y2)) ⊂ Ω. By stability of uj and changing variables we have

ε2
jλj

∫
Ω

evj χ(y1)2ϕ(y2)2 ≤
∫

Ω

ε2
jϕ(y2)2|∇χ(y1)|2 + χ(y1)2|∇ϕ(y2)|2.

Letting j → ∞ yields

λ0

∫
Ω

evχ(y1)2ϕ(y2)2 ≤
∫

Ω

χ(y1)2|∇ϕ(y2)|2.

Choosing a sequence χk ∈ C∞
0 (RN1) such that χk ≡ 1 in a neighborhood of a and

supp(χk) ⊂ B1/k(a) we obtain (111).
Let y

(1)
min = min{y1 : Ωy1 �= ∅}, y

(1)
max = max{y1 : Ωy1 �= ∅}. For any y

(1)
min < y1 <

y
(1)
max the slice Ωy1 is a smooth open non-empty set and hence for the problem{−∆y2v = λev in Ωy1

v = 0 on ∂Ωy1

(112)

there exists a number 0 < λ∗
y1

< ∞ such that (see [6, 8, 19, 22])
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• if 0 ≤ λ < λ∗
y1

then (112) has a unique minimal solution vy1,λ. Moreover vy1,λ

is smooth and characterized as the unique semi-stable solution to (112), i.e. the
unique solution satisfying

λ

∫
Ωy1

evy1,λϕ2 ≤
∫

Ωy1

|∇ϕ|2, ∀ϕ ∈ C∞
0 (Ωy1).

• If λ > λ∗
y1

then (112) has no weak solution.
• If λ = λ∗

y1
then (112) has a unique weak solution v∗y1

and v∗y1
= limλ↗λ∗

y1
vy1,λ.

• If N2 ≤ 9 (recall that Ωy1 ⊂ R
N2) then v∗y1

is bounded.

We claim that for any λ > 0 there exists Mλ > 0 depending only on Ω and λ such
that such for any y

(1)
min < y1 < y

(1)
max we have

max
Ω̄y1

vy1,λ ≤ Mλ. (113)

That is, we assert that if we have some a priori control on λ, the boundedness of
vy1,λ is uniform when y

(1)
min < y1 < y

(1)
max.

Using (107) we have the bound λ0 ≤ C0. Hence, choosing M = Mλ0 + 1 at the
beginning of the proof, (113) contradicts (105).

Proof of (113). The argument is the same as in [13, 22] but we shall emphasize
that the bound does not depend on y

(1)
min < y1 < y

(1)
max.

For simplicity we write v = vy1,λ. Let 0 < α < 2 and multiply Eq. (112) by
e2αv − 1. Integrating in Ωy1 we find

2α

∫
Ωy1

e2αv|∇v|2 = λ

∫
Ωy1

(e(2α+1)v − ev). (114)

Using (111) with eαv − 1 yields

λ

∫
Ωy1

ev(eαv − 1)2 ≤ α2

∫
Ωy1

e2αv|∇v|2. (115)

Combining (114) and (115) gives

(
1 − α

2

)∫
Ωy1

e(2α+1)v ≤ 2
∫

Ωy1

e(α+1)v ≤ 2

[∫
Ωy1

e(2α+1)v

] α+1
2α+1

|Ωy1 |1−
α+1
2α+1 .

For 0 < p < 5 we deduce the bound

‖ev‖Lp(Ωy1 ) ≤ C

with C independent of y
(1)
min < y1 < y

(1)
max.

In dimension N2 ≤ 9, we thus have ‖ev‖Lp(Ωy1 ) ≤ C for some p > N2/2.
Recalling (112), this shows that ‖v‖L∞(Ωy1 ) ≤ C and the constant is independent

of y
(1)
min < y1 < y

(1)
max, as can be seen using Moser’s iteration technique and working

on a large ball U such that Ωy1 ⊂ U for all y
(1)
min < y1 < y

(1)
max, considering all

functions on Ωy1 to be extended by zero in U \Ωy1.
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