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The equation —Au = Ae* posed in the unit ball B C RY, with homogeneous Dirichlet
condition u|gp = 0, has the singular solution U = log ﬁ when A =2(N —-2). If N > 4

we show that under small deformations of the ball there is a singular solution (u, )
close to (U,2(N — 2)). In dimension N > 11 it corresponds to the extremal solution —
the one associated to the largest A for which existence holds. In contrast, we prove that
if the deformation is sufficiently large then even when N > 10, the extremal solution
remains bounded in many cases.
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1. Introduction

We consider the Gelfand problem [17], namely the equation

—Au=Xe* in

1
u=0 on 01, S
where Q C RY is a bounded open set with smooth boundary and A > 0 is a
parameter.
Equation (1) and many variants have been widely considered in the literature,
see for instance [6, 8, 12, 13, 18, 19], from which the following general properties
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are known:

Proposition 1.1. There exists \* € (0,00) such that

e (1) has a smooth solution for 0 < X < \*,
e (1) has a unique weak solution for X = \*,
o (1) has no solution for X > \* (even in the weak sense).

Above we have used the following definition: a function u € L(£) is a weak solution
to (1) if e*dist(z, 0Q) € L'(Q2) and

—/uACZ/\/e“(, Ve € C2(Q), ¢ =0 on 0.
Q Q

It is also known that for 0 < A < \*, there exists a minimal solution u) which
is smooth. u) depends smoothly on A and is monotone increasing with respect to
this parameter. Also, uy is stable in the sense that the linearized operator at wu) is

/IVsOI2 —A/ e p?
inf Q2 Q2 > 0.
302

PeCE(Q) /
Q

The monotone limit ©* := limy -\~ uy is the weak solution for A = A\* and satisfies

positive, i.e.

(2)

w e < [ vk, veecr@. (3)
Q Q

It is then natural to ask the following question: given a smooth bounded domain,
is u* a smooth solution?

Joseph and Lundgren [18] studied the case where  is a ball and completely
determined the structure of the radial solutions of (1). In particular, they showed
that if 2 = B; then u* is bounded if and only if N < 10, and in the case N > 10
then u* = log # and \* = 2(N — 2). It was shown later in [13, 22] that if N < 10
then for any smooth and bounded domain 2, the extremal solution u* is bounded.
Brezis and Vézquez [8] gave an interesting alternative proof of u* = log %P when
Q0 = Bj in the case N > 10, making use of Hardy’s inequality, which we recall
below: if N > 3 then

2 2
S [ Eas [ 1vel, woeor@.
Thus far, the ball in dimension N > 10 is the only domain where it is known that
u* is singular.

In this work we consider (1) in a domain that is sufficiently close to a ball in

the following sense. Let 1) : B; — RY be a C? map, t > 0 and define

Q ={z+tY(x) :x € B}
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We choose henceforth ¢ so small that €2, is a smooth bounded domain diffeomorphic
to By and we consider the Gelfand problem in €2;:

{ —Au = Xe* in Qy 4)

u=20 on 9.
Our main result is the following:

Theorem 1.2. Let N > 11. Given t > 0 small, let u*(t) denote the extremal
solution to (4) (defined by Proposition 1.1).

Then there ezists to = to(N,v) > 0 such that if t < to, u*(t) is singular. In
addition, there exists £(t) € By such that ||u(z,t) — log WHLMQ” — 0 as
t— 0.

In fact, one can construct a singular solution of Problem (4) in any dimension
N > 4.

Theorem 1.3. Let N > 4. Then there exists to = to(N,¢) > 0 and a curve
t — (A(t), u(t)), defined for t € [0,t0), such that (A(t), u(t)) is a solution to (4)
and A0) = 2(N — 2), u(0) = log#, Moreover u(t) is singular and there exists
&(t) € By such that ||u(z,t) — IOgWHLw(Qt) —0ast—0.

The behavior of the singular solution at the origin is characterized as follows:

Corollary 1.4. Fizt <to and let (A(t),u(t),&(t)) denote the solution of (4) given
by Theorem 1.3. Then,

= nil n w e\|\r —
e t) = 1o (3100 ) +elle - €0, )

where lims_,o €(s) = 0.

Remark 1.5. If N > 5, the curve ¢t — (A(¢),£(t), u(t)) given by Theorem 1.3 is
differentiable in the following sense: for any x ¢ £([0, %)), the limit

lim u(z,t + 1) —u(x,t)
7—0 T

exists.

Theorem 1.2 is a consequence of this more general result and is obtained thanks
to a lemma of Brezis and Vazquez [8] which asserts that a singular solution in H*!
which is stable must be the extremal solution.

Remark 1.6. The natural restriction on the dimension in Theorem 1.2 should
perhaps be N > 10. We do not know whether Theorem 1.2 holds in dimension
N = 10.
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A similar result (which proof we omit) can be obtained for power-type nonlin-
earities: given p > 1, consider the problem

—Au =14 u)? in O
u=0 on 0.
When ¢ = 0, i.e. when the domain is the unit ball, it is known (see e.g. [8]) that

the extremal solution is unbounded and given by u* = |z|~2/(°=1) — 1 if and only
if N > 11 and

(6)

4
N>6+ 14,/
p—1 p—1

We have:

Theorem 1.7. Let N > 11 and p > 1 such that

4
N>6+ a4,
p—1 p—1
Given t > 0 small, let u*(t) denote the extremal solution to (6). Then there exists
to = to(N, 1, p) > 0 such that if t < to, w*(t) is singular. In addition, there erists
£(t) € By such that |ju(z,t) — (Jo — £(t)|72/P=D) — Dlle(o,) — 0 ast—0.

Concerning Theorem 1.3, we point out the work of Rébai [25], who produced
singular solutions of (1) in the ball, having a prescribed singularity at a point £ # 0
sufficiently close to the origin, whenever N = 3. According to the author, this result
was also proved by Matano.

When the boundary condition is not prescribed (i.e. v = 0 may not hold on 952),
Pacard [23] proved that for N > 10, there exist a (dumbbell shaped) domain Q and
a positive solution u of —Au = e in  having prescribed singularities at finitely
many points. Rebai [26] extended this result to the case N = 3. Bidaut-Véron
and Véron [9] studied the behavior of solutions to the Gelfand problem around an
isolated singularity and at infinity in dimension 3.

When the exponential nonlinearity is replaced by f(u) = u®, Mazzeo and Pacard
proved that for any exponent « lying in a certain range and for any bounded domain
Q, there exist solutions of —Au = u® in Q with v = 0 on 92, with a non-removable
singularity on a finite union of smooth manifolds without boundary. Further results
in this direction are provided in [27, 24] and their bibliography.

Returning to (1), one may be tempted to conjecture that if  is any smooth
bounded domain and N > 10, u* is singular. But if {2 is an annulus it is easily seen
that with no restriction on N the extremal solution u* is smooth. This lead Brezis
and Vizquez [8] to stating the following question: is it true that if N > 10 and Q
is a convex smooth, bounded domain then u* is singular?

Added in proof: after completing this work, we have been informed that this
question had already been answered by E. N. Dancer (see [14] pp. 54-56).

As in [14], we provide a negative answer to the question of Brezis and Vazquez
by considering some thin domains. Let Q C RY be a bounded open set with smooth
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boundary. We assume furthermore that Q is convex and 90X is uniformly convex,
i.e. its principal curvatures are bounded away from zero. Write RY = R™M x RNz
and x = (z1,22) € RY with z; € RM | 25 € RN2. For £ > 0 set

Q. ={z = (y1,e12) : (y1,72) € Q} (7)

and consider the Gelfand problem in €).:

—Au=Xe* in Q.
(8)

u=20 on 0€)..
Theorem 1.8. Let N = N1+ Ny > 10. Given € > 0, let u? be the extremal solution
to (8).
If Ny <9 then there exists eg = €9(N, Q) > 0 such that if € < gg, u} is smooth.

€

The proof of Theorem 1.8 is given in Sec. 4.

Remark 1.9. Let Q = B in dimension N > 11 and let Q. be as in (7) with
N5 = 1. Combining Theorems 1.2 and 1.8 we can say that for ¢ close to 1, u* is
singular while for € close to 0, u* is regular.

The proof of Theorem 1.2 is based on the study of the following model equation

—Au = N + f(z,t) inB )
u=20 on 0B
where B = B1(0) C RY with N > 11. Here f : O x R — R is a smooth function
such that f(-,0) =0.
For each t > 0, there exists an extremal parameter \*(f) and an extremal
solution u*(t).

Theorem 1.10. Let u*(t) denote the extremal solution to (9). There exists to =
to(N, f) > 0 such that if t <tg and N > 11 then u*(t) is singular.

Let us sketch the main idea of the proofs of Theorems 1.2 and 1.10. For simplicity
we do this for (9) assuming that for all ¢ the function x — f(z,t) is radially
symmetric so that u*(t) may only be singular at the origin.

We know that u*(0)(z) = log # and A*(0) = 2(N — 2). Assume that u*(¢) and
A*(t) are differentiable functions of ¢, differentiate (9) with respect to ¢ and evaluate
at ¢ = 0. Writing for convenience v = %(0), N = dd—)‘t*(O) and ¢ = 2(N — 2) we
find

c* 1 of
—Av— —v=\N—+ = in B
v |m|2v A PE + ot (2,0) in

v=20 on 0B.

(10)

2
Since in dimension N > 11 we have ¢* < %

—A— # is invertible in H{ (). This suggests that the extremal solution of (9)

, by Hardy’s inequality the operator
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can be constructed (for small ¢) by means of the implicit function theorem and we
shall indeed use a similar scheme.

As observed by Brezis [5] one must be careful in this situation. To illustrate
the difficulty, let Q = B in dimension N > 10 and F(\,u) = —Au — Ae*. Then,
informally, D, F(\*,u*) = —A— % As mentioned earlier this operator is invertible
from H}(B) to H-1(B) if N > 11 (and one may use another space if N = 10).
Nonetheless, by Proposition 1.1, there are no solutions to F(A,u) = 0 for A > \*.
As observed in [8], this phenomenon can be thought of as a lack of appropriate
functional spaces to set up the implicit function theorem: good spaces for the linear
operator seem to be H}(B) and H~1(Q2) but u — e* is not well defined from Hg ()
to H~1(2) (recall that N > 10). See [7] for similar situations in other nonlinear
problems.

Going back to (10) we observe that besides the difficulty mentioned above, this
equation apparently does not give any information on X. Thinking of A" as a given
parameter we will examine closer equation (10) in Sec. 2 and we will show that
there exists a unique value of X’ for which the solution v is bounded. This is the

dx*

good value of A" = “7-(0). Then for small ¢ we look for a solution to (9) of the form

u(z) = log + .

o]
Writing A = A*(0) + 1 Eq. (9) is equivalent to

*

c* c 1
“Ap— —p=——(e? —1— — e t) inB
¢ |$|2¢ |$|2(e ¢)+M|]}|2€ +f(xa ) m

p=0 on 0B
where the unknowns are ¢, pu. The objective is to find for ¢ small a solution with
||l LBy and |u| small. This can be done using a fixed point theorem, where at
each iteration we select the good value of p, i.e. the one for which the solution is
bounded. We explain this and prove Theorems 1.2 and 1.10 in Sec. 3.

2. A Linear Equation with the Inverse Square Potential

We study the linear equation
¢
—Ap————=¢p=¢g inB
|z —&J? (11)
o=nh on 0B,

where B = B1(0), £ € B and ¢ is any real number. Later on, we shall state results in
more general domains, which we are able to prove only for values of ¢ in a restricted
range.

As mentioned in the introduction, we would like to obtain bounded solutions of
equations of the form (11). In general, this cannot be achieved without assumptions
on the data. For example, if ¢ > 0 and g, h are nonnegative functions, ¢, if it
exists (and is nontrivial), is always singular (this was first observed by Baras and
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Goldstein [3]. See also [16]). We will establish a result saying that if the functions
g and h satisfy orthogonality conditions with respect to appropriate functions then
(11) is uniquely solvable in a suitable space.

Such conditions will not come as a surprise to the reader, taking into account
that the operator L = —A — ﬁ is symmetric and that it has a nontrivial kernel,
as the following paragraph shows:

2.1. The kernel of L = —A — ﬁ

Recall the following properties of the Laplace—Beltrami operator —A on the sphere
SN=1. The eigenvalues of —A on SV~! are given by

Ne=k(N+k—2), k>0.

See [4]. Let my, denote the multiplicity of Ay, and ¢, I = 1,...,my the eigenfunc-
tions associated to A\r,. We normalize these eigenfunctions so that {¢g; : k>0, [ =

1,...,my} is an orthonormal system in L?(S™~1). We choose the first functions
to be
1 xI] N 1/2
@0,1=W, P11 = 1/2:(|SN1|> r;, l=1,...,N.
2
(o)
SN-1
We seek solutions of
—Aw—f%wZOinme} (12)
x

of the form w(x) = f(r)pr(c), where r = |z| and o = x/r for € RV \{0}. This
is equivalent to asking that f solves the following ordinary differential equation:

N-1 “a
I+ = fﬁ+cﬂkfza for r > 0. (13)

Equation (13) is of Euler type and it admits a basis of solutions of the form f(r) =
+
r~% , where af are the roots of the associated characteristic equation, i.e.

N -2 N —2\?
of = 5 :t¢( 5 ) —c+ Ak

Note that aki may have a nonzero imaginary part only for finitely many £’s. If kg
is the first integer k such that aki € R then

- - + +
-~<ak0+1<ak0§ §ak0<ak0+1<---,

whereas, if k < ko, we denote the imaginary part of a; by

N —2\?
ey (552) n
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For £k > 0,1 =1,...,my, we have just found a family of real-valued solutions of
(12), denoted by w! = wli,lv wy = w,il and defined on RV \ {0} by

N —2\?
if (T) —c+ N >0 wl(z) = |a:|_ag<pk7l (%) ,

o X
(@) = |2~ pps (H) ,

(N —2)\°
1f(—> —c+ M =0 whz) = |x| 10g|x|<pkl(| |)

2
(14)
W) = 1ol o ().
||
(N =2)? 1 - x
if —5 —c+ A <0 wi(z) = x| Nt sm(bklog|x|)g0kl )
x
wz( )= |z|” 7 cos(bk log |x]) k.1 <m)
Each of the functions W}, ; defined by
N —2\?
if <T) —c+ M > 00 Wi(x) = wh(z) — w?(z),
(15)

N —2\?
if (T) —ct+ A <0: Wig(z) = w'(2),

then solves (12) and

Wiilop = 0.

2.2. Functional setting

Our results are stated for functions behaving like a power of |z — &£|. More precisely,
we shall work in the following functional setting (see [25, 2, 11]).
Given 2 a smooth domain, £ € Q, k > 0,0 < a < 1,0 < r < dist(z,0Q)/2 and

u € ClY(B\{€}) we define:
k
[ulk,are = sup Z |V ()| + it sup [V7u(z) a u(y)|
rsle—g]<2r—g r<|o—¢|,ly—¢l<2r lz —yl

Let d = dist(£, 02) and for any v € R let

@)+ sup Y [ulkare
0<r<d

Define the space
Cre(Q) = {u e Ci(O\{E}) : [[ullkamen < oo}
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One can easily check that Cf? (©) is a Banach space. It embeds continuously in
the space of bounded functions whenever v > 0.

From now on, given h € C(0B) and g € C(B\{¢}), we shall say that a function
NS Cl]fg(B) (k > 2) solves (11) whenever the boundary condition ¢|sp = h holds

and —Ag¢(x) — ﬁqﬁ(x) = g(z) for all z € B\{{}.

2.3. The case £ =0
In the case 2 = B and £ = 0, we have the following

Lemma 2.1. Let ¢,v € R and assume
3k such that oy, €R and —op <v<—o . (16)

Let g € CSflO(B) and h € C*%(0B) and consider
—Ap——=d=yg inB
|| (17)

o=nh on OB.

Then (17) has a solution in CS”S‘ (B) if and only if

/gwk,l:/ h%, Vk=0,...k, Vi=1,...,mp. (18)
B oB on

Under this condition the solution ¢ € Ci’g‘ (B) to (17) is unique and it satisfies

[9l12,0,0,0,8 < C(llgllo,a,v—2,0,8 + |hllc2aa8)) (19)

where C' is independent of g and h.

Remark 2.2. Under the hypotheses of Lemma 2.1 we have

_ N —2
v>—aj, = ————, (20)

where the last inequality follows from the discussion in Sec. 2.1. This implies that
the integrals in the left-hand side of (18) are finite.

Remark 2.3. By taking k; sufficiently large, one can choose v > 0 in the above
lemma. In particular, the corresponding solution ¢ is bounded.

Corollary 2.4. Assume (16)—(18) hold. Assume in addition that v > 0.
If |z|%g is continuous at the origin, then so is ¢.

Proof of Lemma 2.1. Write ¢ as
oo My

$x) =D > dri(r)pri(o), z=ro, 0<r<l, ocecSV!

k=0 I=1
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Then ¢ solves —A¢p — #gf) =g in B\{0} if and only if ¢} ; satisfies the ODE

N -1 c— M\
bt + . G+ SOkl = gk 0<r <1, (21)

forallk>0and !l =1,...,my, where
g1 (r) = / gro)er(o)do, 0<r<l1, oe€ SN-1
SN—l

Note that if ¢ € Ci’g‘ (B) then there exists a constant C' > 0 independent of 7 such
that

[Pk (r)] < Cr”. (22)
Furthermore, ¢ = h on 0B if and only if ¢, ;(1) = hy,; for all k, [, where

th = / h(O’)gOkJ(O') do.
SN-1

Step 1. Clearly, supy<;<; t*~¥[gr,1(t)| < co and observe that (18) still holds when
g is replaced by gr,1¢k,; and h by hy 10, We claim that there is a unique ¢, ; that
satisfies (21), (22) and

Gk1(1) = Py (23)

We also have

|¢k,l(7”)| < Cpr” ( sup t2_”|gk7l(t)| + |hk,l|) , 0<r<l. (24)
0<t<1

Case k = 0,..., k1. A solution to (21) is given by:

o ifa, ¢R
1 [T s\ %" s
G (r) = 5/0 s(;) sin (bk log ;)gkl(s) ds, (25)
o ifoz;l =a,, = %
op1(r) = /T s(f) B log (f)gk 1(s)ds (26)
s 0 r r ¥y 4
° ifail e R, ail #* %:
Fra(r) = #/Ts((f)az ~(5)™ )gnats) ds. (27)
' ag —a; Jo T T '

In each case, (24) holds and (23) follows from (18).

Concerning uniqueness, suppose that ¢y ; satisfies (21) with gx; = 0 and (23)
with hy; = 0. Then ¢ is a linear combination of the functions w', w? defined in
(14). By (16), (20) and (24), ¢, has to be zero.
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Case k > kq + 1. Observe that (21) is equivalent to

A —cC~ - .
—Adp + PE $r1 = gry in B\{0},

where ¢p(x) = ¢ni(|z]) and Gri(z) = gri(|z]). Since of € R we must have
A — ¢ > —(%52)% and hence the equation
A —cC~ N .
—Apy + 5Pkt =gk, In B
|| (28)

Okt = hiy on 0B,

has a unique solution gZN)k,l € H, where H is the completion of C§°(B) with the norm

)\k—c
H<pH%=/ Vg2 4 M C
B |$|

see [28].
To show (24), observe that for some constant C' depending only on N, A and v,

Api(r) =r"C < sup 27| g (1) + |hk,l|>
0<t<1

is a supersolution to (28) and —Aj; is a subsolution. To see this, we emphasize

that the condition —a; > v > —(N — 2)/2 implies v* + (N — 2)v + ¢ — A\, < 0. It

follows that ¢ ()] < Ag(|z]) for 0 < || < 1.

To show that ¢~5kl is uniquely determined, we simply observe that any solution
w of (28) such that |w(x)| < C|z|” must belong to H (where uniqueness holds).
Indeed, by scaling, it can be checked that |[Vw(x)| < C|z|[*~! (see Claim 1 below)
and this together with (20) implies w € H'(B), which is contained in H.

The computations above also yield the necessity of condition (18). Indeed,
assuming a solution ¢ € Ci’g(B) exists, since ¢y, ; satisfies the ODE (21) we see that
for k=0,...,k; the difference between ¢, ; and one of the particular solutions (25),
(26) or (27) can be written in the form ckﬂ_aI + dyr~ % . Since |y (r)] < Cr”
and v > —ay, we have ci; = di; = 0 and this implies (18).

Step 2. Define for m > 1

gmz{gzzzg Pera(o |x|2—”g<x>eL°°<B>}
l

k=0

and

:{hZZthlgOkl thER}.
l

k=0
Let gm € Gm, hm € Hpy be such that (18) holds. Write gn(z) =

oo > k(T k(o) and hp, (o) = Y1 b, (o). Let ¢, be the unique solu-
tion to (21)-(23) associated to gx.i, hi,; and define ¢, (x) = > 1o >, Pk (r)or (o).
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We claim that there exists C' independent of m such that
|[Pm ()] < CIﬂ?I”(SlépIyIQ_”Igm(y)I +Sglg|hm|) ; 0< 2] <1 (29)

By the previous step, (29) holds for some constant C' which may depend on m.
In particular, choosing m = k;, we obtain a bound on the first components ¢y,
k =0,..., k. Hence, it suffices to prove (29) in the case g; = 0 and hy; = 0,
kE=0,...,k. Working as in [25] (the argument already appeared in unpublished
notes of Pacard), we argue by contradiction assuming that

1¢m |27 |z (5) = Conlllgm [P~ () + bl L=(05)),

where Cy;, — 0o as m — oo. Replacing ¢, by ém /|| dm x| 77| 1By if necessary, we
may assume

|Gmlz| ™ | LBy = 1,

» (30)
Hgm|x|2 |‘L°°(B)+Hhm|‘L°°(8B) — 0 asm — oco.

Let z,, € B\{0} be such that |¢p, (2 )||2m| ™" € [4,1]. Let us show that z,,, — 0
as m — oo. Otherwise, up to a subsequence x,, — x¢ # 0. By standard elliptic
regularity, up to another subsequence, ¢,, — ¢ uniformly on compact sets of B\{0}
and hence

c .
o=0 on 0B.

Moreover ¢ satisfies |¢(xo)||zo| ™ € [,1] and |¢(x)| < |z|” in B. Writing

d@) = D> Y ori(r)eri(o),

E>ki+1 1

we see that ¢y solves (13). The growth restriction |¢y ()| < Cr” and the explicit

1

functions w', w? given by (14) rule out the cases ozf ZR, o, = aﬁ and force ¢y =

agr~% . But ¢, (1) = 0 so we deduce ¢; = 0 and hence ¢ = 0, contradicting

|¢(xo)l[xo| ™ # 0.

The above argument shows that x,,, — 0. Define r,, = |2,,| and

U (2) =7,  dm(rmx), x € By,

Then |vp,(2)| < [@]” in Byjy,,, [om(22)] € [5,1] and

Tm

c L .
—Avpy, () — va(a:) = 7“7271 g(rmz) in By, \{0}.

But

o 1g(rm)| < NlgmWyl> " Lo lzl” ™2 — 0, asm — oo
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by (30). Passing to a subsequence, we have that ™= — =z with |z¢| = 1, v, — v
uniformly on compact sets of RV\ {0} and v satisfies

—Av — #v =0 in RV\{0}.

Furthermore, |v(x)| < |z]” in R¥\{0} and |v(zq)| # 0. Write

- Z Z Vi1 (1) (0)

k=0 1

Then |vg,(r)] < Cpr” for r > 0. But vg,; has to be a linear combination of the

1

functions w!, w? given in (14), and none of these is bounded by Cr” for all r > 0.

Thus v = 0 yielding a contradiction and (29) is proved.

Step 3. Fix an integer d > 3(N — 2)/2 + 1. Suppose now that g € C>(B\{0})
and |Vig(z)] < Clz|*=27% for 0 < |z| < 1 and for i = 0,...,d. Let h € C*(9B)
such that (18) holds. We will show that there exists ¢ € Ci’g (B) solution to (17),
satisfying the estimate

[¢lz] ™" Iy < CUlgle* " | (m) + Ihll L~ (om))- (31)
To prove this, define for m € N

Zzgkl regi(o) and g, Zzhkwkl
]

k=0 1 k=0
We have

PTNGIEDY
l

l

/ g(ro)er, (o) do
SN—l

1
:Zl:)\_

k

/ g(ro)Apy (o) do
SN—l

Cmyr?d
7 |Sl|1p |V g(z)| ln,ill oo (s -1
k ZT|=T

< CTV_Qk_2d+2(N_2),

where we used integration by parts d times to obtain the inequality and the facts:
Ae ~ k? as k — 0o, |pk| < CkV=2 in SN and my, < CkN~2, where my, is the
multiplicity of A, see [1]. It follows that g,,(z)|x|>~" converges uniformly in B to
g(z)|z[*~¥ and hence ||gm|2[* | By — llglz[* ¥ ||L=(B) as m — oco. Similarly
hy converges uniformly to h on 0B and thus limy, oo [|hm||L~@B) = |||z~ @B)-

Now g, € Gy, and h,, € H,, verify the orthogonality conditions (18). By the
previous step, the associated solution ¢, satisfies

6m|z] ™" |18y < Clgmlz* Iy + hmll L am))-

Using elliptic regularity, up to a subsequence, ¢,, — ¢ uniformly in B\ {0}, for
some ¢ satisfying the equations —A¢ — rEd=gin B\{0}, ¢ = h on OB and the
estimate (31).
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Claim 1. ¢ is a solution to the equation in the whole ball B.
To see this, it suffices to prove that
|Vo(z)| < Clz|”~! for z € Bys. (32)

Recall that v —1 > —%. This implies that ¢ € H'(B) and thus solves the equation
in B (since cap({0}) = 0 whenever N > 3).
Let wg € By 2, d = |xo| and for x € Bs,4, v(z) = ¢(x¢ + dx). Then,

cd?

A — —
! |zo + dz|?

v=d?g(xo+dzx) in Bgy.

Observing that 0 < % < 16¢ for x € Bs/y, it follows by elliptic regularity

that for some constants C' independent of d,
[Vo(0)] < C(lld?g(xo + da)| o=(By,0) + 10l Lo=(B50))
< Cd” (|l gl || e () + 012"l o= (1))
< Claol”(lglz*~" | L=(B) + IhllL=(@5)),

where we used (31) in the last inequality. Hence, |V¢(zo)| < C'|zo|V~1, which is
the desired result.

Step 4. We assume now that g € CBf‘Q’O(B) and h € C*%(9B) satisfy (18). For
e > 0 let A be the convolution product of h with a standard mollifier on the sphere
OB. Let p. be a standard mollifier in RY and define g.(z) = |z~ 2p.(z) * (g|z|>7"),
where g is first extended by zero outside B. Since g(z)|z|>~" € L*°(B), we have
ge € C>=(B\{0}) and

[Vige(@)] < O, e)l]" 77"
Moreover, g. — g a.e. in B, h, — h a.e. on 0B as € — 0 and
lgelz>" |l (B) < lglzl* "I~ and |[hell=(om) < IhllL~(@m)-

From this and (18), we deduce that for all k =0,...,ky and I =1,...,my,

ow,
/gEWkJ—/ he ML 0 ase —0.
B oB

on
Let

on

. 1 Wi
a,i} - oWy (/ 9e Wik _/ he on )
/ Wk,l 5 B OB
OB

and
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Then g., h. satisfy the orthogonality conditions (18). Let ¢. € C’i’g‘ (B) denote the
solution to (17) with data g., h.. We have

162~ e (m) < Cllgela* " Il + Ihell L= om)
< C(llglal*™lz(m) + 7]l L~ (om))-

As in the previous step, from here we deduce that ¢ = lim._.g ¢. is a solution to
(17) with data g, h. In addition, (31) holds.
Finally, the estimate (19) is obtained by scaling, working as in Claim 1. O

Proof of Corollary 2.4. Let (a,,) denote an arbitrary sequence of real numbers
converging to zero, §(z) = |z|*g(z) and ¢, (z) = ¢p(anx) for x € By/,, (0). Then ¢,
solves

c glanx
o i)
|| |z
Also, (¢y,) is uniformly bounded so that up to a subsequence, it converges in the
topology of C1*(R¥\{0}) to a bounded solution ® of

—A¢py, — in By/,, (0).

BN S | () R
AD |a:|2(1)_|x|2 in RY\{0}.

Now ® + §(0)/c is bounded and solves (12), so it must be identically zero. It fol-
lows that the whole sequence (¢,) converges to —g(0)/c. Let now (z,) denote

an arbitrary sequence of points in R™ converging to 0 and «, = |z,|. Then,
d(xn) = (bn(%) and up to a subsequence, ¢(x,) — —g(0)/c. Again, since the
limit of such a subsequence is unique, the whole sequence converges. O

2.4. The case £ #0

As we observed earlier, one cannot expect to obtain bounded solutions of (11) for
general data g and h. But Lemma 2.1 suggests that one can modify the data so
that the necessary orthogonality conditions hold. This is what we prove below, in
the more general case where £ may be chosen different from the origin.

Let indeed ¢p > 0 and n € C*°(R) such that 0 <7 < 1, n # 0 and supp(n) C

[i, %] For £ € By, we construct functions Vi, ;¢ (k> 1,1=1,...,my) as
r—¢§
Vewew) = nlle — ) Wes ({p ) (33)
~ 260
We prove:

Proposition 2.5. Assume
Jky such that a, €R and  —ap <v < -—ap . (34)
Then there exists g > 0 such that if || < €y and go € CB’?(B) satisfies

lgo — 1|y < €0,



Commun. Contemp. Math. 2007.09:639-680. Downloaded from www.worl dscientific.com
by UNIVERSITY OF AUCKLAND LIBRARY - SERIALS UNIT on 02/16/15. For personal use only.

654 J. Ddvila & L. Dupaigne

then given any g € CS”? (B) and h € C**(0B), there exist unique ¢ € C’f? (B) and
pos g ER (k=1,..., ki, l=1,...,my) solution to

ki my

¢ g
—Ao— = + + Vi in B

O EEP T e O gp T 2 s (35)
o=nh on 0B.

Moreover we have for some constant C' > 0 independent of g and h

k1 myg

Ill2,0me:8 + ol + > > il < Cllglloame:s + Ihllc2aon).  (36)
k=1 1=1

Proof. We work with 0 < || < eg where ¢y € (0,1/2) is going to be fixed later
on, small enough. Let R = 1 — 2¢g. This implies in particular that Bg(§) C B.

We define an operator T} : C?>*(0Bg(£)) — C+*(0BRr(£)) x R as follows: given
b0 € C**(0BR(€)), find ¢ € Ci?(BR(f)) and 7o, Y&, the unique solution to

c M
—Ag¢y — maﬁ €|2 + ;;% Viie in Br(§) (37)

1 = ¢o on OBR(€).

and set Ti(¢g) = (%4;1’70) This can be done (see Step 1 below) by adjusting
the constants vy and 7; in such a way that the orthogonality relations (18) in
Lemma 2.1 are satisfied. Similarly, there is a unique ¢, € C (BR(Q“)) and o, V.1

such that

ki mpg

- c - g .
AT T e g X Ak mBRl) gy
91 =0 on OBR(§).
Given ¢1,70 as in (38), we define ¢y by
9y c 7 g ~ 9o .
AR T T g P B\BRO)
d2 09
% = % on 0BR(§) (39)
$2=h on OB.

We also define an operator Ty : C1*(0Bg(€)) x R — C**(0Bgr(£)) by

T2(Y, %) = ¢2loBg(e)
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where ¢4 is the solution to

~Ad2 = e =Ty 0 B\Ba(¢)

0

% =0 on 0Bg(§) (40)
$2=0 on dB.

As we shall see later (see Step 2), Egs. (39) and (40) possess indeed a unique solution
if € is sufficiently small, because the domain B\ Br(§) is small.

We construct a solution ¢ of (35) as follows: choose ¢g € C>*(0Bg(€)), let ¢1
be the solution to (37) and let ¢o be the solution to (40) with ¥ = % and 7o from
problem (37) . Then set

6= {¢1 +¢1 in Br()
¢2 + ¢2 in B\BR(f)a

and po =0 + Y0, ki = Yk, + Yk,1- If we have in addition

¢1+¢1 = do+ 2 on IBR(E), (41)

then ¢, po and pg,; form a solution to (35).
With this notation, solving Eq. (35) thus reduces to finding ¢g € C**(0BRr(€))
such that (41) holds i.e.

TyoTi(¢o) + d2 = ¢o  in IBR(E).

The fact that this equation is uniquely solvable (when £ is small) will follow once
we show that ||T5]] — 0 as ¢ — 0, while ||71]| remains bounded.

Step 1. Given ¢y € C**(0Bg(€)) there exist v9 and ~x,; such that (37) has a
unique solution ¢; in Cf_’?(aBR(é)).

In this step we changé variables y = x — £ and work in Br(0). Solving for 7y in
the orthogonality relations (18) yields

1 OWo.0 ( y )

EaBROan E

" /B _only+ Ol *Woo ()

and a computation, using ||go — 1| (B,) < €o shows that

[ ool Ol W (§) = RO+ Ol

where C'(N, ¢) # 0. In particular this integral remains bounded away from zero as
R—1(R=1-2¢ and ¢y — 0) and hence 7y stays bounded.
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Regarding 74, we have

1 oWy (g) _70/3 90(y + )yl * Wi, (g)

R R

[ i ()

and we observe that fBR |y ) Wi (%)2 is a positive constant depending on k, [ and
R (which stays bounded away from zero as R — 1). Using Lemma 2.1, it follows
that || 73| remains bounded as R — 1 i.e. when ¢y — 0.

ey 0
R OBR(0) on

Vo = (43)

Step 2. For ¢ small enough Eq. (40) is uniquely solvable and ||T5|| < C|¢|. Let zg =
1 — |2|2. Then zo(|vo SUP B\ B (¢) % + 8Py, (¢) |V]) is a positive supersolution
of (40). This shows that this equation is solvable and that for its solution ¢o we
have the estimate |¢2| < C[€[(|y0] + supyp, () [¥])- This and Schauder estimates
yield [[¢2(|c2.00Br ) < CLEI(10] + 1Y |lc2.a0B,(¢))), Which is the desired estimate.

Finally, estimate (36) follows from (19) and formulas (42), (43). m|

2.5. Differentiability

Suppose now that for each £ € B, we have functions go(-, ), g(-,&) € CS:?(B)
and h(-,£) € C%%(0B). By Proposition 2.5, there is a unique ¢(-,&) € Cfg(B)
solution to (35). We want to investigate the differentiability properties of the map

Proposition 2.6. Assume the following conditions:

Jky such that oy, € R and  — oy <v < -—ap .,
N
v > —5 +2 (44)
and
v—1#—aq.

Let €g > 0 and for € € Be,, let go(-,§),9(-,§) € C;?(B) be such that
Ao := sup ([[go(- )llLaven +[1DegolE)ll0.0v—18) < o0 (45)
<0
and
A= gsurjo(Hy(-,€)||1,a7v,5;B + 1Deg (- O llo,aw—1,6:8) < oo

Let h(-,€) € C>*(0B) with

sup ([[h(-,€)|les@n)y + |1Deh(-,&)llc2aam)) < oo

EEBEO
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Let ¢(-,&) denote the solution to (35). Then there exists ég > 0 and a constant C
such that if eg < &0 and if ||go(-,€) — 1| L~(B) < €0, |t| < €0 and &1,& € Be, then

[o(- +&2,82) — o + &1, &) l2,a,0-1,0B,,, < Clé2 — &1l (46)
Moreover the map § € B, — ¢(+;€) is differentiable in the sense that
1
Ded(a, € = lim —(9(w,€ +70) = 9(w,€))  eaists for all w € B\[§)  (47)

and n € RN . Furthermore D¢¢(-,€) € Cﬁﬁ,g(B)v the maps & € Be, — 0, i1 € R
are differentiable and

k1 myg
IDeb (-, )20 -1.6:8 + [Deptol + D | Depui]
k=1 1=1
(48)
< C(lg(,) ()

+[[h(;§)llc2eam) + |1 Deh(-,§)llc2e08))-

Remark 2.7. For simplicity we have stated Proposition 2.6 under the assumption
v —1# —ay, . A similar result also holds if v — 1 = —ay_, but estimate (46) has to
be replaced by:

||¢( + 52752) - ¢( =+ 51751)”2701717—17&31/2 < C|€2 - £1|7

where v — § < v < v for some § > 0 and with the constant C' now depending on 7.
Similarly, (48) is replaced by

ki myp
IDed (-, E)l2,0,5-1.6:8 + [Deptol + D | Depui]
k=1 1=1
<C(llg(-¢) ()

+ IR (-, E)lc2 a8y + [ Deh (-, 6)llc2a08))-

Proof. We change coordinates y = x — £ € B — £. Then (35) is equivalent to
finding ¢ € C o (B — &) such that

+¢, - S
—Ap — — 9y 55)4—#0 oy 255 +ZZuleklo in B—-¢
Iyl || [yl ==

¢=h(y+&,¢) on 9B —¢.
(49)

This equation can also be seen as the fixed point problem:

To(T1(¢0,€),€) + G2(y;€) = do, ¢ € C**(IBR) (50)



Commun. Contemp. Math. 2007.09:639-680. Downloaded from www.worl dscientific.com
by UNIVERSITY OF AUCKLAND LIBRARY - SERIALS UNIT on 02/16/15. For personal use only.

658 J. Ddvila & L. Dupaigne

where R = 1 — 2¢g and

e the operator 11 : C*%(0BR) x B, — CH*(0Br) x R is defined by Ti(¢o, &) =
(¢1,70) and ¢1, Y0, Y&, is the unique solution in C’i’g‘(B — &) to

ki my

+
—A¢1—%¢1= oly ff + 3> iVero in Bg
m PR (51)
1= ¢o on dBg.
Ty : CH*(OBR(£)) X R x Be, — C%%(0Br(€)) is defined by
T3(¥,70,€) = d2loBx
where ¢ is the solution to
+&, .
—Agpy — %@ = 7090(3/7255) in (B—¢§)\Br
ly| [yl
% =y on OBRr (52)
on
$2 =0 on B — ¢&.

° QEQ({E; £) is the solution defined in (39) and can be computed by solving for b1 €
C2:2(Br(€)) and Fo, Fa such that

ki my

_Aqgl_%(;lzg(y+§,€)+~goy+2£€ 33 FViro i Br
| ly| | ==
q~51 =0 on 0Bpg,
(53)
and then ¢s is given by
O a¢1 (54)
T an on OBRr
$2 = h(y + ) on 0B — &.

We shall derive the following Lipschitz estimate for 77, where we write

(6104 6),78”) = Ta(¢o, &) (i = 1,2):

k1 myg

2 (1 2
+|’Y() )|+ZZ|’Y()—’7M

|1 &) — b1(:5 1)
=1 1=1

<Cl& =&l (55)
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Indeed, by formulas (42) and (43) and condition (44) we deduce

n§2 — 4§01 + Z Z e — A3 < Cles -4, (56)

k=11=1

Now write 7 = [§&2 — &1, ¢ = M Then

c 1 782) ’Y(()l)
—A(b—W(b: ly |290(y+52752) ly |290(y+§1,§1)

b e (@) (1)

+ZZ Vki _IYHVIO inBR

k=11=1
=0 on JBg.

By (36) we have

I6l200 1008 < cH752)90<y+€2762> —vé”go<y+gl,a>‘
7047V— 05 R -

T 0,0,v—1,0;BRr
<C+ CHgo(y +&,8) —go(y +&1,&1) ‘
T 0,a,v—1,0;Br
where we have used (56). Using (45), we obtain that
Hgo(y+€2,€2)—go(y+€1,€1)‘ <c
T 0,a,v—1,0;BRr

This implies (55).
Similarly we have

k M
e 7 2 ~(1 2 ~ 1
161(-,€2) — G1.( ) ll2,0-1,0:8n + 1357 — 387 + ZZ 5 — A8
k=1 1=1

< Cl& =& (57)

Using standard local elliptic regularity arguments, applied to u = <;~$2(-, &) — o (,&2)
in Bl(—fg) n B1(—§1)\BR, we have

162(-,€2) = @2 (-, &1)ll o2 084y < Clé — &1 (58)
and similarly

[ T2(W, 87, &) — To (W, 7§, &)l c2momr) < C162 — &1] + 1 =287, (59)

Using the fixed point characterization (50) of ¢ and estimates (55), (57)—(59) we
deduce

|0 (5 &) — do(:5&1)llc2eaBr) < Clé2 — &1l
The solution ¢ to (49) is then given by
_ ot ¢1 in Bp
¢2+¢2 in (B—E)\Br
and thanks to (55), (57) we obtain (46).
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Let us show now that (47) holds. We return to the problem (35), without trans-
lating, and let ¢(+, &) denote the solution to (35). Let x # £ and write

o(x, & +71n) — d(,8) = p(x,§ +71) — p(x +10,& + 1)
+ (x4 70,6+ 1) — o(x,§).

Since ¢(-, & +7n) € Cg ngTn( ) by the mean value theorem

o, E+mm) —dle+ T+
T

=Vo(x +sn,§ +710)n

oz, &47m)— ¢(I+Tn,5+7n) _

for some |s| < |7] and letting 7 — 0 we see that lim,_,g
—Vo(x,&)n. For the other term, changing variables y = z — £ we have

¢+, +7n) — ¢, _ dly+&+mn+mn) - oy +E¢)

T T

_ ¢tr(y,£ + 777) - ¢tr(y,£)

T

(60)

where now ¢! (-, £) denotes the solution to the shifted problem (49). From estimate
(46) we deduce that

H P (L E4+Tn) — ¢ (+§) ‘

T

<C (61)

2,a,v—1,0;B1 /2

with C independent of 7.

Observe now that the quotient 2&EFT=¢(@.€)

= is uniformly bounded in B\B; /4
which can be seen from estimates (55), (57)-(59). It follows from standard
local elliptic regularity arguments that this quotient is uniformly bounded in
CQ’Q(B\31/4)-

Fix 0 < # < «. Then for any sequence 7, — 0 we can extract a subsequence
(denoted the same) such that Pedmn) =08 converges in C?P(B\By,4). Set

Tn

b i PEEE ) — 0.0

n— o0 Tn

= Vad(z,§)n in B\Byy4
so that 11 € C**(B\Bj4). Note that
¢($ + 7, €+ Tnn) — ¢(1’, 5)

P1(x) = ILm .
= lim_ Gt 1% T"T") it 1V B\By.  (62)

In addition, from (61) we find ¢, € C’ffLO(Bl/g) such that

} ¢tr(,’£ + Tnn) — ¢tr(,’£)

Tn

=2

—0 asT, —0.
2,8,v—1,0;B1 /2
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Set

Yi(y+&) ye(B\Bia)—¢§

¥a(y) Yy € Byys.

P(z) =

Clearly v belongs to Cg;ﬁl’o(B — &). Moreover by (42), (43) and similar formulas
for 4o, A%, we have that the functions po(€), pk,(§) are differentiable and hence

¢ p=DegWH &0+ Degy +&,n , nio 9oy +&,¢)

A — ——
A PE o P
k)l mp
D.g(y +&.En+ D +¢&, Ay
ko gy +&,n ! e9(y €£)U+ZZ ey o
|y| k=1 1=1 a
inB—¢
Y = Dyd" (y,§)n + Deh(y + &, & fory € OB — €.

The boundary condition is obtained by observing that for fixed x € B, we have
O (x — £,€) = h(x, &) and differentiating with respect to £.

To show the convergence of (60) (as 7 — 0), it suffices to verify that 1 is uniquely
determined. Let 110(€), () be the constants associated to ¢(-, ) in (35). This
equation possesses at most one solution ¢ € C’fflyo(B) by Proposition 2.5.

Estimate (48) now follows from the formulas (42), (43) and the equation satisfied
by Dg(b. O

2.6. Perturbations of the operator —A

_ _c

lz—&|?
We wish to extend Proposition 2.5 to an operator of the form —A — L; — ﬁ
where L, is a suitably small second order differential operator. We will take L; of
the form

Liyw = ajj(x,t)Dijw + bi(z, t) Dyw + c(z, t)w. (63)

Lemma 2.8. Suppose that the coefficients of Ly satisfy: ai;(-,t), bi(-,t), ci(-,t) are
C(B) and for some C it holds

llaij (s ) llca(my + 110: (5 )l co )y + leC Dl cazy < ClE-
Assume
k1 such that ag, € R  and — ap, <v<—og .

Then there exists €9 > 0 such that if |€] < €o, |t| < €0 and go € CB’? (B) satisfies
llgo — 1| z(B) < €0, then given any g € CB_’?(B) and h € C**(0B), there exist
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unique ¢ € Cfg(B) and po, ey € R (E=1,...,k1, l=1,...,my) solution to

c
A —Lp— —
¢ t¢ |$ — €|2¢
k)l mi
g 90 , (64)
= + + Mk Vige DB
e =& e =P 22 ¢
bd=h on 0B.
Moreover
kl M
I¢ll2,0me8 + 1ol + 3> kil < Clglloawes + Bllcze@r).  (65)
k=1 1=1

Proof. Fix h € C**(0B) and [£] < €y, where €g is the constant appearing in
Proposition 2.5. For g € CS:?(B) let ¢ = T'(g/|r — £|?) be the solution to (35) as
defined in Proposition 2.5. Then (64) is equivalent to ¢ = T'(g/|x — &|? + Li@).
Define

T(9) = T(g/le — & + Leg).
We apply the Picard Fixed Point Theorem to the operator T in a closed ball By of
the Banach space C’f? (B) equipped with the norm || - ||2,a,u,¢;B-
Note that by Proposition 2.5 we have | T(g/|z —&1?)||2,a,0.e:8 < Cl9ll0,0v.e:8 +
Rl c2.a(am)). Using this inequality, for [|¢[|2,a,.,e;8 < R we have
IT(®)2.0me8 < Cllgllo,amen + [ Lidlloaw-2.68 + [hllozeon)
< C(llgllo.awe + [tIR + [|hllc>«(om)) < R,

where the last inequality holds if we first take ¢ so small that C|t| < %, and then
choose R so large that C(||gllo,a.v.e;8 + |bllc2e@0m)) < .
For [|¢1]l2,a.0,6:8 < R, ||#2]|2,0,0,6,3 < R we have

IT(¢1) — T(62) 2,068 < CllLe(b1 — d2)]l0,0,0—2.6:8
< Clt| |o1 — d2ll2,0,0,6:B+

and we see that T is a contraction on the ball B of Cf? (B) if t is chosen small
enough. O

We now extend the results of the previous section on differentiability to per-
turbed operators of the form —A — L; — W

Proposition 2.9. Assume the following conditions:

Jky such that o € R and  —op, <v < -—ay

> + 2
V> ——
2 ’
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and
v—1#—a. (66)
Let g9 > 0 and for € € B, let go(-,£),9(-,&) € Cig(B) be such that

A = Sup (lgo(- )]

€B.,

Law&B + [[Dego (- E)o,aw—1,6,8) < 00

and

A= Sup (g o e + 1Deg (- ) lo,a—1.6:8) < 00
€Bc,

On the operator L; we assume

llaij (s Ol cremy + 110:(C Dl cre sy + et Dlloras) < CJt-
Let h(-,€) € C>*(0B) with

Sljlgp (I1h (&) lesamy + |1 Deh(-,)llc20(am)) < 00

€Bq,

and let ¢(-, &) denote the solution to (64). Then there exist € > 0, C > 0 such that
if €0 < €0, [|g0(+, &) — 1| L(B) < €0, |t| < €0 and &1,& € Be,, we have

[o(- +&2,82) — d(- + &1, 1) I2,0,0-1,0,B1 ), < Clé2 — &1 (67)

Furthermore,

1 .
Deo(w; )n = lim —(d(w; £ + tn) = d(w;))  ewists Vo € B\{¢}, ¥ € RY,
the maps & € Bey(0) — o, i1 € R are differentiable and

[Ded(2;E)2,00-1.6:8 < CUlg( ) l0,awe:B + 1Deg (- ) l0,a—1.6:8
+h( llozw@p) + [1Deh(-, )l c2aam)).  (68)

Proof. To prove this result we use again a fixed point argument. Consider the
Banach space X of functions ¢(z,§) defined for x € B, £ € B, which are twice
continuously differentiable with respect to & and once with respect to £ for = # &,
for which the following norm is finite
16llx = sup (|¢(; ll2,ame:8 + [1Ded( ) ll2,a0-1,68) -
¢€B.,

Let Br denote the closed ball of radius R in X where R > 0 is to be chosen. For
5 € Bﬁoa g(ag) € CB:?(B), h(af) € 037a(aB) let ¢ = T(g(vf)”x - £|2a£) be
the solution to (35) as defined in Proposition 2.5 with go(-,£) in place of go. Let
T : Br — X be defined by T(¢) = T(g(-,€)/|x — €| + Li¢(-,€),€). Then

IT(O)z.06:8 < Clllgllo,awen +[[1Lidlloap-2.68 + |[hllczx@p)
< C(llgllo,ag + IR + |[hllc2eom)) < R,
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if |t] is small and R large. Moreover from (48) we have
IDET(S)12,00-1.6:8 < Cllgllo,ame:n + [ Degllo.a—1,65
+ | Lt9ll0,0,v—2.6:8 + | Lt Dedll0,a,0—3.¢;B
F|Ih(- 2By + [[Deh(-, €)llc2e0B))
< CA+tollx + 1R(, &)z am) + [ Deh(-, &) e 0m))
<R (69)
if we take |t| small enough and then R large. Taking the supremum over { € B,
then yields the estimate
IT(®)llx <R V[¢llx < R.

That 7T is a contraction is proved in a similar manner as in the previous lemma.
For ||¢1]|x < R, ||¢2]lx < R we have

| T(¢1) — T(d2)ll2.0m:8 < ClLe(b1 = 62) 0,026
S C|t|H¢1 - ¢2||2,a,1/,§;B;
and using (48)
IDe(T(61) — T(¢2))l|2,0w-1,68 < CUILe(d1 — d2)ll0,aw—2.
+ |t De (1 — ¢2)ll0,a,0—3.6:8)
< COlt|l|or — d2||x
and it follows that
IT(61) — T(¢2)|lx < Clt|[|¢1 — 2| x-

Thus T is a contraction on the ball By of X if [¢[ is chosen small enough.

To prove (68) we observe that, if ¢ = T'(¢) then as in (69) we have
[Dedll2,a—1.6:8 = I1DeT(9)l|2,0,0-1.6:8

< C(llgllo,awe;B + 1Degllo,av—1.68

+ [t ¢llo,ae:8 + [ Dedllo,ove;B)
+18(, Ollc2e0m) + [ Deh(:, €)llc20(08))-
Combining this and (65) we deduce (68). O

2.7. Additional results when 0 < ¢ < 7(1\];2)2

The purpose of this section is to extend Lemma 2.1 to a general bounded, smooth
domain Q of RY, N > 3 and general £ € 2, by redefining the functions W}, ; which
appear in (18). For this we restrict ourselves to values of ¢ in the range

(N —2)?

0<e<
¢ 1

which guarantees o, < % < a(')" .
Take g € C)'% ((Q) N H~Y(Q) and h € C2(9Q).
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, . . .. N—2)2 .
Hardy’s inequality and the condition ¢ < ( 7 ) ensure that equation
|z — ¢ (70)
¢=nh on 012,

has a unique solution ¢ € H*(£2). If we do not impose a restriction on ¢ of the form
¢ € H(Q) then uniqueness in (70) is lost, see for instance [15, 16].

We define Wy, ; ¢, which will play the same role as in (18), to be smooth functions
in Q\{¢} satisfying

~ AWy e —

)

ﬁwk,l,f -0 in Q\{€}

Wy Le = on 0f) (71)

+ _
Wipe(@) ~ |z = &7 @rg (Iﬁ—gl) r~E.

Let indeed
Wﬁu@($)=|x-ﬂ_“¢¢hz(ﬁ%;f%)-—¢huﬂxh (72)
where 9y, ¢ € H'(Q2) is the unique solution to
—Are - E £|2 T Vkle = in

Ve = |z — gl Pkl (ﬁ) on 9.

Observe that for C' > 0 large enough, Clz—¢&|~% and —C|z—£|~% are respectively
a super and a subsolution of the above equation, whence by the maximum principle

2
(which is valid in virtue of Hardy’s inequality and the restriction ¢ < %)

[Ypa,e] < Cloz — &7 and Wy ¢ satisfies (71).

)

Remark 2.10. If Q = B1(0) and £ = 0, our definition is consistent with (15), since

P som(| |) and  Wie = (o] — o~ %mz(| |) (73)

Theorem 2.11. Let ¢ € R and assume
Fk1 > ko —op g, >V> . (74)

Let Q a smooth bounded domain of RN, N >3,£¢€Q, g € Cgf‘Qé(Q) NH-YQ)
and h € C*(0Q). If

oW,
/gwk,l@:/ h% Vk=0,... ki, Vl=1,...,mp (75)
Q o0 n
then there exists a unique ¢ € C’f?(ﬂ) N HY(Q) solution to
Ap- ——p=g inQ
[z = ¢ (76)

o=nh on 082,
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and it satisfies
[ll2,a.0 < C(llgllo,aw—2,0 + [Allc2aom)) (77)
where C' is independent of g and h.

By translating the domain we consider from now on £ = 0. By Lemma 2.1, a
straightforward scaling argument implies that Theorem 2.11 holds when Q = Bg(0)
and £ = 0. In this case W}, ;o takes the form

Wi (z) = <<%>dkF - (%)%—> Dkl (%) : (78)

This is obtained by scaling the functions in (73) and is the same as in definition
(72) except for a multiplicative constant.

Proof of Theorem 2.11. As mentioned earlier, we shall give the proof in the case
¢ = 0. Take R > 0 small such that Bz (0) C Q. Then the unique solution ¢ € H'(Q)
of (76) satisfies (77) if

/ng: %7 Vk=0,....k, Yi=1,...,my, (79)
Br OBr on

where Wkl is defined in (78). Since Wkl satisfies
—AW]CJ — #Wk,l =0 in RN\{O},

multiplying this equation by ¢ and integrating in 2\ Br we obtain

aN]/Vk . — 8¢ / aNWk l / —
s _ IJ[I i _ s — I‘r 80
/8(2 < on ? kJ@”) oBr On ? Q\Br g (80)

where n denotes the exterior normal vector to 92 and dBg. Adding (79) and (80)
we see that (79) is equivalent to

Wiy, = 09 _/ —~
/(99( Sl Wk,l8n> - [ o (s1)

Let 5, € H'(Q) be the solution to

- c - .
—Aty — Wiﬂm =0 inQ

'J}k,l = Wk,l on 0f2.

Multiplying this equation by ¢ and integrating by parts yields

by 0¢ ~ B ~
/(39( o ¢_%¢k,l> —/le/%,b
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Subtracting this equation from (81) we obtain that (79) is equivalent to

8(Wk,l )
a0 87’1

o= /Qg(wk,z — k).

Up to multiplicative constant Wk,l — 1[);@,; is the same as Wj ;o as defined
in (72). O

3. Solution to the Nonlinear Equation
We first study (4). Recall
O ={z+t(x): x € By},

where t is small and 1) : B — RN a2 map.

We change variables to replace (4) with a problem in the unit ball. The map
id + t is invertible for ¢ small and we write the inverse of y = z + ti(x) as
r=y+ tz/;(y,t). Define v by

u(y) = v(y + t(y, t)).
Then
Ayu=Ayv+ L

where L; is a second order operator given by

O %y o 00; O,
Liyv= QtZ'Umm-, — +tZ’ka 3 +t vaﬂck .
ik Oyi oy by dyi Oyi

We look for a solution of the form

1 *
v(x)zlogm—i—(b, A=+ p,

where ¢* = 2(N — 2). Then (4) is equivalent to

* *

AL __¢ __¢ ¢ 1 _ K é
ALt g T @ O e

+ Ly (log ﬁ) in B (82)
qﬁ:—log; on 0B.

|z — ]2
We observe that if N >4 then N —1 < ¢* < 2N and hence o] > 0, ay < 0.

We fix from now on v = 0 and k; = 1. We may thus apply Proposition 2.5 and
Lemma 2.8, since (34) is satisfied. In dimension N > 5, since (44) and (66) hold,
we may also apply Propositions 2.6 and 2.9.

We simplify our notation and write

W’E = VLg’g €: ].,...,N,
where Vi ¢ ¢ is defined in (33).
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Define
f(x,t) = Ly <1og ;>
|z —¢J?
and note that
1 (2, O)lz = €[*llo,,-2.¢ < C. (83)
Concerning (82) we prove:

Lemma 3.1. Write ¢ = ¢* = 2(N — 2). Then there exists eg > 0 such that if
€| < €0, |t| < €0, there exist ¢ € Cg’g(B) and po, ..., pun € R such that

AT __C 1 I s
A¢ Lt¢ |fE — £|2¢ - |fE — £|2 (e 1 ¢) +MO|1’ _£|26
N
+fl@ )+ Y Vi in B (84)
i=1
1
¢=—10gm on 0B.

If N > 5, we have in addition that:

e the map £ € B, — ¢(+,&) is differentiable in the sense that

Ded(e, €)1 = lim, ~(§(a,€ +70) — 9(x,€))  erists for all z € B\{€)

and n € RV,
o for v < 0 small, Deg(-,€) € Cgfm(B), the maps & € Be, +— po, i € R are
differentiable and there exists a constant C independent of £ such that

k1 myg

IDed (-, )ll2,-1,68 + [Deptol + > D [Depra| < C. (85)

k=11=1

Proof. Case N > 5. Let ¢y be as in Lemma 2.8. Consider the Banach space
X of functions ¢(z,€) defined for x € B, £ € B,,, which are twice continuously
differentiable with respect to x and once with respect to £ for x # £ for which the
following norm is finite

lollx = S 9 El2,0,0,6:8 + A Ded (- 6) 2,071,685
€0

where A > 0 is a parameter to be fixed later on and 7 < 0 is close to zero.
Let Br = {¢ € X |||¢]|x < R}. Using Lemma 2.8 we may define a nonlinear
map F : Br — X by F(¢) = ¢, where ¢(+,&) is the solution to (64) with

g=c(e¥ —1—9)+ |z — & f(z,t), go=¢€¥ h=—log (86)

o
|z — &2
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We shall choose later on R > 0 small. Observe that in Lemma 2.8 the constants C'
in (65) and ¢ associated to gy = €%, stay bounded and bounded away from zero
respectively as we make R smaller, since e= % < e¥ < ef for 1 € Bpg.

Let us show that if ¢ is small then one can choose R small and A > 0 small so
that F': Br — Bpr. Indeed, let ¢ € Br and ¢ = F(¢). Then by (65), (83) we have

18]12.0,0,6 < Cllle(e” =1 =) + |z = € (2, )lo,a0.5 + [€])

< O(R? +1i] +16)) < 5, (57)

provided R is first taken small enough and then || and |£] < ¢y are chosen small.
Similarly, recalling Remark 2.7,

1D¢dll2.0m-165 < Clle(e? =1 =) + |z = &7 (@, t)llo.a0.e5

+ [[eDe(e¥ =1 =) + De(lz — € f(@, 1) lo,aup—1,68 + 1)

R? R
<C(RP+t+—+1) <=
< ( o+ ) <oy

if we choose now A small enough.

Next we show that F' is a contraction on Br. Let ¢, 1o € Br and ¢y = F(1)y),
¢=1,2. Let ,ugz), i =0,...,N be the constants in (64) associated with . By (65)
and repeating the calculation in (87)

al 4
S| <R (88)
=0

Let ¢ = ¢1 — ¢2. Then ¢ satisfies

c e¥1— 11— e¥2—1—1y
—A¢—L¢—————¢:c< - )
TP o — €2 o — €2
1 p2 P1
¢ € (1) (2)y_€

tuo T (e — o)

O fo—¢? N )
N
2 .
+ 3 (Y = P Vie in B
i=1
=0 on 0B.
Apply (65) with gy = %, h =0 and

e 1 — o ez 1 — o @) e _ otz
o _ ¢ -°¢ 90
vme( g - ) )

to conclude that
N
1 2

| All2,0,0,6 + Z 1Y — 1) < Cllgllo,ao.e (91)

=0
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Using (88), we have in particular that |,u(2)| < R and it follows from (90) and (91)
that

161 = ¢2ll2,0,06 < CR|[$1 = ¢2ll2.0,0 (92)
Thanks to (68) we also have the bound

| De(p1 — ¢2) (le?r — 1 — (¥ — ¥2)ll0,00.6:8
+ || De(e? —1hy — (%" — 42)) ~16B)

< CR||Y1 — ¥2ll2,0,0,0:8 + CR||De(01 — ¥2)l0,0,5—1,¢:B
(93)

Combining (92), (93) we obtain
[F(¢1) = Fh2)llx < CRl¢1 — 2llx.

This shows that F'is a contraction if R is taken small enough.
Case NN = 4. In this case (44) fails for » = 0 and estimates like (67) or (68) may
not hold. So we work with the Banach space X of functions ¢(z, ) which are twice

continuously differentiable with respect to x and continuous with respect to £ for
x # &, for which the norm

[¢llx = sup [[¢(-,€)
€€B.,

is finite. Working as in the previous case, we easily obtain that F' is a contraction
on some ball Br of X. O

Proof of Theorem 1.3. We define the map (£,t) — ¢(&,t) as the small solution
to (84) constructed in Lemma 3.1 for ¢, £ small. We need to show that for ¢ small
enough there is a choice of £ such that yu; =0 fori=1,..., N. Let

Vi(w;€) = Wi —Om(lz =€), j=0,...,N, (94)
where 71 € C*°(R) is a cut-off function such that 0 <y <1,

1
m(r)=0 forr< 3’

1
m(r)=1 forr > 1
Multiplication of (84) by V, (m ¢) and integration in B gives

[ (-8%0 - L6 - S itwe) ) o

L ol [ 96
+/ o8 e By o PO

= 76 e¢— v X, X,
- | e - 1= o §+Mo/| — o)

/fxt x§+zuz/vgvx§)
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When & = 0 the matrix A = A(€) defined by
AsO = [ Vigli(€) forij =10, N
B

is diagonal and invertible and by continuity it is still invertible for small £. Thus,
we see that u; =0 for i = 1,..., N if and only if

H;(&,t)=0, Vji=1,...,N, (96)

where, given j =1,..., N,

~ LN
(6t = [ e 1= 0T+ [ Vi)

- s 1 8‘7»(x;£) 8(;3
+ [ FwoV@o- [ o |x_£|2 iy [ S

-/ (—A%(m)—Ltvg»(x;@ o Twg)) o

If this holds, then ui(&,t) = un(&,t) =0 and ¢(&,¢t) is the desired solution
o0 (82) (with p in (82) equal to ,uo( t)).
Observe that

B 1 oVi(z:9)
I 1 J
08 UF,B ®la—gr on L_O

aV;(x;0) 1 0 aVi(z;¢)
=2 —L= +/ log
/an’“ on "o —Pog o |,

B . 8V($ 0)
_2/33 e (97)

For j = 1,...,N we have W1 ;(z) = (|z|” of _ ||~ )(p](l |) for z € 9B, and

oWy — a —al
hence =52 (z) = (o — a;')gaj(x) = W xj.

Case N > 5. By Lemma 3.1, ¢(-, ) is differentiable with respect to £. We may
then compute the derivatives of the other terms of H;. For instance

8 C é =5 ’
- - - —1—)Vi(x: =0
&k, /B |z — &|? (e Vs (@id) £=0,t=0

because the expression above is quadratic in ¢ and the computation can be justified
using estimate (85).
Similarly

0 e’ ~
7% {’“‘/B B —fPW’@} e
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Finally, using that ¢|5:0 = 0 and integration by parts, we find

: s 7))
— V AV L V —V;
Ok [ o, On’ ' jzf? ’ £=0,t=0

ov; 99 (_Aa¢> ¢ a¢>)
B

o O 0 0k |l O

<>
©
N

But when £ =0, % satisfies

¢ c 0¢ 5#0 1 Z 8/1%

0, |z[2 08, 0 [af?

96 (99)
%, = 2 on 0B
k
since at £ =0, ¢ = 0 and p; = 0 for 0 < i < N. By the conditions (18) we find
g’gz =0 and
/ - oWy
k
g“" _odon iy (100)
& / VioWi i
B

The integral above is zero whenever i # k and thus, using (99), (100) in (98) we

obtain
AR ARACE AT
— —V; - —AV, — L)V, — —=V: | ¢
&k, { oB, On ! B ! t |2 £=0,t=0

thanks to (95). This and (97) imply that the matrix (%(0, O)) ~is invertible.
ij
We may then apply the Implicit Function Theorem, to conclude that there exists
a differentiable curve ¢t — £(t) defined for [¢| small, such that (96) holds for £ = £(t).
Letting v(x) = log W—Hﬁ(x, &(t)) for x € B and u(y) = v(y+t(y)) for y € Qy,
we conclude that u is the desired solution of (4).

Case N = 4. Lemma 3.1 yields no information on the differentiability of ¢ and p;
with respect to £. In particular, we may not apply the Implicit Function Theorem
as above. We use instead the Brouwer Fixed Point Theorem as follows. Define
H = (Hy,...,Hy) and

1 8Wj7§
|z — &2 on -

B(¢) = (By,...,By) with Bj(g):/ log ————
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By (97), B is differentiable and DB(0) is invertible. (96) is then equivalent to
§£=G(9),
where
G(&) = DB(0)™" (DB(0)§ — H(§,1)).

To apply the Brouwer Fixed Point Theorem it suffices to prove that for ¢, p small,
G is a continuous function of ¢ and G : B, — B,,. This is the object of the next
two lemmas.

Lemma 3.2. G is continuous for t, & small.

Proof. Observe first that for ¢, { small such that |[¢||-(p) < R we have

6]l () < Clle(e? =1 =) + |z — 2 f (2, )| L= (m) + [€])
< C(R|l[ o) + It + [€]),

and we deduce (taking R smaller if necessary)
16l o) < C(Jt] + [€])- (101)
Similarly

il < C(tl+1E]), Vi=0,...,N. (102)

Now let & — &, ¢ = qﬁ(fk,t)u?(;k) be the solutions and parameters associated to
(84). By (101) and Eq. (84) and using elliptic estimates we see that (¢y,) is bounded
in C1* on compact sets of B\ {¢}. By passing to a subsequence we may assume
that ¢r — ¢ uniformly on compact sets of B\{¢} and by (102) that ,uf;k) — .
Then ¢ is a solution of (84) with |[¢||z~(p) < R and with parameters { and p;.
This solution is unique by Lemma 3.1 and this shows that in fact, the complete

sequence converges. Then all terms in the definition of H(&,t) converge. In fact

e —1 — ¢~ e —1— ¢
e R e A RS

by dominated convergence, because

€¢’°—1—¢5k/\ C
Pt W“fﬂfm—af

Similarly

<k>/ e Vi(x,€) — /Lf/»(m €) ask — oo (103)
PO Jplo—er 7oy TR e —ep '

|
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Lemma 3.3. If p > 0 and |t| are small enough then G : B, — B,,.

Proof. By (101)
e?©) — 1 — ¢(&) ~
/c—_ 3 ( )Vj(x@’ < Cll@lFe(my < CUE+ [t
B lz — ¢
Let o > 0 to be fixed later. From (103) we have

6¢ ‘7 <
‘ém—wj“@'

if t and £ are small enough. Also

IDB(0)¢ — B(€)| < Cl¢f,

and

[ w0 < cn
B
for some constant C. Thus if || < p and p is small we have

(G| < C(p* + [t] + ap).
First fix o such that Co < 1. We can then fix p > 0 so small that C(p? + op) < .
Then, for |t| small, |G(§)] S p- O
Proof of Corollary 1.4. We have just constructed a solution ¢ € Cg:? (B) of (82),

when £ = £(t). Change variables and let qg(y) = ¢(z), where x = y + t@(y,t) for
y € Q. Then,

At 1 .
E _(2_|26 + A, 1nw in Q.

Letting £ = &€ + t(€) and ¥(y) = o(y) + 1n‘ 5‘2, the above equation can be
rewritten as

Ayd =

M) v _AO)

—AyV = - - in Q,
ly — &7 ly — &7
where we used the fact that A, ln glg = Iy)\( R Since ¥ is bounded, it follows

by Corollary 2.4 and the fixed pomt characterization of ¥ that ¥ is continuous at
y = &. Define the sequence (¥,,) by

w() =0 (5= +E). foryen =nie -6 +&

Clearly, (U,,) converges pointwise to the constant ¥(€). Also, U,, solves

~AV, = AW eVn — A0) in Q" (104)
ly — &7 ly — &7

Away from y = &, the right-hand side in the above equality remains bounded. It
follows by elliptic regularity that up to a subsequence, (¥,,) converges to ¥(£) in
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the topology of C°°(RN\{£}). In particular, passing to the limit for y # ¢ in (104),
we obtain
_ M) e MO
ly — &7 ly — &7
whence \Il(g) In i((g) Since the solution u(t) of (4) we constructed is given by

u(t) =In —= P 5‘2 + U, we just have proved Corollary 1.4. O

Proof of Theorem 1.2. We recall that if u € H*(£2) is an unbounded solution of
(1) such that

/Q|V<p|2 > /\/Qe“gaz for all ¢ € C§°(Q),

then A = A* and u = u*. This result is due to Brezis and Vézquez, see [8].

Given ¢ > 0 small, let u = u(t) denote the solution of (4) obtained in Theorem
1.3. Since N > 11, 2(N — 2) < -2)" ) and it follows from Theorem 1.3 that if ¢ is
chosen small enough,

||ufln WHLW(QH - (N — 2)2

A(t)e

Hence for ¢ € C§° (),

w 2 (N_2)2 <P2 2
W/Qf s / O S/RN Vel

in virtue of Hardy’s inequality. Hence, u(t) is the extremal solution of (4). O

4. u* is Bounded for Some Thin Domains

Proof of Theorem 1.8. We assume by contradiction that for a sequence ¢; \, 0,
we have u? ¢ L>(Q.,). Let M > 0 be a constant to be fixed later. By continuity,
we can select a number Aj with 0 < A; < AZ such that the minimal solution u; of
(8) with parameter A; satisfies

maxu; = M. (105)

€j

Define

v (Y1, y2) = u;j(y1,€5y2)-

Then v; is defined in Q) and satisfies

2 2 .
Ay, +A =¢ejAje” in Q)
( Y1 1/2) (106)
v; =0 on 02,
where A, denotes the Laplacian with respect to the variables y;, i = 1, 2.
For some constant Cy we have
C
A< 22 (107)
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Indeed, let p. denote the first eigenvalue for —A in Q. with Dirichlet boundary
condition and . > 0 the associated eigenfunction, that is

—Ape = pepe  in Qe
e =0 on 0f)..
We normalize ¢ so that ||¢.||12(q.) = 1. Multiplying (8) by ¢. and integrating by

parts we find
Ne/ UL e = /\Z/ eu:§0€-
Q Q.

Since e > u for all w € R, it follows that A < p.. But changing variables (1, z2) =

(y1,€y2) we find
| ver
Qe

€

1
| 190wl + 19508

pe = inf —=—=——— = inf
€eCie(Qe 2 eCe (R 2
wso%éé)/9¢ Vel (@) /Qw

Fixing ¥ € C§°(Q)), ¥ # 0 we deduce p. < % Note that Cy = Cy(2, N) does not
depend on M. We have just proved (107).
Next we show that for some constant C' independent of j

Vil o) < C. (108)

For this, using the uniform convexity of 2, find R > 0 large enough so that for any
Yo € ON) there exists zgp € RY such that the ball Br(zo) satisfies Q C Br(zo) and
Yo € OBR(zp). For convenience write for € > 0

Lo =Ny, + Ay,

Define ((y) = R? — |y — zo|? so that ¢ > 0 in Q and —L.( = 26 N7 + 2N (this can
be computed easily by shifting so that zq is at the origin and writing |(y1,y2)|* =
[y1]*> + [y2/?). From (107) we have the uniform bound e3); < C. Tt follows from
(106) and the Maximum Principle that v; < C¢ with C' independent of j and yp.

Since v;(yo) = ((yo) = 0, this in turn implies that
Vi (yo)| < C Vi, yo € Q. (109)

Recall that the minimal solution u; is strictly stable in the sense that the linearized
operator w — —Aw — A\je"w has a positive first eigenvalue (i.e. (2) holds). By
changing variables, the same holds true for the linearization of (106) at v;, i.e. the
operator w — —szw—si)\j eV w has a positive first eigenvalue. This implies that we
have the Maximum Principle in the form: if w € C?(Q) satisfies — L., w—e?\je w =
0 in © then

max |w| < max |w.
Q o

Applying this to the partial derivatives of v; and using (109), we deduce (108). By
(105), (108) and (107) we can find subsequences, denoted for simplicity (v;), (&)
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and ();), such that v; — v uniformly in Q and &5 2X\; — Ao > 0. Multiplying (106)
by ¢ € C5°(£2) and integrating by parts twice we ﬁnd

_/ Uj(siAm(p""Ayﬁp) :‘g?)‘j/ e’
Q Q

Letting 7 — oo we obtain
—/ VA, = )\0/ e'p Yo e C5(Q).
Q Q

Writing vy, (y2) = v(y1,y2) for (y1,y2) € RVt x RN2 N Q, we see that for each
non-empty slice

le = {yQ eRM : (y17y2) € Q}’

we have
—Ay,vy, = Age”1 in €y, (110)
vy, =0 on 0§y, .
Let y; € € denote the point of maximum of v;, that is, v;(y;) = maxgv; = M. For
a subsequence, y; — yo €  as j — oo and since v; converges uniformly to v, we
have M = v;(y;) — v(yo). Since v|pa = 0, we must have yo € Q.
Let yo = (a,b) and observe that €2, is non-empty since yo € . Then v, (y2) =
v(a,y2) solves (110) in €,. Moreover maxg_ v, = M and v, is weakly stable in the

» [
Qq

To see this, let p € C5°(£2,) and x € C§°(RN1) be such that y = 1 in a neighborhood
of a and supp(x(y1)¢(y2)) C Q. By stability of u; and changing variables we have

sense that

e < / Vo2, Ve € C5°(Qu). (111)

2\, / i) o) < / 20 (2)? | V() 2 + x(1)? |V ip(w2) .

Letting j — oo yields

X /Q ()2 (n)? < /Q )2 V().

Choosing a sequence x; € C§°(RM) such that xx = 1 in a neighborhood of a and
supp(xx) C Bix(a) we obtain (111).

Let yr(ii)n = min{y; : Q,, # 0}, yr(gx = max{y; : y, # 0}. For any ygi)n <y <
yﬁnix the slice 2,, is a smooth open non-empty set and hence for the problem

{ —Ay,v=2XAe" in Q,,

(112)
v=0 on 08y,

there exists a number 0 < A}, < oo such that (see [6, 8, 19, 22])
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e if 0 < A < \j, then (112) has a unique minimal solution vy, x. Moreover v, x
is smooth and characterized as the unique semi-stable solution to (112), i.e. the
unique solution satisfying

A/ et p? < / IVel?, Vo€ C5*(Qy,).

le le

e If A > A7 then (112) has no weak solution.

e If A =)}, then (112) has a unique weak solution vy and vy = limy ~x: Vg, A-
o If Ny < 9 (recall that Q,, C R™2) then vy, s bounded

We claim that for any A > 0 there exists My > 0 depending only on 2 and A such

that such for any ygi)n <y < ygix we have

max vy, x < M. (113)

Y1

That is, we assert that if we have some a priori control on A, the boundedness of
Uy, x is uniform when ygm)n <y < yﬁnix
Using (107) we have the bound Ay < Cy. Hence, choosing M = M), + 1 at the

beginning of the proof, (113) contradicts (105).

Proof of (113). The argument is the same as in [13, 22] but we shall emphasize
that the bound does not depend on yl(ﬁi)n <y < y&}lx
For simplicity we write v = vy, . Let 0 < o < 2 and multiply Eq. (112) by

v — 1. Integrating in Q,, we find

2a/ e*| Vol = /\/ (Zatl)y _ ovy, (114)
Q

Y1

Using (111) with e*¥ — 1 yields

)\/ e’(e™ —1)? < a2/ e2? | Vul2. (115)
Q

Y1 Y1

Combining (114) and (115) gives

(1 B %)/Q 2oty o 2/Q

Y1 y1

a+1
2a+1

6(2a+1)v] 1, 1| ey )

e(a—i-l)v <2 /
Q

For 0 < p < 5 we deduce the bound

Y1

lellzr e, <€

with C' independent of yl(ﬁi)n <y < yl(qu
In dimension N5 < 9, we thus have ||evHLp(Qy1) < C for some p > Ny/2.
Recalling (112), this shows that [|v[|L=(q, ) < C and the constant is independent

of ymm <y < yﬁngx, as can be seen using Moser’s iteration technique and working

on a large ball U such that ©,, C U for all ygi)n <y < yf&&x, considering all

functions on €, to be extended by zero in U\, . |
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