GLOBAL REGULARITY FOR A SINGULAR EQUATION AND LOCAL H^{1} MINIMIZERS OF A NONDIFFERENTIABLE FUNCTIONAL

JUAN DÁVILA
Departamento de Ingeniería Matemática, CMM, Universidad de Chile, Casilla 170/3 - Correo 3, Santiago, Chile
jdavila@dim.uchile.cl

Received 10 December 2002

Abstract

We prove optimal Hölder estimates up to the boundary for the maximal solution of a singular elliptic equation. The techniques used in this argument are applied to show that in some situations the maximal solution is a local minimizer of the corresponding functional in the topology of H^{1}.

Keywords: Singular elliptic equation; gradient estimates.
Mathematics Subject Classification 2000: 35J65, 35R05, 35R35

1. Introduction

Let Ω be a bounded smooth domain in \mathbb{R}^{n}. We are interested in nonnegative solutions to the equation

$$
\left\{\begin{align*}
-\Delta u+u^{-\beta}=\lambda f(x, u) & \text { in } \Omega \tag{1.1}\\
u & =0 \quad \text { on } \partial \Omega
\end{align*}\right.
$$

where $0<\beta<1, \lambda>0$ and $f: \Omega \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a nonnegative function, measurable in x, and increasing and concave in u for a.e. $x \in \Omega$. We assume also that $f_{u}(x, \cdot)$ is continuous on $(0, \infty)$ for a.e. $x \in \Omega$ and that f is sublinear in u uniformly in x, that is,

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \frac{f(x, u)}{u}=0 \quad \text { uniformly for } x \in \Omega \tag{1.2}
\end{equation*}
$$

For a function $u \in C(\bar{\Omega}) \cap C^{2}(\Omega)$ and $u>0$ in Ω, it is clear what it means to be a solution of (1.1). If a function $u \geq 0$ vanishes in parts of the domain, we replace (1.1) by

$$
\left\{\begin{align*}
-\Delta u & =\chi_{\{u>0\}}\left(-u^{-\beta}+\lambda f(x, u)\right) & & \text { in } \Omega \tag{1.3}\\
u & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

where $\chi_{\{u>0\}}$ stands for the characteristic function of the set $\{u>0\}$.

Definition 1.1. We say that a function $u \in H_{0}^{1}(\Omega)$ is a solution of (1.3) if $u \geq 0$,

$$
-u^{-\beta}+\lambda f(x, u) \in L^{1}(\{u>0\})
$$

and

$$
\int_{\Omega} \nabla u \nabla \varphi=\int_{\{u>0\}}\left(-u^{-\beta}+\lambda f(x, u)\right) \varphi \quad \forall \varphi \in C_{0}^{\infty}(\Omega) .
$$

Let us define the distance function to the boundary as

$$
\delta(x)=\operatorname{dist}(x, \partial \Omega)
$$

The following result was proved in [2].
Theorem 1.2. For any $\lambda>0$ there is a unique maximal solution \bar{u}_{λ} to (1.3). Moreover there exists $\lambda^{*} \in(0, \infty)$ such that for $\lambda>\lambda^{*}$ the maximal solution \bar{u}_{λ} is positive in Ω, belongs to $C(\bar{\Omega}) \cap C_{\mathrm{loc}}^{1, \mu}(\Omega) \forall 0<\mu<1$ and satisfies

$$
\begin{equation*}
a \delta \leq \bar{u}_{\lambda} \leq b \delta \quad \text { in } \Omega \tag{1.4}
\end{equation*}
$$

where a, b are positive constants depending on Ω, λ and f.
For $0<\lambda \leq \lambda^{*}$ the maximal solution \bar{u}_{λ} has regularity $C(\bar{\Omega}) \cap C_{\operatorname{loc}}^{1, \gamma}(\Omega)$ with $\gamma=\frac{1-\beta}{1+\beta}$, and for $0<\lambda<\lambda^{*}$ the set $\left\{\bar{u}_{\lambda}=0\right\}$ has positive measure.

The first result in this work asserts that \bar{u}_{λ} is $C^{1, \gamma}$ up to the boundary.
Theorem 1.3. The maximal solution \bar{u}_{λ} of (1.3) belongs to $C^{1, \gamma}(\bar{\Omega})$ with $\gamma=\frac{1-\beta}{1+\beta}$. Moreover, if $\lambda>\lambda^{*}$ then $\bar{u}_{\lambda} \in C^{1,1-\beta}(\bar{\Omega})$ and $\bar{u}_{\lambda} \in C_{\text {loc }}^{1, \mu}(\Omega) \forall \mu \in(0,1)$.
Remark 1.4. Let us mention that the exponent $\gamma=\frac{1-\beta}{1+\beta}$ is the best possible for the case $\lambda \leq \lambda^{*}$. In the case $\lambda=\lambda^{*}$ there are examples where the behavior of the maximal solution near the boundary is $\delta^{\frac{2}{1+\beta}}$, see [2, Example 2.5]. When $\lambda<\lambda^{*}$ the maximal solution vanishes somewhere in the domain, and its behavior near the free boundary $F B=\Omega \cap \partial\left\{\bar{u}_{\lambda}>0\right\}$ is of the form $\operatorname{dist}(x, F B)^{\frac{2}{1+\beta}}$ (see [8]).

The case $\lambda>\lambda^{*}$ is simpler from the point of view of the regularity of the maximal solution. In this case, as a consequence of (1.4) we have $\left|\Delta \bar{u}_{\lambda}\right| \leq C \delta^{-\beta}$. We can then immediately apply a result of Gui and Lin [7] to conclude that $\bar{u}_{\lambda} \in C^{1,1-\beta}(\bar{\Omega})$ (see Lemma 2.1) and the exponent $1-\beta$ is the best possible in this situation.

The difficulty in proving Theorem 1.3 stems from the fact that in general the maximal solution has a free boundary when $\lambda<\lambda^{*}$, which can touch the boundary of the domain. This actually happens in some cases, and in Sec. 5 we construct different examples where the following situations occur: the support of the maximal solution is compact; the support of the maximal solution "touches" $\partial \Omega$ but is not the entire domain; and the set where the maximal solution vanishes is compact.

In these examples f depends on x, but when $f=f(u)$ we can say something about the support of \bar{u}_{λ}. For example, it can not be compact (see Sec. 5 for details).

The proof of Theorem 1.3 that we present here relies on the approach first developed by Phillips [8], and then applied to obtain the interior regularity for

Fig. 1. Possible situations for the support of \bar{u}_{λ}.
(1.3) in [2], as well as on some estimates of Gui and Lin [7]. Using other techniques Giaquinta and Giusti [5, 6] (see also [4]) proved interior gradient estimates for local minimizers of general nondifferentiable functionals, which include the functional Φ defined in (1.5) below. It is not clear though that those results can be applied to our situation when $\lambda \leq \lambda^{*}$, which is in some sense the interesting case, because it is not known whether or not \bar{u}_{λ} is a local minimum of Φ in this range of λ. The second result is related to this variational property of \bar{u}_{λ} in the range $\lambda>\lambda^{*}$.

Consider the cone K of nonnegative functions in $H_{0}^{1}(\Omega)$

$$
K=\left\{u \in H_{0}^{1}(\Omega) \mid u \geq 0 \text { a.e. in } \Omega\right\}
$$

and for $u \in K$ let

$$
\begin{equation*}
\Phi(u)=\int_{\Omega} \frac{1}{2}|\nabla u|^{2}+\frac{u^{1-\beta}}{1-\beta}-\lambda F(x, u(x)) d x \tag{1.5}
\end{equation*}
$$

where $F(x, u)=\int_{0}^{u} f(x, t) d t$.
Our second result is the following:
Theorem 1.5. For $\lambda>\lambda^{*} \bar{u}_{\lambda}$ is a strict local minimum of Φ on K in the H^{1} topology, that is, there exists $\rho>0$ such that for $u \in K$ with $0<\left\|u-\bar{u}_{\lambda}\right\|_{H^{1}}<\rho$, we have

$$
\Phi\left(\bar{u}_{\lambda}\right)<\Phi(u) .
$$

The strategy in the proof of Theorem 1.5 consists of the two following steps:
(1) first we show that \bar{u}_{λ} is a strict local minimum of Φ in the C^{1} topology, which makes sense because of Theorem 1.3.
(2) Then we prove that a local minimum of Φ in the C^{1} topology is also a local minimum in the H^{1} topology.

The reason for the first claim is that the first eigenvalue for the linearization of (1.3) at \bar{u}_{λ} is positive for $\lambda>\lambda^{*}$, that is

$$
\begin{equation*}
\Lambda\left(\bar{u}_{\lambda}\right)>0 \quad \forall \lambda>\lambda^{*} \tag{1.6}
\end{equation*}
$$

where $\Lambda(u)$ is given, for a function $u>0$ a.e. in Ω, by

$$
\Lambda(u)=\inf _{\|\varphi\|_{L^{2}}=1} \int_{\Omega}|\nabla \varphi|^{2}-\left(\beta u^{-\beta-1}+\lambda f_{u}(x, u)\right) \varphi^{2}
$$

(see [2, Theorem 2.3]). Using (1.4) and (1.6) we prove in Lemma 4.1, Sec. 4, that for $\lambda>\lambda^{*} \bar{u}_{\lambda}$ is a strict local minimum of Φ in the $C^{1}(\bar{\Omega})$ topology.

The second step is inspired by the work of Brezis and Nirenberg [1] where they proved that for a class of functionals on H_{0}^{1}, a local minimum u_{0} in the C^{1} topology is also a local minimum in the H^{1} topology. The basic point in their proof, is to obtain estimates in $C^{1, \alpha}(\bar{\Omega})$ for the minimizer of their functional in a ball $\left\{u \mid\left\|u-u_{0}\right\|_{H^{1}(\Omega)} \leq \varepsilon\right\}$ that are independent of ε. The class of functionals in their work does not include Φ, as defined in (1.5).

In our case, instead of minimizing Φ in a ball $\left\{u \mid\left\|u-\bar{u}_{\lambda}\right\|_{H^{1}(\Omega)} \leq \varepsilon\right\}$ we consider a penalized functional:

$$
\Psi_{\varepsilon}(u)=\Phi(u)+P_{\varepsilon}(u)
$$

where P_{ε} is the penalization and is given by

$$
P_{\varepsilon}(u)=\frac{1}{\varepsilon^{2}}\left(\int_{\Omega}\left(u-\bar{u}_{\lambda}\right)^{2}-\varepsilon\right)^{+^{2}}
$$

This functional depends on λ but for convenience we will omit this dependence from the notation. The infimum of Φ_{ε} over K is always attained. If \bar{u}_{λ} is not a strict local minimum of Φ, then for any $\varepsilon>0$ there exists a minimizer $u_{\varepsilon} \in K$ of Ψ_{ε} with $u_{\varepsilon} \neq \bar{u}_{\lambda}$ such that

$$
\Psi_{\varepsilon}\left(u_{\varepsilon}\right) \leq \Phi(\bar{u}) .
$$

(see Sec. 4 for details). The key result we will derive in Sec. 3 is
Theorem 1.6. Let $\lambda>0$ be fixed and for $\varepsilon>0$ let u_{ε} be a minimizer of Ψ_{ε}. Then there exists $C>0$ independent of ε such that

$$
\begin{equation*}
\left\|u_{\varepsilon}\right\|_{C^{1, \gamma}(\bar{\Omega})} \leq C, \tag{1.7}
\end{equation*}
$$

where $\gamma=\frac{1-\beta}{1+\beta}$.
Remark 1.7. We note that this theorem holds for any $\lambda>0$ fixed (actually, one can let λ to vary as long as $0 \leq \lambda \leq \lambda_{0}$ with $\lambda_{0}<\infty$ fixed, and then the constant in (1.7) depends on λ_{0}). As a consequence, if $\lambda>0$ and the maximal solution \bar{u}_{λ} is a local minimizer of Φ in the topology of C^{1}, then it is also a minimizer in the topology of H^{1}. We don't know in general, whether for $\lambda \leq \lambda^{*}$ the maximal solution \bar{u}_{λ} is a local minimizer of Φ in the C^{1} topology.

In summary, in Sec. 2 we prove Theorem 1.3. Section 3 is devoted to the estimates for the minimizers of Ψ_{ε} and establishes Theorem 1.6. We give the necessary arguments to complete the proof of Theorem 1.5 in Sec. 4. Finally in Sec. 5 we give some constructions of maximal solutions.

2. Estimates up to the Boundary for the Maximal Solution

This section is devoted to the proof of Theorem 1.3. Throughout this section $u:=\bar{u}_{\lambda}$ denotes the maximal solution of (1.3). We also use the following notation

$$
\begin{aligned}
& \alpha=\frac{2}{1+\beta} \\
& \gamma=\alpha-1=\frac{1-\beta}{1+\beta}
\end{aligned}
$$

so that $1<\alpha<2,0<\gamma<1$ (recall that $0<\beta<1$).
We will always use the notation $\delta(x)=\operatorname{dist}(x, \partial \Omega)$, whereas the distance from x to any set A will be denoted by $\operatorname{dist}(x, A)$.

Since Ω is smooth, there is $r_{0}>0$ (possibly small) so that for $p \in \Omega$ and $r \in$ $\left(0, r_{0}\right)$ one can construct an open connected set $D_{p, r}$ with the following properties:
(a) $B_{3 r / 4}(p) \cap \Omega \subset D_{p, r} \subset B_{r}(p) \cap \Omega$,
(b) the scaled domain

$$
\tilde{D}_{p, r}=\frac{1}{r}\left(D_{p, r}-p\right)
$$

has smooth boundary, with smoothness independent of p and r.
We will write $\tilde{D}=\tilde{D}_{p, r}$ when there is no confusion about p and r. We use also the notation

$$
\begin{aligned}
& \partial_{1} \tilde{D}=\partial \tilde{D} \cap\left(\frac{1}{r}(\partial \Omega-p)\right), \\
& \partial_{2} \tilde{D}=\partial \tilde{D} \backslash \partial_{1} \tilde{D}
\end{aligned}
$$

Consider $p \in \Omega, r \in\left(0, r_{0}\right)$ and translate so that p is at the origin. Given u a solution of (1.3), we will work with the rescaled function

$$
\tilde{u}(y)=r^{-\alpha} u(r y) \quad \forall y \in \tilde{D}
$$

Then \tilde{u} satisfies

$$
\left\{\begin{align*}
-\Delta \tilde{u} & =\chi_{\{\tilde{u}>0\}}\left(-\tilde{u}^{-\beta}+r^{2-\alpha} f\left(r y, r^{\alpha} \tilde{u}(y)\right)\right) & & \text { in } \tilde{D} \tag{2.1}\\
\tilde{u} & =0 & & \text { on } \partial_{1} \tilde{D} .
\end{align*}\right.
$$

The next lemma is essentially proved in [7] (see the proof of their Theorem 1.1).
Lemma 2.1. Let U be a bounded open set with smooth boundary. Consider k : $\Omega \rightarrow \mathbb{R}$ a measurable function such that

$$
\sup _{x \in U}|k(x)| \operatorname{dist}(x, \partial U)^{\beta}<\infty
$$

where $\beta \in(0,1)$. Let v solve

$$
\left\{\begin{aligned}
\Delta v=k & \text { in } U \\
v=0 & \text { on } \partial U .
\end{aligned}\right.
$$

Then

$$
\begin{equation*}
\|v\|_{C^{1,1-\beta}(\bar{U})} \leq C \sup _{x \in U}|k(x)| \operatorname{dist}(x, \partial U)^{\beta} . \tag{2.2}
\end{equation*}
$$

Remark 2.2. When $U=\tilde{D}_{p, r}$ the constant C appearing in (2.2) can be chosen independently of $p \in \Omega$ and $r \in\left(0, r_{0}\right)$.

The result that follows is an adaptation of [8, Theorem II]; for completeness we present its proof below.

Lemma 2.3. There exist constants $c_{0}, c_{1}>0$ depending only on Ω and β with the following property. Let $p \in \Omega, r \in\left(0, r_{0}\right)$ and $\tilde{D}=\frac{1}{r}\left(D_{p, r}-p\right)$. Let $u_{0} \in H^{1}(\tilde{D})$, $u_{0} \geq 0$ and assume that

$$
f_{\partial \tilde{D}} u_{0} \geq c_{0} .
$$

Then there exists $w_{0} \in H^{1}(\tilde{D})$ satisfying

$$
\left\{\begin{align*}
\Delta w_{0} \geq w_{0}^{-\beta} & \text { in } \tilde{D}, \tag{2.3}\\
w_{0} & =u_{0}
\end{align*} \quad \text { on } \partial \tilde{D}, ~\right.
$$

and

$$
\begin{equation*}
w_{0}(y) \geq c_{1}\left(f_{\partial \tilde{D}} u_{0}\right) \operatorname{dist}(y, \partial \tilde{D}), \quad \forall y \in \tilde{D} . \tag{2.4}
\end{equation*}
$$

Proof. Let

$$
\tilde{\delta}(y)=\operatorname{dist}(y, \partial \tilde{D}),
$$

and let h be the solution to

$$
\left\{\begin{aligned}
\Delta h=0 & \text { in } \tilde{D} \\
h=u_{0} & \text { on } \partial \tilde{D} .
\end{aligned}\right.
$$

By Hopf's lemma and the strong maximum principle there is a constant $\bar{c}>0$ (which depends on the smoothness of \tilde{D}, but that can be chosen independent of p, $r)$ such that

$$
\begin{equation*}
h \geq \bar{c}\left(f_{\partial \tilde{D}} u_{0}\right) \tilde{\delta} \quad \text { in } \tilde{D} . \tag{2.5}
\end{equation*}
$$

Now let v solve

$$
\left\{\begin{aligned}
-\Delta v & =\tilde{\delta}^{-\beta} & & \text { in } \tilde{D} \\
v & =0 & & \text { in } \partial \tilde{D} .
\end{aligned}\right.
$$

By Lemma $2.1 v \in C^{1,1-\beta}(\overline{\tilde{D}})$, and therefore there exists $M>0$ (independent of $p, r)$ such that

$$
\begin{equation*}
v \leq M \tilde{\delta} \quad \text { in } \tilde{D} \tag{2.6}
\end{equation*}
$$

Let $m=f_{\partial \tilde{D}} u_{0}$, set $\varepsilon=\frac{\bar{c} m}{2 M}$ and define

$$
w_{0}=h-\varepsilon v .
$$

Then w_{0} satisfies

$$
w_{0} \geq c_{1} m \tilde{\delta}
$$

with $c_{1}=\bar{c} / 2$. Indeed, by (2.5) and (2.6)

$$
\begin{aligned}
w_{0} & \geq \bar{c} m \tilde{\delta}-\varepsilon M \tilde{\delta} \\
& =\frac{1}{2} \bar{c} m \tilde{\delta}
\end{aligned}
$$

We now check that if m is suitable large, then $\Delta w_{0} \geq w_{0}^{-\beta}$, which is equivalent to

$$
\tilde{\delta}+\left(\frac{\bar{c} m}{2 M}\right)^{1+1 / \beta} v \leq\left(\frac{\bar{c} m}{2 M}\right)^{1 / \beta} h
$$

In fact, on one hand

$$
\begin{equation*}
\tilde{\delta}+\left(\frac{\bar{c} m}{2 M}\right)^{1+1 / \beta} v \leq \tilde{\delta}\left(1+\left(\frac{\bar{c} m}{2 M}\right)^{1+1 / \beta} M\right) \tag{2.7}
\end{equation*}
$$

and on the other

$$
\begin{equation*}
\left(\frac{\bar{c} m}{2 M}\right)^{1 / \beta} h \geq\left(\frac{\bar{c} m}{2 M}\right)^{1 / \beta} \bar{c} m \tilde{\delta} \tag{2.8}
\end{equation*}
$$

By (2.7) and (2.8) it is enough to show that

$$
1+\frac{(\bar{c} m)^{1+1 / \beta}}{2^{1+1 / \beta} M^{1 / \beta}} \leq \frac{(\bar{c} m)^{1+1 / \beta}}{2^{1 / \beta} M^{1 / \beta}}
$$

which is the same as

$$
1 \leq \frac{(\bar{c} m)^{1+1 / \beta}}{2^{1+1 / \beta} M^{1 / \beta}}
$$

This in turn holds if $m \geq c_{0}$ where

$$
c_{0}=\frac{2}{\bar{c}} M^{1 /(\beta+1)} .
$$

Before proceeding we make an important observation.
Remark 2.4. The maximal solution to (1.3) is also characterized as the maximal (pointwisely) function in $H^{1}(\Omega)$ satisfying

$$
\left\{\begin{aligned}
-\Delta u+\chi_{\{u>0\}} u^{-\beta} & \leq \lambda f(x, u) & & \text { in } \Omega, \\
u & =0 & & \text { on } \Omega .
\end{aligned}\right.
$$

Now we can use a scaling argument and the previous lemma to obtain:
Lemma 2.5. Let u denote the maximal solution to (1.3). Let $p \in \Omega, r \in\left(0, r_{0}\right)$ and $D=D_{p, r}$. If

$$
\begin{equation*}
f_{\partial D} u \geq c_{0} r^{\alpha} \tag{2.9}
\end{equation*}
$$

then

$$
\begin{equation*}
u(x) \geq c_{1}\left(f_{\partial D} u\right) \operatorname{dist}(x, \partial D) / r, \quad \forall x \in D \tag{2.10}
\end{equation*}
$$

Proof. By translation we can assume that $p=0$. Consider $\tilde{D}=\frac{1}{r} D$ and the rescaled function

$$
\tilde{u}(y)=r^{-\alpha} u(r y), \quad y \in \tilde{D}
$$

Then \tilde{u} is the maximal solution of the rescaled problem

$$
\left\{\begin{align*}
-\Delta w & =\chi_{\{w>0\}}\left(-w^{-\beta}+r^{2-\alpha} f\left(r y, r^{\alpha} w(y)\right)\right) & & \text { in } \tilde{D}, \tag{2.11}\\
w & =\tilde{u} & & \text { on } \partial \tilde{D} .
\end{align*}\right.
$$

We can apply Lemma 2.3 (with $u_{0}=\tilde{u}$) provided $f_{\partial \tilde{D}} \tilde{u} \geq c_{0}$ which is equivalent to (2.9). Thus, if (2.9) holds we conclude that there exists w_{0} satisfying (2.3) and (2.4). Since \tilde{u} is the maximal solution of (2.11) we deduce that

$$
\tilde{u}(y) \geq w_{0}(y) \geq c_{1}\left(f_{\partial \tilde{D}} \tilde{u}\right) \operatorname{dist}(y, \partial \tilde{D}), \quad \forall y \in \tilde{D}
$$

Rescaling back we obtain (2.10).

We state without proof a basic elliptic estimate that will be used in the sequel.
Lemma 2.6. Let $p \in \Omega, r \in\left(0, r_{0}\right)$ and consider $\tilde{D}=\tilde{D}_{p, r}$. Suppose that $\operatorname{dist}\left(0, \partial_{1} \tilde{D}\right)<1 / 4$ and suppose that $u_{1} \in H^{1}(\tilde{D})$ satisfies

$$
\left\{\begin{aligned}
-\Delta u_{1} \leq h & \text { in } \tilde{D}, \\
u_{1}=0 & \text { on } \partial_{1} \tilde{D} .
\end{aligned}\right.
$$

Then

$$
u_{1}(y) \leq \bar{C} \operatorname{dist}\left(y, \partial_{1} \tilde{D}\right)\left(\|h\|_{L^{\infty}(\tilde{D})}+f_{\partial \tilde{D}}\left|u_{1}\right|\right), \quad \forall y \in B_{1 / 2}
$$

The constant \bar{C} can be chosen independently of p and $r \in\left(0, r_{0}\right)$.
The next two lemmas provide the essential steps toward the Hölder estimates for the gradient of u. Roughly speaking, the behavior of the solution u near the boundary can be of two types: either $u \sim \delta$ or $u \sim \delta^{\alpha}$. The first lemma deals with the case $u \sim \delta$ near $\partial \Omega$, which is expressed concretely as condition (2.12) below.

Lemma 2.7. There exist positive constants θ_{1}, C_{1} such that if $p \in \Omega$ and

$$
\begin{equation*}
\delta(p) \leq \theta_{1} u(p)^{1 / \alpha} \tag{2.12}
\end{equation*}
$$

then

$$
|D u(p)| \leq C_{1} \frac{u(p)}{\delta(p)}
$$

Moreover, if $p, q \in \Omega$ and in addition to (2.12) we have

$$
\begin{equation*}
|p-q| \leq \theta_{1}\left(\frac{u(p)}{\delta(p)}\right)^{1 /(\alpha-1)} \tag{2.13}
\end{equation*}
$$

then

$$
|D u(p)-D u(q)| \leq C_{1}|p-q|^{\gamma}
$$

θ_{1} and C_{1} depend only on Ω, β and $\lambda\|f(x, u(x))\|_{\infty}$.
Proof. Define

$$
\begin{equation*}
L=\lambda\|f(x, u(x))\|_{\infty} \tag{2.14}
\end{equation*}
$$

Let \bar{C} be the constant from Lemma 2.6, and choose

$$
r=\left(\frac{u(p)}{\bar{C}\left(c_{0}+L\right) \delta(p)}\right)^{1 /(\alpha-1)}
$$

Using (2.12) we see that

$$
\delta(p) \leq r\left(\theta_{1}^{\alpha} \bar{C}\left(c_{0}+L\right)\right)^{1 /(\alpha-1)}
$$

By choosing θ_{1} small one gets

$$
\begin{equation*}
\delta(p)<\frac{r}{4} . \tag{2.15}
\end{equation*}
$$

Translating we can assume that p is at the origin. Let

$$
\tilde{u}(y)=r^{-\alpha} u(r y), \quad y \in \tilde{D}
$$

and note that \tilde{u} satisfies (2.1). Using Lemma 2.6 (note that $\operatorname{dist}(0, \partial \tilde{D})<1 / 4$ by (2.15)), we conclude that

$$
\tilde{u}(y) \leq \bar{C} \operatorname{dist}\left(y, \partial_{1} \tilde{D}\right)\left(r^{2-\alpha} L+f_{\partial \tilde{D}} \tilde{u}\right) \quad \forall y \in B_{1 / 2} .
$$

In particular, at $y=0$

$$
\begin{equation*}
\frac{\tilde{u}(0)}{\operatorname{dist}\left(0, \partial_{1} \tilde{D}\right)} \leq \bar{C}\left(r^{2-\alpha} L+f_{\partial \tilde{D}} \tilde{u}\right) \tag{2.16}
\end{equation*}
$$

But

$$
\begin{equation*}
\frac{\tilde{u}(0)}{\operatorname{dist}\left(0, \partial_{1} \tilde{D}\right)}=\frac{u(p)}{r^{\alpha-1} \delta(p)}=\bar{C}\left(c_{0}+L\right) . \tag{2.17}
\end{equation*}
$$

Combining (2.16) and (2.17) we see that

$$
\begin{equation*}
f_{\partial \tilde{D}} \tilde{u} \geq c_{0} \tag{2.18}
\end{equation*}
$$

(we can assume that $r_{0}<1$, hence $r<1$). By Lemma 2.3 we thus find that

$$
\begin{equation*}
\tilde{u}(y) \geq c_{1}\left(f_{\partial \tilde{D}} \tilde{u}\right) \operatorname{dist}(y, \partial \tilde{D}), \quad \forall y \in \tilde{D} \tag{2.19}
\end{equation*}
$$

This in combination with (2.18) implies that

$$
\begin{equation*}
\tilde{u}(y) \geq c_{1} c_{0} \operatorname{dist}(y, \partial \tilde{D}), \quad \forall y \in \tilde{D} \tag{2.20}
\end{equation*}
$$

Write $\tilde{u}=h+v$ where h is harmonic in \tilde{D} and $h=\tilde{u}$ on $\partial \tilde{D}$. Then

$$
\left\{\begin{aligned}
-\Delta v & =\chi_{\{\tilde{u}>0\}}\left(-\tilde{u}^{-\beta}+\lambda r^{2-\alpha} f\left(r y, r^{\alpha} \tilde{u}(y)\right)\right) & & \text { in } \tilde{D}, \\
v & =0 & & \text { on } \partial \tilde{D} .
\end{aligned}\right.
$$

Using (2.20) we can apply Lemma 2.1 to conclude that

$$
\|v\|_{C^{1,1-\beta}(\bar{D})} \leq C .
$$

To estimate h, observe that when we take $y=0$ in (2.19) we obtain

$$
f_{\partial \tilde{D}} \tilde{u} \leq \frac{\tilde{u}(0)}{c_{1} \operatorname{dist}(0, \partial \tilde{D})}=\frac{\bar{C}\left(c_{0}+L\right)}{c_{1}} .
$$

Hence by standard estimates for harmonic functions

$$
\|h\|_{C^{2}\left(\overline{\left.B_{1 / 2} \cap \tilde{\Omega}\right)}\right.} \leq C, \quad \tilde{\Omega}=\frac{1}{r} \Omega
$$

and thus

$$
\|\tilde{u}\|_{C^{1,1-\beta}\left(\overline{B_{1 / 2} \cap \tilde{\Omega}}\right)} \leq C .
$$

The definition of \tilde{u} immediately yields

$$
|D u(0)|=r^{\alpha-1}|D \tilde{u}(0)| \leq C r^{\alpha-1}=C_{1} \frac{u(p)}{\delta(p)}
$$

If $q \in \Omega$ and $q=r y$ with $|y|<1 / 2$, which is the same as

$$
\begin{equation*}
|p-q|<r / 2=\frac{1}{2}\left(\frac{u(p)}{\bar{C}\left(c_{0}+L\right) \delta(p)}\right)^{1 /(\alpha-1)} \tag{2.21}
\end{equation*}
$$

we have

$$
|D \tilde{u}(0)-D \tilde{u}(y)| \leq C|y|^{1-\beta} .
$$

Hence

$$
|D u(p)-D u(q)| \leq C r^{\alpha-1}\left(\frac{|p-q|}{r}\right)^{1-\beta} \leq C|p-q|^{\alpha-1}
$$

This finishes the proof of the lemma (by taking θ_{1} smaller if necessary, so that (2.13) implies (2.21)).

The next lemma deals with the situation $u \sim \delta^{\alpha}$ near $\partial \Omega$.
Lemma 2.8. There exists a constant $C_{2}>0$ depending only on $\lambda\|f(x, u(x))\|_{\infty}$, Ω and β, such that if $p \in \Omega$ and

$$
\begin{equation*}
\delta(p) \geq \theta_{1} u(p)^{1 / \alpha}>0 \tag{2.22}
\end{equation*}
$$

then

$$
\begin{equation*}
|D u(p)| \leq C_{2} u(p)^{(1-\beta) / 2} \tag{2.23}
\end{equation*}
$$

Moreover, there is $\theta_{2}>0\left(\theta_{2}=\theta_{2}\left(\lambda\|f(x, u(x))\|_{\infty}, \Omega, \beta\right)\right)$ such that if $q \in \Omega$ and in addition to (2.22) one has

$$
|p-q| \leq \theta_{2} u(p)^{1 / \alpha}
$$

then

$$
\begin{equation*}
|D u(p)-D u(q)| \leq C_{2}|p-q|^{\gamma} . \tag{2.24}
\end{equation*}
$$

Proof. Let L be as in (2.14) and

$$
r=\left(\frac{u(p)}{\bar{C}\left(c_{0}+L\right)}\right)^{1 / \alpha}
$$

Translating so that $p=0$, let $\tilde{u}(y)=r^{-\alpha} u(r y)$. Note that (2.22) and the choice of r implies that

$$
\delta(p) \geq r \theta_{1}\left(\bar{C}\left(c_{0}+L\right)\right)^{1 / \alpha} .
$$

Let

$$
\rho=\theta_{1}\left(\bar{C}\left(c_{0}+L\right)\right)^{1 / \alpha}>0 .
$$

Then $B_{r \rho} \subset \Omega$. By taking θ_{1} smaller, we can assume that $\rho<1$.
Elliptic estimates imply that

$$
\tilde{u}(y) \leq \bar{C}\left(r^{2-\alpha} L+f_{\partial B_{\rho}} \tilde{u}\right), \quad \forall y \in B_{\rho / 2} .
$$

In particular, at $y=0$, we find

$$
\bar{C}\left(r^{2-\alpha} L+f_{\partial B_{\rho}} \tilde{u}\right) \geq \tilde{u}(0)=r^{-\alpha} u(p)=\bar{C}\left(c_{0}+L\right) .
$$

Hence

$$
\begin{equation*}
f_{\partial B_{\rho}} \tilde{u} \geq c_{0} \geq c_{0} \rho^{\alpha} \tag{2.25}
\end{equation*}
$$

Using Lemma 2.5 (applied to \tilde{u} and $D=B_{\rho}$), we find that

$$
\begin{equation*}
\tilde{u}(y) \geq c_{1}\left(f_{\partial B_{\rho}} \tilde{u}\right) \operatorname{dist}\left(y, \partial B_{\rho}\right) / \rho \geq c_{1} c_{0} \operatorname{dist}\left(y, \partial B_{\rho}\right) / \rho \quad \forall y \in B_{\rho} . \tag{2.26}
\end{equation*}
$$

As in the previous lemma we write $\tilde{u}=h+v$ where h is harmonic in B_{ρ} and $h=\tilde{u}$ on ∂B_{ρ}. Using the lower bound (2.26) on \tilde{u} and Lemma 2.1, we again find that

$$
\|v\|_{C^{1,1-\beta}\left(\bar{B}_{\rho}\right)} \leq C .
$$

To estimate h we only need an upper bound for $f_{\partial B_{\rho}} \tilde{u}$, which we get from (2.26) by setting $y=0$

$$
c_{1} f_{\partial B_{\rho}} \tilde{u} \leq \tilde{u}(0)=\bar{C}\left(c_{0}+L\right)
$$

Thus we establish

$$
\|\tilde{u}\|_{C^{1,1-\beta}\left(\bar{B}_{\rho}\right)} \leq C .
$$

As before, (2.23) and (2.24) follow immediately observing that $y=q / r$ satisfies $|y|<\rho$ if

$$
|p-q|<\rho r=\theta_{2} u(p)^{1 / \alpha} .
$$

Proof of Theorem 1.3. We first show that $u \in C^{1, \gamma}(\bar{\Omega})$. Let $p, q \in \Omega$, with $p \neq q$ and $u(p), u(q)>0$. We need to consider several cases.

Case 1. Suppose $\delta(p)<\theta_{1} u(p)^{1 / \alpha}$ and $\delta(q)<\theta_{1} u(q)^{1 / \alpha}$. If

$$
|p-q| \leq \theta_{1} \max \left(\frac{u(p)}{\delta(p)}, \frac{u(q)}{\delta(q)}\right)^{1 /(\alpha-1)}
$$

by Lemma 2.7 we immediately deduce $|D u(p)-D u(q)| \leq C|p-q|^{\gamma}$. Otherwise, again using Lemma 2.7

$$
\begin{aligned}
|D u(p)-D u(q)| & \leq|D u(p)|+|D u(q)| \\
& \leq C_{1}\left(\frac{u(p)}{\delta(p)}+\frac{u(q)}{\delta(q)}\right) \\
& \leq \frac{C_{1}}{\theta_{1}^{\alpha-1}}|p-q|^{\alpha-1} \\
& =C|p-q|^{\gamma} .
\end{aligned}
$$

Case 2. Suppose $\delta(p) \geq \theta_{1} u(p)^{1 / \alpha}$ and $\delta(q) \geq \theta_{1} u(q)^{1 / \alpha}$. This case is analogous to the previous one, but one uses Lemma 2.8 instead of Lemma 2.7.

Case 3. Suppose $\delta(p)<\theta_{1} u(p)^{1 / \alpha}$ and $\delta(q) \geq \theta_{1} u(q)^{1 / \alpha}$. If either

$$
\begin{equation*}
|p-q| \leq \theta_{1}(u(p) / \delta(p))^{1 /(\alpha-1)} \tag{2.27}
\end{equation*}
$$

or

$$
\begin{equation*}
|p-q| \leq \theta_{2} u(q)^{1 / \alpha} \tag{2.28}
\end{equation*}
$$

hold, then Lemma 2.7 or Lemma 2.8 can be used to deduce that $|D u(p)-D u(q)| \leq$ $C|p-q|^{\gamma}$. If neither (2.27), (2.28) hold, then

$$
\begin{aligned}
|D u(p)-D u(q)| & \leq|D u(p)|+|D u(q)| \\
& \leq C_{1} \frac{u(p)}{\delta(p)}+C_{2} u(q)^{(1-\beta) / 2} \\
& \leq\left[\frac{C_{1}}{\theta_{1}^{\alpha-1}}+\frac{C_{2}}{\theta_{2}^{\alpha}}\right]|p-q|^{\gamma}
\end{aligned}
$$

Finally observe that for $\lambda>\lambda^{*} u=\bar{u}_{\lambda}$ satisfies (1.4). Therefore applying Lemma 2.1 we conclude that $u \in C^{1,1-\beta}(\bar{\Omega})$ and since $\Delta u \in L_{\text {loc }}^{\infty}(\Omega)$ we also have $u \in C_{\text {loc }}^{1, \mu}(\Omega)$ for all $\mu \in(0,1)$.

This completes the proof of Theorem 1.3.

3. Global Estimates for the Minimizers of Ψ_{ε}

In this section we let u_{ε} denote a minimizer of Ψ_{ε} and we let $\bar{u}=\bar{u}_{\lambda}$.
We will prove Theorem 1.6 by showing that u_{ε} satisfies the same property derived for \bar{u} in Lemma 2.5, with constants independent of ε. This will be done in Lemma 3.4 below. Then the same arguments as in Lemmas 2.7 and 2.8 and Theorem 1.3 apply to u_{ε} and this will establish Theorem 1.6.

We start with some observations.
Lemma 3.1. For all $\varphi \in K$

$$
\begin{equation*}
\int_{\Omega} \nabla u_{\varepsilon} \nabla \varphi+u_{\varepsilon}^{-\beta} \varphi \geq \int_{\Omega} f\left(x, u_{\varepsilon}\right) \varphi-M_{\varepsilon} \int_{\Omega}\left(u_{\varepsilon}-\bar{u}\right) \varphi \tag{3.1}
\end{equation*}
$$

where

$$
M_{\varepsilon}=\frac{4}{\varepsilon^{2}}\left(\int_{\Omega}\left|u_{\varepsilon}-\bar{u}\right|^{2}-\varepsilon\right)^{+}
$$

In (3.1) $u_{\varepsilon}^{-\beta}$ is regarded as ∞ if $u_{\varepsilon}=0$.
If $\varphi \in K$ and $\varphi \leq C u_{\varepsilon}$ for some $C>0$, then we also have the opposite inequality:

$$
\begin{equation*}
\int_{\Omega} \nabla u_{\varepsilon} \nabla \varphi+u_{\varepsilon}^{-\beta} \varphi \leq \int_{\Omega} f\left(x, u_{\varepsilon}\right) \varphi-M_{\varepsilon} \int_{\Omega}\left(u_{\varepsilon}-\bar{u}\right) \varphi . \tag{3.2}
\end{equation*}
$$

Note that since $\varphi \leq C u_{\varepsilon}$, the term $u_{\varepsilon}^{-\beta} \varphi$ is integrable in Ω.
Remark 3.2. Since in formula (3.1) $u_{\varepsilon}(x)^{-\beta}$ is ∞ if $u_{\varepsilon}(x)=0$, the left hand side of that inequality can be infinite. To prove (3.1), we use $\Psi_{\varepsilon}\left(u_{\varepsilon}\right) \leq \Psi_{\varepsilon}\left(u_{\varepsilon}+t \varphi\right)$ for
any $t>0$. The proof of (3.2) exploits $\Psi_{\varepsilon}\left(u_{\varepsilon}\right) \leq \Psi_{\varepsilon}\left(u_{\varepsilon}-t \varphi\right)$ for any $t>0$ small, noting that $u_{\varepsilon}-t \varphi \in K$ for t small if $\varphi \leq C u_{\varepsilon}$.

Lemma 3.3. $u_{\varepsilon} \leq \bar{u}$ in Ω.
Proof. Let

$$
g_{M}(x, u)=-u^{-\beta}+\lambda f(x, u)-M(u-\bar{u}(x)),
$$

so that

$$
\frac{\partial g_{M}}{\partial u}(x, u)=\beta u^{-1-\beta}+\lambda f_{u}(x, u)-M .
$$

Let $\varphi=\left(u_{\varepsilon}-\bar{u}\right)^{+} \in K$. The goal is to prove that $\varphi \equiv 0$. Since \bar{u} solves (1.1) we have

$$
\begin{equation*}
\int_{\Omega} \nabla \bar{u} \nabla \varphi=\int_{\Omega} g_{M_{\varepsilon}}(x, \bar{u}) \varphi . \tag{3.3}
\end{equation*}
$$

Note that $\varphi \leq u_{\varepsilon}$ and therefore we can use (3.2) to obtain

$$
\begin{equation*}
\int_{\Omega} \nabla u_{\varepsilon} \nabla \varphi \leq \int_{\Omega} g_{M_{\varepsilon}}\left(x, u_{\varepsilon}\right) \varphi . \tag{3.4}
\end{equation*}
$$

Subtracting (3.3) from (3.4) yields

$$
\begin{equation*}
\int_{\Omega}|\nabla \varphi|^{2} \leq \int_{\Omega}\left(g_{M_{\varepsilon}}\left(x, u_{\varepsilon}\right)-g_{M_{\varepsilon}}(x, \bar{u})\right) \varphi . \tag{3.5}
\end{equation*}
$$

But

$$
\begin{equation*}
\int_{\Omega}|\nabla \varphi|^{2} \geq \int_{\Omega} \frac{\partial g_{M_{\varepsilon}}}{\partial u}(x, \bar{u}) \varphi^{2} \tag{3.6}
\end{equation*}
$$

by (1.6). So, from (3.5) and (3.6), we deduce that

$$
0 \leq \int_{\Omega}\left(g_{M_{\varepsilon}}\left(x, u_{\varepsilon}\right)-g_{M_{\varepsilon}}(x, \bar{u})-\frac{\partial g_{M_{\varepsilon}}}{\partial u}(x, \bar{u})\left(u_{\varepsilon}-\bar{u}\right)\right)\left(u_{\varepsilon}-\bar{u}\right)^{+} .
$$

But the integrand above is negative if $u_{\varepsilon}>\bar{u}$ because $g_{M_{\varepsilon}}$ is strictly concave, and therefore we conclude $u_{\varepsilon} \leq \bar{u}$ a.e. in Ω.

Lemma 3.4. Let $p \in \Omega, r \in\left(0, r_{0}\right)$ and $D=D_{p, r}$. Then there exists $c_{0}, c_{1}>0$ depending only on Ω, β and $\lambda\|f(x, \bar{u}(x))\|_{\infty}$ such that if

$$
\begin{equation*}
f_{\partial D} u_{\varepsilon} \geq c_{0} r^{\alpha}, \tag{3.7}
\end{equation*}
$$

then

$$
u_{\varepsilon}(x) \geq c_{1}\left(f_{\partial D} u_{\varepsilon}\right) \operatorname{dist}(x, \partial D) / r, \quad \forall x \in D .
$$

To prove this lemma, we shall construct a solution to a nonlocal problem.
Lemma 3.5. Assume the hypotheses of Lemma 3.4. For $v \in H^{1}(\Omega)$, consider

$$
M(v)=\frac{4}{\varepsilon^{2}}\left(\int_{\Omega}|v-\bar{u}|^{2}-\varepsilon\right)^{+}
$$

Then there exists $w \in H^{1}(\Omega)$ with $w \equiv u_{\varepsilon}$ in $\Omega \backslash D, u_{\varepsilon} \leq w \leq \bar{u}$ in Ω, which satisfies

$$
\left\{\begin{align*}
-\Delta w+w^{-\beta} & =f(x, w)+M(w)(\bar{u}-w) & & \text { in } D, \tag{3.8}\\
w & =u_{\varepsilon} & & \text { on } \partial D
\end{align*}\right.
$$

and

$$
\begin{equation*}
w(x) \geq c_{1}\left(f_{\partial D} u_{\varepsilon}\right) \operatorname{dist}(x, \partial D) / r, \quad \forall x \in D . \tag{3.9}
\end{equation*}
$$

Proof. For $m \geq 0$ consider the problem

$$
\left\{\begin{align*}
-\Delta w+w^{-\beta} & =f(x, w)+m(\bar{u}-w) & & \text { in } D \tag{m}\\
w & =u_{\varepsilon} & & \text { on } \partial D .
\end{align*}\right.
$$

Let \underline{w} the function obtained in Lemma 2.3 properly rescaled to be defined in D, with $\underline{w}=u_{\varepsilon}$ on ∂D. We recall that \underline{w} satisfies $\Delta \underline{w} \geq \underline{w}^{-\beta}$ and

$$
\begin{equation*}
\underline{w}(x) \geq c_{1}\left(f_{\partial D} u_{\varepsilon}\right) \operatorname{dist}(x, D) / r . \tag{3.10}
\end{equation*}
$$

We will establish the following properties:
(i) For any $m \geq 0$ there is a unique maximal solution w_{m} of $\left(\mathcal{P}_{m}\right)$ such that $\underline{w} \leq w_{m} \leq \bar{u}$.
(ii) w_{m} is nondecreasing with respect to m.
(iii) The map $m \in[0, \infty) \mapsto w_{m}$ is continuous in $H^{1}(D)$.

In fact (i) follows from the method of sub and supersolutions, noting that \underline{w} is a subsolution and \bar{u} is a supersolution. Observe that by the maximal property of \bar{u} we have $\underline{w} \leq \bar{u}$.

Property (ii) follows easily from the definition of w_{m}.
For (iii) suppose that $m_{k} \geq 0$ is a sequence such that $m_{k} \rightarrow m$ and let $w_{k}=w_{m_{k}}$. Since $\underline{w} \leq w_{k} \leq \bar{u}$ we have from the equation $\left(\mathcal{P}_{m_{k}}\right)$ that Δw_{k} is bounded in $L_{\mathrm{loc}}^{\infty}(\bar{D})$, and hence w_{k} is bounded in $C_{\mathrm{loc}}^{1, \alpha}(D)$. It also follows from $\left(\mathcal{P}_{m_{k}}\right)$, the lower bound $w_{k} \geq \underline{w},(3.10)$ and Hardy's inequality on the domain D, that w_{k} is bounded in $H^{1}(D)$. For a subsequence (denoted the same) w_{k} converges in $C_{\mathrm{loc}}^{1, \alpha}(D)$ to some function $w \in H^{1}(D)$ with $\underline{w} \leq w \leq \bar{u}$. Passing to the limit in the equations $\left(\mathcal{P}_{m_{k}}\right)$ we see that w satisfies $\left(\mathcal{P}_{m}\right)$ and it only rests to verify that w is the maximal solution to that problem. To accomplish this, we observe that the functions w_{k} satisfy the stability property

$$
\int_{D}\left(\beta w_{k}^{-1-\beta}+\lambda f_{u}\left(x, w_{k}\right)-m_{k}\right) \varphi^{2} \leq \int_{D}|\nabla \varphi|^{2}, \quad \forall \varphi \in C_{0}^{\infty}(D) .
$$

Hence w satisfies

$$
\int_{D}\left(\beta w^{-1-\beta}+\lambda f_{u}(x, w)-m\right) \varphi^{2} \leq \int_{D}|\nabla \varphi|^{2}, \quad \forall \varphi \in C_{0}^{\infty}(D)
$$

and this property, together with the fact that the function $-u^{-\beta}+\lambda f(x, u)-m(u-$ $\bar{u}(x))$ is concave for a.e. x implies that w is indeed the maximal solution to (\mathcal{P}_{m}) (the proof of this is standard, and it closely follows that of Lemma 3.3). Finally note that since w_{k} is bounded in $H^{1}(D)$ it converges weakly on $H^{1}(D)$ to w. Thus, to prove that $w \rightarrow w$ in $H^{1}(D)$ it suffices to verify that $\left\|w_{k}\right\|_{H^{1}(D)} \rightarrow\|w\|_{H^{1}(D)}$. But from the equation $\left(\mathcal{P}_{m_{k}}\right)$, we see that

$$
\begin{equation*}
\int_{D}\left|\nabla w_{k}\right|^{2}=\int_{\partial D} u_{\varepsilon} \frac{\partial w_{k}}{\partial \nu}+\int_{D}-w_{k}^{1-\beta}+\lambda f\left(x, w_{k}\right) w_{k}+m_{k}\left(\bar{u}-w_{k}\right) w_{k} \tag{3.11}
\end{equation*}
$$

Since $w_{k} \rightharpoonup w$ in $H^{1}(D)$ weakly and $\left.u_{\varepsilon}\right|_{\partial D} \in H^{1 / 2}(\partial D)$, we have that

$$
\int_{\partial D} u_{\varepsilon} \frac{\partial w_{k}}{\partial \nu} \rightarrow \int_{\partial D} u_{\varepsilon} \frac{\partial w}{\partial \nu} .
$$

Hence, the right hand side of (3.11) converges to

$$
\int_{\partial D} u_{\varepsilon} \frac{\partial w}{\partial \nu}+\int_{D}-w^{1-\beta}+\lambda f(x, w) w+m(\bar{u}-w) w=\int_{D}|\nabla w|^{2} .
$$

To complete the proof of this lemma, we extend the functions w_{m} to Ω by setting $w_{m} \equiv u_{\varepsilon}$ in $\Omega \backslash D$. Now consider the map $m \in[0, \infty) \mapsto M\left(w_{m}\right)$. By (iii) this map is continuous. We also have that this function is nonincreasing, because $w_{m} \leq \bar{u}$ and (ii). We conclude that there exists $m \geq 0$ (unique) such that $m=M\left(w_{m}\right)$.

Proof of Lemma 3.4. We shall show that by taking c_{0} larger if necessary, under condition (3.7) the function u_{ε} cannot minimize Ψ_{ε} unless it coincides with the function w constructed in Lemma 3.5. For this purpose, let us write

$$
\Psi_{\varepsilon}\left(u_{\varepsilon}\right)=\int_{\Omega} \frac{1}{2}|\nabla u|^{2}-G\left(x, u_{\varepsilon}\right)+P_{\varepsilon}\left(u_{\varepsilon}\right),
$$

where

$$
G(x, u)=-\frac{u^{1-\beta}}{1-\beta}+\lambda \int_{0}^{u} f(x, t) d t
$$

Writing

$$
\frac{1}{2}\left|\nabla u_{\varepsilon}\right|^{2}=\frac{1}{2}|\nabla w|^{2}+\frac{1}{2}\left|\nabla\left(u_{\varepsilon}-w\right)\right|^{2}+\nabla w \nabla\left(u_{\varepsilon}-w\right)
$$

we see that

$$
\begin{align*}
\Psi_{\varepsilon}\left(u_{\varepsilon}\right)= & \Psi_{\varepsilon}(w)+\frac{1}{2} \int_{\Omega}\left|\nabla\left(u_{\varepsilon}-w\right)\right|^{2}+\int_{\Omega} \nabla w \nabla\left(u_{\varepsilon}-w\right) \\
& +\int_{\Omega} G(x, w)-G\left(x, u_{\varepsilon}\right)+P_{\varepsilon}\left(u_{\varepsilon}\right)-P_{\varepsilon}(w) . \tag{3.12}
\end{align*}
$$

Multiplying equation (3.8) with $u_{\varepsilon}-w$ and integrating by parts on D we obtain

$$
\begin{equation*}
\int_{D} \nabla w \nabla\left(u_{\varepsilon}-w\right)=\int_{D}(g(x, w)-M(w)(w-\bar{u}))\left(u_{\varepsilon}-w\right) \tag{3.13}
\end{equation*}
$$

where

$$
\begin{equation*}
g(x, u)=-u^{-\beta}+\lambda f(x, u)=G_{u}(x, u) \tag{3.14}
\end{equation*}
$$

But $w \equiv u_{\varepsilon}$ on $\Omega \backslash D$, so combining (3.13) and (3.12) we get

$$
\begin{align*}
\Psi_{\varepsilon}\left(u_{\varepsilon}\right)= & \Psi_{\varepsilon}(w)+\frac{1}{2} \int_{\Omega}\left|\nabla\left(u_{\varepsilon}-w\right)\right|^{2}+\int_{\Omega} G(x, w)+g(x, w)\left(u_{\varepsilon}-w\right)-G\left(x, u_{\varepsilon}\right) \\
& +P_{\varepsilon}\left(u_{\varepsilon}\right)-P_{\varepsilon}(w)-M(w) \int_{\Omega}(w-\bar{u})\left(u_{\varepsilon}-w\right) . \tag{3.15}
\end{align*}
$$

Observe now that the derivative of P_{ε} at w in the direction of $u_{\varepsilon}-w$ is given by

$$
D P_{\varepsilon}(w)\left(u_{\varepsilon}-w\right)=M(w) \int_{\Omega}(w-\bar{u})\left(u_{\varepsilon}-w\right)
$$

Since the function P_{ε} is convex, we have

$$
\begin{equation*}
P_{\varepsilon}(w)+D P_{\varepsilon}(w)\left(u_{\varepsilon}-w\right) \leq P_{\varepsilon}\left(u_{\varepsilon}\right) \tag{3.16}
\end{equation*}
$$

and combining (3.15) with (3.16), we obtain the inequality

$$
\Psi_{\varepsilon}\left(u_{\varepsilon}\right) \geq \Psi_{\varepsilon}(w)+\frac{1}{2} \int_{\Omega}\left|\nabla\left(u_{\varepsilon}-w\right)\right|^{2}+\int_{\Omega} G(x, w)+g(x, w)\left(u_{\varepsilon}-w\right)-G\left(x, u_{\varepsilon}\right) .
$$

We will show now that by taking c_{0} larger if necessary, condition (3.7) implies that

$$
\begin{equation*}
\int_{\Omega} G\left(x, u_{\varepsilon}\right)-G(x, w)-g(x, w)\left(u_{\varepsilon}-w\right) \leq \frac{1}{4} \int_{\Omega}\left|\nabla\left(u_{\varepsilon}-w\right)\right|^{2} . \tag{3.17}
\end{equation*}
$$

For this purpose we translate so that p is at the origin and rescale our functions

$$
\begin{gathered}
\tilde{u}_{\varepsilon}(y)=r^{-\alpha} u_{\varepsilon}(r y), \\
\tilde{w}(y)=r^{-\alpha} w(r y),
\end{gathered}
$$

for $y \in \tilde{D}=\frac{1}{r} D$. A computation then shows that (3.17) is equivalent to the estimate

$$
\int_{\tilde{D}} \tilde{G}\left(x, \tilde{u}_{\varepsilon}\right)-\tilde{G}(x, \tilde{w})-\tilde{g}(x, \tilde{w})\left(\tilde{u}_{\varepsilon}-\tilde{w}\right) \leq \frac{1}{4} \int_{\tilde{D}}\left|\nabla\left(\tilde{u}_{\varepsilon}-\tilde{w}\right)\right|^{2} .
$$

where the functions \tilde{G}, \tilde{g} are given respectively by

$$
\begin{aligned}
& \tilde{G}(y, u)=-\frac{u^{1-\beta}}{1-\beta}+\lambda r^{2-\alpha} \int_{0}^{u} f\left(r y, r^{\alpha} t\right) d t \\
& \tilde{g}(y, u)=\tilde{G}_{u}(y, u)=-u^{-\beta}+\lambda r^{2-\alpha} f\left(r y, r^{\alpha} u\right)
\end{aligned}
$$

Let us define

$$
m=f_{\partial \tilde{D}} \tilde{u}_{\varepsilon}
$$

and observe that condition (3.7) is equivalent to $m \geq c_{0}$, and that estimate (3.9) becomes

$$
\begin{equation*}
\tilde{w}(y) \geq c_{1} m \operatorname{dist}(y, \partial \tilde{D}) \quad \forall y \in \tilde{D} \tag{3.18}
\end{equation*}
$$

Let us write

$$
\tilde{G}\left(x, \tilde{u}_{\varepsilon}\right)-\tilde{G}(x, \tilde{w})-\tilde{g}(x, \tilde{w})\left(\tilde{u}_{\varepsilon}-\tilde{w}\right)=A(y)+B(y),
$$

where

$$
\begin{aligned}
& A(y)=-\frac{\tilde{u}_{\varepsilon}^{1-\beta}}{1-\beta}-\left(-\frac{\tilde{w}_{\varepsilon}^{1-\beta}}{1-\beta}-\tilde{w}^{-\beta}\left(\tilde{u}_{\varepsilon}-\tilde{w}\right)\right) \\
& B(y)=\tilde{F}\left(y, \tilde{u}_{\varepsilon}\right)-\tilde{F}(y, \tilde{w})-\tilde{f}(y, \tilde{w})\left(\tilde{u}_{\varepsilon}-\tilde{w}\right) .
\end{aligned}
$$

We claim that

$$
\begin{equation*}
A(y) \leq C m^{-1-\beta} \operatorname{dist}(y, \partial \tilde{D})^{-1-\beta}\left(\tilde{u}_{\varepsilon}-\tilde{w}\right)^{2} \quad \forall y \in \tilde{D} \tag{3.19}
\end{equation*}
$$

for some $C>0$ depending only on c_{1}. Indeed, if $\tilde{u}_{\varepsilon}<\frac{1}{2} \tilde{w}$, then

$$
\begin{aligned}
A(y) & \leq \frac{\tilde{w}_{\varepsilon}^{1-\beta}}{1-\beta} \\
& \leq C \tilde{w}^{-1-\beta}\left(\tilde{u}_{\varepsilon}-\tilde{w}\right)^{2}
\end{aligned}
$$

and using (3.18)

$$
A(y) \leq C m^{-1-\beta} \operatorname{dist}(y, \partial \tilde{D})^{-1-\beta}\left(\tilde{u}_{\varepsilon}-\tilde{w}\right)^{2}
$$

If, on the contrary, $\tilde{u}_{\varepsilon} \geq \frac{1}{2} \tilde{w}$, then

$$
A(y) \leq C \beta(1+\beta) \xi(y)^{-1-\beta}\left(\tilde{u}_{\varepsilon}-\tilde{w}\right)^{2}
$$

where $\xi(y)$ is in the interval with endpoints $\tilde{u}_{\varepsilon}(y)$ and $\tilde{w}(y)$. But then, using (3.18) we find (3.19).

Now we estimate $B(y)$. When $\tilde{u}_{\varepsilon}<\frac{1}{2} \tilde{w}$ we have

$$
\begin{aligned}
B(y) & \leq \tilde{f}(y, \tilde{w})\left(\tilde{w}-\tilde{u}_{\varepsilon}\right) \\
& \leq r^{2-\alpha}\|f(x, w(x))\|_{\infty}\left(\tilde{w}-\tilde{u}_{\varepsilon}\right) \\
& \leq r^{2-\alpha}\|f(x, w(x))\|_{\infty} \frac{2}{\tilde{w}}\left(\tilde{w}-\tilde{u}_{\varepsilon}\right)^{2} \\
& \leq C m^{-1} r^{2-\alpha}\|f(x, w(x))\|_{\infty} \operatorname{dist}(y, \partial \tilde{D})^{-1}\left(\tilde{w}-\tilde{u}_{\varepsilon}\right)^{2} .
\end{aligned}
$$

When $\tilde{u}_{\varepsilon}(y)<\frac{1}{2} \tilde{w}(y)$ we estimate

$$
\begin{equation*}
B(y)=\tilde{f}_{u}(y, \xi(y))\left(\tilde{u}_{\varepsilon}-\tilde{w}\right)^{2} \tag{3.20}
\end{equation*}
$$

where $\xi(y)$ is in the interval with endpoints $\tilde{u}_{\varepsilon}(y)$ and $\tilde{w}(y)$. Using that \tilde{f} is concave in u and that $\tilde{f} \geq 0$, we have

$$
\begin{equation*}
\tilde{f}_{u}(y, \xi) \leq \frac{\tilde{f}(y, \xi)}{\xi} \tag{3.21}
\end{equation*}
$$

Observe that since $\tilde{u}_{\varepsilon}(y) \geq \tilde{w}(y)$ (3.18) implies that $\xi(y) \geq \frac{1}{2} c_{1} m \operatorname{dist}(y, \partial \tilde{D})$. Hence, from (3.20) and (3.21) we obtain

$$
B(y) \leq C m^{-1} \operatorname{dist}(y, \partial \tilde{D})^{-1}\left(\tilde{w}-\tilde{u}_{\varepsilon}\right)^{2}
$$

where C depends only on $c_{1},\|f(x, w(x))\|_{\infty}$ and $\left\|f\left(x, u_{\varepsilon}(x)\right)\right\|_{\infty}$. Thus

$$
\begin{equation*}
B(y) \leq C m^{-1} \operatorname{dist}(y, \partial \tilde{D})^{-1}\left(\tilde{w}-\tilde{u}_{\varepsilon}\right)^{2} \quad \forall y \in \tilde{D} \tag{3.22}
\end{equation*}
$$

Putting together (3.19) and (3.22), we find (for $m \geq 1$)

$$
\int_{\tilde{D}} \tilde{G}\left(x, \tilde{u}_{\varepsilon}\right)-\tilde{G}(x, \tilde{w})-\tilde{g}(x, \tilde{w})\left(\tilde{u}_{\varepsilon}-\tilde{w}\right) \leq C m^{-1} \int_{\tilde{D}} \operatorname{dist}(y, \partial \tilde{D})^{-1-\beta}\left(\tilde{u}_{\varepsilon}-\tilde{w}\right)^{2} .
$$

By Hardy's inequality

$$
\int_{\tilde{D}} \tilde{G}\left(x, \tilde{u}_{\varepsilon}\right)-\tilde{G}(x, \tilde{w})-\tilde{g}(x, \tilde{w})\left(\tilde{u}_{\varepsilon}-\tilde{w}\right) \leq C^{\prime} m^{-1} \int_{\tilde{D}}\left|\nabla\left(\tilde{u}_{\varepsilon}-\tilde{w}\right)\right|^{2}
$$

For m large enough this yields (3.17).

4. Proof of Theorem 1.5

Lemma 4.1. For $\lambda>\lambda^{*}, \bar{u}_{\lambda}$ is a strict local minimum of Φ in the topology of $C^{1}(\bar{\Omega})$.

Before the proof of this lemma we need some observations. From now on we will use the notation $\bar{u}=\bar{u}_{\lambda}$.

Remark 4.2. If $\lambda>\lambda^{*}$ then there exists $\mu>0$ such that

$$
\begin{equation*}
\int_{\Omega}|\nabla \varphi|^{2}-g_{u}(x, \bar{u}) \varphi^{2} \geq \mu \int_{\Omega}|\nabla \varphi|^{2} \quad \forall \varphi \in C_{0}^{\infty}(\Omega), \tag{4.1}
\end{equation*}
$$

where $g(x, u)$ is given by (3.14).
Indeed, using (1.4) and $f_{u}(x, u) \leq f(x, u) / u$, we see that

$$
g_{u}(x, \bar{u}) \leq \frac{C}{\delta^{1+\beta}}
$$

for some $C>0$. Hence, using Hardy's and then Young's inequality we find

$$
\int_{\Omega} g_{u}(x, \bar{u}) \varphi^{2} \leq \frac{1}{2} \int_{\Omega}|\nabla \varphi|^{2}+C \int_{\Omega} \varphi^{2} \quad \forall \varphi \in C_{0}^{\infty}(\Omega) .
$$

Now choose

$$
\mu=\frac{\Lambda(\bar{u})}{2(\Lambda(\bar{u})+C)},
$$

(recall that $\Lambda(\bar{u})>0)$. Then for any $\varphi \in C_{0}^{\infty}(\Omega)$

$$
\begin{align*}
2 \mu \int_{\Omega} g_{u}(x, \bar{u}) \varphi^{2} & \leq \mu \int_{\Omega}|\nabla \varphi|^{2}+2 \mu C \int_{\Omega} \varphi^{2} \\
& =\mu \int_{\Omega}|\nabla \varphi|^{2}+\Lambda(\bar{u})(1-2 \mu) \int_{\Omega} \varphi^{2} . \tag{4.2}
\end{align*}
$$

On the other hand, by definition of $\Lambda(\bar{u})$

$$
\begin{equation*}
\int_{\Omega}|\nabla \varphi|^{2}-g_{u}(x, \bar{u}) \varphi^{2} \geq \Lambda(\bar{u}) \int_{\Omega} \varphi^{2} \tag{4.3}
\end{equation*}
$$

and multiplying (4.3) by $1-2 \mu$ we find

$$
\begin{aligned}
\int_{\Omega}|\nabla \varphi|^{2}-g_{u}(x, \bar{u}) \varphi^{2} & \geq-2 \mu \int_{\Omega} g_{u}(x, \bar{u}) \varphi^{2}+\Lambda(\bar{u})(1-2 \mu) \int_{\Omega} \varphi^{2}+2 \mu \int_{\Omega}|\nabla \varphi|^{2} \\
& \geq \mu \int_{\Omega}|\nabla \varphi|^{2}
\end{aligned}
$$

by (4.2).
We also need the following property:
Lemma 4.3. Let $0<m<2$. Then for any $\varepsilon>0$ there is $\delta>0$ such that if $E \subset \Omega$ is measurable and $|E|<\delta$, then

$$
\int_{E} \frac{\varphi^{2}}{\delta^{m}} \leq \varepsilon \int_{\Omega}|\nabla \varphi|^{2} \quad \forall \varphi \in C_{0}^{\infty}(\Omega)
$$

Proof. By contradiction, if the statement of the lemma is not true, then there is some $\varepsilon>0$ such that for all $i=1,2, \ldots$, one can find $E_{i} \subset \Omega$ with $\left|E_{i}\right|<1 / i$ and some $\varphi_{i} \in C_{0}^{\infty}(\Omega)$ such that

$$
\int_{E_{i}} \frac{\varphi_{i}^{2}}{\delta^{m}}>\varepsilon \int_{\Omega}\left|\nabla \varphi_{i}\right|^{2}
$$

We can assume that $\left\|\varphi_{i}\right\|_{H_{0}^{1}}=1$ and hence (for a subsequence) $\varphi_{i} \rightarrow \varphi$ in L^{2}. But then, using Hardy's inequality

$$
\varepsilon \leq \int_{E_{i}} \frac{\varphi_{i}^{2}}{\delta^{m}} \leq\left(\int_{\Omega} \frac{\varphi_{i}^{2}}{\delta^{2}}\right)^{m / 2}\left(\int_{E_{i}} \varphi_{i}^{2}\right)^{1-m / 2} \leq C\left(\int_{E_{i}} \varphi_{i}^{2}\right)^{1-m / 2}
$$

But φ_{i} converges in $L^{2}(\Omega)$ and therefore there is some $\bar{\varphi} \in L^{1}(\Omega)$ such that (for a subsequence) $\varphi_{i}^{2} \leq \bar{\varphi}$. Hence by dominated convergence $\int_{E_{i}} \varphi_{i}^{2} \rightarrow 0$ as $i \rightarrow \infty$, a contradiction.

Proof of Lemma 4.1. Let $\rho>0$ and $v \in C^{1}(\bar{\Omega})$ with $\|v-\bar{u}\|_{C^{1}(\bar{\Omega})} \leq \rho$. Note that since \bar{u} satisfies (1.4), for $\rho>0$ small $v \in K$.

Expanding Φ around \bar{u} and using (1.3) we find

$$
\begin{align*}
\Phi(v)= & \Phi(\bar{u})+\frac{1}{2} \int_{\Omega}|\nabla(v-\bar{u})|^{2}-g_{u}(x, \bar{u})(v-\bar{u})^{2} \\
& +\frac{1}{6} \beta(\beta+1) \int_{\Omega} \xi^{-\beta-2}(v-\bar{u})^{3} \\
& +\int_{\Omega} \int_{\bar{u}}^{v}(v-\tau)\left(f_{u}(x, \tau)-f_{u}(x, \bar{u})\right) d \tau d x \tag{4.4}
\end{align*}
$$

where $\xi=\xi(x)$ is in the interval with endpoints $\bar{u}(x)$ and $v(x)$. Using (4.1) combined with (4.4) yields

$$
\begin{align*}
\Phi(v) \geq & \Phi(\bar{u})+\mu \int_{\Omega}|\nabla(v-\bar{u})|^{2}+\frac{1}{6} \beta(\beta+1) \int_{\Omega} \xi^{-\beta-2}(v-\bar{u})^{3} \\
& +\int_{\Omega} \int_{\bar{u}}^{v}(v-\tau)\left(f_{u}(x, \tau)-f_{u}(x, \bar{u})\right) d \tau d x \tag{4.5}
\end{align*}
$$

Since \bar{u} satisfies (1.4), for $\rho>0$ small, we have the estimate

$$
\xi(x) \geq \frac{1}{C} \delta(x)
$$

for some $C>0$ independent of ρ. Combining this fact with $|v(x)-\bar{u}(x)| \leq C \rho \delta(x)$ we have

$$
\begin{equation*}
\int_{\Omega} \xi^{-\beta-2}|v-\bar{u}|^{3} \leq C \rho \int_{\Omega} \frac{(v-\bar{u})^{2}}{\delta^{1+\beta}} \leq C \rho \int_{\Omega}|\nabla(v-\bar{u})|^{2} \tag{4.6}
\end{equation*}
$$

We use now Lemma 4.3 with $\varepsilon=\sigma$ ($\sigma>0$ to be chosen below) and $m=1$ to find a $\delta_{1}>0$ such that if $E \subset \Omega$ and $|E|<\delta_{1}$ then

$$
\begin{equation*}
\int_{E} \frac{\varphi^{2}}{\delta} \leq \sigma \int_{\Omega}|\nabla \varphi|^{2} \quad \forall \varphi \in C_{0}^{\infty}(\Omega) \tag{4.7}
\end{equation*}
$$

Using again (1.4) we can find $\varepsilon>0$ small so that

$$
\begin{equation*}
|\{x \in \Omega \mid \bar{u}(x)<\varepsilon\}|<\delta_{1} / 2 \tag{4.8}
\end{equation*}
$$

and also

$$
\max _{\bar{\Omega}} \bar{u} \leq \frac{1}{\varepsilon}
$$

On the other hand, since for a.e. $x \in \Omega, f_{u}(x, \cdot)$ is continuous on $(0, \infty)$, the sequence

$$
h_{j}(x)=\sup \left\{\left|f_{u}(x, \eta)-f_{u}(x, \theta)\right||\eta, \theta \in[\varepsilon, 1 / \varepsilon],|\eta-\theta|<1 / j\}\right.
$$

converges to 0 as $j \rightarrow \infty$ for a.e. $x \in \Omega$. By Egorov's theorem there is a measurable subset $F \subset \Omega$ with

$$
\begin{equation*}
|\Omega \backslash F|<\delta_{1} / 2 \tag{4.9}
\end{equation*}
$$

such that $h_{j} \rightarrow 0$ uniformly on F. Therefore, there is some $\delta_{2}>0$ such that for all $x \in F$ and all $\eta, \theta \in[\varepsilon, 1 / \varepsilon],|\eta-\theta|<\delta_{2}$ one has

$$
\left|f_{u}(x, \eta)-f_{u}(x, \theta)\right|<\varepsilon
$$

Let $E=\{\bar{u}<\varepsilon\} \cup(\Omega \backslash F)$ and split the integral

$$
\int_{\Omega} \int_{\bar{u}}^{v}(v-\tau)\left(f_{u}(x, \tau)-f_{u}(x, \bar{u})\right) d \tau d x=\int_{E} \cdots+\int_{\Omega \backslash E} \cdots
$$

We first estimate the integral over E, using the fact that $f_{u}(x, u) \leq f(x, u) / u$ and $\bar{u} \geq a \delta, \delta<C v$

$$
\left|\int_{E} \int_{\bar{u}}^{v}(v-\tau)\left(f_{u}(x, \tau)-f_{u}(x, \bar{u})\right) d \tau d x\right| \leq C \int_{E} \frac{(v-\bar{u})^{2}}{\delta}
$$

Note that $|E|<\delta_{1}$ by (4.8) and (4.9) and therefore we can apply (4.7)

$$
\begin{equation*}
\left|\int_{E} \int_{\bar{u}}^{v}(v-\tau)\left(f_{u}(x, \tau)-f_{u}(x, \bar{u})\right) d \tau d x\right| \leq C \sigma \int_{\Omega}|\nabla(v-\bar{u})|^{2} \tag{4.10}
\end{equation*}
$$

The integral on $\Omega \backslash E$ can be estimated as well, if $\rho>0$ is small enough so that $|v(x)-\bar{u}(x)|<\delta_{2}:$

$$
\begin{equation*}
\left|\int_{\Omega \backslash E} \int_{\bar{u}}^{v}(v-\tau)\left(f_{u}(x, \tau)-f_{u}(x, \bar{u})\right) d \tau d x\right| \leq C \varepsilon \int_{\Omega}|\nabla(v-\bar{u})|^{2} . \tag{4.11}
\end{equation*}
$$

Hence, putting together (4.5), (4.6), (4.9) and (4.10) we obtain, for $\rho>0$ small

$$
\Phi(v) \geq \Phi(\bar{u})+(\mu-C \rho-C \sigma-C \varepsilon) \int_{\Omega}|\nabla(v-\bar{u})|^{2}
$$

We choose first $\sigma>0$, then $\varepsilon>0$ small and then ρ_{0} so that for $0<\rho<\rho_{0}$ and $\|v-\bar{u}\|_{C^{1}(\bar{\Omega})}<\rho$ we have

$$
\Phi(v) \geq \Phi(\bar{u})+\frac{\mu}{4} \int_{\Omega}|\nabla(v-\bar{u})|^{2},
$$

which proves the lemma.
Remark 4.4. The proof of Lemma 4.1 is simpler if one assumes that f is C^{2} with respect to u and satisfies

$$
\sup _{x \in \Omega, u>0}\left|f_{u u}(x, u)\right|<\infty
$$

Indeed, in this case one can estimate

$$
\begin{aligned}
\left|\int_{\Omega} \int_{\bar{u}}^{v}(v-\tau)\left(f_{u}(x, \tau)-f_{u}(x, \bar{u})\right) d \tau d x\right| & \leq C \sup _{x \in \Omega, u>0}\left|f_{u u}(x, u)\right| \int_{\Omega}|v-\bar{u}|^{3} \\
& \leq C \rho \int_{\Omega}|\nabla(v-\bar{u})|^{2}
\end{aligned}
$$

Proof of Theorem 1.5. We prove this theorem by contradiction. Let C_{0} be such that $\|w\|_{L^{2}}^{2} \leq C_{0}\|w\|_{H_{0}^{1}}^{2} \forall w \in H_{0}^{1}$. If \bar{u} is not a strict local minimum of Φ in the H^{1} topology, then for all $\varepsilon>0$ there exists $v_{\varepsilon} \in K$, with $0<\left\|v_{\varepsilon}-\bar{u}\right\|_{H_{0}^{1}}^{2}<\varepsilon / C_{0}$ and

$$
\Phi\left(v_{\varepsilon}\right) \leq \Phi(\bar{u})
$$

Let u_{ε} be a minimizer of Ψ_{ε}. Then

$$
\Psi_{\varepsilon}\left(u_{\varepsilon}\right) \leq \Psi\left(v_{\varepsilon}\right)=\Phi\left(v_{\varepsilon}\right) \leq \Phi(\bar{u}),
$$

because $\left\|v_{\varepsilon}-\bar{u}\right\|_{L^{2}}^{2}<\varepsilon$ so $P_{\varepsilon}\left(v_{\varepsilon}\right)=0$. If $u_{\varepsilon} \equiv \bar{u}$ then

$$
\min _{K} \Psi_{\varepsilon}=\Psi_{\varepsilon}(\bar{u})=\Phi(\bar{u}) \geq \Phi\left(v_{\varepsilon}\right)=\Psi_{\varepsilon}\left(v_{\varepsilon}\right),
$$

and we replace u_{ε} by v_{ε}. This shows that for all $\varepsilon>0$ there exists a minimizer u_{ε} of Ψ_{ε}, such that $u_{\varepsilon} \not \equiv \bar{u}$.

Clearly $u_{\varepsilon} \rightarrow \bar{u}$ in $L^{2}(\Omega)$ and by Theorem $1.6 u_{\varepsilon} \rightarrow \bar{u}$ in $C^{1}(\bar{\Omega})$. But this and $\Phi\left(u_{\varepsilon}\right) \leq \Psi_{\varepsilon}\left(u_{\varepsilon}\right) \leq \Phi(\bar{u})$ contradict Lemma 4.1.

Remark 4.5. Without using Lemma 4.1 one can still show, using a standard argument, that for $\lambda>\lambda^{*} \bar{u}_{\lambda}$ is a local minimum of Φ on K in the C^{1} topology, and therefore (using Theorem 1.6) also a local minimum of Φ in the H^{1} topology.

Indeed, following [1], we first construct a subsolution $\underline{U}>0$ and supersolution \bar{U} to (1.1) such that $\underline{U} \leq \bar{U}$. Let ζ solve

$$
\left\{\begin{aligned}
-\Delta \zeta=1 & \text { in } \Omega \\
\zeta=0 & \text { on } \partial \Omega
\end{aligned}\right.
$$

Then if $K>0$ is large enough $\bar{U}=K \zeta$ is a supersolution. We get a positive subsolution \underline{U} by taking $\underline{U}=\bar{u}_{\lambda^{\prime}}$ with $\lambda^{\prime} \in\left(\lambda^{*}, \lambda\right)$. We also see that neither \underline{U} nor \bar{U} are solutions to (1.1). Then the same approach as in [1] shows that there exists a minimizer u_{0} of Φ in the class

$$
\left\{u \in H_{0}^{1} \mid \underline{U} \leq u \leq \bar{U}\right\}
$$

and that u_{0} is a local minimizer of Φ in the C^{1} topology.
We claim that $u_{0}=\bar{u}$. Indeed, u_{0} is a solution of (1.1) and since it is local minimizer of Φ it is stable. Then by [2, Theorem 2.3] (or an argument similar to the proof of Lemma 3.3) we conclude that $u_{0}=\bar{u}$.

5. Some Examples

In this section we exhibit different examples where the following situations occur:
Example 5.1. $\bar{u}_{\lambda} \not \equiv 0$ and $\operatorname{supp}\left(\bar{u}_{\lambda}\right)$ is compact.
Example 5.2(a). $\operatorname{supp}\left(\bar{u}_{\lambda}\right)$ is not compact and not equal to Ω, and the behavior of \bar{u}_{λ} near the boundary of the set $\omega=\left\{x \in \Omega \mid \bar{u}_{\lambda}(x)>0\right\}$ is of the form $\operatorname{dist}(x, \partial \omega)^{\alpha}$.

Example 5.2(b). This a variation of the previous example, in which $\operatorname{supp}\left(\bar{u}_{\lambda}\right)$ is not compact and not equal to Ω, but $\nabla \bar{u}_{\lambda}(x) \neq 0$ for some points of $\partial \Omega$, that is $\bar{u}_{\lambda} \sim \delta$ near some parts of $\partial \Omega$.

Example 5.3. The set $\{x \in \Omega \mid u(x)=0\}$ is compact.

We recall that if $v: \Omega \rightarrow \mathbb{R}$ then its support, which is denoted by $\operatorname{supp}(v)$, is defined as the closure in Ω of the set $\{x \in \Omega \mid v(x) \neq 0\}$.

In all these examples the function f depends on x (and it turns out that is independent of u). In contrast with these constructions, when $f=f(u)$ we can rule out some of the previous situations.

Lemma 5.4. Suppose that $f=f(u)$. Then $\operatorname{supp}\left(\bar{u}_{\lambda}\right)$ can not be compact unless $\bar{u}_{\lambda} \equiv 0$.

If, in addition to the hypothesis $f=f(u), \Omega$ is a ball, then $\bar{u}_{\lambda} \equiv 0$ for $0<\lambda<\lambda^{*}$ and $\bar{u}_{\lambda}>0$ in Ω for $\lambda \geq \lambda^{*}$.

Putting together some of the above constructions, we obtain the following.
Example 5.5. Take $f=\chi_{B_{1}}$ and Ω the ball B_{R} with $R>1$ sufficiently large. Then there exists $0<\lambda_{0}<\lambda^{*}$ such that:

$$
\begin{array}{ll}
\bar{u}_{\lambda} \equiv 0 & \text { for } \lambda<\lambda_{0} \\
\bar{u}_{\lambda} \neq 0 & \text { for } \lambda_{0} \leq \lambda<\lambda^{*} \\
\bar{u}_{\lambda}>0 \text { in } \Omega, & \text { for } \lambda^{*}<\lambda
\end{array}
$$

For the constructions we need some preliminary results. We first mention a basic observation (a proof can be obtained from the results in [3]).

Lemma 5.6. Let Ω, U be bounded, smooth domains with $\Omega \subset U$. Let u be a solution of (1.3) in the domain Ω and define

$$
v(x)= \begin{cases}u(x) & \text { if } x \in \Omega \\ 0 & \text { otherwise }\end{cases}
$$

Then v is a subsolution of (1.3) in the domain U.
Next we show how to get a maximal solution with compact support.
Lemma 5.7. Let $f \in L^{\infty}\left(\mathbb{R}^{n}\right)$, $f \geq 0$ with compact support. Then there exist $R_{1}>0, R_{0}>0$ such that for all $R>R_{1}$ the maximal solution to

$$
\left\{\begin{align*}
-\Delta u & =\chi_{\{u>0\}}\left(-u^{-\beta}+f(x)\right) & & \text { in } B_{R}, \tag{5.1}\\
u & =0 & & \text { on } \partial B_{R},
\end{align*}\right.
$$

has support contained in $B_{R_{0}}$.
Proof. Let $\rho>0, C_{1}>0$ such that $f \leq C_{1} \chi_{B_{\rho}}$.
We claim that it is sufficient to establish the result with $f=C_{1} \chi_{B_{\rho}}$. In fact, if v is the maximal solution with f replaced by $C_{1} \chi_{B_{\rho}}$, then the maximal solution u of (5.1) satisfies $u \leq v$ so that $\operatorname{supp}(u) \subset \operatorname{supp}(v) \subset B_{R_{0}}$.

We assume now that $f=C_{1} \chi_{B_{\rho}}$. Take a sequence $R_{k} \rightarrow \infty$ and let \bar{u}_{k} denote the maximal solution for the problem (5.1) in the domain $B_{R_{k}}$. Observe that \bar{u}_{k} is radial (the maximal solution is unique), so that $\operatorname{supp}\left(\bar{u}_{k}\right)$ is a ball. If the conclusion of the
lemma fails, then for a subsequence (denoted the same) meas(supp $\left.\left(\bar{u}_{k}\right)\right) \rightarrow \infty$. We can assume that R_{k} is the radius of the ball $\operatorname{supp}\left(\bar{u}_{k}\right)$. Define

$$
v_{k}(x)=R_{k}^{-\alpha} \bar{u}_{k}\left(R_{k} x\right),
$$

so that it satisfies

$$
\left\{\begin{array}{cl}
-\Delta v_{k}=-v_{k}^{-\beta}+f_{k} & \\
\text { in } B_{1} \\
v_{k}>0 & \\
v_{k}=0 & \text { in } B_{1} \\
\text { on } \partial B_{1}
\end{array}\right.
$$

where $f_{k}(x)=R_{k}^{2-\alpha} f\left(R_{k} x\right)$. Integrating the equation in B_{1} we find

$$
0 \leq-\int_{\partial B_{1}} \frac{\partial v_{k}}{\partial \nu}=-\int_{B_{1}} v_{k}^{-\beta}+R_{k}^{-n+2-\alpha} \int_{\mathbb{R}^{n}} f .
$$

So we deduce on one hand that

$$
\begin{equation*}
\int_{B_{1}} v_{k}^{-\beta} \rightarrow 0 \quad \text { as } k \rightarrow \infty \tag{5.2}
\end{equation*}
$$

But on the other hand there exists $C>0$ independent of k such that

$$
\begin{equation*}
v_{k}(x) \leq C \delta(x) \quad \forall x \in B_{1} \backslash B_{1 / 4} \tag{5.3}
\end{equation*}
$$

Indeed $v_{k} \leq \zeta_{k}$ where ζ_{k} solves

$$
\left\{\begin{aligned}
-\Delta \zeta_{k}=f_{k} & \text { in } B_{1} \\
\zeta_{k}=0 & \text { on } \partial B_{1}
\end{aligned}\right.
$$

Since the functions f_{k} are bounded in $L^{1}\left(B_{1}\right)$ (actually $\int_{B_{1}} f_{k} \rightarrow 0$ as $k \rightarrow \infty$), and $f_{k} \equiv 0$ in $B_{1} \backslash B_{1 / 4}$, by standard elliptic estimates we deduce the validity of (5.3). Hence $\int_{B_{1}} v_{k}^{-\beta}$ is bounded away from zero, which contradicts (5.2).

Construction for Example 5.1. Fix $f \in L^{\infty}\left(\mathbb{R}^{n}\right), f \geq 0, f \neq 0, f$ with compact support. Now we fix $\lambda>0$ large enough so that the maximal solution \bar{v} to

$$
\left\{\begin{aligned}
-\Delta v & =\chi_{\{v>0\}}\left(-v^{-\beta}+\lambda f(x)\right) & & \text { in } B_{1}, \\
v & =0 & & \text { on } \partial B_{1},
\end{aligned}\right.
$$

is positive in B_{1}. Then using Lemma 5.7 we find $R>0$ large enough so that the maximal solution \bar{u} in $\Omega=B_{R}$ has compact support. Note that $\bar{u} \geq \bar{v}$ by Lemma 5.6, and therefore $\bar{u} \neq 0$.

Construction for Example 5.2(a). Take the solution found in the previous example and restrict it to a domain U, such that U contains the set $\{\bar{u}>0\}$ and such that $\partial U \cap \partial\{\bar{u}>0\} \neq \emptyset$ and $\partial U \backslash \partial\{\bar{u}>0\} \neq \emptyset$. If the regularity of $\partial\{\bar{u}>0\}$ is a concern, we may take f to be radial, so that $\{\bar{u}>0\}$ is a ball.

For the next construction we need a modification of Lemma 5.7, which is a direct consequence of Lemmas 5.6 and 5.7.

Lemma 5.8. Let $f \in L^{\infty}\left(\mathbb{R}^{n}\right), f \geq 0$ with compact support. Then there exist $R_{1}>0, R_{0}>0$ such that for all $R>R_{1}$ and any smooth, bounded domain Ω such that Ω is contained in the half space $H:=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}>0\right\}$ and $H \cap B_{R} \subset \Omega$, the maximal solution to

$$
\left\{\begin{aligned}
-\Delta u & =\chi_{\{u>0\}}\left(-u^{-\beta}+f(x)\right) & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega,
\end{aligned}\right.
$$

has support contained in $B_{R_{0}}$.
Construction for Example 5.2(b). Let $B=B_{1}\left(z_{0}\right)$ be the ball of radius 1 centered at a the point $z_{0}=(1,0, \ldots, 0)$ so that $B \subset H$ and $\bar{B} \cap \partial H=\{0\}$. Let \bar{v}_{λ} denote the maximal solution to

$$
\left\{\begin{align*}
-\Delta v & =\chi_{\{v>0\}}\left(-v^{-\beta}+\lambda\right) & & \text { in } B, \tag{5.4}\\
v & =0 & & \text { on } \partial B .
\end{align*}\right.
$$

We fix a value $\lambda>\lambda^{*}$ where λ^{*} is the critical parameter for the above problem. Set

$$
f=\lambda \chi_{B}
$$

By (1.4) the maximal solution \bar{v}_{λ} to (5.4) satisfies $\frac{\partial \bar{v}_{\lambda}}{\partial \nu}(0)<0$ (ν denotes the exterior unit normal vector to $\partial \Omega$). Take a smooth domain Ω satisfying the conditions of Lemma 5.7. Then the maximal solution \bar{u} for the problem in Ω has support contained in $B_{R_{0}}$. Hence the support of \bar{u} is different from Ω but $\bar{u} \geq \bar{v}$ so that $\frac{\partial \bar{u}}{\partial \nu}(0)<0$.

Construction for Example 5.3. In this construction we consider the sequence of functions $f_{k}=\chi_{A_{k}}$ where A_{k} is the annulus $A_{k}=B_{k} \backslash B_{k-2}$. We shall show that there exist constants $\lambda>0$ and $k>0$, such that the maximal solution \bar{u}_{k} of

$$
\left\{\begin{aligned}
-\Delta u & =\chi_{\{u>0\}}\left(-u^{-\beta}+\lambda f_{k}\right) & & \text { in } B_{k} \\
u & =0 & & \text { on } \partial B_{k}
\end{aligned}\right.
$$

satisfies the two following properties

$$
\begin{cases}\bar{u}_{k}>0 & \text { in } A_{k} \\ \bar{u}_{k} \equiv 0 & \text { in } B_{\rho}\end{cases}
$$

for some $\rho>0$.
To accomplish the first goal, we fix $\lambda>0$ so that the maximal solution \bar{v} to

$$
\left\{\begin{align*}
-\Delta v & =\chi_{\{v>0\}}\left(-v^{-\beta}+\lambda\right) & & \text { in } B_{1} \tag{5.5}\\
v & =0 & & \text { on } \partial B_{1}
\end{align*}\right.
$$

is positive in B_{1}. Then we deduce that $\bar{u}_{k}>0$ in A_{k} by comparison with a suitable translation of \bar{v}.

It remains to verify the second property. Actually we will show that for any $\rho>0, \bar{u}_{k} \equiv 0$ in B_{ρ} for k large enough. We argue by contradiction, assuming that there exists $\rho>0$, so that for a sequence $k \rightarrow \infty$ we have $\bar{u}_{k} \neq 0$ in B_{ρ}. Observe that \bar{u}_{k} is radial. We claim that

$$
\begin{equation*}
\bar{u}_{k}>0 \quad \text { in } B_{k} \backslash \bar{B}_{\rho} . \tag{5.6}
\end{equation*}
$$

To see this, suppose that $\bar{u}_{k}(r)=0$ for some $r \in(\rho, k)$. Recall that $\bar{u}_{k} \neq 0$ in B_{ρ} so there is $r_{0} \in[0, \rho)$ such that $\bar{u}_{k}\left(r_{0}\right)>0$. Define

$$
r_{1}=\inf \left\{r \in\left(r_{0}, k\right) \mid \bar{u}_{k}(r)=0\right\} .
$$

Then $r_{1}>r_{0}, \bar{u}_{k}\left(r_{1}\right)=0$ and $\bar{u}_{k}(r)>0$ for all $r \in\left(r_{0}, r_{1}\right)$. Let

$$
w(r)= \begin{cases}\bar{u}_{k}(r) & \text { if } 0 \leq r \leq r_{1} \\ 0 & \text { otherwise }\end{cases}
$$

We see that w is a solution of (5.5). Comparing \bar{u}_{k} with $w(\cdot+\tau)$ with $|\tau|$ small, we get that $\bar{u}_{k}\left(r_{1}\right)>0$, which is not possible and proves (5.6).

Define

$$
v_{k}(x)=k^{-\alpha} \bar{u}_{k}(k x) \quad \text { and } \quad \tilde{f}_{k}(x)=k^{2-\alpha} f_{k}(k x)=k^{2-\alpha} \chi_{B_{1} \backslash B_{1-2 / k}}(x) .
$$

Then

$$
\left\{\begin{aligned}
-\Delta v_{k} & =\chi_{\left\{v_{k}>0\right\}}\left(-v_{k}^{-\beta}+\lambda \tilde{f}_{k}\right) & & \text { in } B_{1}, \\
v_{k} & =0 & & \text { on } \partial B_{1} .
\end{aligned}\right.
$$

From this equation we conclude that

$$
\int_{\left\{v_{k}>0\right\}} v_{k}^{-\beta} \leq \lambda \int_{B_{1}} \tilde{f}_{k}=C k^{1-\alpha} \rightarrow 0
$$

as $k \rightarrow \infty$ (recall that $\alpha=\frac{2}{1+\beta} \in(1,2)$). On the other hand $v_{k} \leq \zeta_{k}$ where

$$
\left\{\begin{array}{cl}
-\Delta \zeta_{k}=\lambda \tilde{f}_{k} & \\
\text { in } B_{1} \\
\zeta_{k}=0 & \\
\text { on } \partial B_{1}
\end{array}\right.
$$

Since $\tilde{f}_{k} \equiv 0$ in $B_{3 / 4}$ for k large we deduce that $v_{k} \leq \zeta_{k} \leq C$ in $B_{1 / 2}$ for some constant C independent of k. On the other hand $v_{k}>0$ in $B_{1} \backslash \bar{B}_{\rho / k}$ so $v_{k}^{-\beta} \geq C^{-\beta}$ in $B_{1 / 2} \backslash \bar{B}_{1 / 4}$ for k large, which shows that $\int_{\left\{v_{k}>0\right\}} v_{k}^{-\beta}$ is bounded away from zero. This contradiction finishes the proof of our claim.

We now proceed with the proof of Lemma 5.4.
Proof of Lemma 5.4. Suppose that \bar{u}_{λ} has compact support and $\bar{u}_{\lambda} \not \equiv 0$. Then for any $\tau \in \mathbb{R}^{n}$ with $|\tau|$ small $\bar{u}_{\lambda}(\cdot+\tau)$ is also a nontrivial solution. Therefore $\max \left(\bar{u}_{\lambda}, \bar{u}_{\lambda}(\cdot+\tau)\right)$ is a nontrivial subsolution, but this contradicts the maximality of \bar{u}_{λ}.

Now suppose additionally that Ω is a ball. By uniqueness of the maximal solution \bar{u}_{λ} is radial. We shall show that if $\bar{u}_{\lambda}\left(r_{0}\right)=0$ for some $r_{0} \in[0, R)$ then \bar{u}_{λ} has compact support. In fact, we claim that: the set $I:=\{r \in(0, R) \mid u(r)>0\}$ is an interval of the form $(0, \rho)$ for some ρ.

To prove this, consider a nonempty connected component $\left(r_{0}, r_{2}\right)$ of I and suppose that $r_{0}>0$. Then $\bar{u}_{\lambda}\left(r_{0}\right)=\bar{u}_{\lambda}^{\prime}\left(r_{0}\right)=0$. Since \bar{u}_{λ} is radial let us write the equation (1.1) in the form

$$
-\frac{1}{r^{n-1}} \frac{d}{d r}\left(r^{n-1} \bar{u}_{\lambda}^{\prime}\right)=g\left(\bar{u}_{\lambda}\right),
$$

where $g(u)=-u^{-\beta}+\lambda f(u)$. Let $r_{1} \in\left[r_{0}, r_{2}\right]$. Multiplying by $r^{2(n-1)} \bar{u}_{\lambda}^{\prime}$ and integrating on $\left[r_{0}, r_{1}\right]$, we obtain

$$
\begin{equation*}
-\frac{1}{2}\left(r_{1}^{n-1} \bar{u}_{\lambda}^{\prime}\left(r_{1}\right)\right)^{2}=r_{1}^{2 n-2} G\left(\bar{u}_{\lambda}\left(r_{1}\right)\right)-2(n-1) \int_{r_{0}}^{r_{1}} r^{2 n-1} G\left(\bar{u}_{\lambda}(r)\right) d r \tag{5.7}
\end{equation*}
$$

where

$$
G(u)=-\frac{u^{1-\beta}}{1-\beta}+\lambda \int_{0}^{u} f(t) d t
$$

Let $\theta>0$ be the unique positive number satisfying $G(\theta)=0$. Note that $G(u)<0$ for $u \in(0, \theta)$ and $G(u)>0$ for $u>\theta$. If $\bar{u}_{\lambda}(r)<\theta$ for all $r \in\left(r_{0}, r_{2}\right)$, we choose $r_{1}=r_{2}$, and then $\bar{u}_{\lambda}\left(r_{1}\right)=0$. Otherwise, we select $r_{1} \in\left(r_{0}, r_{2}\right)$ as the smallest value in $\left(r_{0}, r_{2}\right)$, such that $\bar{u}_{\lambda}\left(r_{1}\right)=\theta$ and $\bar{u}_{\lambda}(r)<\theta$ for all $r \in\left(r_{0}, r_{1}\right)$. With this choice we see that (5.7) implies

$$
\frac{1}{2}\left(r_{1}^{n-1} \bar{u}_{\lambda}^{\prime}\left(r_{1}\right)\right)^{2}=2(n-1) \int_{r_{0}}^{r_{1}} r^{2 n-1} G\left(\bar{u}_{\lambda}(r)\right) d r .
$$

But the left hand side of the previous equation is nonnegative, while the right hand side is negative. This contradiction shows that $\{r \in(0, R) \mid u(r)>0\}=(0, \rho)$ for some ρ.

If $\bar{u}_{\lambda}(0)=0$ the same argument as above (used with $r_{0} \rightarrow 0^{+}$) also leads to a contradiction.

Now consider $\lambda<\lambda^{*}$. The previous argument shows that if $\bar{u}_{\lambda}\left(r_{0}\right)=0$ for some r_{0}, then \bar{u}_{λ} would have compact support, which is impossible by the the first part of the lemma, unless $\bar{u}_{\lambda} \equiv 0$, which is the desired conclusion.

Proof of the statements for Example 5.4. We start by fixing $R>0$ large enough so that by Lemma 5.7 the maximal solution of

$$
\left\{\begin{aligned}
-\Delta u & =\chi_{\{u>0\}}\left(-u^{-\beta}+\chi_{B_{1}}\right) & & \text { in } B_{R} \\
u & =0 & & \text { on } \partial B_{R},
\end{aligned}\right.
$$

has compact support in B_{R}. We set $\Omega=B_{R}$.
Let

$$
\lambda_{0}=\inf \left\{\lambda>0 \mid \bar{u}_{\lambda} \neq 0\right\}
$$

Then $\lambda_{0} \leq 1<\lambda^{*}$ and we shall show that $\lambda_{0}>0$. Arguing by contradiction, assume that $\lambda_{0}=0$. Then for all $\lambda>0$ we have $\bar{u}_{\lambda} \neq 0$.

We first observe that $\operatorname{supp}\left(\bar{u}_{\lambda}\right) \subset \bar{B}_{1}$ for $\lambda>0$ small enough. Otherwise, we would have

$$
\int_{B_{1}} \bar{u}_{\lambda}^{-\beta} \leq \lambda \operatorname{meas}\left(B_{1}\right) \rightarrow 0 \quad \text { as } \lambda \rightarrow 0
$$

But on the other hand $\bar{u}_{\lambda} \leq \bar{u}_{\lambda^{*}}$ for $\lambda \leq \lambda^{*}$ so that $\int_{B_{1}} \bar{u}_{\lambda}^{-\beta}$ is bounded away from zero. This contradiction shows that $\operatorname{supp}\left(\bar{u}_{\lambda}\right) \subset \bar{B}_{1}$ for $\lambda>0$ small enough. Hence for $\lambda>0$ small, \bar{u}_{λ} also solves

$$
\left\{\begin{aligned}
-\Delta u & =\chi_{\{u>0\}}\left(-u^{-\beta}+\lambda\right) & & \text { in } B_{1}, \\
u & =0 & & \text { on } \partial B_{1} .
\end{aligned}\right.
$$

But now we see that \bar{u}_{λ} solves a problem with a right hand side independent of x and therefore, by Lemma $5.4 \bar{u}_{\lambda} \equiv 0$ for $\lambda>0$ small. This contradicts the assumption $\lambda_{0}=0$.

Acknowlegment

The author is supported in part by H. J. Sussmann's NSF Grant DMS01-03901 and FONDECYT Project 1020815.

References

[1] H. Brezis and L. Nirenberg, H^{1} versus C^{1} local minimizers, C. R. Acad. Sci. Paris, Série I 317 (1993), 465-472.
[2] J. Dávila and M. Montenegro, Positive versus free boundary solutions to a singular elliptic equation, Preprint (2002).
[3] J. Dávila and A. C. Ponce, Variants of Kato's inequality and removable singularities, to appear in J. Anal. Math. 2001.
[4] M. Giaquinta, "Multiple integrals in the calculus of variations and nonlinear elliptic systems", Annals of Math. Stud., 105. Princeton University Press, 1983.
[5] M. Giaquinta and E. Giusti, Differentiability of minima of nondifferentiable functionals, Invent. Math. 72 (1983), 285-298.
[6] M. Giaquinta and E. Giusti, Sharp estimates for the derivatives of local minima of variational integrals, Boll. Un. Mat. Ital. A (6) 3 (1984), 239-248.
[7] C. Gui and F. H. Lin, Regularity of an elliptic problem with a singular nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), 1021-1029.
[8] D. Phillips, A minimization problem and the regularity of solutions in the presence of a free boundary, Indiana Univ. Math. J. 32 (1983), 1-17.

