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1. Introduction

Let © be a bounded smooth domain in R™. We are interested in nonnegative solu-
tions to the equation

~Au+u=P = Af(z,u) inQ

1.1
u=0 on 082, (1)

where 0 < 8 <1, A > 0and f: QxR — RT is a nonnegative function, measurable
in z, and increasing and concave in u for a.e. x € 2. We assume also that f,(z,-)
is continuous on (0,00) for a.e. z € Q and that f is sublinear in u uniformly in x,
that is,
lim Jlaw) =0 uniformly for z € Q. (1.2)
U— 00 u
For a function v € C(2) N C%(2) and u > 0 in Q, it is clear what it means to be
a solution of (1.1). If a function « > 0 vanishes in parts of the domain, we replace

(1.1) by

{ —Au = xgusoy(—u P + Af(z,u) inQ (13)

u=0 on 0N,

where x>0y stands for the characteristic function of the set {u > 0}.

165
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Definition 1.1. We say that a function u € Hg () is a solution of (1.3) if u > 0,
—u P+ Mf(z,u) € L'({u > 0}),

and
/ VuVp = / (—u_ﬂ + Af(z,u))p YoeC5R).
Q {u>0}

Let us define the distance function to the boundary as
0(z) = dist(z, 09Q).
The following result was proved in [2].

Theorem 1.2. For any A > 0 there is a unique mazimal solution uy to (1.3).
Moreover there exists \* € (0,00) such that for A > X* the mazimal solution uy is
positive in Q, belongs to C(Q) N CL*(Q)V0 < p < 1 and satisfies

loc

ad <1y <bd in Q, (1.4)

where a, b are positive constants depending on 2, A and f.
For 0 < X\ < X\* the mazimal solution @y has regularity C(2) N C’llo;y(Q) with
_1-p

Y =175, and for 0 <A < A" the set {@) = 0} has positive measure.

The first result in this work asserts that @, is C* up to the boundary.

Theorem 1.3. The mazimal solution @y of (1.3) belongs to C17 () with v = %
Moreover, if X > \* then iy € CY18(Q) and ux € CL*(Q)Vu € (0,1).

loc

Remark 1.4. Let us mention that the exponent v = % is the best possible for
the case A < A\*. In the case A = A\* there are examples where the behavior of the
maximal solution near the boundary is ¢ %ﬁ, see [2, Example 2.5]. When A < A\*
the maximal solution vanishes somewhere in the domain, and its behavior near the

free boundary FB = QN d{ux > 0} is of the form dist(x, FB)%ﬁ (see [8]).

The case A > A\* is simpler from the point of view of the regularity of the maximal
solution. In this case, as a consequence of (1.4) we have |Aiy| < C§5~P. We can
then immediately apply a result of Gui and Lin [7] to conclude that @) € C*'=5(Q)
(see Lemma 2.1) and the exponent 1 — 3 is the best possible in this situation.

The difficulty in proving Theorem 1.3 stems from the fact that in general the
maximal solution has a free boundary when A < A*, which can touch the boundary
of the domain. This actually happens in some cases, and in Sec. 5 we construct
different examples where the following situations occur: the support of the maximal
solution is compact; the support of the maximal solution “touches” 92 but is not
the entire domain; and the set where the maximal solution vanishes is compact.

In these examples f depends on z, but when f = f(u) we can say something
about the support of @y. For example, it can not be compact (see Sec. 5 for details).

The proof of Theorem 1.3 that we present here relies on the approach first
developed by Phillips [8], and then applied to obtain the interior regularity for
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uy >0

Fig. 1. Possible situations for the support of ).

(1.3) in [2], as well as on some estimates of Gui and Lin [7]. Using other techniques
Giaquinta and Giusti [5, 6] (see also [4]) proved interior gradient estimates for local
minimizers of general nondifferentiable functionals, which include the functional ®
defined in (1.5) below. It is not clear though that those results can be applied to
our situation when A < A*, which is in some sense the interesting case, because it
is not known whether or not @) is a local minimum of ® in this range of A. The
second result is related to this variational property of @y in the range A > \*.
Consider the cone K of nonnegative functions in HZ(€2)

K ={uc H}(Q)|u >0 ae. in Q}

and for u € K let
1 ul=h
D (u) :/ §|Vu|2 + =5 AF (z,u(x))dz, (1.5)

where F(z,u) = [ f(x,t)dt.
Our second result is the following:

Theorem 1.5. For A\ > My is a strict local minimum of ® on K in the H'
topology, that is, there exists p > 0 such that for v € K with 0 < ||u — @x|| g < p,
we have

D(uy) < (u).
The strategy in the proof of Theorem 1.5 consists of the two following steps:

(1) first we show that u, is a strict local minimum of @ in the C! topology, which
makes sense because of Theorem 1.3.

(2) Then we prove that a local minimum of ® in the C'! topology is also a local
minimum in the H! topology.

The reason for the first claim is that the first eigenvalue for the linearization of
(1.3) at @y is positive for A > A*, that is

A(ay) >0 YA> A", (1.6)

where A(u) is given, for a function v > 0 a.e. in €2, by

Au) = / Vel — (Bu= 1 Afu(, )

Hcﬂ\le—
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(see [2, Theorem 2.3]). Using (1.4) and (1.6) we prove in Lemma 4.1, Sec. 4, that
for A > \* 1y is a strict local minimum of ® in the C1(£2) topology.

The second step is inspired by the work of Brezis and Nirenberg [1] where
they proved that for a class of functionals on H{, a local minimum wg in the C*
topology is also a local minimum in the H! topology. The basic point in their
proof, is to obtain estimates in C1*(Q) for the minimizer of their functional in a
ball {ull|u — uo||g1(q) < €} that are independent of . The class of functionals in
their work does not include @, as defined in (1.5).

In our case, instead of minimizing ® in a ball {ul||u—ux|| g1 (o) < €} we consider
a penalized functional:

We(u) = ®(u) + Pe(u),

where P: is the penalization and is given by

Pt =5 ([w-np —e)+2

This functional depends on A but for convenience we will omit this dependence
from the notation. The infimum of ®. over K is always attained. If @) is not a
strict local minimum of ®, then for any € > 0 there exists a minimizer u. € K of
W, with u. # @) such that

U, (us) < ®(a).
(see Sec. 4 for details). The key result we will derive in Sec. 3 is

Theorem 1.6. Let A > 0 be fixed and for € > 0 let u. be a minimizer of V.. Then
there exists C' > 0 independent of € such that

[uellcr@ <€ (1.7)

1—
1+

Iy

where v =

ey

Remark 1.7. We note that this theorem holds for any A > 0 fixed (actually, one
can let A to vary as long as 0 < A\ < \g with Ay < oo fixed, and then the constant
in (1.7) depends on )\g). As a consequence, if A > 0 and the maximal solution @y
is a local minimizer of ® in the topology of C!, then it is also a minimizer in the
topology of H'. We don’t know in general, whether for A < A\* the maximal solution
iy is a local minimizer of ® in the C* topology.

In summary, in Sec. 2 we prove Theorem 1.3. Section 3 is devoted to the esti-
mates for the minimizers of ¥, and establishes Theorem 1.6. We give the necessary
arguments to complete the proof of Theorem 1.5 in Sec. 4. Finally in Sec. 5 we give
some constructions of maximal solutions.
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2. Estimates up to the Boundary for the Maximal Solution

This section is devoted to the proof of Theorem 1.3. Throughout this section u := @
denotes the maximal solution of (1.3). We also use the following notation
2

a:m,

_ _1-5
Y=o T 1+3’
sothat 1 <a <2,0<vy<1 (recall that 0 < § < 1).
We will always use the notation §(x) = dist(x, 92), whereas the distance from
z to any set A will be denoted by dist(z, A).
Since ) is smooth, there is rq > 0 (possibly small) so that for p € Q and r €
(0,70) one can construct an open connected set D, , with the following properties:

(a) B3r/4(p) naQc Dp,r C Br(p) n Q;
(b) the scaled domain
~ 1
Dp,r = _(Dp,r _p)
r
has smooth boundary, with smoothness independent of p and r.

We will write D = D,,,- when there is no confusion about p and r. We use also
the notation

mD:@Dn(%mLmO,

9D = 0D\ o, D.
Consider p € Q, r € (0,r9) and translate so that p is at the origin. Given u a
solution of (1.3),we will work with the rescaled function
a(y) =ru(ry) YyeD.
Then @ satisfies
{ —Al = xqas0y (~a 7 + 27 f(ry,r*u(y)))  in D

- 2.1
0 on 01D . @1)

=g
Il

The next lemma is essentially proved in [7] (see the proof of their Theorem 1.1).

Lemma 2.1. Let U be a bounded open set with smooth boundary. Consider k :
Q) — R a measurable function such that

sup |k(z)| dist(z, 0U)P < oo,
zcU

where € (0,1). Let v solve
Av=Fk inU,
v=0 ondU.
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Then

vl cra-smy < C sup |k(z)] dist (x, OU )P . (2.2)
zeU

Remark 2.2. When U = Dp)T the constant C' appearing in (2.2) can be chosen
independently of p € Q and r € (0, 7).

The result that follows is an adaptation of [8, Theorem II]; for completeness we
present its proof below.

Lemma 2.3. There exist constants cg, c1 > 0 depending only on Q) and ( with the
following property. Let p € Q, v € (0,79) and D = 1(D,, — p). Let ug € H(D),

T
][ uUg > Co -
oD

Then there exists wgy € Hl(D) satisfying

ug > 0 and assume that

Awg > waﬂ in D,
N (2.3)
Wo = Ug on aD,
and
wo(y) > 1 <][ ) u0> dist(y,@D), VyeD. (2.4)
oD
Proof. Let

6(y) = dist(y, dD) ,
and let h be the solution to
Ah=0 inD,
{ h=wuy ondD.

By Hopf’s lemma and the strong maximum principle there is a constant ¢ > 0
(which depends on the smoothness of D, but that can be chosen independent of p,

r) such that
h>c<f~m>ginb. (2.5)
oD

—Av
v

By Lemma 2.1 v € CY1=A(D), and therefore there exists M > 0 (independent of
p, ) such that

Now let v solve
=6 inD ,
in 0D .

Il
o S

v< M inD. (2.6)
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Let m = f, - uo, set € = $1% and define

wy =h —ev.
Then wq satisfies
woy > clmg
with ¢; = &/2. Indeed, by (2.5) and (2.6)
wo > emo —eM$
We now check that if m is suitable large, then Awy > wg A , which is equivalent to
- cm A\ 1+1/8 em\ /8
—- < (==
5+(2M) v= (QM) h

In fact, on one hand

S+ (o) o< (14 (2 ). 1)

and on the other
cm 1/:3 cm 1/5 ~
— > — C . .
<2M) h=z (QM) emo (2:8)
By (2.7) and (2.8) it is enough to show that

(Em)1+1/ﬁ (Em)1+1/,8

1+ 21+1/BpNf1/B — 91/B)\fL/B

which is the same as

(Em)lJrl/ﬁ
1< —
— 91+1/Bpf1/B
This in turn holds if m > ¢y where
2, [1/(B+1)
Co = EM . O

Before proceeding we make an important observation.

Remark 2.4. The maximal solution to (1.3) is also characterized as the maximal
(pointwisely) function in H'(Q) satisfying

{ —Au + X{u>o}U7’6 < Af(z,u) inQ,

u=20 on .
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Now we can use a scaling argument and the previous lemma to obtain:

Lemma 2.5. Let u denote the maximal solution to (1.3). Let p € Q, r € (0,79)
and D = D, .. If

][ u > cor?, (2.9)
oD

then

(@) > o1 ( ]QD u) dist(z,0D)/r, Yz e D. (2.10)

Proof. By translation we can assume that p = 0. Consider D = %D and the
rescaled function
a(y) =r “u(ry), yeD.
Then @ is the maximal solution of the rescaled problem
—Aw = Xgwsoy(—w P + 27 f(ry,rw(y)))  in D, (2.11)
w=1u on dD. '

We can apply Lemma 2.3 (with g = @) provided fa 5@ > co which is equivalent
to (2.9). Thus, if (2.9) holds we conclude that there exists wg satisfying (2.3) and
(2.4). Since @ is the maximal solution of (2.11) we deduce that

a(y) > wo(y) > e <]£D u> dist(y,0D), Vye D.

Rescaling back we obtain (2.10). O

We state without proof a basic elliptic estimate that will be used in the sequel.

Lemma 2.6. Let p € Q, r € (0,79) and consider D = D,,. Suppose that
dist(0,0:D) < 1/4 and suppose that u; € HY (D) satisfies

—Au; <h in D,
u =0 ondD.
Then

() < Caist(y.00) (Wil + f frl) e Bugs
D

The constant C' can be chosen independently of p and r € (0,70).

The next two lemmas provide the essential steps toward the Holder estimates
for the gradient of u. Roughly speaking, the behavior of the solution u near the
boundary can be of two types: either u ~ § or u ~ §%. The first lemma deals with
the case u ~ ¢ near J§2, which is expressed concretely as condition (2.12) below.
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Lemma 2.7. There exist positive constants 61, Cy such that if p € Q and

3(p) < Bru(p)t/® (2.12)
then
u(p)
Du <Ci——=.
Du) < G5
Moreover, if p, ¢ € Q and in addition to (2.12) we have
1/(a—1)
U(p)>
gl <o, (L2 , 2.13
p-d <o (5 (2.13)
then

|Du(p) — Du(q)| < Cilp — 4|7,
61 and C1 depend only on Q, B and \||f(z,u(x))| cc-

Proof. Define
L= AMf(z,u(@))]lo - (2.14)

Let C be the constant from Lemma 2.6, and choose
1/(a—1
. ( ) u(p) ) /(a=1) |
C(co + L)d(p)

3(p) < (67 Cleo + L))/ >V

Using (2.12) we see that

By choosing 0, small one gets

é(p) < 2. (2.15)

Translating we can assume that p is at the origin. Let

a(y) =r"“u(ry), yeD,
and note that @ satisfies (2.1). Using Lemma 2.6 (note that dist(0,0D) < 1/4 by
(2.15)), we conclude that

i(y) < Cdist(y,0,D) (rz‘*L + ][ _ u> Yy € Bys.
oD

In particular, at y =0

1(0) - —a -
T50.0.5) <C <r2 L+ ]éﬁ u) ) (2.16)
But
u(0) u(p)
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Combining (2.16) and (2.17) we see that

][ > ¢, (2.18)
8D

(we can assume that ro < 1, hence r < 1). By Lemma 2.3 we thus find that

a(y) > e <]£D u) dist(y, D), YyeD. (2.19)
This in combination with (2.18) implies that
a(y) > crcodist(y,dD), Vye D. (2.20)
Write @ = h 4 v where h is harmonic in D and h = @ on dD. Then
—Av = Xqasoy (—7 P + X2 f(ry,r*a(y)))  in D,
{ v=20 on dD.
Using (2.20) we can apply Lemma 2.1 to conclude that
<C.

ancl,l—ﬁ(g) =

To estimate h, observe that when we take y = 0 in (2.19) we obtain

][ i < a(0) _ Cleo+1)
ob  c1dist(0,0D) c1 .
Hence by standard estimates for harmonic functions
~ 1
Hh’ch(Bl/gmﬁ) SC7 Q: ;Qy

and thus

2

”ﬁHCl,l—B(Bl/QﬂQ) S

The definition of @ immediately yields

_ -1z a1 _ o up)
|Du(0)| = r*~1Da(0)| < Cro~! = C’lm.

If g € Q and g = ry with |y| < 1/2, which is the same as

1 u(p) ey
i s L () 2.21
p—gql<r/2=3 (C(cO +L)6(p>> ’ o
we have
|Da(0) — Dia(y)| < Cly[*=7.
Hence

L\
Duly) = Duta)] < et () < opp gt
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This finishes the proof of the lemma (by taking ¢; smaller if necessary, so that
(2.13) implies (2.21)). m|

The next lemma deals with the situation u ~ §% near €.

Lemma 2.8. There exists a constant Co > 0 depending only on M| f(z,u(x))| o,
Q and B, such that if p € Q and

3(p) > O1u(p)'/* >0, (2.22)
then
|Du(p)| < Cou(p)=/2, (2.23)

Moreover, there is 02 > 0 (02 = 02(A|| f(x, u(2))|l o, 2, B)) such that if ¢ € Q and in
addition to (2.22) one has

Ip— q| < Oau(p)/*,
then

|Du(p) — Du(q)| < Calp —q|". (2.24)

Proof. Let L be as in (2.14) and

. ( _u(p) )”a
C(co+ L) '
Translating so that p = 0, let 4(y) = r~*u(ry). Note that (2.22) and the choice of
r implies that

8(p) > 101 (C(co + L))V,
Let
p=01(Clco +L)Y* > 0.

Then B,, C €. By taking 6, smaller, we can assume that p < 1.
Elliptic estimates imply that

a(y) < C (rQ_O‘L +][ ﬁ) , YyeB,s.
B,

In particular, at y = 0, we find

¢ (L i JéB u) > @(0) = r~"u(p) = Cleo + L)
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Hence
][ a>co > cop”™ - (2.25)
4B,

Using Lemma 2.5 (applied to @ and D = B,,), we find that

u(y) > a1 <][ ﬁ) dist(y, 0B,)/p > cicodist(y,0B,)/p Yy € B,. (2.26)
aB,
As in the previous lemma we write % = h +v where h is harmonic in B, and h = @
on 0B,. Using the lower bound (2.26) on @ and Lemma 2.1, we again find that
[vllgri-sp,) < C-
To estimate h we only need an upper bound for £, B, U which we get from (2.26)
by setting y =0
Cl][ ﬂgﬂ(O): (Co-l—L).
aB,
Thus we establish
Hﬂ”cl,l—ﬁ(gp) < C.
As before, (2.23) and (2.24) follow immediately observing that y = ¢/r satisfies
ly| < pif
p—al < pr = Gau(p)"/*. O

Proof of Theorem 1.3. We first show that u € C17(Q). Let p, ¢ € Q, with p # ¢
and u(p), u(q) > 0. We need to consider several cases.

Case 1. Suppose §(p) < 01u(p)*/® and §(q) < O1u(q)Y/. If

u(p) u(q))"
P—Q|<91max<m»@> ,

by Lemma 2.7 we immediately deduce |Du(p) — Du(q)| < Clp — ¢|”. Otherwise,
again using Lemma 2.7

|Du(p) — Du(q)| < [Du(p)| + [Du(q)|

Case 2. Suppose §(p) > 61u(p)*/® and §(¢) > 61u(q)'/ . This case is analogous to
the previous one, but one uses Lemma 2.8 instead of Lemma 2.7.
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Case 3. Suppose §(p) < 01u(p)"/® and §(q) > O1u(q)Y/ . If either
Ip = q| <01 (u(p)/5(p)"/ >V (2.27)
or
Ip — q| < 6zu(q)"/*, (2.28)

hold, then Lemma 2.7 or Lemma 2.8 can be used to deduce that | Du(p) — Du(q)| <
Clp — q|7. If neither (2.27), (2.28) hold, then

|Du(p) — Du(q)| < |Du(p)| + |Du(q)]

< 01@ + Cou(q)=P)/2

4(p)

c, Oy
< — —q|7.
< [91‘11 + 93] lp — q|

Finally observe that for A\ > A*u = u, satisfies (1.4). Therefore applying
Lemma 2.1 we conclude that u € C*~7(Q) and since Au € L (Q) we also have
u € CLH(Q) for all p € (0,1).

This completes the proof of Theorem 1.3. |

3. Global Estimates for the Minimizers of ¥,

In this section we let u. denote a minimizer of ¥, and we let u = uy.

We will prove Theorem 1.6 by showing that w. satisfies the same property
derived for @ in Lemma 2.5, with constants independent of . This will be done
in Lemma 3.4 below. Then the same arguments as in Lemmas 2.7 and 2.8 and
Theorem 1.3 apply to u. and this will establish Theorem 1.6.

We start with some observations.

Lemma 3.1. Forall p € K

/QVueVsoJru;%Z /Qf(x,us)so—Ms/Q(us—ﬂ)so, (3.1)

4 +
M€:—2</|UE—U2—€> .
€ Q

In (3.1) uZ? is regarded as oo if u. = 0.
If p € K and ¢ < Cug for some C > 0, then we also have the opposite inequality:

/QVUEV@ + u;ﬁgp < /Qf(x,us)gp — M, /Q(us —u)p. (3.2)

where

Note that since ¢ < Cu, the term uZ"y is integrable in Q.

Remark 3.2. Since in formula (3.1) uc(z)™? is oo if us(z) = 0, the left hand side
of that inequality can be infinite. To prove (3.1), we use ¥ (u.) < W (u. + tp) for
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any t > 0. The proof of (3.2) exploits ¥.(u.) < U, (us — tp) for any ¢ > 0 small,
noting that u. —ty € K for ¢ small if ¢ < Cu,.

Lemma 3.3. u. < in €.

Proof. Let
gu(@,u) = —u™P + Af(z,u) — M(u—u(z)),
so that

%(x,u) =pu"t P 4+ AMulz,u) — M.

Let ¢ = (ue — @)™ € K. The goal is to prove that ¢ = 0. Since % solves (1.1) we
have

[ vave = [ g (33)
Q Q
Note that ¢ < u. and therefore we can use (3.2) to obtain
/ Vu Ve < / g (T, ue)p . (3.4)
Q Q
Subtracting (3.3) from (3.4) yields
L 196l < [ (ans @) = g . ) (35
But
[1vel > [ 20 (0,02 (39)
Q “Jo Ou 7

by (1.6). So, from (3.5) and (3.6), we deduce that

0 [ an o) = aa, (o.0) = B2 ) e — ) e — )

But the integrand above is negative if u. > % because gy, is strictly concave, and
therefore we conclude u. < u a.e. in €. O

Lemma 3.4. Let p € Q, r € (0,79) and D = D, .. Then there exists co, c1 > 0
depending only on Q, B and M| f(z,4(x))||c such that if

][ ue > cor, (3.7)
oD

then

ue(x) > 1 <][ u5> dist(z,0D)/r, VzeD.
oD
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To prove this lemma, we shall construct a solution to a nonlocal problem.

Lemma 3.5. Assume the hypotheses of Lemma 3.4. For v € HY(Q), consider

M(v):;%(/g|v—u|2—fs>+.

Then there exists w € HY(Q) with w = ue in Q\ D, ue < w < @ in §, which
satisfies

—Aw+w P = f(z,w w)(u —w mn
{ Aw + [z, w) + M (w)( ) D, (3.8)

w = Ug on 0D

and
w(z) > o ( ]éD u) dist(z,0D)/r, Wz € D. (3.9)

Proof. For m > 0 consider the problem
—Aw+w P = f(z,w) + m(@—w) in D,
W = Ue on 9D .

Let w the function obtained in Lemma 2.3 properly rescaled to be defined in D,
with w = u. on dD. We recall that w satisfies Aw > w~? and

w(z) > ¢ <][ u€> dist(z, D) /r. (3.10)
aD
We will establish the following properties:

(i) For any m > 0 there is a unique maximal solution w,, of (P,,) such that
W < Wy, < U
(ii) w., is nondecreasing with respect to m.
(iii) The map m € [0,00) — w,y, is continuous in H'(D).

In fact (i) follows from the method of sub and supersolutions, noting that w is
a subsolution and @ is a supersolution. Observe that by the maximal property of @
we have w < u.

Property (ii) follows easily from the definition of w,,.

For (iii) suppose that my, > 0 is a sequence such that mj — m and let wi = wy,, .
Since w < wy < @ we have from the equation (P, ) that Awy is bounded in
L2 (D), and hence wy, is bounded in C’llo’ca(D). It also follows from (P, ), the lower
bound wy, > w, (3.10) and Hardy’s inequality on the domain D, that wy, is bounded
in H'(D). For a subsequence (denoted the same) wj, converges in Cllof‘(D) to some
function w € H'(D) with w < w < #. Passing to the limit in the equations (P, )
we see that w satisfies (Pp,) and it only rests to verify that w is the maximal solution
to that problem. To accomplish this, we observe that the functions wy satisfy the
stability property

[ 00 4w ~mg? < [ 1962, o€ GD).
D D
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Hence w satisfies
[ @ few) —m)g? < [ 96, Ve CRD)
D D

and this property, together with the fact that the function —u =% +\f(x, u) —m(u—
u(x)) is concave for a.e. x implies that w is indeed the maximal solution to (P,,)
(the proof of this is standard, and it closely follows that of Lemma 3.3). Finally
note that since wy, is bounded in H!(D) it converges weakly on H!(D) to w. Thus,
to prove that w — w in H*(D) it suffices to verify that ||wi| g (py — |w| g (p)-
But from the equation (P, ), we see that

0 _
/ |Vwk|2:/ ug%—k/ —w,i B LN f (2, wi)wi + ma (i — wp)wg . (3.11)
D oD v D

Since wy — w in H'(D) weakly and u.|sp € H'/?(0D), we have that

/u%q/ .2
aDEaV aDEaV.

Hence, the right hand side of (3.11) converges to

[ ouSes [ o s+t - = [ [vul.
op OV D D

To complete the proof of this lemma, we extend the functions w,, to € by setting
W, = ue in Q\ D. Now consider the map m € [0, 00) — M (wy,). By (iii) this map
is continuous. We also have that this function is nonincreasing, because w.,, < @
and (ii). We conclude that there exists m > 0 (unique) such that m = M (w,,). O

Proof of Lemma 3.4. We shall show that by taking ¢ larger if necessary, under
condition (3.7) the function u. cannot minimize W, unless it coincides with the
function w constructed in Lemma 3.5. For this purpose, let us write

1
V() = [ 3190 = Glavue) + Pufu).

where

ul—ﬁ u
G(z,u) = — + )\/ flz, t)dt.
1-p 0
Writing
1 2 1 2 1 2
§|Vu5\ = §|Vw\ + §\V(u€ —w)|* + VwV (u, — w)
we see that

U, (ue) = ¥ (w) + % /Q |V (u: —w)|? + /Q VuwV (us —w)

+ / G(z,w) — G(z,u:) + P-(ue) — Pe(w). (3.12)
Q
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Multiplying equation (3.8) with u. —w and integrating by parts on D we obtain

/ VoV (u. — w) = / (g(@,w) — Mw)(w — @) (e — w) | (3.13)
D D
where

g(z,u) = —u P + \f(z,u) = Gyu(z,u). (3.14)
But w = u. on Q\ D, so combining (3.13) and (3.12) we get

V() = We(w) + 5 [ V=) + [ Glaaw) + oo w) e —w) - Glou)

T Puus) — Pow) — M(w) /Q (w — ) (e — w). (3.15)

Observe now that the derivative of P. at w in the direction of u. — w is given by

DP.(w)(ue —w) = M(w) /Q(w —u)(ue —w).
Since the function P is convex, we have
P.(w) + DP.(w)(ue —w) < Pe(u.), (3.16)
and combining (3.15) with (3.16), we obtain the inequality
V) > We(w) + 5 [ (V00— w) + | Glaw) + gl w) (e = w) ~ Glowe).

We will show now that by taking co larger if necessary, condition (3.7) implies that

/QG(x,us) — G, w) — g(z,w)(u / 1V (e — w) (3.17)
For this purpose we translate so that p is at the origin and rescale our functions
tc(y) = r~“uc(ry),
w(y) =r"“w(ry),
fory e D = 1D. A computation then shows that (3.17) is equivalent to the estimate
| Gl = Gat) = gta i)~ ) < 1 [ VG~

where the functions G, § are given respectively by
ul=h
-8

g(ya ’LL) = éu(ya u) = _u_ﬁ + )\’I“Q_af(Ty, rau) .

+)\r2*a/ flry, rt)dt
0

Let us define
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and observe that condition (3.7) is equivalent to m > c¢o, and that estimate (3.9)
becomes

w(y) > eymdist(y, D) Yy e D. (3.18)
Let us write
G(x,ic) — G, ®) = §la, @) (G — @) = Aly) + B(y),

where

We claim that

A(y) < Om~ ' Pdist(y,0D) P (a. —w)*> Vye D, (3.19)
for some C' > 0 depending only on ¢;. Indeed, if 4. < %ﬁ), then
wl P
Ay) < =
v) < 15 3

< Co P (. —w)?

and using (3.18)

A(y) < Cm~ 1 Pdist(y, dD) 1P (a. — w)?.
If, on the contrary, 4. > %ﬁ) then
A(y) < CB(L+ B)E(y) ™" (e — b)?

where £(y) is in the interval with endpoints @.(y) and w(y). But then, using (3.18)
we find (3.19).
Now we estimate B(y). When @, < 3w we have

B(y) < fly, @) (@ — ac)

< P20 (o, ()o@ — )
< P20 @)oo 2 (0 — )

< Cm™ 0| f (, w(@))[|oo dist(y, OD) (@ — e)? .
When @.(y) < 2d(y) we estimate

B(y) = fuly,£(y)) (@ — @) (3.20)

where £(y) is in the interval with endpoints @.(y) and w(y). Using that f is concave
in v and that f > 0, we have

Fv:9)

fuly, &) < ;

(3.21)
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> 4(y) (3.18) implies that &(y) > ey mdist(y,dD).
1

21) we obtain

Observe that since ac(y)
(3.

Hence, from (3.20) and
B(y) < Cm™ 'dist(y, 0D) ™" (& — a.)?,

where C depends only on ¢1, ||f(z, w(z))||e and || f(z, ue(x))]|co- Thus

B(y) < Cm~Mist(y, 8D) (w0 — @.)?> VyeD. (3.22)
Putting together (3.19) and (3.22), we find (for m > 1)

/f) Gla,0i.) — Gl @) — G, ) (7w — 1F) < Cm—t /D dist(y, 9D) =8 (1. — )2
By Hardy’s inequality
[ G = Glai) ~ (e @) — @) < Cm [ V(@ -,

For m large enough this yields (3.17). |

4. Proof of Theorem 1.5

Lemma 4.1. For A > \*, uy is a strict local minimum of ® in the topology of
CH(Q).

Before the proof of this lemma we need some observations. From now on we will
use the notation u = uy.

Remark 4.2. If A > \* then there exists p > 0 such that
[ 196 —gutwigt = [ 1V e @), (4.1)

where g(x,u) is given by (3.14).
Indeed, using (1.4) and f,(z,u) < f(x,u)/u, we see that

_ C
gu(xvu) < 51—""5

for some C' > 0. Hence, using Hardy’s and then Young’s inequality we find

1
/gu(az,ﬁ)g@z < 5/ |V<,0|2+C’/<p2 Yo € C5°(Q).
Q Q Q

Now choose
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(recall that A(@) > 0). Then for any ¢ € C5°(£2)

2#/ gu(z,0)p* < u/ \V@\2+2u0/ 0
Q Q Q

— i [ IVoP + @1 -20) [ . (42)
Q Q
On the other hand, by definition of A(@)
[ 196 — a0 = A [ o (43)

and multiplying (4.3) by 1 — 2u we find

/Q Vol? - gul, 0)¢? > —2u / gul, W) + A@)(1 — 2) / &+ 2 / Vol

> u/ Vel
Q
by (4.2).

We also need the following property:

Lemma 4.3. Let 0 < m < 2. Then for any e > 0 there is § > 0 such that if E C §)
is measurable and |E| < 0, then

[ & <e [ wer veecr.

Proof. By contradiction, if the statement of the lemma is not true, then there is
some € > 0 such that for all i = 1,2,..., one can find E; C Q with |E;| < 1/i and

some @; € C§° () such that
L / Vil

We can assume that ||¢;|z; = 1 and hence (for a subsequence) ¢; — ¢ in L?. But
then, using Hardy’s inequality

2 2m/2 1-m/2 1-m/2
L E L )

But ¢; converges in L?(£2) and therefore there is some ¢ € L'(Q2) such that (for a
subsequence) ¢? < @. Hence by dominated convergence [, @7 — 0 as i — 00, a
contradiction. O

Proof of Lemma 4.1. Let p > 0 and v € C*(Q) with |lv — ul|c1q) < p- Note
that since @ satisfies (1.4), for p > 0 small v € K.
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Expanding ® around @ and using (1.3) we find

d(v) = / |V (v —gu(x,ﬁ)(v—ﬂ)2
- B2y — )3
B+ 1) /Q )

+ /Q/71 (v —=7)(fulz,T) — fu(z,0))drdz, (4.4)

where £ = £(x) is in the interval with endpoints @(z) and v(x). Using (4.1) combined
with (4.4) yields

®(0) > 0@+ [ (Vo= +gAG+1) [ €2y

+ / / (v —=T)(fulz,T) — fulz,w))drde. (4.5)
oJa
Since @ satisfies (1.4), for p > 0 small, we have the estimate
(@) 2 ()

for some C' > 0 independent of p. Combining this fact with |v(z) — a(z)| < Cpd(z)
we have

/g P2y — u|3<Cp/Q(51+ﬂ) <cp/ V(v —a)?. (4.6)

We use now Lemma 4.3 with ¢ = ¢ (¢ > 0 to be chosen below) and m =1 to
find a §; > 0 such that if £ C Q and |E| < 67 then

2
[ 5 <o [1vep veecr@. (4.7)
E Q
Using again (1.4) we can find € > 0 small so that
Hz € Qlu(x) < e}| < 81/2, (4.8)
and also
1
maxu < —
Q e’
On the other hand, since for a.e. x € €, f,(x, -) is continuous on (0, c0), the sequence

h](x) = sup{|fu(x,77) - fu(x70)| ‘7779 € [57 1/5]3 |77 - 0| < 1/.]}
converges to 0 as j — oo for a.e. x € Q. By Egorov’s theorem there is a measurable
subset F' C €2 with

|Q\ F| < 61/2 (4.9)

such that h; — 0 uniformly on F'. Therefore, there is some d2 > 0 such that for all
x € Fandalln, 0 € [e,1/¢], [n — 0] < d2 one has

|[fulz,n) — fulz,0)] <e.
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Let B ={u<e}U(Q\ F) and split the integral

/Q/uv(v—T)(fu(x,T)—fu(x,u))dex:[E..._k/Q\EW.

We first estimate the integral over E, using the fact that f,(x,u) < f(z,u)/u and

u>ad, d <Cv
/E/uv(v—f)(fu(x,f)—fu(x,u))drda: gc/E@'

Note that |E| < d; by (4.8) and (4.9) and therefore we can apply (4.7)
/ / (W = 1) (ful@,7) — fulz, @))drde| < C’a/ V(o — )2 (4.10)
EJa Q

The integral on 2\ FE can be estimated as well, if p > 0 is small enough so that
lv(z) — a(x)] < da:

§05/9|V(11—ﬂ)|2. (4.11)

/Q\E /u v(v = 7)(fulz,7) — fulz,u))drdx

Hence, putting together (4.5), (4.6), (4.9) and (4.10) we obtain, for p > 0 small
B(v) > (@) + (1 — Cp— Co — Ce) / V(o — ).
Q

We choose first ¢ > 0, then € > 0 small and then py so that for 0 < p < pg and
v —allc1q) < p we have

o) 2 o)+ § [ [V - o),
4 Ja
which proves the lemma. O
Remark 4.4. The proof of Lemma 4.1 is simpler if one assumes that f is C? with
respect to u and satisfies

sup | fuu(z,u)| < o0.
z€Q,u>0

Indeed, in this case one can estimate

/Q/:(” = 7)(fulz,7) = fulz,w))drde

<C sup |fuulz,w) / v —af?
0 Q

zeQu>
< cp/ V(o — )2
Q

Proof of Theorem 1.5. We prove this theorem by contradiction. Let Cy be such
that [|w||7. < Collw||3,, Yw € Hg. If @ is not a strict local minimum of ® in the H*'
0

topology, then for all € > 0 there exists v, € K, with 0 < |lve — @[|3;, < &/Cp and
0

B(v.) < (a).
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Let u. be a minimizer of ¥.. Then
Ue(ue) < ¥(ve) = P(ve) < O(a),
because ||v. — @l|2, < e so P.(v.) = 0. If u. = u then
min U, = V. (i) = (1) > @(v:) = Ve (ve),
and we replace u. by v.. This shows that for all € > 0 there exists a minimizer u.
of W., such that u. # .

Clearly u. — 4 in L?*(Q) and by Theorem 1.6 u. — @ in C*({). But this and
D(u.) < U (ue) < @(u) contradict Lemma 4.1. m|

Remark 4.5. Without using Lemma 4.1 one can still show, using a standard
argument, that for A > A*@y is a local minimum of ® on K in the C! topology,
and therefore (using Theorem 1.6) also a local minimum of ® in the H! topology.

Indeed, following [1], we first construct a subsolution U > 0 and supersolution
U to (1.1) such that U < U. Let ¢ solve

—A(=1 inQ,
(=0 onoQ.
Then if K > 0 is large enough U = K( is a supersolution. We get a positive
subsolution U by taking U = ) with A’ € (A*, \). We also see that neither U nor

U are solutions to (1.1). Then the same approach as in [1] shows that there exists
a minimizer ug of ® in the class

{ueH&\QSuSU},

and that wug is a local minimizer of ® in the C! topology.

We claim that 4y = @. Indeed, ug is a solution of (1.1) and since it is local
minimizer of ® it is stable. Then by [2, Theorem 2.3] (or an argument similar to
the proof of Lemma 3.3) we conclude that ug = a.

5. Some Examples

In this section we exhibit different examples where the following situations occur:
Example 5.1. u) # 0 and supp(ay) is compact.

Example 5.2(a). supp(@,) is not compact and not equal to €2, and the behavior of
@ near the boundary of the set w = {z € Q|ax(z) > 0} is of the form dist(x, Ow)*.

Example 5.2(b). This a variation of the previous example, in which supp(@y) is
not compact and not equal to 2, but Vuy(z) # 0 for some points of 91, that is
) ~ & near some parts of 9€).

Example 5.3. The set {z € Qu(z) = 0} is compact.
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We recall that if v :  — R then its support, which is denoted by supp(v), is
defined as the closure in Q of the set { z € Q|v(z) # 0}.

In all these examples the function f depends on x (and it turns out that is
independent of u). In contrast with these constructions, when f = f(u) we can rule
out some of the previous situations.

Lemma 5.4. Suppose that f = f(u). Then supp(ux) can not be compact unless
uy = 0.

If, in addition to the hypothesis f = f(u), 2 is a ball, then uy =0 for 0 < A < \*
and uy > 0 in Q for X > \*.

Putting together some of the above constructions, we obtain the following.

Example 5.5. Take f = xp, and 2 the ball B with R > 1 sufficiently large.
Then there exists 0 < Ag < A* such that:
uy =0 for A < Ao,
Uy # 0 for Ao <A< A",
ay>01in Q, for A* < \.
For the constructions we need some preliminary results. We first mention a basic

observation (a proof can be obtained from the results in [3]).

Lemma 5.6. Let Q, U be bounded, smooth domains with Q C U. Let u be a solution
of (1.3) in the domain Q0 and define

u(z) ifreQ,
v(z) =
0 otherwise .

Then v is a subsolution of (1.3) in the domain U.

Next we show how to get a maximal solution with compact support.

Lemma 5.7. Let f € L*®(R"™), f > 0 with compact support. Then there exist
R1 >0, Ry > 0 such that for all R > Ry the mazimal solution to

{ —Au = xpusoy(—u + f(z)) in Bg,

(5.1)
u=0 on OBRr,

has support contained in Bp,.

Proof. Let p >0, C; > 0 such that f < Ci1xp,.

We claim that it is sufficient to establish the result with f = C1xp,. In fact, if
v is the maximal solution with f replaced by C1xp,, then the maximal solution u
of (5.1) satisfies u < v so that supp(u) C supp(v) C Bp,.

We assume now that f = C1xp ,- Take a sequence Ry — oo and let uy denote the
maximal solution for the problem (5.1) in the domain Bpg, . Observe that uy, is radial
(the maximal solution is unique), so that supp(uy) is a ball. If the conclusion of the
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lemma fails, then for a subsequence (denoted the same) meas(supp(uy)) — co. We
can assume that Ry, is the radius of the ball supp(@g). Define

vi(x) = R, “ur(Rix) ,
so that it satisfies
—Avyy, = —U];ﬂ + fr in By,
v > 0 in By,

ka:O OnaB],

where fi(z) = Rifaf(ka). Integrating the equation in B; we find

avk —B R,
O S —/ _— = —/ v + R nt « f .
0B aV B4 k k Rn

So we deduce on one hand that

/v;ﬁ—>0 as k — oo. (5.2)
By

But on the other hand there exists C > 0 independent of k such that
vp(z) < Cé(x) Vo€ Br\Byy. (5.3)
Indeed vy, < (x where (i solves

_ACk = fk in Bl ,
(=0 on 0B; .
Since the functions fj are bounded in L'(B;) (actually fBl fr = 0as k — o0), and

frk =0in By \ By 4, by standard elliptic estimates we deduce the validity of (5.3).
Hence |[ B, v;ﬂ is bounded away from zero, which contradicts (5.2). |

Construction for Example 5.1. Fix f € L*°(R"), f > 0, f # 0, f with compact
support. Now we fix A > 0 large enough so that the maximal solution v to

—Av = x(usop(—v P + Af(z)) in By,
v = O on 831 5

is positive in B;. Then using Lemma 5.7 we find R > 0 large enough so that the
maximal solution @ in {2 = Bpr has compact support. Note that @ > v by Lemma 5.6,
and therefore u # 0.

Construction for Example 5.2(a). Take the solution found in the previous
example and restrict it to a domain U, such that U contains the set {& > 0} and
such that OU Nd{a > 0} # 0 and OU \ d{u > 0} # 0. If the regularity of O{u > 0}
is a concern, we may take f to be radial, so that {@ > 0} is a ball.
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For the next construction we need a modification of Lemma 5.7, which is a direct
consequence of Lemmas 5.6 and 5.7.

Lemma 5.8. Let f € L*®(R"), f > 0 with compact support. Then there exist
Ry > 0, Ry > 0 such that for all R > Ri and any smooth, bounded domain )
such that Q@ is contained in the half space H := {x = (z1,...,zn)|x1 > 0} and
H N Br C Q, the mazimal solution to
—Au = x(usoy(—u" + f(x))  in Q,
u=0 on 092,

has support contained in Bpr,.

Construction for Example 5.2(b). Let B = Bj(zp) be the ball of radius 1
centered at a the point zg = (1,0,...,0) so that B C H and BNIH = {0}. Let vy

denote the maximal solution to
—Av = X{v>0}(—v*ﬁ +A) in B, (5.4)
v=20 on 0B. )

We fix a value A > A\* where A\* is the critical parameter for the above problem. Set

J=Xxs.
Ov

By (1.4) the maximal solution v to (5.4) satisfies %2 (0) < 0 (v denotes the exterior
unit normal vector to 992). Take a smooth domain Q satisfying the conditions
of Lemma 5.7. Then the maximal solution @ for the problem in  has support
contained in Bp,. Hence the support of @ is different from €2 but @ > ¥ so that
g1.(0) < 0.

Construction for Example 5.3. In this construction we consider the sequence
of functions f = x4, where Ay is the annulus Ay, = By, \ Bix_2. We shall show that
there exist constants A > 0 and k£ > 0, such that the maximal solution % of

—Au = X{usoy(—u P+ Afi) in By,
{ u=0 on 0By,
satisfies the two following properties
up >0  in A,
{ up, =0 in B,,

for some p > 0.

To accomplish the first goal, we fix A > 0 so that the maximal solution o to

{ —Av = X{ps03(—v P+ ) in By,

(5.5)
v=20 on 0B,
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is positive in By. Then we deduce that @y > 0 in A by comparison with a suitable
translation of .

It remains to verify the second property. Actually we will show that for any
p >0, ur =01in B, for k large enough. We argue by contradiction, assuming that
there exists p > 0, so that for a sequence k — oo we have uy # 0 in B,. Observe
that @ is radial. We claim that

g >0 in By \ Bp . (5.6)

To see this, suppose that () = 0 for some r € (p, k). Recall that 4, # 0 in B,
so there is g € [0, p) such that @x(rg) > 0. Define
ry = inf{r € (ro, k)|ar(r) = 0}.
Then r1 > ro, ar(r1) = 0 and ax(r) > 0 for all r € (rp,r1). Let
ug(r) if0<r<nr
{ 0 otherwise .

w(r) =

We see that w is a solution of (5.5). Comparing 4y with w(- +7) with |7| small, we
get that @ (r1) > 0, which is not possible and proves (5.6).
Define

op(z) = k™ up(ke) and  fi(z) = K> fulka) = k> XB\B, . ().
Then
—Avk = X503 (—v. 7+ Afk)  in By,
{ v =0 on OBj .

From this equation we conclude that
/ vgﬁg/\ fe=Ck'"® =0,
{’Uk>0} B4
as k — oo (recall that a = 125 € (1,2)). On the other hand vy, < (x where

_ACk = )\fk n Bl 5
Ck =0 on 8B1 .

Since f = 0 in Bs)4 for k large we deduce that vy < ¢ < C in By, for some
constant C' independent of k. On the other hand vy > 0 in By \Bp/k SO v,;’g > (P
in Byjs\ 31/4 for k large, which shows that f{vk>0} v,;’g is bounded away from zero.
This contradiction finishes the proof of our claim.

We now proceed with the proof of Lemma 5.4.

Proof of Lemma 5.4. Suppose that @) has compact support and @y # 0. Then
for any 7 € R™ with |7| small ux(- + 7) is also a nontrivial solution. Therefore
max(y, @x(- + 7)) is a nontrivial subsolution, but this contradicts the maximality
of uy.
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Now suppose additionally that € is a ball. By uniqueness of the maximal solution
@y is radial. We shall show that if @x(rg) = 0 for some rg € [0, R) then @y has
compact support. In fact, we claim that: the set I := {r € (0, R)|u(r) > 0} is an
interval of the form (0, p) for some p.

To prove this, consider a nonempty connected component (rg,r2) of I and sup-
pose that 7o > 0. Then @, (rg) = @)(ro) = 0. Since @, is radial let us write the
equation (1.1) in the form

1 d

el

where g(u) = —u™% + \f(u). Let 1 € [ro,r2]. Multiplying by r2~Y/ and inte-
grating on [rg, r1], we obtain

—%(r?ilﬂ&(rl)f = r%”fQG(ﬁ,\(rl)) —2(n—1) /Tl rzn*lG(ﬂ)\(r))dr7 (5.7)

7o

(r"~tah) = g(an),

where
1

ul=p “
1_6+>\/0 F(t)dt.

Let 6 > 0 be the unique positive number satisfying G(6) = 0. Note that G(u) < 0
for v € (0,0) and G(u) > 0 for u > 6. If ux(r) < @ for all r € (rg,r2), we choose
r1 = 72, and then uy(r1) = 0. Otherwise, we select r1 € (rg,r2) as the smallest
value in (rg,r2), such that ax(r;) = 0 and @x(r) < 0 for all r € (rg,r1). With this
choice we see that (5.7) implies

1 n—1-/ 2
S ) =200 - ) [

To

G(u) =—

r

1 2" LG (an (r))dr .

But the left hand side of the previous equation is nonnegative, while the right hand
side is negative. This contradiction shows that {r € (0, R)|u(r) > 0} = (0, p) for
some p.

If wx(0) = 0 the same argument as above (used with 79 — 07) also leads to a
contradiction.

Now consider A < A*. The previous argument shows that if 4y (rg) = 0 for some
ro, then uy would have compact support, which is impossible by the the first part
of the lemma, unless uy = 0, which is the desired conclusion. O

Proof of the statements for Example 5.4. We start by fixing R > 0 large
enough so that by Lemma 5.7 the maximal solution of

—Au = X{u>0}(_u7ﬂ + XB]) in BR7
u=20 on 0BRr,

has compact support in Br. We set Q = Bpg.
Let

Xo = inf {\ > 0|y # 0}.
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Then Ay <1 < A* and we shall show that Ag > 0. Arguing by contradiction, assume
that Ag = 0. Then for all A > 0 we have @) # 0.

We first observe that supp(#y) C By for A > 0 small enough. Otherwise, we
would have

/ﬁ;ﬁg)\meas(Bl)HO as A — 0.
B,

But on the other hand u, < @)~ for A < A\* so that fBl a;ﬂ is bounded away from
zero. This contradiction shows that supp(@y) C By for A > 0 small enough. Hence
for A > 0 small, u) also solves

—Au = X{us0y(—u" P+ 1)) in By,
u=>0 on 0B .

But now we see that @) solves a problem with a right hand side independent of z and
therefore, by Lemma 5.4 u) = 0 for A > 0 small. This contradicts the assumption
Ao = 0. O
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