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1. Introduction

Let Ω be a bounded smooth domain in R
n. We are interested in nonnegative solu-

tions to the equation
{

−∆u + u−β = λf(x, u) in Ω

u = 0 on ∂Ω ,
(1.1)

where 0 < β < 1, λ > 0 and f : Ω×R
+ → R

+ is a nonnegative function, measurable

in x, and increasing and concave in u for a.e. x ∈ Ω. We assume also that fu(x, ·)

is continuous on (0,∞) for a.e. x ∈ Ω and that f is sublinear in u uniformly in x,

that is,

lim
u→∞

f(x, u)

u
= 0 uniformly for x ∈ Ω . (1.2)

For a function u ∈ C(Ω̄) ∩ C2(Ω) and u > 0 in Ω, it is clear what it means to be

a solution of (1.1). If a function u ≥ 0 vanishes in parts of the domain, we replace

(1.1) by
{

−∆u = χ{u>0}(−u−β + λf(x, u)) in Ω

u = 0 on ∂Ω ,
(1.3)

where χ{u>0} stands for the characteristic function of the set {u > 0}.
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Definition 1.1. We say that a function u ∈ H1
0 (Ω) is a solution of (1.3) if u ≥ 0,

−u−β + λf(x, u) ∈ L1({u > 0}) ,

and
∫

Ω

∇u∇ϕ =

∫

{u>0}

(−u−β + λf(x, u))ϕ ∀ϕ ∈ C∞
0 (Ω) .

Let us define the distance function to the boundary as

δ(x) = dist(x, ∂Ω) .

The following result was proved in [2].

Theorem 1.2. For any λ > 0 there is a unique maximal solution ūλ to (1.3).

Moreover there exists λ∗ ∈ (0,∞) such that for λ > λ∗ the maximal solution ūλ is

positive in Ω, belongs to C(Ω̄) ∩ C1,µ
loc (Ω)∀0 < µ < 1 and satisfies

aδ ≤ ūλ ≤ bδ in Ω , (1.4)

where a, b are positive constants depending on Ω, λ and f .

For 0 < λ ≤ λ∗ the maximal solution ūλ has regularity C(Ω̄) ∩ C1,γ
loc (Ω) with

γ = 1−β
1+β , and for 0 < λ < λ∗ the set {ūλ = 0} has positive measure.

The first result in this work asserts that ūλ is C1,γ up to the boundary.

Theorem 1.3. The maximal solution ūλ of (1.3) belongs to C1,γ(Ω̄) with γ = 1−β
1+β .

Moreover, if λ > λ∗ then ūλ ∈ C1,1−β(Ω̄) and ūλ ∈ C1,µ
loc (Ω)∀µ ∈ (0, 1).

Remark 1.4. Let us mention that the exponent γ = 1−β
1+β is the best possible for

the case λ ≤ λ∗. In the case λ = λ∗ there are examples where the behavior of the

maximal solution near the boundary is δ
2

1+β , see [2, Example 2.5]. When λ < λ∗

the maximal solution vanishes somewhere in the domain, and its behavior near the

free boundary FB = Ω ∩ ∂{ūλ > 0} is of the form dist(x, FB)
2

1+β (see [8]).

The case λ > λ∗ is simpler from the point of view of the regularity of the maximal

solution. In this case, as a consequence of (1.4) we have |∆ūλ| ≤ Cδ−β . We can

then immediately apply a result of Gui and Lin [7] to conclude that ūλ ∈ C1,1−β(Ω̄)

(see Lemma 2.1) and the exponent 1 − β is the best possible in this situation.

The difficulty in proving Theorem 1.3 stems from the fact that in general the

maximal solution has a free boundary when λ < λ∗, which can touch the boundary

of the domain. This actually happens in some cases, and in Sec. 5 we construct

different examples where the following situations occur: the support of the maximal

solution is compact; the support of the maximal solution “touches” ∂Ω but is not

the entire domain; and the set where the maximal solution vanishes is compact.

In these examples f depends on x, but when f = f(u) we can say something

about the support of ūλ. For example, it can not be compact (see Sec. 5 for details).

The proof of Theorem 1.3 that we present here relies on the approach first

developed by Phillips [8], and then applied to obtain the interior regularity for
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The first result in this work asserts that ūλ is C1,γ up to the boundary.

Theorem 3 The maximal solution ūλ of (3) belongs to C1,γ(Ω) with γ = 1−β
1+β . Moreover, if λ > λ∗

then ūλ ∈ C1,1−β(Ω) and ūλ ∈ C1,µ
loc (Ω) ∀µ ∈ (0, 1).

Remark. Let us mention that the exponent γ = 1−β
1+β is the best possible for the case λ ≤ λ∗. In

the case λ = λ∗ there are examples where the behavior of the maximal solution near the boundary

is δ
2

1+β , see [DM] Example 2.5. When λ < λ∗ the maximal solution vanishes somewhere in the

domain, and its behavior near the free boundary FB = Ω∩∂{ ūλ > 0 } is of the form dist(x, FB)
2

1+β

(see [P]).
The case λ > λ∗ is simpler from the point of view of the regularity of the maximal solution. In

this case, as a consequence of (4) we have |∆ūλ| ≤ Cδ1−β . We can then immediately apply a result
of Gui and Lin [GL] to conclude that ūλ ∈ C1,1−β(Ω) (see Lemma 6) and the exponent 1−β is the
best possible in this situation.

The difficulty in proving Theorem 3 stems from the fact that in general the maximal solution has
a free boundary when λ < λ∗, which can touch the boundary of the domain. This actually happens
in some cases, and in Section 5 we construct different examples where the following situations occur:
the support of the maximal solution is compact; the support of the maximal solution “touches” ∂Ω
but is not the entire domain; and the set where the maximal solution vanishes is compact.

Figure 1. Possible situations for the support of ūλ.

ūλ > 0

ūλ = 0

ūλ > 0 ūλ = 0

ūλ > 0

ūλ = 0

In these examples f depends on x, but when f = f(u) we can say something about the support
of ūλ. For example, it can not be compact (see Section 5 for details).

The proof of Theorem 3 that we present here relies on the approach first developed by Phillips
[P], and then applied to obtain the interior regularity for (3) in [DM], as well as on some estimates
of Gui and Lin [GL]. Using other techniques Giaquinta and Giusti [GG1, GG2] (see also [G])
proved interior gradient estimates for local minimizers of general nondifferentiable functionals,
which include the functional Φ defined in (5) below. It is not clear though that those results can be
applied to our situation when λ ≤ λ∗, which is in some sense the interesting case, because it is not
known whether or not ūλ is a local minimum of Φ in this range of λ. The second result is related
to this variational property of ūλ in the range λ > λ∗.

Consider the cone K of nonnegative functions in H1
0 (Ω)

K = { u ∈ H1
0 (Ω) | u ≥ 0 a.e. in Ω }

and for u ∈ K let

Φ(u) =

∫

Ω

1
2 |∇u|2 +

u1−β

1 − β
− λF (x, u(x)) dx,(5)

where F (x, u) =
∫ u

0 f(x, t) dt.
Our second result is the following:

Theorem 4 For λ > λ∗ ūλ is a strict local minimum of Φ on K in the H1 topology, that is, there
exists ρ > 0 such that for u ∈ K with 0 < ‖u − ūλ‖H1 < ρ we have

Φ(ūλ) < Φ(u).

The strategy in the proof of Theorem 4 consists of the two following steps:
1) first we show that ūλ is a strict local minimum of Φ in the C1 topology, which makes sense

because of Theorem 3.
2) Then we prove that a local minimum of Φ in the C1 topology is also a local minimum in the

H1 topology.

2

Fig. 1. Possible situations for the support of ūλ.

(1.3) in [2], as well as on some estimates of Gui and Lin [7]. Using other techniques

Giaquinta and Giusti [5, 6] (see also [4]) proved interior gradient estimates for local

minimizers of general nondifferentiable functionals, which include the functional Φ

defined in (1.5) below. It is not clear though that those results can be applied to

our situation when λ ≤ λ∗, which is in some sense the interesting case, because it

is not known whether or not ūλ is a local minimum of Φ in this range of λ. The

second result is related to this variational property of ūλ in the range λ > λ∗.

Consider the cone K of nonnegative functions in H1
0 (Ω)

K = {u ∈ H1
0 (Ω)|u ≥ 0 a.e. in Ω}

and for u ∈ K let

Φ(u) =

∫

Ω

1

2
|∇u|2 +

u1−β

1 − β
− λF (x, u(x))dx , (1.5)

where F (x, u) =
∫ u

0
f(x, t)dt.

Our second result is the following:

Theorem 1.5. For λ > λ∗ūλ is a strict local minimum of Φ on K in the H1

topology, that is, there exists ρ > 0 such that for u ∈ K with 0 < ‖u − ūλ‖H1 < ρ,

we have

Φ(ūλ) < Φ(u) .

The strategy in the proof of Theorem 1.5 consists of the two following steps:

(1) first we show that ūλ is a strict local minimum of Φ in the C1 topology, which

makes sense because of Theorem 1.3.

(2) Then we prove that a local minimum of Φ in the C1 topology is also a local

minimum in the H1 topology.

The reason for the first claim is that the first eigenvalue for the linearization of

(1.3) at ūλ is positive for λ > λ∗, that is

Λ(ūλ) > 0 ∀λ > λ∗ , (1.6)

where Λ(u) is given, for a function u > 0 a.e. in Ω, by

Λ(u) = inf
‖ϕ‖L2=1

∫

Ω

|∇ϕ|2 − (βu−β−1 + λfu(x, u))ϕ2 ,
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(see [2, Theorem 2.3]). Using (1.4) and (1.6) we prove in Lemma 4.1, Sec. 4, that

for λ > λ∗ ūλ is a strict local minimum of Φ in the C1(Ω̄) topology.

The second step is inspired by the work of Brezis and Nirenberg [1] where

they proved that for a class of functionals on H1
0 , a local minimum u0 in the C1

topology is also a local minimum in the H1 topology. The basic point in their

proof, is to obtain estimates in C1,α(Ω̄) for the minimizer of their functional in a

ball {u|‖u − u0‖H1(Ω) ≤ ε} that are independent of ε. The class of functionals in

their work does not include Φ, as defined in (1.5).

In our case, instead of minimizing Φ in a ball {u|‖u− ūλ‖H1(Ω) ≤ ε} we consider

a penalized functional:

Ψε(u) = Φ(u) + Pε(u) ,

where Pε is the penalization and is given by

Pε(u) =
1

ε2

(
∫

Ω

(u − ūλ)2 − ε

)+2

.

This functional depends on λ but for convenience we will omit this dependence

from the notation. The infimum of Φε over K is always attained. If ūλ is not a

strict local minimum of Φ, then for any ε > 0 there exists a minimizer uε ∈ K of

Ψε with uε 6= ūλ such that

Ψε(uε) ≤ Φ(ū) .

(see Sec. 4 for details). The key result we will derive in Sec. 3 is

Theorem 1.6. Let λ > 0 be fixed and for ε > 0 let uε be a minimizer of Ψε. Then

there exists C > 0 independent of ε such that

‖uε‖C1,γ(Ω̄) ≤ C , (1.7)

where γ = 1−β
1+β .

Remark 1.7. We note that this theorem holds for any λ > 0 fixed (actually, one

can let λ to vary as long as 0 ≤ λ ≤ λ0 with λ0 < ∞ fixed, and then the constant

in (1.7) depends on λ0). As a consequence, if λ > 0 and the maximal solution ūλ

is a local minimizer of Φ in the topology of C1, then it is also a minimizer in the

topology of H1. We don’t know in general, whether for λ ≤ λ∗ the maximal solution

ūλ is a local minimizer of Φ in the C1 topology.

In summary, in Sec. 2 we prove Theorem 1.3. Section 3 is devoted to the esti-

mates for the minimizers of Ψε and establishes Theorem 1.6. We give the necessary

arguments to complete the proof of Theorem 1.5 in Sec. 4. Finally in Sec. 5 we give

some constructions of maximal solutions.
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2. Estimates up to the Boundary for the Maximal Solution

This section is devoted to the proof of Theorem 1.3. Throughout this section u := ūλ

denotes the maximal solution of (1.3). We also use the following notation

α =
2

1 + β
,

γ = α − 1 =
1 − β

1 + β
,

so that 1 < α < 2, 0 < γ < 1 (recall that 0 < β < 1).

We will always use the notation δ(x) = dist(x, ∂Ω), whereas the distance from

x to any set A will be denoted by dist(x, A).

Since Ω is smooth, there is r0 > 0 (possibly small) so that for p ∈ Ω and r ∈

(0, r0) one can construct an open connected set Dp,r with the following properties:

(a) B3r/4(p) ∩ Ω ⊂ Dp,r ⊂ Br(p) ∩ Ω,

(b) the scaled domain

D̃p,r =
1

r
(Dp,r − p)

has smooth boundary, with smoothness independent of p and r.

We will write D̃ = D̃p,r when there is no confusion about p and r. We use also

the notation

∂1D̃ = ∂D̃ ∩

(

1

r
(∂Ω − p)

)

,

∂2D̃ = ∂D̃ \ ∂1D̃ .

Consider p ∈ Ω, r ∈ (0, r0) and translate so that p is at the origin. Given u a

solution of (1.3),we will work with the rescaled function

ũ(y) = r−αu(ry) ∀y ∈ D̃ .

Then ũ satisfies
{

−∆ũ = χ{ũ>0}(−ũ−β + r2−αf(ry, rαũ(y))) in D̃

ũ = 0 on ∂1D̃ .
(2.1)

The next lemma is essentially proved in [7] (see the proof of their Theorem 1.1).

Lemma 2.1. Let U be a bounded open set with smooth boundary. Consider k :

Ω → R a measurable function such that

sup
x∈U

|k(x)| dist(x, ∂U)β < ∞ ,

where β ∈ (0, 1). Let v solve
{

∆v = k in U ,

v = 0 on ∂U .
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Then

‖v‖C1,1−β(Ū) ≤ C sup
x∈U

|k(x)| dist(x, ∂U)β . (2.2)

Remark 2.2. When U = D̃p,r the constant C appearing in (2.2) can be chosen

independently of p ∈ Ω and r ∈ (0, r0).

The result that follows is an adaptation of [8, Theorem II]; for completeness we

present its proof below.

Lemma 2.3. There exist constants c0, c1 > 0 depending only on Ω and β with the

following property. Let p ∈ Ω, r ∈ (0, r0) and D̃ = 1
r (Dp,r − p). Let u0 ∈ H1(D̃),

u0 ≥ 0 and assume that

−

∫

∂D̃

u0 ≥ c0 .

Then there exists w0 ∈ H1(D̃) satisfying
{

∆w0 ≥ w−β
0 in D̃ ,

w0 = u0 on ∂D̃ ,
(2.3)

and

w0(y) ≥ c1

(

−

∫

∂D̃

u0

)

dist(y, ∂D̃) , ∀y ∈ D̃ . (2.4)

Proof. Let

δ̃(y) = dist(y, ∂D̃) ,

and let h be the solution to
{

∆h = 0 in D̃ ,

h = u0 on ∂D̃ .

By Hopf’s lemma and the strong maximum principle there is a constant c̄ > 0

(which depends on the smoothness of D̃, but that can be chosen independent of p,

r) such that

h ≥ c̄

(

−

∫

∂D̃

u0

)

δ̃ in D̃ . (2.5)

Now let v solve
{

−∆v = δ̃−β in D̃ ,

v = 0 in ∂D̃ .

By Lemma 2.1 v ∈ C1,1−β(D̃), and therefore there exists M > 0 (independent of

p, r) such that

v ≤ Mδ̃ in D̃ . (2.6)
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Let m = --
∫

∂D̃
u0, set ε = c̄m

2M and define

w0 = h − εv .

Then w0 satisfies

w0 ≥ c1mδ̃

with c1 = c̄/2. Indeed, by (2.5) and (2.6)

w0 ≥ c̄mδ̃ − εMδ̃

=
1

2
c̄mδ̃ .

We now check that if m is suitable large, then ∆w0 ≥ w−β
0 , which is equivalent to

δ̃ +
( c̄m

2M

)1+1/β

v ≤
( c̄m

2M

)1/β

h .

In fact, on one hand

δ̃ +
( c̄m

2M

)1+1/β

v ≤ δ̃

(

1 +
( c̄m

2M

)1+1/β

M

)

, (2.7)

and on the other

( c̄m

2M

)1/β

h ≥
( c̄m

2M

)1/β

c̄mδ̃ . (2.8)

By (2.7) and (2.8) it is enough to show that

1 +
(c̄m)1+1/β

21+1/βM1/β
≤

(c̄m)1+1/β

21/βM1/β
,

which is the same as

1 ≤
(c̄m)1+1/β

21+1/βM1/β
.

This in turn holds if m ≥ c0 where

c0 =
2

c̄
M1/(β+1) .

Before proceeding we make an important observation.

Remark 2.4. The maximal solution to (1.3) is also characterized as the maximal

(pointwisely) function in H1(Ω) satisfying

{

−∆u + χ{u>0}u
−β ≤ λf(x, u) in Ω ,

u = 0 on Ω .
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Now we can use a scaling argument and the previous lemma to obtain:

Lemma 2.5. Let u denote the maximal solution to (1.3). Let p ∈ Ω, r ∈ (0, r0)

and D = Dp,r. If

−

∫

∂D

u ≥ c0r
α , (2.9)

then

u(x) ≥ c1

(

−

∫

∂D

u

)

dist(x, ∂D)/r , ∀x ∈ D . (2.10)

Proof. By translation we can assume that p = 0. Consider D̃ = 1
r D and the

rescaled function

ũ(y) = r−αu(ry) , y ∈ D̃ .

Then ũ is the maximal solution of the rescaled problem
{

−∆w = χ{w>0}(−w−β + r2−αf(ry, rαw(y))) in D̃ ,

w = ũ on ∂D̃ .
(2.11)

We can apply Lemma 2.3 (with u0 = ũ) provided --
∫

∂D̃
ũ ≥ c0 which is equivalent

to (2.9). Thus, if (2.9) holds we conclude that there exists w0 satisfying (2.3) and

(2.4). Since ũ is the maximal solution of (2.11) we deduce that

ũ(y) ≥ w0(y) ≥ c1

(

−

∫

∂D̃

ũ

)

dist(y, ∂D̃) , ∀y ∈ D̃ .

Rescaling back we obtain (2.10).

We state without proof a basic elliptic estimate that will be used in the sequel.

Lemma 2.6. Let p ∈ Ω, r ∈ (0, r0) and consider D̃ = D̃p,r. Suppose that

dist(0, ∂1D̃) < 1/4 and suppose that u1 ∈ H1(D̃) satisfies
{

−∆u1 ≤ h in D̃ ,

u1 = 0 on ∂1D̃ .

Then

u1(y) ≤ C̄ dist(y, ∂1D̃)

(

‖h‖L∞(D̃) + −

∫

∂D̃

|u1|

)

, ∀y ∈ B1/2 .

The constant C̄ can be chosen independently of p and r ∈ (0, r0).

The next two lemmas provide the essential steps toward the Hölder estimates

for the gradient of u. Roughly speaking, the behavior of the solution u near the

boundary can be of two types: either u ∼ δ or u ∼ δα. The first lemma deals with

the case u ∼ δ near ∂Ω, which is expressed concretely as condition (2.12) below.
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Lemma 2.7. There exist positive constants θ1, C1 such that if p ∈ Ω and

δ(p) ≤ θ1u(p)1/α (2.12)

then

|Du(p)| ≤ C1
u(p)

δ(p)
.

Moreover, if p, q ∈ Ω and in addition to (2.12) we have

|p − q| ≤ θ1

(

u(p)

δ(p)

)1/(α−1)

, (2.13)

then

|Du(p) − Du(q)| ≤ C1|p − q|γ ,

θ1 and C1 depend only on Ω, β and λ‖f(x, u(x))‖∞.

Proof. Define

L = λ‖f(x, u(x))‖∞ . (2.14)

Let C̄ be the constant from Lemma 2.6, and choose

r =

(

u(p)

C̄(c0 + L)δ(p)

)1/(α−1)

.

Using (2.12) we see that

δ(p) ≤ r(θα
1 C̄(c0 + L))1/(α−1) .

By choosing θ1 small one gets

δ(p) <
r

4
. (2.15)

Translating we can assume that p is at the origin. Let

ũ(y) = r−αu(ry) , y ∈ D̃ ,

and note that ũ satisfies (2.1). Using Lemma 2.6 (note that dist(0, ∂D̃) < 1/4 by

(2.15)), we conclude that

ũ(y) ≤ C̄ dist(y, ∂1D̃)

(

r2−αL + −

∫

∂D̃

ũ

)

∀y ∈ B1/2 .

In particular, at y = 0

ũ(0)

dist(0, ∂1D̃)
≤ C̄

(

r2−αL + −

∫

∂D̃

ũ

)

. (2.16)

But

ũ(0)

dist(0, ∂1D̃)
=

u(p)

rα−1δ(p)
= C̄(c0 + L) . (2.17)
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Combining (2.16) and (2.17) we see that

−

∫

∂D̃

ũ ≥ c0 , (2.18)

(we can assume that r0 < 1, hence r < 1). By Lemma 2.3 we thus find that

ũ(y) ≥ c1

(

−

∫

∂D̃

ũ

)

dist(y, ∂D̃) , ∀y ∈ D̃ . (2.19)

This in combination with (2.18) implies that

ũ(y) ≥ c1c0 dist(y, ∂D̃) , ∀y ∈ D̃ . (2.20)

Write ũ = h + v where h is harmonic in D̃ and h = ũ on ∂D̃. Then
{

−∆v = χ{ũ>0}(−ũ−β + λr2−αf(ry, rαũ(y))) in D̃ ,

v = 0 on ∂D̃ .

Using (2.20) we can apply Lemma 2.1 to conclude that

‖v‖
C1,1−β(D̃)

≤ C .

To estimate h, observe that when we take y = 0 in (2.19) we obtain

−

∫

∂D̃

ũ ≤
ũ(0)

c1 dist(0, ∂D̃)
=

C̄(c0 + L)

c1
.

Hence by standard estimates for harmonic functions

‖h‖
C2(B1/2∩Ω̃)

≤ C , Ω̃ =
1

r
Ω ,

and thus

‖ũ‖
C1,1−β(B1/2∩Ω̃)

≤ C .

The definition of ũ immediately yields

|Du(0)| = rα−1|Dũ(0)| ≤ Crα−1 = C1
u(p)

δ(p)
.

If q ∈ Ω and q = ry with |y| < 1/2, which is the same as

|p − q| < r/2 =
1

2

(

u(p)

C̄(c0 + L)δ(p)

)1/(α−1)

, (2.21)

we have

|Dũ(0) − Dũ(y)| ≤ C|y|1−β .

Hence

|Du(p) − Du(q)| ≤ Crα−1

(

|p − q|

r

)1−β

≤ C|p − q|α−1 .
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This finishes the proof of the lemma (by taking θ1 smaller if necessary, so that

(2.13) implies (2.21)).

The next lemma deals with the situation u ∼ δα near ∂Ω.

Lemma 2.8. There exists a constant C2 > 0 depending only on λ‖f(x, u(x))‖∞,

Ω and β, such that if p ∈ Ω and

δ(p) ≥ θ1u(p)1/α > 0 , (2.22)

then

|Du(p)| ≤ C2u(p)(1−β)/2 . (2.23)

Moreover, there is θ2 > 0 (θ2 = θ2(λ‖f(x, u(x))‖∞, Ω, β)) such that if q ∈ Ω and in

addition to (2.22) one has

|p − q| ≤ θ2u(p)1/α ,

then

|Du(p) − Du(q)| ≤ C2|p − q|γ . (2.24)

Proof. Let L be as in (2.14) and

r =

(

u(p)

C̄(c0 + L)

)1/α

.

Translating so that p = 0, let ũ(y) = r−αu(ry). Note that (2.22) and the choice of

r implies that

δ(p) ≥ rθ1(C̄(c0 + L))1/α .

Let

ρ = θ1(C̄(c0 + L))1/α > 0 .

Then Brρ ⊂ Ω. By taking θ1 smaller, we can assume that ρ < 1.

Elliptic estimates imply that

ũ(y) ≤ C̄

(

r2−αL + −

∫

∂Bρ

ũ

)

, ∀y ∈ Bρ/2 .

In particular, at y = 0, we find

C̄

(

r2−αL + −

∫

∂Bρ

ũ

)

≥ ũ(0) = r−αu(p) = C̄(c0 + L) .
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Hence

−

∫

∂Bρ

ũ ≥ c0 ≥ c0ρ
α . (2.25)

Using Lemma 2.5 (applied to ũ and D = Bρ), we find that

ũ(y) ≥ c1

(

−

∫

∂Bρ

ũ

)

dist(y, ∂Bρ)/ρ ≥ c1c0 dist(y, ∂Bρ)/ρ ∀y ∈ Bρ . (2.26)

As in the previous lemma we write ũ = h + v where h is harmonic in Bρ and h = ũ

on ∂Bρ. Using the lower bound (2.26) on ũ and Lemma 2.1, we again find that

‖v‖C1,1−β(B̄ρ) ≤ C .

To estimate h we only need an upper bound for --
∫

∂Bρ
ũ, which we get from (2.26)

by setting y = 0

c1 −

∫

∂Bρ

ũ ≤ ũ(0) = C̄(c0 + L) .

Thus we establish

‖ũ‖C1,1−β(B̄ρ) ≤ C .

As before, (2.23) and (2.24) follow immediately observing that y = q/r satisfies

|y| < ρ if

|p − q| < ρr = θ2u(p)1/α .

Proof of Theorem 1.3. We first show that u ∈ C1,γ(Ω̄). Let p, q ∈ Ω, with p 6= q

and u(p), u(q) > 0. We need to consider several cases.

Case 1. Suppose δ(p) < θ1u(p)1/α and δ(q) < θ1u(q)1/α. If

|p − q| ≤ θ1 max

(

u(p)

δ(p)
,
u(q)

δ(q)

)1/(α−1)

,

by Lemma 2.7 we immediately deduce |Du(p) − Du(q)| ≤ C|p − q|γ . Otherwise,

again using Lemma 2.7

|Du(p) − Du(q)| ≤ |Du(p)| + |Du(q)|

≤ C1

(

u(p)

δ(p)
+

u(q)

δ(q)

)

≤
C1

θα−1
1

|p − q|α−1

= C|p − q|γ .

Case 2. Suppose δ(p) ≥ θ1u(p)1/α and δ(q) ≥ θ1u(q)1/α. This case is analogous to

the previous one, but one uses Lemma 2.8 instead of Lemma 2.7.
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Case 3. Suppose δ(p) < θ1u(p)1/α and δ(q) ≥ θ1u(q)1/α. If either

|p − q| ≤ θ1(u(p)/δ(p))1/(α−1) (2.27)

or

|p − q| ≤ θ2u(q)1/α , (2.28)

hold, then Lemma 2.7 or Lemma 2.8 can be used to deduce that |Du(p)−Du(q)| ≤

C|p − q|γ . If neither (2.27), (2.28) hold, then

|Du(p) − Du(q)| ≤ |Du(p)| + |Du(q)|

≤ C1
u(p)

δ(p)
+ C2u(q)(1−β)/2

≤

[

C1

θα−1
1

+
C2

θα
2

]

|p − q|γ .

Finally observe that for λ > λ∗u = ūλ satisfies (1.4). Therefore applying

Lemma 2.1 we conclude that u ∈ C1,1−β(Ω̄) and since ∆u ∈ L∞
loc(Ω) we also have

u ∈ C1,µ
loc (Ω) for all µ ∈ (0, 1).

This completes the proof of Theorem 1.3.

3. Global Estimates for the Minimizers of Ψε

In this section we let uε denote a minimizer of Ψε and we let ū = ūλ.

We will prove Theorem 1.6 by showing that uε satisfies the same property

derived for ū in Lemma 2.5, with constants independent of ε. This will be done

in Lemma 3.4 below. Then the same arguments as in Lemmas 2.7 and 2.8 and

Theorem 1.3 apply to uε and this will establish Theorem 1.6.

We start with some observations.

Lemma 3.1. For all ϕ ∈ K
∫

Ω

∇uε∇ϕ + u−β
ε ϕ ≥

∫

Ω

f(x, uε)ϕ − Mε

∫

Ω

(uε − ū)ϕ , (3.1)

where

Mε =
4

ε2

(
∫

Ω

|uε − ū|2 − ε

)+

.

In (3.1) u−β
ε is regarded as ∞ if uε = 0.

If ϕ ∈ K and ϕ ≤ Cuε for some C > 0, then we also have the opposite inequality:
∫

Ω

∇uε∇ϕ + u−β
ε ϕ ≤

∫

Ω

f(x, uε)ϕ − Mε

∫

Ω

(uε − ū)ϕ . (3.2)

Note that since ϕ ≤ Cuε, the term u−β
ε ϕ is integrable in Ω.

Remark 3.2. Since in formula (3.1) uε(x)−β is ∞ if uε(x) = 0, the left hand side

of that inequality can be infinite. To prove (3.1), we use Ψε(uε) ≤ Ψε(uε + tϕ) for
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any t > 0. The proof of (3.2) exploits Ψε(uε) ≤ Ψε(uε − tϕ) for any t > 0 small,

noting that uε − tϕ ∈ K for t small if ϕ ≤ Cuε.

Lemma 3.3. uε ≤ ū in Ω.

Proof. Let

gM (x, u) = −u−β + λf(x, u) − M(u − ū(x)) ,

so that

∂gM

∂u
(x, u) = βu−1−β + λfu(x, u) − M .

Let ϕ = (uε − ū)+ ∈ K. The goal is to prove that ϕ ≡ 0. Since ū solves (1.1) we

have
∫

Ω

∇ū∇ϕ =

∫

Ω

gMε(x, ū)ϕ . (3.3)

Note that ϕ ≤ uε and therefore we can use (3.2) to obtain
∫

Ω

∇uε∇ϕ ≤

∫

Ω

gMε(x, uε)ϕ . (3.4)

Subtracting (3.3) from (3.4) yields
∫

Ω

|∇ϕ|2 ≤

∫

Ω

(gMε(x, uε) − gMε(x, ū))ϕ . (3.5)

But
∫

Ω

|∇ϕ|2 ≥

∫

Ω

∂gMε

∂u
(x, ū)ϕ2 , (3.6)

by (1.6). So, from (3.5) and (3.6), we deduce that

0 ≤

∫

Ω

(gMε(x, uε) − gMε(x, ū) −
∂gMε

∂u
(x, ū)(uε − ū))(uε − ū)+ .

But the integrand above is negative if uε > ū because gMε is strictly concave, and

therefore we conclude uε ≤ ū a.e. in Ω.

Lemma 3.4. Let p ∈ Ω, r ∈ (0, r0) and D = Dp,r. Then there exists c0, c1 > 0

depending only on Ω, β and λ‖f(x, ū(x))‖∞ such that if

−

∫

∂D

uε ≥ c0r
α , (3.7)

then

uε(x) ≥ c1

(

−

∫

∂D

uε

)

dist(x, ∂D)/r , ∀x ∈ D .
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To prove this lemma, we shall construct a solution to a nonlocal problem.

Lemma 3.5. Assume the hypotheses of Lemma 3.4. For v ∈ H1(Ω), consider

M(v) =
4

ε2

(
∫

Ω

|v − ū|2 − ε

)+

.

Then there exists w ∈ H1(Ω) with w ≡ uε in Ω \ D, uε ≤ w ≤ ū in Ω, which

satisfies
{

−∆w + w−β = f(x, w) + M(w)(ū − w) in D ,

w = uε on ∂D
(3.8)

and

w(x) ≥ c1

(

−

∫

∂D

uε

)

dist(x, ∂D)/r , ∀x ∈ D . (3.9)

Proof. For m ≥ 0 consider the problem
{

−∆w + w−β = f(x, w) + m(ū − w) in D ,

w = uε on ∂D .
(Pm)

Let w the function obtained in Lemma 2.3 properly rescaled to be defined in D,

with w = uε on ∂D. We recall that w satisfies ∆w ≥ w−β and

w(x) ≥ c1

(

−

∫

∂D

uε

)

dist(x, D)/r . (3.10)

We will establish the following properties:

(i) For any m ≥ 0 there is a unique maximal solution wm of (Pm) such that

w ≤ wm ≤ ū.

(ii) wm is nondecreasing with respect to m.

(iii) The map m ∈ [0,∞) 7→ wm is continuous in H1(D).

In fact (i) follows from the method of sub and supersolutions, noting that w is

a subsolution and ū is a supersolution. Observe that by the maximal property of ū

we have w ≤ ū.

Property (ii) follows easily from the definition of wm.

For (iii) suppose that mk ≥ 0 is a sequence such that mk → m and let wk = wmk
.

Since w ≤ wk ≤ ū we have from the equation (Pmk
) that ∆wk is bounded in

L∞
loc(D), and hence wk is bounded in C1,α

loc (D). It also follows from (Pmk
), the lower

bound wk ≥ w, (3.10) and Hardy’s inequality on the domain D, that wk is bounded

in H1(D). For a subsequence (denoted the same) wk converges in C1,α
loc (D) to some

function w ∈ H1(D) with w ≤ w ≤ ū. Passing to the limit in the equations (Pmk
)

we see that w satisfies (Pm) and it only rests to verify that w is the maximal solution

to that problem. To accomplish this, we observe that the functions wk satisfy the

stability property
∫

D

(βw−1−β
k + λfu(x, wk) − mk)ϕ2 ≤

∫

D

|∇ϕ|2 , ∀ϕ ∈ C∞
0 (D) .
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Hence w satisfies
∫

D

(βw−1−β + λfu(x, w) − m)ϕ2 ≤

∫

D

|∇ϕ|2 , ∀ϕ ∈ C∞
0 (D)

and this property, together with the fact that the function −u−β +λf(x, u)−m(u−

ū(x)) is concave for a.e. x implies that w is indeed the maximal solution to (Pm)

(the proof of this is standard, and it closely follows that of Lemma 3.3). Finally

note that since wk is bounded in H1(D) it converges weakly on H1(D) to w. Thus,

to prove that w → w in H1(D) it suffices to verify that ‖wk‖H1(D) → ‖w‖H1(D).

But from the equation (Pmk
), we see that

∫

D

|∇wk|
2 =

∫

∂D

uε
∂wk

∂ν
+

∫

D

−w1−β
k + λf(x, wk)wk + mk(ū − wk)wk . (3.11)

Since wk ⇀ w in H1(D) weakly and uε|∂D ∈ H1/2(∂D), we have that
∫

∂D

uε
∂wk

∂ν
→

∫

∂D

uε
∂w

∂ν
.

Hence, the right hand side of (3.11) converges to
∫

∂D

uε
∂w

∂ν
+

∫

D

−w1−β + λf(x, w)w + m(ū − w)w =

∫

D

|∇w|2 .

To complete the proof of this lemma, we extend the functions wm to Ω by setting

wm ≡ uε in Ω \D. Now consider the map m ∈ [0,∞) 7→ M(wm). By (iii) this map

is continuous. We also have that this function is nonincreasing, because wm ≤ ū

and (ii). We conclude that there exists m ≥ 0 (unique) such that m = M(wm).

Proof of Lemma 3.4. We shall show that by taking c0 larger if necessary, under

condition (3.7) the function uε cannot minimize Ψε unless it coincides with the

function w constructed in Lemma 3.5. For this purpose, let us write

Ψε(uε) =

∫

Ω

1

2
|∇u|2 − G(x, uε) + Pε(uε) ,

where

G(x, u) = −
u1−β

1 − β
+ λ

∫ u

0

f(x, t)dt .

Writing

1

2
|∇uε|

2 =
1

2
|∇w|2 +

1

2
|∇(uε − w)|2 + ∇w∇(uε − w)

we see that

Ψε(uε) = Ψε(w) +
1

2

∫

Ω

|∇(uε − w)|2 +

∫

Ω

∇w∇(uε − w)

+

∫

Ω

G(x, w) − G(x, uε) + Pε(uε) − Pε(w) . (3.12)
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Multiplying equation (3.8) with uε − w and integrating by parts on D we obtain
∫

D

∇w∇(uε − w) =

∫

D

(g(x, w) − M(w)(w − ū))(uε − w) , (3.13)

where

g(x, u) = −u−β + λf(x, u) = Gu(x, u) . (3.14)

But w ≡ uε on Ω \ D, so combining (3.13) and (3.12) we get

Ψε(uε) = Ψε(w) +
1

2

∫

Ω

|∇(uε − w)|2 +

∫

Ω

G(x, w) + g(x, w)(uε − w) − G(x, uε)

+ Pε(uε) − Pε(w) − M(w)

∫

Ω

(w − ū)(uε − w) . (3.15)

Observe now that the derivative of Pε at w in the direction of uε − w is given by

DPε(w)(uε − w) = M(w)

∫

Ω

(w − ū)(uε − w) .

Since the function Pε is convex, we have

Pε(w) + DPε(w)(uε − w) ≤ Pε(uε) , (3.16)

and combining (3.15) with (3.16), we obtain the inequality

Ψε(uε) ≥ Ψε(w) +
1

2

∫

Ω

|∇(uε − w)|2 +

∫

Ω

G(x, w) + g(x, w)(uε − w) − G(x, uε) .

We will show now that by taking c0 larger if necessary, condition (3.7) implies that
∫

Ω

G(x, uε) − G(x, w) − g(x, w)(uε − w) ≤
1

4

∫

Ω

|∇(uε − w)|2 . (3.17)

For this purpose we translate so that p is at the origin and rescale our functions

ũε(y) = r−αuε(ry) ,

w̃(y) = r−αw(ry) ,

for y ∈ D̃ = 1
r D. A computation then shows that (3.17) is equivalent to the estimate

∫

D̃

G̃(x, ũε) − G̃(x, w̃) − g̃(x, w̃)(ũε − w̃) ≤
1

4

∫

D̃

|∇(ũε − w̃)|2 .

where the functions G̃, g̃ are given respectively by

G̃(y, u) = −
u1−β

1 − β
+ λr2−α

∫ u

0

f(ry, rαt)dt ,

g̃(y, u) = G̃u(y, u) = −u−β + λr2−αf(ry, rαu) .

Let us define

m = −

∫

∂D̃

ũε ,
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and observe that condition (3.7) is equivalent to m ≥ c0, and that estimate (3.9)

becomes

w̃(y) ≥ c1m dist(y, ∂D̃) ∀y ∈ D̃ . (3.18)

Let us write

G̃(x, ũε) − G̃(x, w̃) − g̃(x, w̃)(ũε − w̃) = A(y) + B(y) ,

where

A(y) = −
ũ1−β

ε

1 − β
−

(

−
w̃1−β

ε

1 − β
− w̃−β(ũε − w̃)

)

B(y) = F̃ (y, ũε) − F̃ (y, w̃) − f̃(y, w̃)(ũε − w̃) .

We claim that

A(y) ≤ Cm−1−βdist(y, ∂D̃)−1−β(ũε − w̃)2 ∀y ∈ D̃ , (3.19)

for some C > 0 depending only on c1. Indeed, if ũε < 1
2 w̃, then

A(y) ≤
w̃1−β

ε

1 − β

≤ Cw̃−1−β(ũε − w̃)2

and using (3.18)

A(y) ≤ Cm−1−βdist(y, ∂D̃)−1−β(ũε − w̃)2 .

If, on the contrary, ũε ≥ 1
2 w̃, then

A(y) ≤ Cβ(1 + β)ξ(y)−1−β(ũε − w̃)2

where ξ(y) is in the interval with endpoints ũε(y) and w̃(y). But then, using (3.18)

we find (3.19).

Now we estimate B(y). When ũε < 1
2 w̃ we have

B(y) ≤ f̃(y, w̃)(w̃ − ũε)

≤ r2−α‖f(x, w(x))‖∞(w̃ − ũε)

≤ r2−α‖f(x, w(x))‖∞
2

w̃
(w̃ − ũε)

2

≤ Cm−1r2−α‖f(x, w(x))‖∞ dist(y, ∂D̃)−1(w̃ − ũε)
2 .

When ũε(y) < 1
2 w̃(y) we estimate

B(y) = f̃u(y, ξ(y))(ũε − w̃)2 (3.20)

where ξ(y) is in the interval with endpoints ũε(y) and w̃(y). Using that f̃ is concave

in u and that f̃ ≥ 0, we have

f̃u(y, ξ) ≤
f̃(y, ξ)

ξ
. (3.21)
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Observe that since ũε(y) ≥ w̃(y) (3.18) implies that ξ(y) ≥ 1
2c1 m dist(y, ∂D̃).

Hence, from (3.20) and (3.21) we obtain

B(y) ≤ Cm−1dist(y, ∂D̃)−1(w̃ − ũε)
2 ,

where C depends only on c1, ‖f(x, w(x))‖∞ and ‖f(x, uε(x))‖∞. Thus

B(y) ≤ Cm−1dist(y, ∂D̃)−1(w̃ − ũε)
2 ∀y ∈ D̃ . (3.22)

Putting together (3.19) and (3.22), we find (for m ≥ 1)
∫

D̃

G̃(x, ũε) − G̃(x, w̃) − g̃(x, w̃)(ũε − w̃) ≤ Cm−1

∫

D̃

dist(y, ∂D̃)−1−β(ũε − w̃)2 .

By Hardy’s inequality
∫

D̃

G̃(x, ũε) − G̃(x, w̃) − g̃(x, w̃)(ũε − w̃) ≤ C ′m−1

∫

D̃

|∇(ũε − w̃)|2 .

For m large enough this yields (3.17).

4. Proof of Theorem 1.5

Lemma 4.1. For λ > λ∗, ūλ is a strict local minimum of Φ in the topology of

C1(Ω̄).

Before the proof of this lemma we need some observations. From now on we will

use the notation ū = ūλ.

Remark 4.2. If λ > λ∗ then there exists µ > 0 such that
∫

Ω

|∇ϕ|2 − gu(x, ū)ϕ2 ≥ µ

∫

Ω

|∇ϕ|2 ∀ϕ ∈ C∞
0 (Ω) , (4.1)

where g(x, u) is given by (3.14).

Indeed, using (1.4) and fu(x, u) ≤ f(x, u)/u, we see that

gu(x, ū) ≤
C

δ1+β

for some C > 0. Hence, using Hardy’s and then Young’s inequality we find
∫

Ω

gu(x, ū)ϕ2 ≤
1

2

∫

Ω

|∇ϕ|2 + C

∫

Ω

ϕ2 ∀ϕ ∈ C∞
0 (Ω) .

Now choose

µ =
Λ(ū)

2(Λ(ū) + C)
,
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(recall that Λ(ū) > 0). Then for any ϕ ∈ C∞
0 (Ω)

2µ

∫

Ω

gu(x, ū)ϕ2 ≤ µ

∫

Ω

|∇ϕ|2 + 2µC

∫

Ω

ϕ2

= µ

∫

Ω

|∇ϕ|2 + Λ(ū)(1 − 2µ)

∫

Ω

ϕ2 . (4.2)

On the other hand, by definition of Λ(ū)
∫

Ω

|∇ϕ|2 − gu(x, ū)ϕ2 ≥ Λ(ū)

∫

Ω

ϕ2 (4.3)

and multiplying (4.3) by 1 − 2µ we find
∫

Ω

|∇ϕ|2 − gu(x, ū)ϕ2 ≥ −2µ

∫

Ω

gu(x, ū)ϕ2 + Λ(ū)(1 − 2µ)

∫

Ω

ϕ2 + 2µ

∫

Ω

|∇ϕ|2

≥ µ

∫

Ω

|∇ϕ|2

by (4.2).

We also need the following property:

Lemma 4.3. Let 0 < m < 2. Then for any ε > 0 there is δ > 0 such that if E ⊂ Ω

is measurable and |E| < δ, then

∫

E

ϕ2

δm
≤ ε

∫

Ω

|∇ϕ|2 ∀ϕ ∈ C∞
0 (Ω) .

Proof. By contradiction, if the statement of the lemma is not true, then there is

some ε > 0 such that for all i = 1, 2, . . . , one can find Ei ⊂ Ω with |Ei| < 1/i and

some ϕi ∈ C∞
0 (Ω) such that

∫

Ei

ϕ2
i

δm
> ε

∫

Ω

|∇ϕi|
2 .

We can assume that ‖ϕi‖H1
0

= 1 and hence (for a subsequence) ϕi → ϕ in L2. But

then, using Hardy’s inequality

ε ≤

∫

Ei

ϕ2
i

δm
≤

(
∫

Ω

ϕ2
i

δ2

)m/2(∫

Ei

ϕ2
i

)1−m/2

≤ C

(
∫

Ei

ϕ2
i

)1−m/2

.

But ϕi converges in L2(Ω) and therefore there is some ϕ̄ ∈ L1(Ω) such that (for a

subsequence) ϕ2
i ≤ ϕ̄. Hence by dominated convergence

∫

Ei
ϕ2

i → 0 as i → ∞, a

contradiction.

Proof of Lemma 4.1. Let ρ > 0 and v ∈ C1(Ω̄) with ‖v − ū‖C1(Ω̄) ≤ ρ. Note

that since ū satisfies (1.4), for ρ > 0 small v ∈ K.
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Expanding Φ around ū and using (1.3) we find

Φ(v) = Φ(ū) +
1

2

∫

Ω

|∇(v − ū)|2 − gu(x, ū)(v − ū)2

+
1

6
β(β + 1)

∫

Ω

ξ−β−2(v − ū)3

+

∫

Ω

∫ v

ū

(v − τ)(fu(x, τ) − fu(x, ū))dτdx , (4.4)

where ξ = ξ(x) is in the interval with endpoints ū(x) and v(x). Using (4.1) combined

with (4.4) yields

Φ(v) ≥ Φ(ū) + µ

∫

Ω

|∇(v − ū)|2 +
1

6
β(β + 1)

∫

Ω

ξ−β−2(v − ū)3

+

∫

Ω

∫ v

ū

(v − τ)(fu(x, τ) − fu(x, ū))dτdx . (4.5)

Since ū satisfies (1.4), for ρ > 0 small, we have the estimate

ξ(x) ≥
1

C
δ(x) ,

for some C > 0 independent of ρ. Combining this fact with |v(x)− ū(x)| ≤ Cρδ(x)

we have
∫

Ω

ξ−β−2|v − ū|3 ≤ Cρ

∫

Ω

(v − ū)2

δ1+β
≤ Cρ

∫

Ω

|∇(v − ū)|2 . (4.6)

We use now Lemma 4.3 with ε = σ (σ > 0 to be chosen below) and m = 1 to

find a δ1 > 0 such that if E ⊂ Ω and |E| < δ1 then
∫

E

ϕ2

δ
≤ σ

∫

Ω

|∇ϕ|2 ∀ϕ ∈ C∞
0 (Ω) . (4.7)

Using again (1.4) we can find ε > 0 small so that

|{x ∈ Ω|ū(x) < ε}| < δ1/2 , (4.8)

and also

max
Ω̄

ū ≤
1

ε
.

On the other hand, since for a.e. x ∈ Ω, fu(x, ·) is continuous on (0,∞), the sequence

hj(x) = sup{|fu(x, η) − fu(x, θ)| |η, θ ∈ [ε, 1/ε], |η − θ| < 1/j}

converges to 0 as j → ∞ for a.e. x ∈ Ω. By Egorov’s theorem there is a measurable

subset F ⊂ Ω with

|Ω \ F | < δ1/2 (4.9)

such that hj → 0 uniformly on F . Therefore, there is some δ2 > 0 such that for all

x ∈ F and all η, θ ∈ [ε, 1/ε], |η − θ| < δ2 one has

|fu(x, η) − fu(x, θ)| < ε .
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Let E = {ū < ε} ∪ (Ω \ F ) and split the integral
∫

Ω

∫ v

ū

(v − τ)(fu(x, τ) − fu(x, ū))dτdx =

∫

E

· · · +

∫

Ω\E

. . . .

We first estimate the integral over E, using the fact that fu(x, u) ≤ f(x, u)/u and

ū ≥ aδ, δ < Cv
∣

∣

∣

∣

∫

E

∫ v

ū

(v − τ)(fu(x, τ) − fu(x, ū))dτdx

∣

∣

∣

∣

≤ C

∫

E

(v − ū)2

δ
.

Note that |E| < δ1 by (4.8) and (4.9) and therefore we can apply (4.7)
∣

∣

∣

∣

∫

E

∫ v

ū

(v − τ)(fu(x, τ) − fu(x, ū))dτdx

∣

∣

∣

∣

≤ Cσ

∫

Ω

|∇(v − ū)|2 . (4.10)

The integral on Ω \ E can be estimated as well, if ρ > 0 is small enough so that

|v(x) − ū(x)| < δ2:
∣

∣

∣

∣

∣

∫

Ω\E

∫ v

ū

(v − τ)(fu(x, τ) − fu(x, ū))dτdx

∣

∣

∣

∣

∣

≤ Cε

∫

Ω

|∇(v − ū)|2 . (4.11)

Hence, putting together (4.5), (4.6), (4.9) and (4.10) we obtain, for ρ > 0 small

Φ(v) ≥ Φ(ū) + (µ − Cρ − Cσ − Cε)

∫

Ω

|∇(v − ū)|2 .

We choose first σ > 0, then ε > 0 small and then ρ0 so that for 0 < ρ < ρ0 and

‖v − ū‖C1(Ω̄) < ρ we have

Φ(v) ≥ Φ(ū) +
µ

4

∫

Ω

|∇(v − ū)|2 ,

which proves the lemma.

Remark 4.4. The proof of Lemma 4.1 is simpler if one assumes that f is C2 with

respect to u and satisfies

sup
x∈Ω,u>0

|fuu(x, u)| < ∞ .

Indeed, in this case one can estimate
∣

∣

∣

∣

∫

Ω

∫ v

ū

(v − τ)(fu(x, τ) − fu(x, ū))dτdx

∣

∣

∣

∣

≤ C sup
x∈Ω,u>0

|fuu(x, u)|

∫

Ω

|v − ū|3

≤ Cρ

∫

Ω

|∇(v − ū)|2 .

Proof of Theorem 1.5. We prove this theorem by contradiction. Let C0 be such

that ‖w‖2
L2 ≤ C0‖w‖2

H1
0

∀w ∈ H1
0 . If ū is not a strict local minimum of Φ in the H1

topology, then for all ε > 0 there exists vε ∈ K, with 0 < ‖vε − ū‖2
H1

0

< ε/C0 and

Φ(vε) ≤ Φ(ū) .
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Let uε be a minimizer of Ψε. Then

Ψε(uε) ≤ Ψ(vε) = Φ(vε) ≤ Φ(ū) ,

because ‖vε − ū‖2
L2 < ε so Pε(vε) = 0. If uε ≡ ū then

min
K

Ψε = Ψε(ū) = Φ(ū) ≥ Φ(vε) = Ψε(vε) ,

and we replace uε by vε. This shows that for all ε > 0 there exists a minimizer uε

of Ψε, such that uε 6≡ ū.

Clearly uε → ū in L2(Ω) and by Theorem 1.6 uε → ū in C1(Ω̄). But this and

Φ(uε) ≤ Ψε(uε) ≤ Φ(ū) contradict Lemma 4.1.

Remark 4.5. Without using Lemma 4.1 one can still show, using a standard

argument, that for λ > λ∗ūλ is a local minimum of Φ on K in the C1 topology,

and therefore (using Theorem 1.6) also a local minimum of Φ in the H1 topology.

Indeed, following [1], we first construct a subsolution U > 0 and supersolution

Ū to (1.1) such that U ≤ Ū . Let ζ solve
{

−∆ζ = 1 in Ω ,

ζ = 0 on ∂Ω .

Then if K > 0 is large enough Ū = Kζ is a supersolution. We get a positive

subsolution U by taking U = ūλ′ with λ′ ∈ (λ∗, λ). We also see that neither U nor

Ū are solutions to (1.1). Then the same approach as in [1] shows that there exists

a minimizer u0 of Φ in the class

{u ∈ H1
0 |U ≤ u ≤ Ū} ,

and that u0 is a local minimizer of Φ in the C1 topology.

We claim that u0 = ū. Indeed, u0 is a solution of (1.1) and since it is local

minimizer of Φ it is stable. Then by [2, Theorem 2.3] (or an argument similar to

the proof of Lemma 3.3) we conclude that u0 = ū.

5. Some Examples

In this section we exhibit different examples where the following situations occur:

Example 5.1. ūλ 6≡ 0 and supp(ūλ) is compact.

Example 5.2(a). supp(ūλ) is not compact and not equal to Ω, and the behavior of

ūλ near the boundary of the set ω = {x ∈ Ω|ūλ(x) > 0} is of the form dist(x, ∂ω)α.

Example 5.2(b). This a variation of the previous example, in which supp(ūλ) is

not compact and not equal to Ω, but ∇ūλ(x) 6= 0 for some points of ∂Ω, that is

ūλ ∼ δ near some parts of ∂Ω.

Example 5.3. The set {x ∈ Ω|u(x) = 0} is compact.
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We recall that if v : Ω → R then its support, which is denoted by supp(v), is

defined as the closure in Ω of the set {x ∈ Ω|v(x) 6= 0}.

In all these examples the function f depends on x (and it turns out that is

independent of u). In contrast with these constructions, when f = f(u) we can rule

out some of the previous situations.

Lemma 5.4. Suppose that f = f(u). Then supp(ūλ) can not be compact unless

ūλ ≡ 0.

If, in addition to the hypothesis f = f(u), Ω is a ball, then ūλ ≡ 0 for 0 < λ < λ∗

and ūλ > 0 in Ω for λ ≥ λ∗.

Putting together some of the above constructions, we obtain the following.

Example 5.5. Take f = χB1
and Ω the ball BR with R > 1 sufficiently large.

Then there exists 0 < λ0 < λ∗ such that:

ūλ ≡ 0 for λ < λ0 ,

ūλ 6= 0 for λ0 ≤ λ < λ∗ ,

ūλ > 0 in Ω , for λ∗ < λ .

For the constructions we need some preliminary results. We first mention a basic

observation (a proof can be obtained from the results in [3]).

Lemma 5.6. Let Ω, U be bounded, smooth domains with Ω ⊂ U . Let u be a solution

of (1.3) in the domain Ω and define

v(x) =

{

u(x) if x ∈ Ω ,

0 otherwise .

Then v is a subsolution of (1.3) in the domain U .

Next we show how to get a maximal solution with compact support.

Lemma 5.7. Let f ∈ L∞(Rn), f ≥ 0 with compact support. Then there exist

R1 > 0, R0 > 0 such that for all R > R1 the maximal solution to
{

−∆u = χ{u>0}(−u−β + f(x)) in BR ,

u = 0 on ∂BR ,
(5.1)

has support contained in BR0
.

Proof. Let ρ > 0, C1 > 0 such that f ≤ C1χBρ .

We claim that it is sufficient to establish the result with f = C1χBρ . In fact, if

v is the maximal solution with f replaced by C1χBρ , then the maximal solution u

of (5.1) satisfies u ≤ v so that supp(u) ⊂ supp(v) ⊂ BR0
.

We assume now that f = C1χBρ . Take a sequence Rk → ∞ and let ūk denote the

maximal solution for the problem (5.1) in the domain BRk
. Observe that ūk is radial

(the maximal solution is unique), so that supp(ūk) is a ball. If the conclusion of the
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lemma fails, then for a subsequence (denoted the same) meas(supp(ūk)) → ∞. We

can assume that Rk is the radius of the ball supp(ūk). Define

vk(x) = R−α
k ūk(Rkx) ,

so that it satisfies














−∆vk = −v−β
k + fk in B1 ,

vk > 0 in B1 ,

vk = 0 on ∂B1 ,

where fk(x) = R2−α
k f(Rkx). Integrating the equation in B1 we find

0 ≤ −

∫

∂B1

∂vk

∂ν
= −

∫

B1

v−β
k + R−n+2−α

k

∫

Rn

f .

So we deduce on one hand that
∫

B1

v−β
k → 0 as k → ∞ . (5.2)

But on the other hand there exists C > 0 independent of k such that

vk(x) ≤ Cδ(x) ∀x ∈ B1 \ B1/4 . (5.3)

Indeed vk ≤ ζk where ζk solves
{

−∆ζk = fk in B1 ,

ζk = 0 on ∂B1 .

Since the functions fk are bounded in L1(B1) (actually
∫

B1
fk → 0 as k → ∞), and

fk ≡ 0 in B1 \ B1/4, by standard elliptic estimates we deduce the validity of (5.3).

Hence
∫

B1
v−β

k is bounded away from zero, which contradicts (5.2).

Construction for Example 5.1. Fix f ∈ L∞(Rn), f ≥ 0, f 6= 0, f with compact

support. Now we fix λ > 0 large enough so that the maximal solution v̄ to
{

−∆v = χ{v>0}(−v−β + λf(x)) in B1 ,

v = 0 on ∂B1 ,

is positive in B1. Then using Lemma 5.7 we find R > 0 large enough so that the

maximal solution ū in Ω = BR has compact support. Note that ū ≥ v̄ by Lemma 5.6,

and therefore ū 6= 0.

Construction for Example 5.2(a). Take the solution found in the previous

example and restrict it to a domain U , such that U contains the set {ū > 0} and

such that ∂U ∩ ∂{ū > 0} 6= ∅ and ∂U \ ∂{ū > 0} 6= ∅. If the regularity of ∂{ū > 0}

is a concern, we may take f to be radial, so that {ū > 0} is a ball.
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For the next construction we need a modification of Lemma 5.7, which is a direct

consequence of Lemmas 5.6 and 5.7.

Lemma 5.8. Let f ∈ L∞(Rn), f ≥ 0 with compact support. Then there exist

R1 > 0, R0 > 0 such that for all R > R1 and any smooth, bounded domain Ω

such that Ω is contained in the half space H := {x = (x1, . . . , xn)|x1 > 0} and

H ∩ BR ⊂ Ω, the maximal solution to
{

−∆u = χ{u>0}(−u−β + f(x)) in Ω ,

u = 0 on ∂Ω ,

has support contained in BR0
.

Construction for Example 5.2(b). Let B = B1(z0) be the ball of radius 1

centered at a the point z0 = (1, 0, . . . , 0) so that B ⊂ H and B̄ ∩ ∂H = {0}. Let v̄λ

denote the maximal solution to
{

−∆v = χ{v>0}(−v−β + λ) in B ,

v = 0 on ∂B .
(5.4)

We fix a value λ > λ∗ where λ∗ is the critical parameter for the above problem. Set

f = λχB .

By (1.4) the maximal solution v̄λ to (5.4) satisfies ∂v̄λ

∂ν (0) < 0 (ν denotes the exterior

unit normal vector to ∂Ω). Take a smooth domain Ω satisfying the conditions

of Lemma 5.7. Then the maximal solution ū for the problem in Ω has support

contained in BR0
. Hence the support of ū is different from Ω but ū ≥ v̄ so that

∂ū
∂ν (0) < 0.

Construction for Example 5.3. In this construction we consider the sequence

of functions fk = χAk
where Ak is the annulus Ak = Bk \Bk−2. We shall show that

there exist constants λ > 0 and k > 0, such that the maximal solution ūk of
{

−∆u = χ{u>0}(−u−β + λfk) in Bk ,

u = 0 on ∂Bk ,

satisfies the two following properties
{

ūk > 0 in Ak ,

ūk ≡ 0 in Bρ ,

for some ρ > 0.

To accomplish the first goal, we fix λ > 0 so that the maximal solution v̄ to
{

−∆v = χ{v>0}(−v−β + λ) in B1 ,

v = 0 on ∂B1

(5.5)
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is positive in B1. Then we deduce that ūk > 0 in Ak by comparison with a suitable

translation of v̄.

It remains to verify the second property. Actually we will show that for any

ρ > 0, ūk ≡ 0 in Bρ for k large enough. We argue by contradiction, assuming that

there exists ρ > 0, so that for a sequence k → ∞ we have ūk 6= 0 in Bρ. Observe

that ūk is radial. We claim that

ūk > 0 in Bk \ B̄ρ . (5.6)

To see this, suppose that ūk(r) = 0 for some r ∈ (ρ, k). Recall that ūk 6= 0 in Bρ

so there is r0 ∈ [0, ρ) such that ūk(r0) > 0. Define

r1 = inf{r ∈ (r0, k)|ūk(r) = 0} .

Then r1 > r0, ūk(r1) = 0 and ūk(r) > 0 for all r ∈ (r0, r1). Let

w(r) =

{

ūk(r) if 0 ≤ r ≤ r1

0 otherwise
.

We see that w is a solution of (5.5). Comparing ūk with w(·+ τ) with |τ | small, we

get that ūk(r1) > 0, which is not possible and proves (5.6).

Define

vk(x) = k−αūk(kx) and f̃k(x) = k2−αfk(kx) = k2−αχB1\B1−2/k
(x) .

Then
{

−∆vk = χ{vk>0}(−v−β
k + λf̃k) in B1 ,

vk = 0 on ∂B1 .

From this equation we conclude that
∫

{vk>0}

v−β
k ≤ λ

∫

B1

f̃k = Ck1−α → 0 ,

as k → ∞ (recall that α = 2
1+β ∈ (1, 2)). On the other hand vk ≤ ζk where

{

−∆ζk = λf̃k in B1 ,

ζk = 0 on ∂B1 .

Since f̃k ≡ 0 in B3/4 for k large we deduce that vk ≤ ζk ≤ C in B1/2 for some

constant C independent of k. On the other hand vk > 0 in B1 \ B̄ρ/k so v−β
k ≥ C−β

in B1/2 \ B̄1/4 for k large, which shows that
∫

{vk>0} v−β
k is bounded away from zero.

This contradiction finishes the proof of our claim.

We now proceed with the proof of Lemma 5.4.

Proof of Lemma 5.4. Suppose that ūλ has compact support and ūλ 6≡ 0. Then

for any τ ∈ R
n with |τ | small ūλ(· + τ) is also a nontrivial solution. Therefore

max(ūλ, ūλ(· + τ)) is a nontrivial subsolution, but this contradicts the maximality

of ūλ.
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Now suppose additionally that Ω is a ball. By uniqueness of the maximal solution

ūλ is radial. We shall show that if ūλ(r0) = 0 for some r0 ∈ [0, R) then ūλ has

compact support. In fact, we claim that: the set I := {r ∈ (0, R)|u(r) > 0} is an

interval of the form (0, ρ) for some ρ.

To prove this, consider a nonempty connected component (r0, r2) of I and sup-

pose that r0 > 0. Then ūλ(r0) = ū′
λ(r0) = 0. Since ūλ is radial let us write the

equation (1.1) in the form

−
1

rn−1

d

dr
(rn−1ū′

λ) = g(ūλ) ,

where g(u) = −u−β + λf(u). Let r1 ∈ [r0, r2]. Multiplying by r2(n−1)ū′
λ and inte-

grating on [r0, r1], we obtain

−
1

2
(rn−1

1 ū′
λ(r1))

2 = r2n−2
1 G(ūλ(r1)) − 2(n − 1)

∫ r1

r0

r2n−1G(ūλ(r))dr , (5.7)

where

G(u) = −
u1−β

1 − β
+ λ

∫ u

0

f(t)dt .

Let θ > 0 be the unique positive number satisfying G(θ) = 0. Note that G(u) < 0

for u ∈ (0, θ) and G(u) > 0 for u > θ. If ūλ(r) < θ for all r ∈ (r0, r2), we choose

r1 = r2, and then ūλ(r1) = 0. Otherwise, we select r1 ∈ (r0, r2) as the smallest

value in (r0, r2), such that ūλ(r1) = θ and ūλ(r) < θ for all r ∈ (r0, r1). With this

choice we see that (5.7) implies

1

2
(rn−1

1 ū′
λ(r1))

2 = 2(n − 1)

∫ r1

r0

r2n−1G(ūλ(r))dr .

But the left hand side of the previous equation is nonnegative, while the right hand

side is negative. This contradiction shows that {r ∈ (0, R)|u(r) > 0} = (0, ρ) for

some ρ.

If ūλ(0) = 0 the same argument as above (used with r0 → 0+) also leads to a

contradiction.

Now consider λ < λ∗. The previous argument shows that if ūλ(r0) = 0 for some

r0, then ūλ would have compact support, which is impossible by the the first part

of the lemma, unless ūλ ≡ 0, which is the desired conclusion.

Proof of the statements for Example 5.4. We start by fixing R > 0 large

enough so that by Lemma 5.7 the maximal solution of
{

−∆u = χ{u>0}(−u−β + χB1
) in BR ,

u = 0 on ∂BR ,

has compact support in BR. We set Ω = BR.

Let

λ0 = inf {λ > 0|ūλ 6= 0} .
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Then λ0 ≤ 1 < λ∗ and we shall show that λ0 > 0. Arguing by contradiction, assume

that λ0 = 0. Then for all λ > 0 we have ūλ 6= 0.

We first observe that supp(ūλ) ⊂ B̄1 for λ > 0 small enough. Otherwise, we

would have
∫

B1

ū−β
λ ≤ λ meas(B1) → 0 as λ → 0 .

But on the other hand ūλ ≤ ūλ∗ for λ ≤ λ∗ so that
∫

B1
ū−β

λ is bounded away from

zero. This contradiction shows that supp(ūλ) ⊂ B̄1 for λ > 0 small enough. Hence

for λ > 0 small, ūλ also solves
{

−∆u = χ{u>0}(−u−β + λ) in B1 ,

u = 0 on ∂B1 .

But now we see that ūλ solves a problem with a right hand side independent of x and

therefore, by Lemma 5.4 ūλ ≡ 0 for λ > 0 small. This contradicts the assumption

λ0 = 0.
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