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NONRADIAL SOLVABILITY STRUCTURE OF
SUPER-DIFFUSIVE NONLINEAR PARABOLIC EQUATIONS

PANAGIOTA DASKALOPOULOS AND MANUEL DEL PINO

Abstract. We study the solvability of the Cauchy problem for the nonlinear
parabolic equation

∂u

∂t
= div (um−1∇u)

when m < 0 in R2, with u(x, 0) = f(x) a given nonnegative function. It is
known from earlier works of the authors that the asymptotic radial growth
r−2/1−m, r = |x| for the spherical averages of f(x) is critical for local solv-
ability, in particular ensuring it if f is radially symmetric. We show that if
the initial data f(x) behaves in polar coordinates like r−2/1−mg(θ), for large
r = |x| with g nonnegative and 2π-periodic, then the following holds: If g

vanishes on some interval of length l∗ = (m−1)π
2m

> 0, then there is no local
solution of the initial value problem. On the other hand, if such an interval
does not exist, then the initial value problem is locally solvable and the time
of existence can be estimated explicitly.

1. Introduction

This paper studies the solvability of the Cauchy problem for the nonlinear par-
abolic equation

∂u

∂t
= div (um−1∇u)(1.1)

in the range of exponents m ≤ 0. We shall refer to (1.1) in this case as super-
diffusive, in opposition to m > 1 and 0 < m < 1, called in standard terminology
slow and fast diffusion respectively.

Equation (1.1) arises in a wide range of applications, out of which we note the
spreading of microscopic droplets, proposed by López, Miller & Ruckenstein [17]
1976, de Gennes [12] 1984, and Stratov [19] 1983. In a different context, Chayes,
Osher and Ralston [4] have studied this equation in connection with interacting
particle systems with self-organized criticality. When m = 0, N = 2, equation (1.1)
arises in Geometry, as the two-dimensional Ricci flow, see Wu [22] and Hamilton
[14].
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1584 PANAGIOTA DASKALOPOULOS AND MANUEL DEL PINO

It is natural to ask under which conditions on f the initial value problem
∂u

∂t
= div (um−1∇u) in RN × (0, T ),

u(x, 0) = f(x), x ∈ RN ,
(1.2)

with T > 0 a given constant and f a nonnegative, locally integrable function, is
solvable. Writing equation (1.1) in the form

∂u

∂t
= ∆φ(u) in QT ,

where φ(u) = um/m ifm 6= 0, = log u if m = 0, andQT = RN×(0, T ), we define the
solution of (1.2) as a nonnegative function u in C([0, T );L1

loc(R
N )) such that φ(u)

belongs to L1
loc(R

N × [0, T )) and which satisfies the equation in the distributional
sense. Note that the assumption φ(u) locally integrable implies that u is nonzero
almost everywhere in QT .

It is proved in [20], that when m ≤ 0, N ≥ 3 or m < 0, N = 2, there exists
no local solution to (1.2) if the initial data f has finite mass, i.e. f ∈ L1(RN ). In
other words, the solution vanishes instantaneously because the high diffusion takes
all mass to infinity in no time.

In the papers [7] and [8] the authors investigated the limiting decay rate marking
the threshold between existence and nonexistence when m ≤ 0. In fact, as it follows
from the results in [7], the instant vanishing phenomenon occurs if

1
RN

∫
BR

f(x) dx = o (R−2/(1−m))

as R→ +∞. More precisely, when m < 0, N ≥ 2, it was shown in [8] that if

lim sup
R→∞

1
RN−2/(1−m)

∫
BR

f(x) dx < C∗ T 1/(1−m)

where

C∗ = [2 (N − 2
1−m)]1/(1−m)ωN

with ωN denoting the surface area of the unit sphere, then a solution to (1.2) must
vanish identically before time T .

On the other hand, it was also shown in [8] that if f is radially symmetric and

lim inf
R→∞

1
RN−2/(1−m)

∫
BR

f(x) dx ≥ C∗ T 1/(1−m),(1.3)

then a solution to (1.2) defined up to time T exists.
These results, based on integral comparisons with certain explicit solutions, show

a notable symmetry between the super-diffusive case m < 0 and the slow-diffusion
or porous medium case m > 1. In fact, from the theory for the porous medium
equation developed in the papers [2], [3] and [6], it follows that if m > 1 and

lim sup
R→∞

1
RN−2/(1−m)

∫
BR

f(x) dx ≤ C1 T
1/(1−m).

then existence for (1.2) holds, while if

lim sup
R→∞

1
RN−2/(1−m)

∫
BR

f(x) dx ≥ C2 T
1/(1−m),
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NONRADIAL SOLVABILITY STRUCTURE 1585

then a solution must blow-up before time T . Here C1 and C2 are constants depen-
dent only on m,N . Let us observe that in the case of slow diffusion m > 1, no
radiality is assumed in the existence statement.

It should also be mentioned that for m = 0, N = 2 it is established in [9] (see
also the independent works [21], [10]), that (1.2) is solvable (up to time T ) if and
only if

∫
R2 f ≥ 4πT and no radiality is required for existence either.

It is thus tempting to guess that radial symmetry is not needed for a condition
of the form (1.3) to guarantee existence. Strikingly enough, this is not true, as
shown via an example in [8], when m < 0 and N = 2. Roughly speaking, it is
shown that if f vanishes on a “sufficiently wide” logarithmic spiral region, then no
local solution exists. In such case the value of the limit in (1.3) can be arbitrarily
large. A close look at the construction in [8], shows that it can be simplified when
m ≤ −1/3, to yield that if f vanishes on the infinite sector 0 < θ < l where θ is the
polar angle and

l > l∗ =
(m− 1)π

2m
> 0,

then no local solution exists, i.e. (1.2) is not solvable for any T > 0. Actually l = l∗

also yields nonexistence, or instant vanishing, as we will see.
These facts show that the super-diffusive equation may hide a rich and possibly
very complex nonradial structure behind the existence question, not present in the
slower diffussion case, where just the asymptotic behavior of the spherical averages
of the initial data is the issue for solvability. Here the behavior of f in the angle
coordinate is also critical. It seems that when m < 0, the fact that f is too small in
a “too large” region implies nonexistence, no matter what the behavior of f outside
that region is.

The reciprocal question remained unanswered: Assume that N = 2, m < 0. If
f is, say, the characteristic function of a sector with sufficiently wide aperture, is
problem (1.2) solvable? The present paper is motivated by this question and we
will show that its answer is affirmative. We will only consider the case of dimension
N = 2, since the problem becomes even more complex in higher dimensions. We
will show that when N = 2, m < 0, the aperture l∗ defined above constitutes
the exact threshold between existence of a globally defined solution and instant
vanishing. We define, for l > 0, the sector

Cl = {(r cos θ, r sin θ) | r > 0, 0 < θ < l}(1.4)

and denote by χl its characteristic function, that is in polar coordinates,

χl(r, θ) =

{
1 if 0 < θ < l,

0 otherwise .

We define the critical length (or aperture) l∗ as

l∗ = min{2π, (m− 1)
2m

π} > 0.(1.5)

Note that l∗ = 2π if and only if m ≥ −1/3. The following result holds.

Theorem 1.1. Assume that N = 2, m < 0. (i) If f ≡ 0 a.e. on Cl∗ , then the
problem (1.2) is not locally solvable, i.e. (1.2) has no solution for any T > 0.

(ii) Let l < l∗ and f = χ2π−l. Then (1.2) admits a solution globally defined in
time, that is for T = +∞.
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The proof of the nonexistence statement (i) follows the lines of the counterexam-
ple developed in [8], but a refinement of the barriers constructed there is required
in order to reach the exact aperture l∗.

Since, as we have seen, the asymptotic radial growth r−2/1−m for the spherical
averages of f(x) is also critical for local existence, it is natural to consider an
initial data whose behavior for large r = |x| is of the form r−2/1−mg(θ), where g
is a nonnegative 2π-periodic function. It follows from the above result, that if g
vanishes on some interval of length l∗ then there is no local solution of problem
(1.2). Rather surprisingly, if such an interval does not exist, then (1.2) for this f
is locally solvable, and the time of existence can be estimated explicitely. This will
be shown in the next result.

To state this result in a precise way, we denote by L∞2π the space of all bounded
measurable 2π-periodic functions on the real line, and define for 0 < l ≤ 2π and
0 ≤ g ∈ L∞2π the number Kl(g) as

Kl(g) = inf
{∫

I

g(θ)dθ | I interval, |I| = l

}
.(1.6)

Note that Kl(g) is nondecreasing in l and Kl(g) = 0 if and only if there is an
interval of length l over which g vanishes identically a.e.

Theorem 1.2. Assume that N = 2, m < 0. Let f ∈ L1
loc(R

2) which satisfies, for
some R > 0, that

f(x) ≥ r−2/(1−m) g(θ), for r = |x| > R(1.7)

where g ∈ L∞2π is nonnegative. Assume that for some 0 < l < l∗ one has that
Kl(g) > 0. Then (1.2) has a local solution defined at least up to time T given by

T =
(
Kl(g) (l∗ − l)4

C∗

)1−m
.(1.8)

where C∗ is a positive constant dependent only on m.

Note that combining Theorems 1.1 (a) and 1.2, we have that if f(x) = r−2/(1−m)g(θ),
then (1.2) is locally solvable if and only if Kl∗(g) > 0.

The rest of this paper will be devoted to the proofs of these results. Our approach
is based on the relationship between local solvability of (1.2) and the existence of
solutions for the elliptic problem

∆v + v−ν = f(x) in R2,(1.9)

where ν = −1/m > 0.
Indeed, we will prove in section 3 that if u is a positive solution of (1.2), then

the function

Φ(x) =
1
|m|

∫ T

0

um(x, s) ds

satisfies

∆Φ + (γT )−1/m Φ1/m ≥ f(1.10)

with γ = (1 − m)/|m|. Therefore solvability of (1.9) provides through (1.10) a
barrier which prevents the possible vanishing of the maximal solution of (1.2). For
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the purpose of proving existence of solutions of (1.9), we will study first the special
case of f(x) of the form

f(x) = r−2ν/1+ν g(θ),

with g ∈ L∞2π(R), nonnegative. An elementary but key observation is that in this
case we can try a solution of the form

v(x) = r2/1+ν w(θ)

where w is 2π-periodic and solves the one-dimensional equation

wθθ + β2w + w−ν = g(θ)(1.11)

where β = π/l∗ = 2/(ν + 1), since ν = −1/m. Our first task is to study solvability
of this problem. We do this in §2. Our main result there asserts essentially that if
Kl(g) is sufficiently large, for some l < l∗, then the ordinary differential equation
(1.11) possesses a 2π-periodic solution, a result that relies on a rather delicate
construction of a 2π-periodic supersolution for this equation. In section 3 we extend
this solvability result to the general elliptic problem and show the analogue of
Theorem 1.2 for it. Section 4 is devoted to the proof of the parabolic results
Theorems 1.2 and 1.1.

Finally, we would like to remark that a sufficient condition for solvability of (1.2)
in the nonradial case has been given in [8], which roughly speaking asserts that if∫

(log |x− y| − log |y|)f(y) ≥ C(m)T 1/1−m|x|−2m/1−m,

then (1.2) is solvable. The above integral is understood in a principal value sense
by approximation with Green’s functions on an expanding sequence of balls. This
type of condition is of no use in the case of, say, the characteristic function of an
infinite sector which we examine in this paper.

2. 2π-periodic Solutions of the O.D.E.

In this section we will study the existence of 2π-periodic positive solutions of the
one-dimensional nonlinear equation

u′′ + β2u+ u−ν = g(2.1)

with 0 ≤ g ∈ L∞2π and β > 0. We denote in this section

l∗ = min{π
β
, 2π},

which recovers the l∗ in (1.5) when ν = −1/m and β = 2/(ν + 1).
For l ∈ (0, 2π], we consider the number Kl(g) as defined in (1.6). Our main

result in this section states as follows.

Theorem 2.1. There exists a number λ = λ(ν, β) > 0, such that if for some
l ∈ (0, 2π] with l < l∗ we have

Kl(g) ≥ λ

(l∗ − l)4
,(2.2)

then equation (2.1) admits at least one 2π-periodic positive solution.
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The main step in the proof of this theorem will be the construction of a positive
supersolution of the linear equation

w′′ + β2w = g(2.3)

when 0 ≤ g ∈ L∞2π and Kl(g) > 0 for some l < l∗. It should be remarked that the
2π-periodic solution of (2.3), which is unique if β 6= n, n = 1, 2, . . . , does not need
to be positive under this assumption.

Lemma 2.1. Assume that for some number l < l∗ one has Kl(g) > 0. Then, there
exists a C1, 2π-periodic supersolution w of (2.3) such that

inf w ≥ c(β)Kl(g) (l∗ − l)4,(2.4)

for some constant c(β) > 0.

First we present the proof of Theorem 2.1 based on the above lemma.

Proof of Theorem 2.1. Our proof is based on the sub-supersolution method. Since
g is bounded, the constant function u = ε, with ε arbitrarily small is a subsolution
of the equation. Thus, it suffices to find a positive supersolution ū of (2.1). Let us
assume that g satisfies (2.2) with λ to be determined. Let w be a supersolution of
the linear equation (2.3) as in Lemma 2.1. We seek for a supersolution of the form

u = w − γ
where γ is an appropriately chosen positive constant. Then, w satisfies

w′′ + β2w ≤ g
and

inf w ≥ c(β)λ.(2.5)

A simple computation shows that the function u = w−γ is a supersolution of (2.1)
if the constant γ can be chosen such that u > 0 and

−β2γ + (w − γ)−ν ≤ 0.

Setting γ = inf w/2 the above inequality is satisfied if

inf w ≥ 2
β2/(ν+1)

.

Estimate (2.5) implies that this is possible if we choose

λ =
2

c(β)β2/(ν+1)
.

Therefore ū is the desired 2π-periodic supersolution. The existence of a 2π-periodic
solution of (2.1) follows now from the standard sub-supersolution method.

Proof of Lemma 1.1. Let g, l∗ and l be as in the statement of the lemma. With no
loss of generality, we will assume in the rest of the proof that

Kl(g) = 1.(2.6)

The idea is to construct a 2π-periodic function h, with 0 ≤ h ≤ g, still satisfying
Kl(h) > 0, whose support is contained in a finite set of tiny intervals for which the
construction of a supersolution w of

w′′ + β2 w = h

with the desired properties will follow more directly.
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To this end we set

δ = (l∗ − l)/N
where N ≥ 10 is a large integer to be determined in the course of the proof, in
terms of β only. Set µ = δ/(2l) and let x0 be a point such that∫ x0+δ

x0

g ≥ 2µ(2.7)

whose existence follows from condition (2.6).
We show next that there exists a partition of points x0 < x1 < ... < xk < xk+1 =

x0 + 2π, such that for all i = 0, 1, ..., k∫ xi+δ

xi

g ≥ µ,(2.8)

and also

4δ < xi+1 − xi < l + 9δ.(2.9)

We have that l < 2π. Having chosen δ = (l∗− l)/N and x0 satisfying (2.7) we take

x1 = sup

{
x ∈ [x0 + δ, x0 + l + 5δ ] :

∫ x+δ

x

g ≥ 2µ

}
.

Condition (2.6) assures that such a point exists and satisfies

4δ ≤ x1 − x0 ≤ l + 5δ.(2.10)

We proceed inductively. Assume that x0, . . . , xj have been chosen so that they
satisfy (2.8) and (2.10). If xj + l+ 5δ < x0 + 2π we continue by choosing

xj+1 = sup

{
x ∈ [xj + δ, xj + l + 5δ ] :

∫ x+δ

x

g dθ ≥ 2µ

}
which, as before exists and satisfies

4δ ≤ xj+1 − xj ≤ l + 5δ.

If on the contrary x0 + 2π−xj ≥ 5δ, then in the case that xj + l+ 4δ ≥ x0 + 2π, we
choose xj = xk as the last point of our partition before x0 +2π. If x0 +2π−xj ≤ 4δ,
then

x0 + 2π − xj−1 ≤ 4δ + (xj − xj−1) ≤ l + 9δ

and therefore we can choose xj−1 = xk as the last point of our partition, still
satisfying (2.9).

Then, in each of the intervals Ii = [xi, xi + δ] we choose a point yi, which splits
Ii in such a way that on both intervals I1

i = [xi, yi] and I2
i = [yi, xi + δ], one has∫

I1
i

g ≥ µ and
∫
I1
i

g ≥ µ.(2.11)

Next we consider a function h on [x0, x0 + 2π] with 0 ≤ h ≤ g, h ≡ 0 outside of the
intervals Ii and such that ∫

I1
i

h =
∫
I2
i

h = µ.
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We extend h to the entire real line as a 2π-periodic function. Since g is 2π-periodic
we have

0 ≤ h ≤ g.
Therefore, the problem is reduced to constructing a supersolution w of (2.3) with
the right-hand side h. We will construct w on the interval [y0, y0 + 2π] by solving
the Neumann problems

w′′ + β2w = hi ; w′(yi) = w′(yi+1) = 0,

in each of the intervals [yi, yi+1], i = 0, ..., k, where the functions hi will be chosen
appropriately so that 0 ≤ hi ≤ h,

w(yi) = w(yi+1), ∀i(2.11)

and

inf w ≥ c(β) (l∗ − l)4 > 0.

The construction of w in each of the above intervals is based on the following lemma.

Lemma 2.2. There exists a positive integer N = N(β) such that if δ and s are
positive numbers with

3δ < s < l∗ −Nδ
and if h is a nonnegative function on [0, s] such that h ≡ 0 on [ δ, s− δ ] and∫ δ

0

h =
∫ s

s−δ
h = µ,(2.14)

then, there exists a function w on [0, s] which satisfies

w′′ + β2w ≤ h ; w′(0) = w′(s) = 0,(2.15)

and in addition w(0) = w(s) and

inf w ≥ c(β)µδ3.(2.16)

Let us accept for now the validity of this fact, and let us finish the proof of Lemma
2.1. Each of the intervals [yi, yi+1] has length si satisfying

3δ ≤ si ≤ l + 9δ.

It follows from Lemma 2.2 that there exists a positive integer N = N(β) such that
if we initially took δ = (l∗ − l)/N , then for every such interval there exists a wi
satisfying

w′′i + β2wi ≤ h ; w′i(yi) = w′i(yi+1) = 0,

with wi(yi) = wi(yi+1) and

inf
[yi,yi+1]

wi ≥ c(β)(l∗ − l)4,

(recall that µ = δ/l). Set

γ = min{wi(yi) ; i = 0, 1, . . . , k }
and

wi = γ−1
i wi,
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with γi = wi(yi)/γ so that

wi(yi) = γ, ∀i.
Define w on [y0, y0 + 2π] by setting w = wi on [yi, yi+1] and extend it as a 2π-
periodic function. It is clear that w is the desired supersolution, which concludes
the proof of the lemma, modulo the proof of Lemma 2.2.

Proof of Lemma 2.2. Denote by G(x, y) the Green’s function of the Neumann prob-
lem for the operator Lw = w′′ + β2w on the interval [0, s], so that

Gyy(x, y) + β2G(x, y) = δx(y),

δx(y) denoting the Dirac mass at x. An elementary computation shows that G(x, y)
is given by

cos(β(s − x)) cos (βy)
β sin(βs)

if 0 < y < x,

and
cos(sx) cos(β(y − s))

β sin(βs)
if y < x < s.

We will show that there exists a positive λ close to 1, such that the solution w
of the Neumann problem for the equation Lw = hλ, with hλ = λh on [0, δ] and
hλ = h on [s− δ, s], satisfies both w(0) = w(s) and (2.15). Since

w(x) =
∫ s

0

G(x, y)hλ(y)dy

for the latter requirement we need

w(0) = λ

∫ δ

0

cos(β(y − s))
β sin(βs)

h dy +
∫ s

s−δ

cos(β(y − s))
β sin(βs)

h dy

to be equal to

w(s) = λ

∫ δ

0

cos(βy)
β sin(βs)

h dy +
∫ s

s−δ

cos(βy)
β sin(βs)

h dy.

In other words,

λ

∫ δ

0

[ cos(βy)− cos(β(s − y)) ]h dy =
∫ s

s−δ
[ cos(β(s− y))− cos(βy) ]h dy.

From the mean value theorem

λ =
cos(βξ1)− cos(β(s− ξ1))
cos(βξ2)− cos(β(s− ξ2))

for some ξ1, ξ2 ∈ [0, δ], and thus we can estimate

|λ− 1| ≤ β sin(βs)
1− cos(βs)

δ + c δ2(2.17)

where c is a constant depending only on β. We will show next that w satisfies
(2.16). In the case that λ < 1 the function w will be the desired supersolution,
otherwise we just replace w by w/λ, to assure that (2.15) is satisfied. We will only
estimate w on [0, s/2], since the estimate on [s/2, s] will follow by symmetry. We
have

w(x) =
cos(β(s − x))
β sin(βs)

∫ x

0

cos(βy)hλ dy +
cos(βx)
β sin(βs)

∫ s

x

cos(β(s− y))hλ dy
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and thus expanding cos(β(s−x)) = cos(βs) cos(βx)+sin(βs) sin(βx) and dropping
positive terms (remembering that δ is a small number and 0 < βx < π/2), we
conclude

w(x) ≥ cos(βx)
β sin(βs)

{
cos(βs)λ

∫ δ

0

cos(βy)h dy +
∫ s

s−δ
cos(β(s− y))h dy

}
.(2.18)

It remains to estimate the term I inside brackets on the right-hand side of (2.18).
If βs ≤ π/2, both terms in I are nonnegative, and therefore dropping the first, we
estimate

I ≥ cos(βδ)
∫ s

s−δ
h dy ≥ c(β)µ

which implies the estimate

w(x) ≥ cos(βs/2)
β sin(βs)

I ≥ c(β)µ.(2.19)

On the other hand, if π/2 < βs < βl∗ = π, the two terms in I have opposite sign
and they compete. However, using (2.17) we estimate

I ≥
{

cos(βs) [ 1 + β sin(βs)δ + cδ2 ] + cos(βδ)
}
µ.

We recall that also βs < βl∗ − Nβδ = π − Nβδ. Let θ0 be a positive constant
depending only on β such that if |βs− π| < θ0 and βδ < θ0

cos(βs) ≥ −1 + c (π − βs)2, cos(βδ) ≥ 1− cδ2, cos(βs/2) ≥ c (π/2− βs/2)

and

(π − βs)/2 ≤ sin(βs) ≤ π − βs.

Then,

I ≥
(
c1(π − βs)2 − c2(π − βs)δ − c3δ2

)
µ

with c1, c2, c3 positive, depending only on β. Thus

I ≥ ((c1N − c2)(π − βs)− c3δ)δµ.

Hence if N was large enough a priori, only in terms of β, we may conclude I ≥
C(β)δ2µ, and hence

w(x) ≥ cos(βx)
β sin(βs)

I ≥ C(β) δ3µ.

Finally in the last case π/2 < βs < π − θ0, we have

I ≥
{

cos(π − θ0) + cos(βδ)− c2δ − c3δ2
}
µ

and hence if δ is sufficiently small

I ≥ c(β)µ

which implies that

w(x) ≥ cos(βs/2)
β sin(βs)

I ≥ c(β)µ.

The desired estimate (2.16) thus follows.
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3. The Elliptic Equation

In this section we will study the existence of solutions for the elliptic equation

∆u+ u−ν = f(x), in R2(3.1)

where f is a nonnegative, locally integrable function. As we observed in the intro-
duction, in the special f = r−2ν/(ν+1) g(θ) one can set, in polar coordinates,

u(r, θ) = r2/(ν+1) ũ(θ),(3.2)

so that (3.1) reduces to the problem of finding positive, 2π-periodic solutions of the
ordinary differential equation

ũ′′ + β2ũ+ ũ−ν = g(θ)

with β = 2/(ν + 1), an equation of the form studied in the previous section. As in
there we set l∗ = min{2π, π(ν + 1)/2}. Then, l∗ = 2π iff ν ≥ 3.

Our main existence result for equation (3.1) states as follows.

Theorem 3.1. Assume that N = 2 and ν > 0. Then there exists a constant
C∗ = C∗(ν) > 0 such that, if for some number 0 < l < l∗ one has

f(x) ≥ r−2ν/(ν+1) g(θ), for |x| ≥ R(3.3)

with

Kl(g) ≥ C∗

(l∗ − l)4
,(3.4)

then equation (3.1) admits at least one positive solution.

If f = r−2ν/(ν+1) g(θ), the existence of a solution u of the form (3.2) is an
immediate consequence of Theorem 1.1. For a general f satisfying (3.3), the result
follows from the next comparison lemma.

Lemma 3.1. Assume that for some η > 1 one has the existence of a solution w of

∆w + ηw−ν = h(x), in R2(3.5)

satisfying

lim
|x|→∞

log |x|
w(x)

= 0.(3.6)

Let f ∈ L1
loc(R

2) be a function such that for some number R > 0

f(x) ≥ h(x), for |x| > R.

Then, the equation

∆u+ u−ν = f(x), in R2(3.7)

is solvable.

Before proving this fact, let us finish the proof of the theorem.

Proof of Theorem 3.1. From Lemma 3.1 and condition (3.2) it is enough to show
that for a number η > 1 the equation

∆w + ηw−ν = r−2ν/(ν+1)g(θ)
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is solvable, provided that condition (3.4) holds true for an appropriate C∗. By a
dilation, we can easily check that this equation is equivalent to

∆w + w−ν = r−2ν/(ν+1)ḡ(θ),

with ḡ = η−(ν+2)/(ν+1)g. Thus its solvability is immediate from Theorem 2.1,
provided that C∗ is chosen slightly larger than the constant λ appearing in (2.2),
and η is sufficiently close to 1.

Proof of Lemma 3.1. We will construct a supersolution v of equation (3.6). Let
z(x) denote the Newtonian potential of the compactly supported function (h−f)+,
that is

z(x) = − 1
2π

∫
R2

log |x− y| (h− f)+(y) dy.

We look for a supersolution in the form

v(x) = w(x) + z(x) +M,

where w is a solution to (3.5) and M is an appropriately chosen large constant.
First observe that since w satisfies condition (3.6) and

z(x) = {− 1
2π

∫
R2

(h− f)+ dy } log |x|+ o(|x|), as |x| → ∞,(3.8)

we can make v(x) > 0 for all x, by choosing M sufficiently large. On the other
hand we have

∆v + v−ν = ∆w − (h− f)+ + v−ν ≤ −ηw−ν + h− (h− f)+ + v−ν ,

and hence

∆v + v−ν ≤ f + w−ν

{(
1 +

z(x) +M

w(x)

)−ν
− η
}
.

But thanks to (3.6) and (3.8) we can make(
1 +

z(x) +M

w(x)

)−ν
− η < 0

by choosing M sufficiently large so that
z(x) +M

w(x)
> η−1/ν − 1

is satisfied, yielding v as the desired supersolution. Having found v, the existence
of a solution of (3.7) is now standard. For an increasing sequence Rn ↑ ∞, let
uRn > 0 be the solution to the Dirichlet problem{

∆u+ u−ν = f in BRn ,

u(x) = 0, x ∈ ∂BRn ,
whose existence is by now standard, see [5]. The maximum principle implies that

uRn ≤ uRn+1 ≤ v, in BRn

for all Rn and thus the limit

u = lim
Rn→∞

uRn

is a solution of equation (3.7), as desired.
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4. The Parabolic Initial Value Problem

In this section we will give the proofs of the Theorems 1.1 and 1.2 concerning
the solvability of the parabolic problem (1.2) for N = 2, m < 0. We will first prove
Theorem 1.2. As we mentioned in the introduction, we are able to connect the
elliptic and the parabolic problems via the following result, key for our purposes.

Proposition 4.1. Let u > 0 be a smooth solution of ∂u/∂t = div (um−1∇u) in
Ω × [0, T ), Ω ⊂ R2, with u(·, 0) = f smooth. Assume in addition that u satisfies
the Aronson - Bénilan inequality

ut ≤
1

(1 −m)t
u, for 0 < t < T .(4.1)

Let us set

Φ(x, t) =
1
|m|

∫ t

0

um(x, s) ds.

Then the function Φ satisfies the differential inequality

∆Φ + (γ t)−1/mΦ1/m ≥ f(4.2)

with γ = (1−m)/|m|.

Proof. First notice that the Aronson - Bénilan inequality implies that for 0 < s ≤
t < T , one has

u(x, s) ≥ u(x, t)(s/t)1/(1−m)

and therefore if α = m/(1−m)

Φ(x, t) =
1
|m|

∫ t

0

um(x, s) ds ≤ um(x, t)
|m| t−α

∫ t

0

sα ds =
1−m
|m| t um(x, t).

On the other hand

∆Φ =
1
|m|

∫ t

0

∆um(x, s) ds = −
∫ t

0

ut(x, s) ds = f(x)− u(x, t),(4.3)

with u(x, t) estimated by (4.2) as

u(x, t) ≤ (
|m|

(1 −m)t
)1/m Φ1/m = (γ t)−1/m Φ1/m.(4.4)

Combining (4.3) and (4.4), the differential inequality (4.2) follows.

We are now ready for the proof of Theorem 1.2.

Proof of Theorem 1.2. Denote

h(x) = r−2/(1−m) g(θ).

Choose a smooth regularization fε, of the initial data f , such that fε ≥ ε,
fε(x) ≥ h(x) for |x| ≥ R,(4.5)

and fε → f in L1
loc, as ε → 0. Let uε be the unique smooth solution of the initial

value problem ∂u/∂t = div(um−1∇u), in R2× [0,∞) with initial data uε(·, 0) = fε.
The existence, uniqueness and regularity of uε follow from the results in [7] and the
classical theory of nondegenerate quasilinear parabolic equations [15]. Moreover,
each of the u′εs satisfy the Aronson-Bénilan inequality (4.2). This follows from the
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same argument employed in [1] for the porous medium case. For a given number
T > 0, we define

Φε(x) =
1
|m|

∫ T

0

umε (x, s) ds, x ∈ R2.(4.7)

The function Φε satisfies

∆Φε + (γ T )−1/mΦ1/m
ε ≥ fε

with γ = (1−m)/|m|, as shown in Lemma 4.1. Thus, setting

Ψε(x) = Φε(ρx)

with ρ = (γT )1/(2m) we can easily compute that

∆Ψε + Ψ−νε ≥ f̄ε
with ν = −1/m and f̄ε(x) = ρ2 fε(ρx) satisfying

f̄ε(x) ≥ ρ2 h(ρx) = (γT )−1/(1−m) r−2/(1−m) g(θ),

for |x| ≥ R. Set h̄(x) = ρ2 h(ρx) and select a number δ ∈ [1, 2]. Our elliptic result,
Theorem 2.1, shows that the equation

∆v + δv−ν = h̄, on R2

admits a solution v, provided that

(γT )−1/(1−m)Kl(g) ≥ C(ν, δ)
(l∗ − l)4

.

Since δ ∈ [1, 2] we may choose the constant C(ν, δ) to depend only on ν = −1/m.
Therefore this condition is assured if

T ≤
(
Kl(g)(l∗ − l)4

C∗

)1−m

as stated in (1.8), with C∗ = C(ν, δ) γ1−m depending only on m. Moreover, if zε
denotes the Newtonian potential of (h̄−f̄ε)+, it follows from the maximum principle
and the proof of Lemma 3.1 that

Ψε(x) ≤ v(x) + zε(x) +M, ∀x ∈ R2

if M is chosen sufficiently large so that

v(x) + zε(x) +M > 0 and
zε +M

v(x)
> 1− δ−1/ν .

By choosing the regularizations fε appropriately, we can make M independent of ε
and

v(x) − zε(x) +M ≤ V (x), ∀x ∈ R2

with V (x) a locally bounded function. Then, since

Φε(x) =
1
|m|

∫ T

0

umε (x, s) ds ≤ C(m)V (ρ−1x), ∀x ∈ R2,(4.8)

Φε(x) will also be uniformly bounded. This fact implies that the sequence of func-
tions {uε} is uniformly bounded from below by a positive constant, on each compact
subset of R2 × (0, T ). Indeed, from (4.1) we have

umε (x, τ) sm/(1−m) ≤ umε (x, s) τm/(1−m) for τ ≤ s ≤ T ,
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and therefore integrating in s on the interval [τ, T ] and using (4.8) we conclude

umε (x, τ) ≤ C(m)V (ρ−1x) (T − τ)−1/(1−m) τm/(1−m).(4.9)

Since {uε} is also bounded from above, it follows that {uε} is equicontinuous on
compact subsets of R2×(0, T ) and therefore, there exists a subsequence still denoted
by {uε} and a nonnegative function u such that

uε → u, as ε→ 0

uniformly on compact subsets of R2× (0, T ). Letting ε→ 0 (4.8) we conclude that∫ T

0

um(x, s) ds ≤ C(m)V (ρ−1x), ∀x ∈ R2.

It is now standard (see [8]) to verify that u is a solution of the initial value problem
(1.2).

We conclude this paper with the proof of Theorem 1.1.

Proof of Theorem 1.1. We begin with the proof of the existence assertion (ii) which
is an almost immediate consequence of Theorem 1.2. First notice that 1 − χl =
g(θ), with g ∈ L∞2π being the characteristic function of the interval [l, 2π] extended
periodically outside [0, 2π]. Fix a number l̄ ∈ (l, l∗). Then

Kl(g) = l̄ − l > 0

since l < l̄. For any positive integer n set Rn = n1−m so that f(x) = 1−χl satisfies

f(x) ≥ n r−2/(1−m) g(θ) for r ≥ Rn.

Therefore, according to Theorem 1.2 there exists a solution un of problem (1.2)
with initial data f defined at least up to time

Tn = n

(
Kl̄(g) (l∗ − l)4

C∗

)1−m
.

Since, from the maximum principle the solution uε of the initial value problem
∂u/∂t = div(um−1∇u), in R2 × [0,∞) with initial data uε(·, 0) = f + ε, satisfies

uε ≥ un, ∀n,

and Tn ↑ ∞ it follows that the decreasing limit

u = lim
ε→0

uε

is the desired globally defined solution.

Finally, we will prove the nonexistence assertion in Theorem 1.1, part (i). The
proof is based on the following lemma.

Lemma 4.1. Let 0 < ν < 3, λ > 0 and

Dν = {(r cos θ, r sin θ) | 0 < r < 1, 0 < θ <
ν + 1

2
π }.

Then there exists a function v ∈ C2(Dν) ∩ C(D̄ν) such that

∆v + λv−ν > 0, ∀x ∈ Dν , v = 0 on ∂Dν
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and

lim
r→0+

r−2/ν+1v(r, θ) = +∞(4.10)

for all 0 < θ < (ν + 1)π/2.

Proof. We choose v(r, θ) of the form

v(r, θ) = δ r
2
ν+1 sin(

2
ν + 1

θ) (− log
r

2
)σ η(r)

where δ and σ are parameters to be adjusted, and η is a smooth, positive cut-off
function on (0, 1) such that η(r) = 1 for 0 < r < 1/2, and η(1) = 0. A direct
computation shows that if one chooses 0 < σ < 1/(ν + 1), then for δ sufficiently
small one has

∆v + λv−ν > Cδ−νr−2ν/ν+1(− log(r/2))−νσ > 0, in Dν

where C depends on η, λ, ν and σ. It can be easily checked that v defined in this
way satisfies condition (4.10) and the proof is thus concluded.

Proof of Theorem 1.1 (i). We argue by contradiction. Assume that for some f ∈
L∞(R2) which vanishes on Cl∗ , problem (1.2) has a solution u(x, t) for some T > 0.
For any R > 0 we denote by CRl∗ the bounded subregion of Cl∗ consisting of all
points (r, θ) with r < R. We will construct smooth, positive functions uR defined
on CRl∗ × (0,∞) satisfying

∂uR
∂t
−∆(

umR
m

) ≥ 0(4.11)

such that uR(x, t)→∞, as x→ ∂CRl∗ for all t > 0, and with the property that

lim
R→∞

uR(x, t) = 0, ∀x ∈ Cl∗ , t > 0.

Assume for the moment that we have found such functions. Fix T > 0. The
maximum principle then implies that u ≤ vR in CRl∗ × (0, T ). It follows that u
must vanish identically on Cl∗ . This is impossible since u must be positive almost
everywhere, a contradiction which proves the result.

It remains to find the uR’s. To do this, we use the previous lemma. Choose
there ν = −1/m, λ = −m/(1−m), and observe that Dν = C1

l∗ . Let v(r, θ) be as
in the lemma and define

uR(r, θ, t) = R−2/(1−m) (t+ 1)1/(1−m)v1/m(r/R, θ, t).(4.12)

A direct computation then shows the validity of (4.10). On the other hand, for
fixed (r, θ, t) we have

lim
R→∞

uR(r, θ, t) = (t+ 1)1/(1−m)r2/(1−m) lim
ρ→0

(ρ2m/(1−m)v(ρ, θ, t))1/m = 0.

Therefore all conditions required on uR are satisfied, and the proof is complete.
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