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Abstract. We consider the best constant S(Ωλ) for the embedding of

W 1,p(Ωλ) into Lq(Ωλ) where 1 < p < 2, p < q < Np
N−p . Here Ωλ = λΩ

with Ω a smooth, bounded domain in Rn and λ a large positive number. It is
proven by the validity of the expansion

S(Ωλ) = S(Rn+)− λ−1γ max
x∈∂Ω

H(x) + o(λ−1),

as λ → ∞, where γ is a positive constant depending on p, q and N . The

behavior of associated extremals, which satisfy an equation involving the p-
Laplacian operator, is also analyzed.

1. Introduction and statement of main results

Let Ω be a bounded domain in RN , N ≥ 2, with ∂Ω smooth. Let p > 1 and
denote p∗ = Np

N−p if p < N , p∗ = +∞ otherwise. It is well known that for any
1 < q < p∗ the Sobolev embedding of W 1,p(Ω) into Lq(Ω) holds, namely there
exists a positive constant S = S(p, q,Ω) such that

S‖u‖pLq(Ω) ≤ ‖u‖
p
W 1,p(Ω)

for all u ∈ W 1,p(Ω). The best constant for this embedding is the largest S for which
the above relation holds, namely the number S(Ω) defined as

S(Ω) = inf
u∈W 1,p(Ω)\{0}

∫
Ω |∇u|p + |u|p

(
∫

Ω
|u|q)

p
q

.(1.1)

This embedding is compact, which implies the existence of extremals for it, namely,
functions u at which this infimum is achieved.

Let us fix p and q as above, and a bounded smooth domain Ω. For a large
positive number λ we consider the family of expanding domains

Ωλ = λΩ = {λx | x ∈ Ω}.
Our purpose in this paper is to describe the asymptotic behavior as λ → +∞ of
the best constants S(Ωλ) as well as that of the associated family of extremals uλ.
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2932 MANUEL DEL PINO AND CÉSAR FLORES

In what follows we shall denote by uλ an extremal normalized so that the relation∫
Ωλ

|∇uλ|p + |uλ|p =
∫

Ωλ

|uλ|q

holds. Then the Euler-Lagrange equation satisfied by uλ becomes{
∆puλ − |uλ|p−2uλ + |uλ|q−2uλ = 0 in Ωλ,

u > 0 in Ωλ, ∂u
∂η = 0 on ∂Ωλ.

(1.2)

Here ∆p stands for the p-Laplacian operator, ∆pu = div(|∇u|p−2∇u). Note that uλ
is one-signed in Ω. Indeed, |uλ| is also a minimizer of the Raleigh quotient above,
hence also a solution to (1.2). Regularity theory for the p-Laplacian (see [5, 11])
applies to yield that |uλ| is actually of class C1,α(Ω). Then the strong maximum
principle proved in [12] implies that |uλ| does not vanish in Ω, and therefore uλ is
one-signed. Henceforth we will assume uλ > 0 in Ω.

Since Ωλ expands toward entire space or to a half-space depending on the choice
of origin, it is natural to relate the behavior of S(Ωλ) and uλ with best constant
and extremals of the Sobolev embedding in RN ,

S(RN ) = inf
u∈W 1,p(RN )\{0}

∫
RN |∇u|p + |u|p

(
∫
RN |u|q)

p
q

.

A concentration-compactness argument along the lines of [1], [7] shows that this
infimum is achieved. Modulo normalization, extremals are positive solutions of the
equation

∆pw − |w|p−2w + |w|q−2w = 0 in RN ,
w(x)→ 0 as |x| → +∞.(1.3)

It has been established in [2] that for 1 < p < 2, positive solutions of (1.3) are
radially symmetric around some point. Moreover, from a recent result in [10], the
radial solution around the origin is unique. We shall denote it by w∗ = w∗(|x|) in
what follows. Let us consider the half-space RN+ = { (x′, xN ) | xN > 0 }. The best
constants of RN+ and RN relate as

S(RN+ ) = 2−
q−p
q S(RN ).

Corresponding extremals are positive solutions of the problem

∆pw − |w|p−2w + |w|q−2w = 0 in RN+ ,
w(x)→ 0 as |x| → +∞, ∂w

∂xN
= 0 on ∂RN+ .

(1.4)

Even extension of such a solution to entire space corresponds to a solution of prob-
lem (1.3). It is natural to suspect that S(Ωλ) converges to the corresponding
quantity for the half-space, and uλ to an associated extremal. Our principal re-
sult states that when 1 < p < 2, S(Ωλ) indeed approaches S(RN+ ), corrected by a
negative factor of the maximum mean curvature of ∂Ω.

Theorem 1.1. Assume that 1 < p < 2 and that p < q < Np
N−p . There is a constant

γ = γ(p, q,N)0 such that the following expansion holds:

S(Ωλ) = S(RN+ )− λ−1γ max
x∈∂Ω

H(x) + o(λ−1),(1.5)
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SOBOLEV EMBEDDINGS AND p-LAPLACIANS 2933

as λ → +∞. Here H(x) denotes the mean curvature of the boundary at the point
x. Moreover, there exist points xλ ∈ ∂Ω such that

sup
y∈Ωλ

|uλ(y)− w∗(|y − λxλ|)| → 0

and

H(xλ)→ max
x∈∂Ω

H(x)

as λ→∞.

The radial symmetry of the extremals of S(RN ) plays a crucial role in the proof
of the theorem. For p > 2 the same result would hold if such a fact was true. The
constant γ above is given explicitly as follows:

γ =
2p
q

N − 1
N + 1

ωNωN−1

∫ ∞
0

|w′∗(r)|prNdr
∫ ∞

0

w∗(r)qrN−1dr.

For p = 2, these facts have been known since the works by Lin Ni and Takagi,
and Ni and Takagi [6, 8, 9]. The proof devised in those works does not apply in
the current situation. Strong use of linearity of the differential operator, as well as
certain nondegeneracy properties of the linearized equation around w∗ only known
for p = 2, is used. A different proof of those results was found in [4]. We borrow
ideas from that work in the proof of Theorem 1.1. See also [3] for a related result
involving trace embeddings and p = 2.

2. Preliminaries

Let us consider the best Sobolev constant S(Ωλ) given by (1.1) for the embedding
of W 1,p(Ωλ) into Lq(Ωλ). It is convenient for our purposes to obtain a further
characterization of this value and its extremals in terms of the energy functional

Jλ(u) =
1
p

∫
Ωλ

(|∇u|p + up)dx− 1
q

∫
Ωλ

uq+ dx.(2.1)

It is standard to check that nontrivial critical points of Jλ in W 1,p(Ωλ) correspond
precisely to the positive solutions of problem (1.2). Let us consider the number

cλ ≡ inf
u∈W 1,p(Ωλ)

u6=0

sup
t>0

Jλ(tu).(2.2)

It is easy to see that if u+ 6= 0, the function t 7→ Jλ(tu) has a maximum t = t̄ > 0
which is its unique critical point. Then t̄u ∈Mλ, where

Mλ = { u ∈ W 1,p(Ωλ) / u 6= 0,
∫

Ωλ

|∇u|p + up =
∫

Ωλ

uq+ },(2.3)

is the so-called Nehari’s manifold of Jλ. It follows from this fact that

cλ = inf
u∈Mλ

Jλ(u).

Since all nontrivial solutions of (1.2) lie in Mλ, the above number is called the
least energy value for Jλ and a solution u of (1.2) with Jλ(u) = cλ, a least energy
solution. These solutions and extremals of S(Ωλ) are related in the following way:
if u is a least energy solution, then it is an extremal of S(Ωλ). Reciprocally, if ū ≥ 0
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2934 MANUEL DEL PINO AND CÉSAR FLORES

minimizes the Raleigh quotient (1.1), then u = tū is a least energy solution of (1.2)
where

tq−p =

∫
Ωλ
|∇ū|p + ūp∫

Ωλ
ūq

.

In fact we always have the exact relation

cλ =
(

1
p
− 1
q

)
S(Ωλ)

q
q−p .(2.4)

As we have mentioned, for Ωλ bounded the compactness of the associated embed-
ding yields the existence of extremals for S(Ωλ) and correspondingly of critical
points of Jλ at level cλ.

Now, we establish an L∞ estimate for solutions of (1.2) in terms of their energy
values.

Lemma 2.1. Let u be a solution of (1.2). Then there are constants B = B(Ω, p,N)
and θ = θ(Ω, p,N), independent of 1 ≤ λ <∞, such that

‖u‖∞ ≤ B Jλ(u)θ.(2.5)

Proof. We consider a positive solution u of (1.2). Let us multiply (1.2) by uαp+1−p,
where α ≥ 1. Integrating over Ωλ, we find that

αp+ 1− p
αp

∫
Ωλ

|∇uα|p +
∫

Ωλ

uαp =
∫

Ωλ

uαp+q−p.(2.6)

Noticing that 1
2αp−1 ≤ min{1, αp+1−p

2αp }, we get

1
2αp−1

∫
Ωλ

|∇uα|p + uαp ≤
∫

Ωλ

uαp+q−p.

Sobolev’s inequality applied for v = uα yields(∫
Ωλ

uαp
∗
) p
p∗

≤ Cαp−1

∫
Ωλ

uq+αp−p(2.7)

where, we recall, p∗ = Np
N−p and the constant C is independent of λ. Next, we

consider the sequence of positive numbers αj , j = 0, 1, 2, . . . , defined inductively as

q + α0p− p = p∗, q + αj+1p− p = αjp
∗, ∀j = 0, 1, . . . ,(2.8)

or, explicitly,

αj =
(p∗/p)j+1(p∗ − q) + q − p

p∗ − p .(2.9)

Note that, by (2.7) with α = 1,(∫
Ωλ

up
∗
)p/p∗

≤ C
(

1
p
− 1
q

)−1

Jλ(u),(2.10)

where Jλ is the energy functional given by (2.1). Now we will construct a suitable
sequence of positive numbers Mj such that∫

Ωλ

uq+αjp−p ≤Mj, ∀j.(2.11)
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Inequality (2.10) gives us M0. Assuming that (2.11) holds, we have by (2.7) and
(2.9) that ∫

Ωλ

uq+αj+1p−p≤
(
Cαp−1

j

∫
Ωλ

uq+αjp−p
)p∗/p

≤(Cαp−1
j Mj)p

∗/p.(2.12)

(2.11) then holds for Mj defined as

M0 =

(
C

(
1
p
− 1
q

)−1

Jλ(v)

)p∗/q
, Mj+1 =

(
Cαp−1

j Mj

)p∗/q
∀j≥0.(2.13)

From these relations, the explicit form of the αj ’s given by (2.9), and a straight-
forward computation, we find constants C1, C2 depending only on C, p, q,N such
that

Mj ≤ exp(C1 logM0) exp (C2αj−1(1 + logM0))(2.14)

and using relations (2.7)-(2.9),

‖v‖
Lαjp

∗
(Ωλ)
≤(exp(C1 logM0 ))

p
αjp
∗ exp(C2/p

∗(1+logM0)).(2.15)

Letting j →∞ we obtain the result.

Now we claim that Jλ(uλ) is uniformly bounded independently of λ. In fact, let
us consider wzλ(x) = w∗(λ(x − z)), where z ∈ ∂Ω and w∗ is the radial least energy
solution of equation (1.3). Using the definition of cλ and a direct computation we
then find that

cλ ≤ sup
t>0

Jλ(twzλ) ≤ c∗
2

+ o(1),(2.16)

where c∗ is the corresponding energy of w∗ in the whole space RN , namely c∗/2 is
that in the half-space. As a consequence, the above lemma yields a uniform L∞

estimate for the solutions uλ. Moreover, from the C1,α estimates found in [5] and
[11], we have the validity of the following

Lemma 2.2. There is a constant C independent of λ such that for any least energy
solution uλ of (1.2)

‖uλ‖C1,α(Ωλ) ≤ C.
We end this section by establishing uniform exponential decay on the least energy

solutions uλ to (1.2).

Lemma 2.3. There exist positive constants α, β such that

uλ(y) ≤ α exp(−β|y − yλ|)
for all y ∈ Ωλ and λ sufficiently large. Here yλ denotes any maximum point of uλ.

Proof. First, we will see that the functions uλ decay uniformly at infinity, namely
that given ε > 0 there is an R > 0 such that uλ(y) < ε whenever |y − yλ| > R. By
contradiction, let us assume that for some ε > 0 there are sequences λn → ∞ and
yn ∈ Ω̄λn such that |yλn − yn| → ∞ and uλn(yn) ≥ ε. We claim that under these
conditions,

lim inf
n→∞

Jλn(un) ≥ c∗(2.17)

which is a contradiction with relation (2.16). Since uλn is uniformly bounded in
C1,α, we may assume passing to a subsequence that uλn(yλn +y)→ u(y) uniformly
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2936 MANUEL DEL PINO AND CÉSAR FLORES

over compacts, where, thanks to our contradiction assumption, u is a positive so-
lution of (1.3) or, after a rotation and translation, a positive solution of (1.4),
depending on whether the distance dist(yλn , ∂Ωλn) → +∞ or remained uniformly
bounded. Let us introduce the notation

JΛ(v) =
1
p

∫
Λ

|∇v|p + vp − 1
q

∫
Λ

vq.(2.18)

Then, given δ > 0 we have that for all sufficiently large R,

lim
n→∞

JBR(yλn)∩Ωλn
(uλn) ≥ c∗

2
− δ.(2.19)

Similarly, for all large R,

lim
n→∞

JBR(yn)∩Ωλn
(uλn) ≥ c∗

2
− δ.(2.20)

Let us consider R > 0 and a smooth cut-off function ηnR such that ηnR ≡ 0 on
BR−1(yλn) ∪ BR−1(yn), 0 ≤ ηnR ≤ 1, ηnR ≡ 1 on RN \ (BR(yλn) ∪ BR(yn)), and
|∇ηnR| ≤ C, C independent of R and n.

We use wn = ηnRuλn as a test function for J ′λn(uλn) = 0 to obtain

0=J ′λn(uλn)wn=En+pJRN\BR(yλn)∪BR(yn)(uλn)+
∫

Ωλn

gn(2.21)

where gn = (pq − 1)uqλnη
n
R ≤ 0 and En is given by

En =
∫
AnR

|∇uλn |p−2∇uλn∇(ηnRuλn) + ηnRu
p
λn

where AnR = {y ∈ Ωλn / R − 1 < |y − yλn | < R or R − 1 < |y − yn| < R}. The
convergence of uλn in the C1-sense over compacts around yn and yλn to functions
in W 1,p(RN ) implies that for R > 0 sufficiently large limn→∞ |En| ≤ δ. It follows
that for large enough R, JRN\BR+1(yλn)∪BR+1(yn)(uλn) ≥ −δ. Using this together
with relations (2.19) and (2.20), (2.17) follows.

The desired exponential decay will be a consequence of the following

Claim. There exists R0 > 0 and ν0 > 0 such that for all R > R0

sup
|y−yλ|≥R

uλ(y) ≥ 2 sup
|y−yλ|≥R+ν0

uλ(y)

for all λ sufficiently large.

By contradiction, let us assume that there exist sequences Rn → ∞, λn → ∞,
νn →∞ and yn ∈ Ωλn with |yn − yλn | ≥ Rn + νn such that uλn(yn) = µn >

1
2Mn,

where

Mn = sup
|y−yλn |>Rn

uλn(y).

From the uniform decay established above, we see that Mn, µn → 0. Let us set
vn(y) = µ−1

n uλn(y + yn). Then vn is bounded, vn(0) = 1 and satisfies

∆pvn − (1− |uλn(y + yn)|q−p)vp−1
n = 0 in Ωλn − yn,

with ∂vn
∂ν = 0 on the boundary. Letting n→∞ we obtain a contradiction since vn

converges locally uniformly to a positive bounded solution v of the limiting problem
∆pv − vp−1 = 0, v(0) = 1, in the entire space RN or in the half-space RN+ , with
∂v
∂ν = 0 on RN−1. This object does not exist. Indeed, let us consider a sequence
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xn with v(xn) → supx∈RN v(x) ≥ 1, and define wn(x) = v(xn + x). Since wn
is uniformly bounded, it follows that wn also has a uniform C1,α bound. Thus
passing to a subsequence, we may assume that wn → w uniformly over compacts,
where again w solves ∆pw−wp−1 = 0, but now w(0) = maxx∈RN w(x). The strong
maximum principle in [12] yields a contradiction. Thus, the claim holds and we
have the uniform exponential decay of the functions uλ. By standard arguments
involving local elliptic estimates, we obtain the validity of the same property for
the derivatives of uλ.

Remark 2.1. Let yλ be a point where uλ reaches its maximum value. Then the
above proof also shows that dist(yλ, ∂Ωλ) must remain bounded, for otherwise we
would end up in the limit with an energy of a level at least c∗.

3. Proof of Theorem 1.1

Let uλ be a positive least energy solution of (1.2), that is a solution with λ(uλ) =
cλ. Let yλ be a point in Ω̄λ where uλ maximizes, and xλ ∈ ∂Ω is the closest point
in ∂Ω to λ−1yλ. From Remark 2.1, we then see that |λxλ − yλ| remains uniformly
bounded. Passing to a subsequence, we assume that xλ → x̄ ∈ ∂Ω.

Let us set vλ(y) = uλ(λxλ + y). Then vλ converges in the W 1,p-sense to w∗.
Moreover, for certain positive constants a and b we have vλ(y) ≤ ae−b|y|.

After a rotation and a translation λ-dependent we may also assume that xλ = 0
and that Ω can be described in a fixed neighborhood V of x̄ as the set {(x′, xN ) | xN
> Gλ(x′)} where Gλ is smooth, Gλ(0) = 0 and G′λ(0) = 0. Further, we may also as-
sume that Gλ converges locally in a C2-sense to G, a corresponding parametrization
at x̄.

Let us also set Ω̃λ = Ωλ − λxλ. From the variational characterization of cλ, we
have that

Jλ(uλ) ≥ Jλ(tuλ) = J
eΩλ

(tvλ)

for all t > 0. Let us define the function ṽλ on λ(RN+ ∩V ) as ṽλ(y′, yN ) = vλ(y′, yN)
if Gλ(y′/λ) > 0 and ṽλ(y′, yN ) = vλ(y′, λGλ(y′/λ)) if Gλ(y′/λ) ≤ 0. Then

J
eΩλ

(tvλ) ≥ JRN+∩Vλ(tṽλ) + J(eΩλ∩Vλ)\RN+
(tvλ)− J(RN+∩Vλ)\eΩλ(tṽλ).

Let us choose t = tλ so that JRN+∩Vλ(tṽλ) maximizes in t. Then, by definition of
the number c(RN+ ) = c∗/2 and the exponential decay of vλ, one gets that

JRN+∩Vλ(tλṽλ) ≥ c∗
2

+O(e−2λα)(3.1)

for some α > 0. Again using the exponential decay of vλ we obtain

I1 = −J(eΩλ∩Vλ)\RN+
(tλvλ)(3.2)

= −
∫
Bλ

dy′
∫ 0

λGλ(y′/λ)−

(
1
p
|∇vλ|p +

1
p
vpλ −

1
q
vqλ)(y′, yN )dyN +O(e−2λα/),

where Bλ = {|y′| < λδ}. Similarly, we find that

I2 = J(RN+∩Vλ)\eΩλ(tλṽλ)(3.3)

=
∫
Bλ

dy′
∫ λGλ(y′/λ)+

0

(
1
p
|∇vλ|p +

1
p
vpλ −

1
q
vqλ)(y′, Gλ(y′/λ))dyN +O(e−2λα).
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Here we have denoted a+ = max{a, 0}, a− = min{a, 0}. Now we note that vλ → w
C1-locally with uniform exponential decay. Then since Gλ(0) = 0 and G′λ(0) = 0
and Gλ converges in a C2 local sense to G, an application of dominated convergence
yields

lim
λ→∞

λ(I1 + I2) =
N−1∑
i,j=1

∫
RN−1

G′′ij(0)y′iy
′
j(

1
p
|∇w∗|p +

1
p
wp∗ −

1
q
wq∗)(y

′, 0)dy′

= γ̃

N−1∑
i=1

G′′ii(0) = γ̃H(x̄).(3.4)

Here

γ̃ = (N − 1)ωN−1

∫ ∞
0

{1
p

( |w′∗(r)|p + w∗(r)p )− 1
q
w∗(r)q}dr.

Using r2w′∗(r) as a test function in the equation satisfied by w∗, one obtains

γ̃ = 2
N − 1
N + 1

ωN−1

∫ ∞
0

rN |w′∗(r)|pdr.

We conclude that

cλ ≥
c∗
2
− λ−1γH(x̄) + o(λ−1).

On the other hand, using a computation along the same lines as above, refining
estimate (2.16) yields

cλ ≤ sup
t>0

Jλ(twzλ) =
c∗
2
− λ−1γH(z) + o(λ−1),

for any z ∈ ∂Ω. Here wzλ = w∗(λ(x − xλ)).
Combining these two estimates directly provides assertions (1) and (2) of the

theorem, since in particular we conclude H(x̄) ≥ H(z) for all z ∈ ∂Ω. Finally,
relation (2.4) yields the desired expansion (1.5) for S(Ωλ), and the proof of Theorem
1.1 is concluded.
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