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810 Dávila et al.

1. INTRODUCTION

Consider the following stochastic differential equation (SDE):

dx = b�x�dt + ��x�dW� (P)

with x�0� = z ∈ �>0, where b and � are smooth positive functions (C1

or even locally Lipschitz will be enough for our calculations) and W
is a (one-dimensional) Wiener process defined on a given complete
probability space ���� ��� with a filtration ��t�t≥0 satisfying the usual
conditions (i.e., it is right continuous and �0 contains all �-null sets [4]).

It is well known that stochastic differential equations like (P) may
explode in finite time. That is, trajectories may diverge to infinity as t
goes to some finite time T that, in general, depends on the particular
path.

The Feller Test for explosions (see [4, 6]) gives a precise description
in terms of b, �, and z of whether explosions in finite time occur with
probability zero, positive, or one. We review some well known facts
about SDE with explosions in Section 2.

For example, if b and � behave like powers at infinity, i.e.,

b�s� ∼ sp� ��s� ∼ sq �s → ���

applying the Feller test, one obtains that solutions to (P) explode with
probability one if p > 2q ∨ 1. We use f�s� ∼ g�s� to mean that there exist
constants 0 < c < C, such that cg�s� ≤ f�s� ≤ Cg�s� for large enough s.
We also use a ∨ b = max�a� b�, a ∧ b = min�a� b�.

The intuition behind this condition is that p > 2q ensures that the
asymptotic behavior of the solutions is governed by the drift term while
p > 1 impose the solution to grow up so fast that it explodes in finite
time, as in the deterministic case (� = 0).

Stochastic differential equations like (P) have been considered, for
example, in fatigue cracking (fatigue failures in solid materials) with
b and � of power type [5, 9], and so solutions may explode in finite
time. This explosion time is generally random, depends on the particular
sample path, and corresponds to the time of ultimate damage or fatigue
failure in the material.

Unfortunately, explicit solvable SDEs are rare in practical
applications, hence the importance of developing numerical methods to
approximate them.

There are many numerical methods designed to deal with SDEs like
(P) when b and � are assumed to be globally Lipschitz continuous. See,
for instance, the surveys [2, 7] and the book [5]. See also [3], where locally
Lipschitz coefficients are considered. However, all of the cited work
deal with globally defined solutions, and most of them with a constant

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

es
te

rn
 O

nt
ar

io
] 

at
 1

7:
26

 2
4 

O
ct

ob
er

 2
01

4 



Numerical Analysis of SDEs 811

time step. When dealing with explosive solutions, these methods
do not apply mainly because using a constant time step produces
approximations that are globally defined. Moreover, the convergence
results are based on regularity assumptions of the solution in a fixed
(deterministic) time interval �0� 	
; these hypotheses are not available in
our case.

The main purpose of this article is to develop an adaptive method
that reproduces explosions of the solutions in case that it occurs,
providing rigorous proofs of this fact.

We want to remark that even for deterministic problems, the usual
numerical methods are not well suited to reproduce explosions, and
therefore, adaptive schemes have been developed [1].

The Numerical Scheme

Let h > 0 be the parameter of the method and let �Xk�k≥1 = �Xh
k �k≥1

be the numerical approximation of (P) given by the Euler-Maruyama
method

Xk+1 = Xk + 	kb�Xk�+ ��Xk��Wk� X0 = x�0� = z� (Ph)

where �Wk = Wtk+1
−Wtk

denotes the increment of the Wiener process in
the interval �tk� tk+1
 and 	k = tk+1 − tk.

We define, for notational purposes, X�t� as an interpolant of X�tk� =
Xk. For instance, we can take X�t� ≡ Xk for tk ≤ t < tk+1 or X�t� to be
the linear interpolant of the values Xk.

Observe that the numerical approximation X�t� is a well-defined
process up to time

Th �=
�∑
k=1

	k


We say that a sample path X�·� �� of (Ph) explodes in finite time if

X�t��� → +� �t → Th�� and Th��� < �


If b and � are globally Lipschitz continuous, it is customary to take
a constant time step 	k ≡ h (see [5]). However, when designing adaptive
algorithms, the time step 	k has to be selected according to the computed
solution Xk and so it will be necessarily aleatory. Inspired by [1], we select
the time steps 	k, according to the rule

	k =
h

b�Xk�



Observe that by our selection of 	k, Th��� < � implies X�t� ↗ +�.
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812 Dávila et al.

Main Results

First, we prove convergence of the numerical approximations in compact
(random) intervals where the solution and the numerical approximation
are bounded. For this theorem the time steps 	k only need to be �tk

-
measurable and verify 	k ≤ Ch, but are otherwise arbitrary.

Theorem 1.1 (Convergence of the numerical scheme). Let x�·� be the
solution of (P) and X�·� its EM approximation given by (Ph). Fix a time
	̄ > 0 and a constant M > 0. Consider the stopping times given by 	 �= 	̄ ∧
RM and 	h �= 	̄ ∧ R2M

h , where RM �= inf�t � �x�t�� ≥ M� and RM
h �= inf�t �

�X�t�� ≥ M�. Then

lim
h→0

�
[

sup
0≤t≤	∧	h

�x�t�− X�t��2
]
= 0


Observe that, if the sample paths are uniformly bounded, this is
a standard convergence theorem (see, for example, [3, 5]). However, in
case that there exists solutions that explode in finite time, we prove
convergence of the numerical scheme in regions where they are bounded.
We do not expect convergence in bigger regions.

However, if we weaken the notion of convergence, we can prove that
the computed solution converges to the continuous one in any interval
where the continuous solution remains bounded. More precisely, we have

Corollary 1.2. With the same assumptions and notation as in Theorem 1.1,
for every � > 0 and every 0 ≤ � < 1

2 ,

�
(

sup
0<t<RM

�x�t�− X�t�� > �h�
)
→ 0 as h → 0


Next we assume a specific behavior on the coefficients in (P) to have
explosions with probability one. The precise assumptions on b, � are:
There exist positive constants �1, �2 such that

�1 ≤ �2�s� ≤ �2b�s�� b is nondecreasing and
∫ �

0

1
b�s�

ds < �
 (A)

Remark 1.1. By means of the Feller Test, one can check that under
assumption (A) solutions to (P) explode with probability one. These
assumptions are actually stronger than the ones required by the Feller
Test. Recall that the solution of the (deterministic) differential equation
x̄′�t� = b�x̄�t�� with x̄�0� = z ∈ �>0 explodes in finite time, if and only if,∫ +�
z

1
b�s�

ds < �.

Next, we analyze the asymptotic behavior of the solutions to (Ph)
and show that it agrees with the behavior of the solutions to (P). This is
our main result.
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Numerical Analysis of SDEs 813

Theorem 1.3. Assume (A). Then

1. For every initial datum z > 0, X�·� explodes in finite time with probability
one.

2. We have,

lim
k→�

X�tk�

hk
= 1 a.s.

Moreover, for any � > 1, there exits k0 = k0���, such that, for every
k ≥ k0, there holds

�∑
j=k

h

b��hj�
≤ Th − tk ≤

�∑
j=k

h

b��−1hj�



3. If b has regular variation at infinity (see Definition 1),

lim
k→�

Th − tk∫ �
Xk

1
b�s�

ds
= 1 a.s.

4. In addition, for every h > 0, there holds h/b�z� ≤ Th < +� a.s and for
every L > 0, ��Th > L� > 0.

Remark 1.2. Observe that 3, gives the precise asymptotic behavior of
the numerical solution near the explosion time. For example, if b�s� ∼ sp,
the explosion rate given by 3 is

X�tk��Th − tk�
1/�p−1� →

(
1

p− 1

) 1
p−1

� �tk → Th�


This is the behavior of solutions to the deterministic ODE dx̄�t� =
x̄p�t�dt.

Finally, we analyze the convergence of the stopping times considered
in Theorem 1.1 to the explosion time of the continuous problem.

Theorem 1.4. Assume (A). Then, for any � > 0,

lim
M→+�

lim
h→0

���RM
h − T � > �� = 0


This last theorem is useful in actual computations of the explosion
time for (P). See Section 5.
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814 Dávila et al.

2. THE CONTINUOUS EQUATION

In this section we review some results concerning the behavior of
solutions to (P) as t ↗ T , the explosion time. These results can be found,
for instance, in [4, 8].

Let s� � → � be the scale function for (P) given by

s�z� = 0� s′��� = exp
[
−

∫ �

0
2b�t���t�−2dt

]



Then, if y�t� = s�x�t��, we have

dy = �̄�y�dW� (1)

where �̄ = �s′�� 
 s−1. Solutions to (1) are globally defined. Observe that
x explodes in finite time, if and only if

� �= s�+�� < +�


We can obtain a weak solution to (1) by time change. In fact, let
B�t� be a standard Brownian motion and define

A�t� =
∫ t

0
�̄�B�u��−2du�

and let � be the inverse of A, then

y�t� = B���t��

is a weak solution of (1).
Let

T� �= inf�t > 0� B�t� = ��


Therefore

T = A�T�� =
∫ T�

0
�̄−2�B�u��du� (2)

is the explosion time.
To describe the behavior of x�t� near the explosion time T , we have

to study the behavior of B�t� when t is close to T�. To this end, we define

R�t� �= �− B�T� − t�� 0 ≤ t ≤ T�


Then R�t� is a Bessel process, i.e., R�t�
�= BES�3�.
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Numerical Analysis of SDEs 815

Combining these assertions, we get

y�T − �� = B���T − ��� = B�T� − �T� − ��T − ����

= �− R�T� − ��T − ���


So we arrive at

x�T − �� = s−1�y�T − ��� = s−1��− R�T� − ��T − ����


Therefore, we have found the asymptotic behavior for the solution x to
(P) near the explosion time T . Moreover, (2) gives an “explicit” formula
for the explosion time T of weak solutions to (P).

3. CONVERGENCE OF THE NUMERICAL SCHEME

We begin this section by showing some measurability properties of the
numerical scheme.

Lemma 3.1. With the notation of Section 1.2, �tk�k≥1 are stopping times
and each 	k is �tk

-measurable.

Proof. We just observe that

tk+1 = tk + 	k = tk +
h

b�Xk�



Assume tk is a stopping time. Then Xk (and hence 	k) is �tk
-measurable.

Since 	k is positive, tk+1 is also a stopping time. The case k = 0 holds
since t0 is the constant h/b�z�. �

Now we prove the main result of the section. Recall that this result
and the subsequent proposition and corollary hold true for any choice
of time steps 	k, if they are �tk

-measurables and 	k ≤ Ch.

Proof of Theorem 1.1. First, we truncate the functions b�x� and ��x� in
such a way that they are globally Lipschitz, bounded, and coincide with
the original b�x� and ��x� for values of x with �x� ≤ 2M , i.e., we consider

b̄�x� =


b�x� if �x� ≤ 2M
b�2M� if x ≥ 2M
b�−2M� if x ≤ −2M�

and

�̄�x� =


��x� if �x� ≤ 2M
��2M� if x ≥ 2M
��−2M� if x ≤ −2M
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816 Dávila et al.

Let y and Y be the solutions of

dy = b̄�y�dt + �̄�y�dW� y�0� = z� (3)

Yk+1 = Yk + 	kb̄�Yk�+ �̄�Yk��Wk� Y�0� = z� (4)

respectively.
From [5], we have

�
[
sup
0≤t≤	̄

�y − Y �2
]
→ 0� as h → 0�

Recalling that 	 �= 	̄ ∧ RM and 	h �= 	̄ ∧ R2M
h we have that x�t� =

y�t� and X�t� = Y�t� if 0 ≤ t ≤ 	 ∧ 	h. Hence

�
[

sup
0≤t≤	∧	h

�x − X�2
]
= �

[
sup

0≤t≤	∧	h
�y − Y �2

]
≤ �

[
sup
0≤t≤	̄

�y − Y �2
]



This implies the result. �

Remark 3.1. Observe that, in fact, the results in [5] give

�
[
sup
0≤t≤	̄

�y − Y �2
]
≤ Ch�

so, in our case, we also obtain

�
[

sup
0≤t≤	∧	h

�x − X�2
]
≤ Ch


What one really wants in Theorem 1.1 is convergence of the
numerical scheme without any assumptions on the computed solution
X. Unfortunately, we are not able to prove convergence in square mean
without this hypothesis. However, we are able to prove convergence in
probability without any further assumption on X. To this end, we need
the following proposition.

Proposition 3.2. Let RM and RM
h be as in Theorem 1.1 and M > 0, then

we have

1. ��RM ≥ R2M
h � → 0 as h → 0


2. ��RM
h ≥ R2M� → 0 as h → 0


Proof. First, we prove 1. Let � > 0. As T < � a.s., we can take 	̄ such
that

��T > 	̄� <
�

2
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Numerical Analysis of SDEs 817

Now, with the notation of the Theorem 1.1, we have that

��RM ≥ R2M
h � ≤ ��T > 	̄�+ �

(
sup
0<t<	

Y ≥ 2M
)

<
�

2
+ �

(
sup
0<t<	

Y ≥ 2M
)

< �� (5)

if h is small enough. In fact, by Tchebychev inequality,

�
(
sup
0<t<	

Y ≥ 2M
)
≤ �

(
sup
0≤t≤	

�y − Y � > M
)
≤ 1

M2
�
[
sup
0≤t≤	̄

�y − Y �2
]
<

�

2
�

from where 1 follows.
To prove 2 taking 	̄ as before, we have

��RM
h ≥ R2M� ≤ ��T ≥ 	̄�+ ��RM

h ≥ R2M� T < 	̄�

≤ �

2
+ �

(
sup

0<t<	̄∧RM
h

y ≥ 2M
)



The proof follows as in 1. �

Now, combining Theorem 1.1 and Proposition 3.2, we can get
rid of the boundedness assumption on X by weakening the notion of
convergence.

Proof of Corollary 1.2. First, take 	̄ > 0 such that

��T > 	̄� <
�

2



Then, if 	 = 	̄ ∧ RM , by Tchebychev’s inequality,

�
(
sup
0<t<	

�x�t�− X�t�� > �h�
)

≤ �
(
sup
0<t<	

�x�t�− X�t�� > �h�� RM < R2M
h

)
+ ��RM ≥ R2M

h �

≤ 1
h2��2

�
[

sup
0<t<	∧	h

�x�t�− X�t��2
]
+ ��RM ≥ R2M

h �

≤ h1−2�

�
+ ��RM ≥ R2M

h � → 0

as h → 0. Therefore, for h small (depending on �)

�
(

sup
0<t<RM

�x�t�− X�t�� > �h�
)
< �


This finishes the proof. �
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818 Dávila et al.

4. EXPLOSIONS IN THE NUMERICAL SCHEME

In this section, we prove that for almost every � ∈ �, X�t� explodes in
finite time Th���.

To begin with, let us recall an auxiliary lemma.

Lemma 4.1 ([4], Chapter 2). Let ��t� be the filtration generated by the
Wiener process W�·� and S a stopping time of ��t�. Assume 	 is a random
variable �S-measurable. Then, for every Borel set A, it holds

��W�S + 	�−W�S� ∈ A��S� =
∫
A

1√
2�	

e−
x2
2	 dx
 (6)

Furthermore,

W�S + 	�−W�S�√
	

∣∣∣
�S

is a standard normal random variable and hence (6) holds without
conditioning.

Next, we prove a technical lemma that is the key point in the
proof of Theorem 1.3. This lemma allows us to control the effect of the
diffusion in the numerical approximations of (P).

Lemma 4.2. Let Yk =
∑k

j=1 ��Xj��Wj . Then

lim
k→�

Yk
k

= 0 a.s.

Proof. Let

Zj �=
�Wj√
	j

= Wtj+	j
−Wtj√
	j

and aj �= ��Xj�
√
	j =

√
h

��Xj�√
b�Xj�




Then Yk =
∑k

j=1 ajZj . Observe that aj are uniformly bounded by
assumption (A). In order to prove that Yk/k goes to zero, we use
Tchebychev’s inequality combined with Borel-Cantelli’s Lemma. So we
need to show that

�∑
k=1

��Y 4
k 


k4
< �


Observe that Zj is independent of �tj
and is normally distributed,

according Lemma 4.1. Then, if i �= j� r or l, conditioning we obtain

��ZiZjZrZl
 = 0
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Numerical Analysis of SDEs 819

Moreover,

��Z2
i Z

2
j 
 = 1 �i �= j� and ��Z4

i 
 = 3


Hence,

�

[( k∑
j=1

Zj

)4
]
=

k∑
j=1

��Z4
j 
+ 3

k∑
i�j=1
i �=j

��Z2
i Z

2
j 


= 3k+ 3�k2 − k�

= 3k2


Taking into account that aj is �tj
-measurable, proceeding in the same

way with ajZj , we obtain

��Y 4
k 
 ≤ 3��2hk�

2�

to get the desired result. �

Now we use this lemma to prove that solutions to the numerical
scheme explode with probability one and to find the rate of explosion.
We are going to use the following

Definition 1. We say that a function f � � → � has regular variation at
infinity if there exist p > 0, such that for every positive �,

lim
s→+�

f��s�

f�s�
= �p


Proof of Theorem 1.3. Since Xk = z+ hk+ Yk−1, by Lemma 4.2,

Xk

hk
= z

hk
+ 1+ Yk−1

hk
→ 1� a.s. as k → �
 (7)

To prove that explosion occurs, it remains to be shown that with
probability one, Th =

∑
	j < �. To this end observe that, by (7), for

every � > 1, there exist k0 = k0���, such that,

�∑
k=k0

	k =
�∑

k=k0

h

b�Xk�
≤

�∑
k=k0

h

b��−1hk�
≤

∫ �

k0−1

h

b��−1hs�
ds

= �
∫ �

�−1h�k0−1�

1
b�u�

du ≤ �
∫ �

Xk0−1

1
b�u�

du < +�� a.s.

This proves 1.
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In order to prove 2, we observe that the computations performed
give

Th − tk ≤
�∑
j=k

h

b��−1hj�
≤ �

∫ �

Xk

1
b�u�

du


In the same way, we can obtain the reverse inequality,

Th − tk ≥
�∑
j=k

h

b��hj�
≥ 1

�

∫ �

Xk+1

1
b�u�

du�

for k = k��� large enough.
To prove 3, just observe that regular variation at infinity of b

implies that

B�t� �=
∫ �

t

1
b�u�

du

has regular variation at infinity with the same exponent. Therefore, as B
is increasing,

B�Xk�

B�Xk+1�
=

B� Xk

Xk+1
Xk+1�

B�Xk+1�
≤ B��Xk+1�

B�Xk+1�
→ �p as k → �

for any � > 1. Therefore

lim sup
k→�

B�Xk�

B�Xk+1�
≤ 1


Analogously,

lim inf
k→�

B�Xk�

B�Xk+1�
≥ 1


It remains to show 4, but this follows from the fact that for any K> 0,

�
(
max
1≤j≤K

Xj < 2z
)
> 0


Hence, if K is such that Kh/b�2z� > L, we obtain

��Th > L� ≥ �
(
max
1≤j≤K

Xj < 2z
)
> 0


Moreover, Th ≥ 	1 = h/b�z�. The proof is now complete. �

5. APPROXIMATION OF THE EXPLOSION TIME

In this section we prove Theorem 1.4. Observe that in numerical
simulations RM

h can be easily computed. This fact together with
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Theorem 1.4 allows us to construct the numerical approximation of T
given in the next section.

Proof of Theorem 1.4. We proceed as follows, for � > 0, we have

���RM
h − T � > �� = ��RM

h − T > ��+ ��RM
h − T < −�� = I + II


We first show that I goes to zero as h → 0 for any fixed M . In fact,
as R2M < T ,

I ≤ ��RM
h − R2M > �� ≤ ��RM

h > R2M� → 0�

as h → 0, by Proposition 3.2.
For the second term, we have

II ≤ ��RM/2 − RM
h > �/2�+ ��T − RM/2 > �/2�

≤ ��RM/2 > RM
h �+ ���T − RM/2� > �/2� → 0

by Proposition 3.2 and since RM/2 → T a.s. �M → +��.
This completes the proof. �

Figure 1. Three sample paths with explosions.
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6. NUMERICAL EXPERIMENTS

In this section, we present some numerical examples to illustrate the
theory set forth in the previous sections. All the experiments are
computed with

b��� = ���1
1 + 0
1� ���� = √���1
1 + 0
1� z = 10


The increments of the Wiener process have been generated with the
randn routine of MATLAB.

In Figure 1, we show some sample paths of the solution. We stop
the algorithm when the computed solution reaches M = 105.

In Figure 2, we show the ratio Xk/hk, and observe that it converges
to 1 as predicted by our result.

Figure 1.1.

Figure 1.2.
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Numerical Analysis of SDEs 823

Figure 2. Xk/hk → 1 a.s.

Figure 3. The kernel estimator of the densitry of RM
h for different values of h.
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824 Dávila et al.

Finally, Figure 3 shows the kernel density estimation of RM
h for

different choices of h. As proven in Theorem 1.4, RM
h converges in

probability to T .
We have used 1000 sample paths for each estimator. The values of h

taken in each estimator were h = 1, h = 0
5, and h = 0
1. Observe that,
in each case, the largest time step taken was 	1 � 0
08, 	1 � 0
04, and
	1 � 0
008, respectively.
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