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2148 CORTAZAR, DEL PINO. AND ELGUETA 

1 Introduction 

Let us consider a solution u(x, t ) ,  globally defined in time of a semi-linear 
parabolic equation of the form 

in a domain S2 in RN or in entire space, plus boundary or decay at  infinity 
conditions. 

A natural question is whether the solution approaches a time-independent 
or steady state solution of equation (1.1) as time goes to infinity. 

If boundary conditions are homogeneous Dirichlet, Neumann or the do- 
main is entire RN, this equation corresponds formally to the L2 gradient flow 
associated to the functional 

where F ( u )  = J,U f ( s ) d s .  Provided that the functional is well-defined along 
the trajectory, one formally sees at once that J is decreasing in time along 
it, for 

d 1  
- J ( u ( . ,  t ) )  = -- / u:(x, t )dr .  
dt 2 n 

In other words, J is a Lyapunov functional for this flow. Assume that the 
trajectory u(., t) is bounded in some suitable space norm, say, HI-norm. 
Then every sequence t, -+ has a subsequence which we still denote the 
same way, so that 

, 4 5 1  tn) 4 5 )  

weakly, in H'-sense. If suitable growth is assumed on f ( s ) ,  then we also 
have that J ( t ~ ( . , t ) )  is uniformly bounded from below and hence has a limit 
as t -+ m. A standard consequence of this fact and (1.2) is that w is a steady 
state of (1 .1 ) .  See for instance the proof of Lemma 2.1 below. 

'4 natural question here is the problem of uniqueness of the limit, namely 
whether the entire trajectory approaches just a single steady state as time 
goes to infinity, or else, it remains oscillating between different steady states. 

The former is obviously the case if there is a unique steady state of (1.1) 
for the given boundary (or decay) conditions, or if the set of such solutions 
is discrete. However, this is not at  all clear if steady states are not isolated. 
This property occurs naturally if the space domain is entire RN since all 
space translations of a given steady state are also steady states. 

Important insight into this question was gained by L. Simon in [9]. .Among 
other results, he proves that for a broad class of parabolic L2-gradient flows 
of functionals of the form I(u) = J,, F(Vu,  u, x)dx under suitable ellipticity 
conditions, the answer to this question is affirmative, provided that F admit 
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SEMILINEAR HEAT EQUATION 2149 

real analytic expansions in its arguments, around steady states, with coeffi- 
cients uniform in the space variable. Here M is a compact manifold without 
boundary. 

Assume that  for a globally defined solution u and a sequence t ,  -+ +co 
one has that u(. ,  t,) --+ w, strongly in H1-sense. Then I (u ( . ,  t ) )  4 I (w)  as 
t +CO. In the analytic setting, it is found then that 

for certain numbers C > 0 and 0 < 0 < 1 dependent only on the data. From 
here it easily follows that 

as t -+ foe, so that  the entire trajectory approaches w. The proof of this 
estimate uses the uniform analyticity assumption in essential way. 

The main purpose of the present work is to analyze the problem of unique- 
ness of the limit in an equation in entire RN for a nonlinearity, with a con- 
tinuum of steady states, not included in the class covered by the results of 
[9], but for which good information on the degeneracy of the steady states is 
available. The problem we consider is 

~ h e r e l < ~ < E i f ~ > 3 0 r l < p < + m i f N = 1 , 2 .  Weassumeinwhat 
follows that the initial data uo is in H1(RN) n C(RN) and is nonnegative 
and compactly supported. 

By a (globally defined) solution of (1.3)-(1.4) we understand a function 
u E C([O, co), H1(RN)) such that 

for all p E Ci([O, a), H ' ( R N ) ) .  Here and henceforth the symbol J with no 
limits specified denotes integration on entire RN. Let us observe that the 
integral quantities involved in the above expression are indeed well defined 
thanks t<o the usual Sobolev embedding of H1(RN) into LP+'(RN) for p < 
N+2 
N - 7  ' .. & 

Our main result states that  a solution globally defined in time for this 
equation converges, as time goes to infinity, either to zero or to a solution w 
of the problem 

A w - w + w P = 0 ,  w > O   in^^ (1.5) 
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2150 CORTAZAR, DEL PINO. AND ELGUETA 

This elliptic: problem is by now well understood. In fact, it follows from the 
work by Gidas, Ni and Nirenberg [4] that  any solution to t,his problem is 
radially symmetric around some point. We observe that even though the 
nonlinearity f ( u )  = 1P - u has a local analytic expansion around U I ( X ) ,  its 
coefficients do not remain uniformly bounded in a: if p is not an integer, so 
that  the results in [9] do not apply. 

On the other hand, Kwong [7] established that the radially symmetric 
solution for 1 < p < is unique. An intermediate step in the uniqueness 
proof is the fact that the linearized equation around a radial solution w of 
(1 5)-(1.6) 

Ah - 11 + p ~ P - ' h  = 0, in R~ (1.7) 

does not admit nontrivial radial solutions. An observation due to Ni and 
Takagi [8] shows that this fact ~mplies that  the only solutions of (1.7)-(1.8) 
are linear combinations of the functions $, z = 1 , .  . . , N .  

This is a key fact in the proof of our main result 

Theorem 1.1 Let u ( x ,  t )  be a globally defined solution of (l.3)-(1.4). Then 

ezther v(., 1 )  goes to zero in HI-sense as t -t +m or there erczsts a solution 

w ( x )  to problem (1.5)-(1.6) such that 

While proving that limit points of the trajectory are steady states is, 
as we mentioned, relatively standard, our proof of uniqueness of the limit 
takes strong advantage of the invariance under space and time translations 
of (1.3) as  well as of the radial nondegeneracy property above mentioned of 
its steady states. This allows the use of an iterative procedure induced by 
Lemma 2.2 which roughly states that  once u becomes close to a w in an 
interval I t * ,  t* + T] a t  "distance", say, 7,  then a small translation of w in an 
amount proportional to 17 reduces this error by half on the later time interval 
[t* + T, 1' + 2T) provided that T is larger than certain universal constant. 
This implies, after iteration, that u a t  later times never gets farther from w 
than a constant times 17. 

This idea has been used in the work (61 in the context of establishing 
uniqueness of asymptotic profiles of singularities of solutions of an elliptic 
equation a t  the critical exponent. 

The special form of the nonlinearity -u + up does not play an essential 
role in our setting and could be replaced by an f (u)  satisfying appropriate 
growth assumptions, in particular non anaiytic. We can mention for instance 
conditions appearing in the work [3] which guarantee the radial nondegener- 
acy property. 
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SEMILINEAR HEAT EQUATION 2151 

I t  is natural to attempt to characterize the set of initial data for which 
the solution of (1.3)-(1.4) is globally defined and tends to a non-trivial steady 
state as t -+ oo. In this direction we have the following result. 

Theorem 1.2 Given $ E H 1  (RN) n C ( R N ) ,  compactly supported, nonneg- 

ative and not identically zero, there exists a unique number Xo > 0 such that 

the solution of (1.3)-(1.4) for uo = XO$ converges as t -t +co to a solution 

w of (1.5)-(1.6).  Moreover, for uo = A$, we have that the solution goes to 

zero in  H '  -sense z;f X < Xo and blows-up i n  Jinzle time if X > Xo. The  number 

Xo depends contznuously on $ i n  the N' norm 

Finally, we would like to mention that while the condition that the initial 
da ta  is compactly supported is used in the proof to control the size of the 
solution outside of a bounded region, we do not believe this requirement is 
essential. 

The rest of this paper is devoted to the proof of the above results. In 52 
we carry out the proof of Theorem 1.1, leaving the main technical steps for 
sections $345. Finally, we prove Theorem 1.2 in 36. 

2 The proof of Theorem 1.1 

In this section, we denote by u(x , t )  a globally defined solution of (1.3)-(1.4), 
with uO(x) a compactly supported initial data in H'(RN) and prove Theorem 
1.1 leaving the main technical steps for later sections. 

In order to prove the existence of the limit we need the following lemma 
which we will prove in the next section. 

( c )  Let t,, -+ +m be a sequence such that 

u(. ,  t,) - W ( Z )  weakly i n  H ' ( R ~ ) .  

T h e n  for all 7 > 0 u( . ,  t ,  + r )  - w(x) weakly zn H 1 ( R N )  and w(x) zs either 
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2152 CORTAZAR, DEL PINO, AND ELGUETA 

zero or a solution of problem (1.5)-(1.6). Moreover, the convergence is also 

uniform and strong in HI-sense. 

A result analogous to this one in the case of a bounded domain under 
Dirichlet boundary conditions has been established in [2] Let t,, n E N, be 
such that  t ,  -t oo as n -t co. By Lemma 2.1, part (b), the sequence u(., t,) 
is uniformly bounded in H 1 ( R N ) .  Hence, up to a subsequence, there exists 
w E H'(RN) such that  u(.,t,) - w ( s )  weakly in H 1 ( R N ) .  It follows now 
from part c) that  7u(x)  is either zero or a solution of problem (1.5)-(1.6) and 
the convergence is also uniform and strong in HI-sense. 

Therefore the theorem will be established as soon as we prove that the 
limit w is the same no matter which sequence t ,  we start with. The case 
w r O follows from the fact that small constants are super-solutions of (1.3). 
The case when w is non-trivial is more subtle. The main tool we use is the 
following lemma, whose proof will be postponed until Section 4. 

Lemma 2.2 (Mum Lemma) There are positive numbers To > 1 ,  6 ,  C and 

f, with the following property. Assume that w(z) is a solution of problem 

(1.5)-(1.6), and t* > f are such that 

Then, there zs a vector 3 E RN with 131 5 Cq with the property that 

We cont,inue now with the proof of Theorem 1.1. 

Let 6 > O and To be as in the above lemma. Let 0 < E < 6. Then we can 
find to =: t,, > l such that  

Let 5, be, as predicted by Lemma 2.2, so that  

and  IS^( 5 Cq. Now, applying Lemma 2 .3  again we find 32 with / S ~ I  5 9 
such tha t  
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SEMlLlNEAR HEAT EQUATION 2153 

Iterating this procedure, we find a sequence Z 1 ,  &,. .  . such tha t  I5,I 5 ST, 
and 

Now, 

1 < 7 7  + T O ' / ~ ~ ~ W ( . )  - w ( .  + + . . . 4- Z * ) I I ~ ( I ( ~ N ) .  2 
I t  is known that w(z)  and its derivatives decay exponentially as 1x1 -t m. It  
follows then that  for some M > 0, 

Hence 

for some number D > 0, independent of c for all t > to. From here, using 
part c) of Lemma 2.1, the uniqueness of the  limit point immediately follows. 
0 

As we mentioned in the  introduction, in the above proof we have borrowed 
an argument contained in the paper [6 ] ,  in a different context. 

3 Proof of Lemma 2,1 

A main role in the  proof will be played by the  functional 

I t  is a standard fact tha t  

and hence J ( u ( , ,  t ) )  is a non-increasing function of t .  
We need first some preliminary results. 
T h e  following lemma is essentially contained in [I], We omit its proof, 

based on Alexandroff's reflection principle and pointwise comparison. 
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2154 CORTAZAR, DEL PINO, A N D  ELGUETA 

Lemma 3.1 Assume that supp 110 c B(0, Ro)  . Then for all R > 0 one has 

The next lemma and its corollary help us to control the size of the solution 
for large values of 1x1. 

Lemma 3.2 Assume uo is compactly supported. Then giuen A > 1 there 

exists R > 0 such that U ( Z ,  t )  5 A for all 1x1 2 R and all t > 0. 

Proof. We argue by contradiction. If the lemma fails, using Lemma 3.1, 
we see that there exists ,40 > 1 and sequences t ,  and R, with R,, -+ cc as 
n -+ co such that 

u ( x ,  t,) 2 A. for all x E B(0 ,  &) 

Let us consider the problem 

,u, = Au + vP - v in B(0 ,  I&) x [t,, co) 

u(x, t )  = 0 on aB(0 ,  R,) x [t,, co) (3.2) 
~ ( x ,  t,) = A. on B(O, R,). (3.3) 

We claim that if n is large enough, then v blows up in finite time. Indeed, 
let 4, be the first eigenfunction of the Laplacian with homogeneous Dirichlet 
boundary data on B, = B(O,&), normalized such that J,,, $,(x)dx = 1 .  
Let An be its corresponding eigenvalue. Set &(t)  = JBn V ( X ,  t)$,(x)dx. Then 
from (3.3). 

\ ! 

$ n ( ~ v  - v )  + Ln $nup 

Integrating by parts twice in space variable, using the fact that 9 < 0 on 
aB, and Jensen's inequality one gets 

$ ~ k ( t )  >- $$(t) - (A, + l)$,(t) for t l tn. 

Since A, -t 0 and $,(t,) = A. > 1 one obtains that &(t) blows up in 
finite time if n is large enough. This proves the claim. We obtain the desired 
contradiction now by comparison, since u is a super solution, globally defined 
in time, of problem (3.2). O 

Corollary 3.1 There e~zst~constants M > 0 and R > 0 such that 

Proof. The proof will be performed by comparison with a suitable barrier. 
Let g(s)  be the positive solution of 
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SEMILINEAR HEAT EQUATION 2155 

which is symmetric with respect to the origin and tends to zero as Is/ -t m. 
It is we11 known that g is decreasing in 10, m), g(0) > 1 and g decays 

exponentially a t  infinity. By Lemma 3.2 there exists R > 0  such that  
~ ( 2 ,  t) 5 g(0) for all 1x1 > R and all t > 0  Without loss of generality we may 
assume that the support of uo is contained in B(0 ,  R). Set h ( / x l )  = g(lxl- R ) .  
Then 

N - 1  
h" + 7 h ' + h P - h < O ,  r > R  

since gl(s)  _< 0  for s 2 0. In other words 

for 1x1 > R. Since u ( x ,  t) < h ( x )  for all 1x1 = R and all t > 0  the lemma 
follows by comparison. 0 

Proof. We argue by contradiction. Assume J(u(. ,  t o ) )  < 0 for wme  to > 0. 
Let r > 0. B y  Corollary 3.1 there exists R > 0  such that u ( x ,  t )  5 E for all 
1x1 > R and all t > 0. 

Consider the problem 

v, = Av + up - v in B(0 ,  R) x [0, oo) 

v r 0  on aB(0, R) x [O, m) 

v ( x ,  0) = ( u ( x ,  to) - E ) +  =: ~ ( 2 )  

and define 

I We claim that we can choose 
I 
I In fact one has  

E small and R large such that JR(VO) < 0. 
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CORTAZAR, DEL PINO. AND ELGUETA 

This proves the claim since i can be chosen arbitrarily small, R arbitrarily 
large and. by Corollary 3.1, 1 uP(z, to)dz is a fixed finite number. 

Since JR("( . ,  t ) )  is non increasing in t ,  it f o l l o ~ s  that in("(., t ) )  < 0 for 
all t > t o  Now we have 

and hence v blows up in finite time. This is a contradiction since TL is a 
super-solution of problem (3.4) which is globally defined in time. The lemma 
is proved 0 

The following lemma is essentialiy due to Giga and Kohn 151. We sketch 
its proof for completeness. 

Lemma 3.4 Let L be such that 0 < L 5 m Assume that J(u(.,t)) > 0 for 

al l  t E (0, L ) .  Then, there exists a constant C such that 

u(x,t) < C for all x E Rn and all t E (0, L). 

Proof. If the lemma was false, then there would exist a sequence tn E (0, L )  
converging to L such that 

Let 2 ,  be such that 
Mn - < ~ ( x n ,  in) 5 Mn. 
2 

Set 
un (ZJ, TI =: E ; I / ( P - ' ) U ( Z ,  + E ~ Y ,  t n  + E;.) 

where E : / ( P - ' )  = M - 1  n ' 

It is easily checked that v satisfies 

By the same argument as in the last paragraph of page 18 of [5j there 
exists a subsequence, which we still denote by u,,, and a solution v of 
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SEMILINEAR HEAT EQUATlON 

such that 
v, -+ v in c ~ : ( R ~  x (-a,()]) 

Now, since 

and J (u ( . ,  t ) )  2 0 for all t E (0, L),  we have 

4p/(p-1)-N-2 
En J ( ~ o ) .  

Since 4 p / ( p  - 1) - N - 2 > 0 if and only if p < it follows that v, = 0 
and hence v is a nontrivial, since v(0) 2 i, nonnegative solution of 

This contradicts a well known result by Gidas and Spruck about nonexistence 
of such a solution if 1 < p < $$j. This concludes the proof of the lemma. 0 

We can finish now the proof of Lemma 2.1. 

Part (a) follows immediately from Lemma 3.3 and Lemma 3.4 with L = 
co. AS for part (b) we note that by part (a), just proved, and Corollary 3.1 
that there exists a constant C, independent o f t ,  such that 

/up+' < c for a a  t t 0. 

Now, since J (u ( . ,  t f )  decreases as t increases, we get 

/ /ulp+l = J(u(. ,  t ) )  j J ( U ~ )  

and (b) follows. 
Finally we prove statement (c). Let t, -+ +m be a sequence such that 

u(., t,) - w(x) weakly in H' (RN).  

Let us fix a number T > 0. Integrating relation (3.1) in time from t, to t, + T 

and using Cauchy-Schwarz's inequality we obtain the estimate 
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2 158 CORTAZAR, DEL PINO, AND ELGUETA 

( t + T )  - ( t )  { J  n ) )  - J n + } (3.5) 

Since J ( u ( , ,  t ) )  is decreasing and bounded below, it follows that u ( x ,  tn+r)  -+ 

w ( x )  in L2. By part (h)  any subsequence of u ( . ,  t ,  + r )  has a subsequence 
convergent weakly in HI. Its limit must therefore be w.  We conclude that 
u( . ,  t ,  + T )  - U I  weakly in H 1  for any fixed T .  Let p E Cr(RN).  Then, since 
u  satisfies (1.1), we have 

so that letting 71 i m we get 

namely w satisfies 
A w + w P - w = O  

in the weak sense. Since the sequence u ( . , t n )  is uniformly bounded and 
u(.,t,) -+ w in L2, we obtain from standard parabolic estimates that this 
convergence is uniform on bounded sets, see for instance the argument in the 
last paragraph of page 18 of [5]. Finally, the uniform exponential decay of 
u  in space variable provided by Corollary 3.1 imply that the convergence is 
uniform in entire space. 

It only remains to prove that  the convergence is strong in H'. The uni- 
form convergence and Corollary 3.1 yield that u( . ,  t,) -t w in L ~ ( R ~ )  for all 
q > 1. The same holds for u(.,  t ,  + s) for any s E ( 0 , l ) .  

Now let h ( t )  be a smooth function supported in ( 0 , l )  such that J; h(t)dt  = 
1. Using the weak equations satisfied by u and w  with suitable test functions 
we obtain that  

lim 1' h(s )ds  / ( v u ( r ,  tn + s )  - V ( u ( x .  l ,  + s )  - ui(z) )dr  = 0. 
n-+m 

This implies the existence of s, E ( 0 , l )  such that 

Hence u ( x ,  t, + s,) -+ w ( z )  strongly in H1. But 

J ( ( u ( z ,  tn + 3,)) - J ( ~ ( x ,  tn)) -+ 0, 

from where it follows that the convergence of u(. ,  1,) to w  is strong in H'. 

4 The proof of Lemma 2.2 

In this section we prove the main st,ep in the proof of uniqueness of the 
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SEMILINEAR HEAT EQll ATION 2159 

limit,  Lemma 2.2.  leaving for the  next section t,he proof of a technical step, 
Proposition 4.1 below. 

.in indirect argument shows tha t  proving Lenilrla 2.2 amounts to  estab- 
lishing the validity of the following statement,: 

Tlterp exzst numbers C' nnd TO such that zf t ,  -i +x and y, E RN are 

u r ~ y  sequences such that for (1 solutzon 7u(.c) of problem ( 1  5)-(1 6 )  one  has 

then there exists a subsecjuewe of t , , ,  still denotrd by t,,! and uectors 5,, uizth 

j.Z,,l 5 C7/, such that 

Indeed, assume that  this s ta tement  hold true. If the result of Lemma 2.2 
did not hold for the constant .~ To and  C of the above s tatement ,  then there 
would exist sequences t ,  - i cc and y, E RN as 76 -+ oc surh t,hat 

for all :i such that 1x1 5 ('v,, a contradiction which shows the validity of 
Lemma 2.2. O 

Next we prove the above statement Let t, y, be sequences a s  s tated 
The proof consists of analvnng the convergence of the sequence 

where 
n,(.c, 1 )  - U(Z - y,, t ,  + t )  

We see tha t  4, satisfies 

where 0 < p < 1 depends on the values of u, and u: \Ve observe that  the 
sequence y, is bounded thanks to Corollary 3.1. Now, possibly passing t o  a 
subsequence, Lemma 2.1 implies that  u, converges uniformly, w i th  no loss 
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2 160 CORTAZAR, DEL PINO. A N D  ELGUETA 

of the gcnera l i t~ ,  t o  IP llso J? / ~ Q , / J ; ~ ,  = 1 Thrrsfore it is rrasonable 
to expect tha t  o,, c o ~ ~ i ~ ~ g c s  111 some sense t o  a s o l ~ l t i ~ n  @ of the llnearlzed 
problem 

ot = 10 - (3 t p~u"-'@ ~n R~ x ( O ,  x,) (4  5) 

I t  follo\rs from standard linear parabolic theory tha t  a weak-H' solution 4 of 
( 1 6)  is act i~al ly ~li\ssirrll. of class C2",  and f u r t h e r r ~ ~ o r ~ .  i C' ( (0 ,  w), LZ(R\')) 

Thc  next result clt:sc.rilws thc convergence of o,, to  a weak-Hi solution of 
(4.5) I I ~  to  subscqucnc~cs. \Yr% postponc its proof for thc next section. 

then 

for all suficzently large n 

jbj The fu7zctzon I$ ha.? the form 

where ~ z ,  C: 5 D w ~ t h  D drprndang only on p und AV Moreover, there 

eszsts To > 0 such that af T T lo, then 

for some a > O dependzrlg onby un p and N 

Next we co~lclude the proof of the claim assunli~lg the validity of this 
result. From Proposition 4.1 wc can write, passing to a subsequence if nec- 
Pssary, 
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SEMILINEAR HEAT EQUATION 2161 

Let us set 3, = qn(C1, .  . . , CN). Then / % , , I  5 Dq, with D dependent only 
on p and N. A Taylor's expansion yields 

~ ( 5 ,  tn + t )  - ~ ( 5  + z n )  = V;<n(x) + ~ n J ( z ,  t )  + VnOn(x, t )  

where & ( x )  has a uniformly bounded H1-norm. Then, integrating we get 

Finally, pick To > 1 such that ( x j 1 l 2  + e-"T0'2 < $.  Then the expression 
between brackets in the last inequality becomes less than 1/2 for all large n 
since K depends only on p and N. This proves inequality (4 .1)  and the proof 
of the claim, and hence of Lemma 2.2, is complete. 0 

5 The proof of Proposition 4.1 

The following result contains in particular that of part (a)  of Proposition 4.1. 

Proposition 5.1 Let 4, be the sequence defined i n  (4.3). Assume T > 1.  

Then there is a subsequence of 4, which we denote the same way, and 4 a 

weak-H' solution of (4.5) such that 

(i) 4, -\ cb weakly i n  LZ([O, K ) ,  H1(RN)) .  for all K 0 ,  that is 

im/ V ( A  - 4)Vcp + (4, - #)udxds  -+ 0 

for all cp E C r ( [ O ,  K )  x ( 0 , ~ ) .  

(22) For each t > 1 and B compact subset of R~ 

/jt ll#n(, S )  - d(., s ) I I & B $  + 0 

as n -+ cm. 

(iiz) Given t > 1 there is an integer no(t) such that for n 1 no ( t )  
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2162 CORTAZAR. DEL. PINO, A N D  ELGUETA 

(zv) There e x ~ s t s  an integer no(T) such that 

f o r  7 1  2 no (T) . 

Proof. Since i%b Idn(.,  s) l l i lds  1, thew exists a scquence r,, E [ l / 2 , 1 ]  

such that 7, i 7 and I / & ( . ,  7 ;1)/ /H1 < 2 . Therefore we can assume, passing 
t o  a subsequence, t h a t  &(.. T,) converges weakly in H ' ( R ~ )  to a function 
4 , (2 )  E N'(R"). Moreover, by Sobolev embeddings and a diagonal argu- 
ment. wr can assume also that  &(., 7,) converges to  djo stroxlgly in L2 of aIly 
compact subset of R.'. Now we prove staternerlt (i). Fix I\' > 0. Ili. claim 
that  J," 1 I@,,(.. s)//:,~ ds is uniformly bounded. In  fact, n~~lltiplyirig (44) by 
yin and il~tegrat~ing we get 

where D = 2p(jlulj,)P-1. Hence, recalling t h a t  1 &2(a,  rn)dx < 2, we have 
that  for t 2 7, .  

C o m b i n ~ ~ l g  this estimate wlth  (5.1) we get 

Integrating this last inequality from in to K and using that 1: \ I & ( , ,  s)ll;lds I 
1, we obtain 

and the claim is proved. I t  follo~vs that  there exists a subsecluence, which 
we relabel as u),, weakly convergent in L2([0, I < ) ,  H ' ( R ~ ) )  t o  a function 4. 
Let us fix a cp in C,M((O, K) x R"). Multiplying relation (4.4) by 13 and 
integrating we obtain 

Now, using the fact t h a t  D
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SEMILINEAR HEAT EQUATION 

P J I I - in1 112 
0 

we see that i f  we let n i ce in (5 il), then 

A similar argument, integrating as in (5.4) but from 0 to r, yields that q5 
solves (1.5) up to  time K. Finally, a 4 as in statement ( i )  is constructed by 
letting K -+ cc using a standard diagonal argument. 

Fix now t o  > 0 and let B be a compact subset of R ~ .  For a given 6 > 0, 
let h E C,DO(R~)  be a compactly supported function such that 0 5 h 5 1 , 
h r 1 or1 B and lVhl < b. Set Bn = 4, - 4. Subtracting (4.5) from (4.4); 
rnult,iplyirig by Bnh2 and integrating we obtain 

A standard argument then gives 

and hence from (5.5) 

From (5.2), we know that  J & 2 ( x , t ) d x  5 2eDt, hence the same is true for 
. f42dx.  Moreover, by Lemma 2.1, the functions u, are uniformly bounded. 
This implies the existence of a constant C > 0 such that  for any given E > 0 

for all n > n1(c).  We can choose h with 6 so small that  
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2164 CORTAZAR, DEL PINO, AND ELGUETA 

for any O < t < t o .  G r o n u d l s  inequality then leads us to  

From thls and relatior1 ( 5  7) ~t follon~s that  

0 1 1  the other hand. 

/ Q i ( . L .  T , ) ~ ~ ( L ) ~ X  5 

So since &(.? rn) converges t o  4( . ,  7 )  strongly in L' of any compact subset 
of Ray and, CJ E C((O,cc) ,  L ' ( R ~ ) )  we obtain 

Thus, since E is arbitrary, 

This  yields (ii) since T, 5 1. 
To establish statement (iii), we subtract again (4.4) from (4.3) and mul- 

tiply by 0,. Setting 6, = p ( ( w  + p(u ,  - w))P-' - ,wP-' and integrating we 
obtain 

Let B ( R )  be a ball of radius R  centered a t  the  origin. By Corollary 3.1 we 
can assume R big enough so tha t  jp(w +p(u,  - w))P-'1 5 1 / 2  outside B(R). 
Then by standard arguments,using the square of the binornial, we have for 
f > O  
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SEMILINEAR H E A T  EQUATION 

Taking c - we obtain a constant C so that  

Integrating in time 

From the uniform convergence of u, -t w it follows t h a t  6, -t 0 uniformly. 
O n  the other. hand the continuity of & plus the fact //@,(.,r,,)/lH1 _< 1 and 
I / ~ ( . , T ) / / ~ L  5 1 imply that  j"0;(x,rn)dx < 4.5 for 71 large. Now part  (iii) 
follows from (5.9) after an application of (5.8). 

To prove (iv) pick tn  E 10, TI such that  

Now the same argument as  above but with t, instead of r, gives that  there 
exists nn(Ti such tha t  

if n 2 no(T).  This  concludes the proof of Proposition 5.1. O 

Now we prove now part (b) of Proposition 4.1. Let 4 be the solution of 
equation (4.5) previouly found a s  a weak limit of 4, in L2([0 ,  K), H ' ( R N ) )  
for all K > 0.  We assume in t h e  remaining of this section tha t  T > 1, and 
will identify the form of 4. 

As we mentioned, 4 is smooth for t > 0, and also I#J E C ( ( 0 ,  m), L2(RN)) .  
Let us consider the linear eigenvalue problem 

This problem has a first e~genvalue XI which is positive and variationally 
characterized as 
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We call i ts unique assoriatcd positive eigenfunctio~l with J $I: = 1. I t  
is known, see the appendix in [8], that  just one positive tigenvalue exists, 
being the  second eige~nxlue A? = 0 with associated pigenspace spanned by 
the functions 2 : z = 1. . . . .Y. 

Let us now co~lsider the q~ian t i ty  

3ro 
i = itif{.4(ill) 1 )  E H ~ ( R , \ ' ) .  = D , i k 2 = i j .  

(5.11) 
\Z'P claim tha t  h > 0. 111 fact. on the one hand, the variational characteriza- 
tion of the second ~igenviilut, X2 = 0 implies that X 2 O. Let 11s assnnie by 
contradiction that X = 0. Thrw there is a sequence g,, E H' with ,fg; = 1 
such tha t  -+ 0 and also Jg,,bri = 0, Jgnz = 0 V2. Then\  

I t  follows in particular that  g,, is ~lniformly bou~idetl in H'.  and passing t o  a 
subsequence we may assume that  g, - g in H', weakly, and also strongly in 
L '  on compact sets. Since w(z) -+ 0 as  1x1 -+ oc and J yi = I ,  we have tha t  
there exists an R > 0 such that  J,,,,,pwP-lg~ < 1/4 .  I t  t,hcn follows from 
(5.12) that  for all sufficiently large n 

Letting n go t o  infinity we find that  g $ 0. Using the weak convergence in 
HI, we find t h a t  4(y) 0 arid from the definition of = 0, t h a t  A(g) = 0. 
Hence the  infimum (5.11) is attained and equals zero. But  this implies tha t  
0 is a n  eigenvalue of problem (5.10) with eigenfunction g .  This  is impossible, 
since J SW a x ,  = 0 For all i .  This completes the proof of the  claim 

Fix now any 0 < to < I. Then there are numbers Co, C1,. . . , CN such 
tha t  " i-tw 

d ( z l  t o )  = ~ ~ e " ' ~ ~ l ( x )  t C G--(zj + Buiz), (5.13) 
I = l  ax, 

and all terms in the r ~ g h t  hand side are mutually orthogonal in L2. Define 
next 

dw 
9(x, t )  - d ( r ,  t )  - ~ ~ e " " ~ ( x )  - C,-(x). 

t=l 8x1 

Then clearly 0 solves 

and furthermore 
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SEMILINEAR HEAT EQUATION 

We claim that 

aw 
Is(., t ) ~ ~  dx = Jo(., t)- = o for all i, 

8x1 

for all t > t o .  In fact, set 

Then an integration by parts shows that 

from where it follows that ~ ( t )  = 0 for all t > t o  since q( to )  = 0. The other 
orthogonality relations follow similarly. 

Next, we want to estimate some norms of Q(X, t ) .  Since solves (5.14), 
we have that for all t > 0, 

Then, using the orthogonality relations (5.15) and the definition of the num- 
ber X in (5.11), we have that  

Hence / e2( , ,  t ) d r  < - e-qtl '") / @(., t o ) d x .  - 
Using this and the identity 

/ 02(-, T ) ~ X  + % Jpwp-~i2dx dt 

we also find that 

27' 

, /(lv8l2 + i2) dx dt 5 ~ ( p ,  N )  /i2(., to)dze-'' 

Finally, we have, from the orthogonal decomposition (5.13), D
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CORTAZAR, DEL PINO, A N D  ELGUETA 

Since, by definition of r$ we have t h a t  J': l l ~ l l ~ , d t  = 1, and we assume T > 1, 

then there is a 0 < t o  < 1 such tha t  I$(., to)lj;,, 5 1. We fix such a to in the 
a b o w  computation. Thus from (5.17) wr find 

wi th  tu = i / 2 ,  provided t h a t  T > To = T o ( p , N ) .  Equality (5.18) also 
estimates only in terms of p and  N the  ~ ~ u r n b e r s  C,. Thus  we have established 
part ( t))  of Proposition 4.1 except for the following important fact: 

Lemma 5.1 Co = 0 in the decomposition (5.13) 

Proof. 
The idea of the proof is the following: If Co # 0, then the Lyapu~lov func- 

tional J  takes values less than J ( w )  along the solution u ( x ,  1) for a sufficiently 
large t ,  contradicting the fact t h a t  J ( w )  < J ( u ( . ,  t ) )  for all t 2 0. 

We will denote by ( . , . ) the  usual inner product in H'(RN). We will 
xsurne ,  by contradiction, t h a t  Co # 0. Since J1(w) = 0 ,  a Taylor expansion 
of J around w gives 

By continuity of J", the uniform convergence of u,  and (5.3) we get 

On the other hand,  if as  in the proof of (5.1) 0, = 4, - 4, then 

~''((~"(w)~. 4)  + 2 ( J f f ( w ) ~ .  8,) + (J1 ' (w)&.  Qn))ds. 

Now, using (5.1) part  (i i i) ,  we get 
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SEMILINEAR HEAT EQUATlON 

5 c /['* 5 c10. 

for n > n(t0). By (5.1) part (i) 

Finally, using the decomposition 

So there is a constant K > 0 independent of to, such that  

and hence for n > no(to) we get, 

+ K D e A l t O  + o(l)c(to) + K). 

Since Co # 0 we can choose t o  big enough so that 

and now, with to so fixed, we can pick no sufficiently large so that ,  for n 2 720, 

1'' J(u ( . .  tn + s)) - J (w)ds  c 0. 

On the other hand, since J(u,(.,  t ) )  is decreasing in t ,  
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2170 CORTAZAR. DEL PINO, AND ELGUETA 

a contradiction, so Co = 0 The lemma, and hence all conclusions of Propo- 
s i t~on  4.1 are thus provd O 

6 The proof of Theorem 1.2  

Let 11' be as in the statement of the theorem and X > 0. We will denote by 
ux the solution of (1.3)-(1.4) with initial condition 110 = A$. There are two 
possibilities for ux, one: it blows up in finite time, the other: it is globally 
defined in time. In the second case, according to Theorem 1.1, uh converges 
uniformly to  either zero or, t,o a nonnegative non-trivial solution of (1 .5 ) .  Let 
11s define the sets 

A = { A  E ( 0 ,  m ) / u A  blows up in finite time.). 

t3 = { A  E ( 0 ,  o o ) / u x  converges to  a non trivial solution of (1 .5 ) . ) .  

C = { A  E (0, c u ) / u x  converges to zero.). 

By comparison we have that these three sets are intervals and moreover 
their union is (0, a). 

We claim that  A is open. Indeed, using standard parabolic estimates it 
can be proved that ,  for a fixed t ,  the mapping 

A -+ J ( U X ( . ,  t ) )  

is continuous a t  points where it is defined in a neighborhood of that  point. 
On the other hand it follows, from Lemma 3.3 and Lemma 3.4, that  ux  blows 
up in finite time if and only if there exists a time to such that J(u,A(. ,  t o ) )  < 0. 
These two facts imply the claim. 

We also claim that C is open. This is a consequence of the facts that  
any constant less than 1 is a super-solution of (1.3), that non trivial steady 
state solutions of (1.3) have a maximum strictly bigger than 1 and, that if 
A, -+ X then, for a fixed f fo r  which they are all defined, ux,(., t) 3 uA(.,  t )  
uniformly. 

.4gain, since small constants are super-solutions, it follows that  C is not 
empty. 

Let 4 be the first eigenfunction for the Dirichlet problem for -A in a ball 
B such that  J $4 > 0. Let p be the corresponding eigenvalue and assume 4 

B 
normalized so that J q5 = 1. We then have, after integration by parts and an 

R 

application of ~ e n s ~ n ' s  inequality, 
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SEMILINEAR HEAT EQUATION 2171 

Since J uA(z, O)&(~ )dx  = X J $ ( x ) $ ( x ) d . ~  we conclude that blows up In 
B B 

finite t m e  for large enough X It follows that A is not empty. 
Smce (0. m) is connected we have that B is not empty. It remains to 

check that it consists of a single pomt Let X o  E 
U X ~ ( X ,  t )  -+ W ( X )  as t  -4 co where w is a solution 

B and let X > Xo. Assume 
of (1.5). Define 

It is easily checked that  
vt 5 a21 - 1; + u p  

Since u(x, 0 )  = u ~ ( x ,  O ) ,  by comparison we get 

Therefore, if U A  converges to a steady s t a k  solution, that  must be of the form 
w( .  + 2 )  for some vector 3 E RN, then t w ( x )  5 w(x + it), a contradidon 
proving that (Ao, m) c A. This ends the proof of uniqueness of the number 
X o ,  which we denote X o ( $ ) .  

For the continuity assertion, let us take a sequence $I, -+ $ in H1-sense, 
where +, and 11, 8 0 are continuous, nonnegative and compactly supported. 
Let us set A, = Xo(ll,,). We claim that A, is bounded. Indeed, otherwise we 
assume A, -+ co. Since d f 0, it is easily checked then that  J(A,@,) -t -w. 
But, on the other hand, the definition of A, implies that J(X,+,) > 0 ,  a 
contradiction. With no loss of generality we may assume then that A, -t 

A, 1 0. We need to show that  A, = XO($)  Let u(x , t )  be the solution of 
(1.3)-(1.4) with initial condition uo = A,$, and un(x, t )  the solution with 
uo = A,$,. Let us assume, by contradiction, that A, # Xo($). Then u(x, t )  
either goes to zero in H' or blows-up in finite time. In either case, we 
must then have the existence of a time to at  which J(u( . ,  to)) < J ( w ) .  But, 
continuity of the solution of the initial value problem in the initial data 
implies that  also J(zL,(~,  t o ) )  < J ( w )  for all n sufficiently large. But, again, 
the definition of A, implies that J(un( , ,  t ) )  2 J (w)  for all t ,  a contradiction 
which finishes the proof of the theorem. 0 
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