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We consider the following equations involving negative exponent:

∆u = |x|αu−p, u > 0 in Ω ⊂ R
n,

∆u = u−p − 1, u > 0 in Ω ⊂ R
n,

where p > 0. Under optimal conditions on the parameters α > −2 and p > 0, we
prove the non-existence of finite Morse index solution on exterior domains or near the
origin. We also prove an optimal regularity result for solutions with finite Morse
index and isolated rupture at 0.

1. Introduction

Recently, many authors have studied solutions with finite Morse index for elliptic
equations. For example, Farina [3] classified all finite Morse index classical solutions
of −∆u = |u|p−1u in R

n for 1 < p < pJL, where pJL is the Joseph–Lundgren
exponent. Motivated by models arising in engineering and physics, such as micro-
electromechanical systems or thin films, elliptic equations with nonlinearities of
negative exponent (for example, f(x)u−p, p > 0) have also received a large amount
of research attention (see, for example, [1, 2, 4] and the references therein).

We improve some results in [1,4] using simple arguments that can also be applied
to similar problems with negative exponent.

In [1, theorem 1.2], it was proved that there are no solutions with finite Morse
index of

∆u = |x|αu−p, u > 0 in Ω = R
n \ B(0, R), (1.1)

for any n � 2, α > −2, p > pc(α−) and R > 0. Here, α− = min(α, 0) and B(x, r)
denotes the ball of radius r > 0 centred at x. Moreover, for any α > −2, the
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exponent pc(α) is given by

pc(α) =

⎧⎪⎨
⎪⎩

α + n −
√

(α + 2)(α + 2n − 2)
α − n + 4 +

√
(α + 2)(α + 2n − 2)

if 2 � n < 10 + 4α,

+∞ if n � 10 + 4α.

For simplicity, we always consider classical solutions, i.e. u ∈ C2. Let us recall that
the Morse index of a solution u to (1.1) is defined as the maximal dimension of all
subspaces X of C1

c (Ω) such that
∫

Ω

|∇ϕ|2 dx − p

∫
Ω

|x|αu−p−1ϕ2 dx < 0 for all ϕ ∈ X \ {0}. (1.2)

We say that u is a stable solution to (1.1) if the Morse index is just 0.
Returning to [1, theorem 1.2], it is well known that u0(x) = Λ|x|(2+α)/(p+1) with

Λ =
[
2 + α

p + 1

(
n − 2 +

2 + α

p + 1

)]−1/(p+1)

is a stable solution of (1.1) in R
n \ {0}, if α > −2 and 0 < p � pc(α). So the

situation for α > 0 and pc(α) < p � pc(0) was left open in [1]. Our first result gives
an answer for this.

Theorem 1.1. Assume n � 2, α > −2, p > pc(α) and R > 0. Then there is no
solution of (1.1) with finite Morse index.

Theorem 1.1 here completes theorems 1.1 and 1.2 of [1]. Using the same idea, we
also obtain the optimal non-existence result for finite Morse solution of (1.1) near
the origin.

Theorem 1.2. Assume n � 2, α > −2, p > pc(α) and R > 0. Then there is no
solution of ∆u = |x|αu−p, u > 0 in B(0, R) \ {0} with finite Morse index that has
an isolated rupture at 0.

This optimal result completes theorem 1.3 of [1], again for the case α > 0 and
pc(α) < p � pc(0). The fact that the solution u has isolated rupture at the origin
means that limx→0 u(x) = 0. We define the Morse index in the same way as for
(1.1), just replacing Ω by {0 < |x| < R}.

As a corollary, we also obtain the following regularity result, which generalizes
theorem 1.4 of [1].

Theorem 1.3. Assume n � 2, α > −2 and p > 0. If u is a classical solution of
∆u = |x|αu−p in B(0, R) \ {0} with finite Morse index and an isolated rupture at
0, then u is Hölder continuous at 0. More precisely, defining u(0) = 0, we have

u ∈ C(2+α)/(p+1)(B(0, R)).

In [4], the authors considered the equation

∆u = u−p − 1, u > 0 in R
n \ B(0, R), (1.3)
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with p > 0. In particular, they proved that, when p > pc(0), no solution with
finite Morse index of (1.3) exists. More precisely, p > max(pc(0), (n − 2)2/8n) was
required, but we can easily check that the maximum is just pc(0). Consequently,
theorem 1.3 of [4] was significant only for n < 10, since pc(0) = ∞ if n � 10.

Here we wish to point out that problem (1.3) is of a very different nature from
(1.1). It was proved (see [5]) that any non-trivial radial solution to ∆u = u−p − 1
in R

n oscillates infinitely many times around the value 1 as r → ∞ whenever p > 0
and n � 2. This suggests that all solutions to (1.3) have infinite Morse index, which
is confirmed as follows.

Theorem 1.4. For any n � 2, p > 0 and R > 0, there are no solutions of (1.3)
with finite Morse index.

The notion of finite Morse index for a solution u of (1.3) is similar to (1.1).
More precisely, it is required that there is only a finite-dimensional vector space
X ⊂ C1

c (Rn \ B(0, R)) such that∫
Rn\B(0,R)

|∇ϕ|2 dx − p

∫
Rn\B(0,R)

u−p−1ϕ2 dx < 0 for all ϕ ∈ X \ {0}.

Theorem 1.4 here generalizes theorems 1.1 and 1.3 in [4].
In what follows, the symbol C or Ci, C ′ always means a generic positive constant.

2. Proof of theorem 1.1

Suppose that u, a solution with finite Morse index to (1.1) exists with some R > 0.
So it is stable outside a compact set, from the stability and (1.1), it is known by
proposition 1 of [1] that

∫
Rn\B(0,R0)

|x|αuγ−pψ2m

� C

∫
Rn\B(0,R0)

|x|(γ+1)α/(p+1)(|∇ψ|2 + |ψ∆ψ|)(p−γ)/(p+1) (2.1)

for all ψ ∈ C∞
c (B(0, R0)c) verifying |ψ| � 1. Here, m � max(2, (p − γ)/(p + 1)),

γ ∈ (γp,−1] and

γp = −1 − 2p − 2
√

p(p + 1),

the radius R0 > R is chosen such that the solution u is stable outside B(0, R0).
Let |y| � 4R0 and R1 = 1

4 |y|, as B(y, 2R1) ⊂ B(0, R0)c, using (2.1) with standard
cut-off function, we have

|y|α
∫

B(y,R1)
uγ−p � C|y|(γ+1)α/(p+1)R

n−2((p−γ)/(p+1))
1

hence∫
B(y,|y|/4)

uγ−p � C|y|n−((2+α)(p−γ)/(p+1)), ∀|y| � 4R0, γ ∈ (γp,−1]. (2.2)
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We now write equation (1.1) in polar variables:

urr +
n − 1

r
ur +

1
r2 ∆Sn−1u = rαu−p

and integrate on Sn−1 to obtain

r1−n(rn−1ū′)′ = rαg(r),

where

ū(r) =
∫

Sn−1
u(r, σ) dσ,

g(r) =
∫

Sn−1
u(r, σ)−p dσ.

Integration yields, for all r > r1 > R,

ū(r) = ū(r1) + rn−1
1 ū′(r1)

∫ r

r1

t1−n dt +
∫ r

r1

t1−n

∫ t

r1

sn−1+αg(s) ds dt. (2.3)

From (2.2) and the Hölder inequality, it holds that, for |y| � 4R0,∫
B(y,|y|/4)

u−p � C|y|n−((2+α)p/(p+1)).

Using a covering argument, this implies that∫
B(0,2r)\B(0,r)

u−p � Crn−(2+α)p/(p+1) for r � 4R0, (2.4)

or, equivalently,
∫ 2r

r

sn−1g(s) ds � Crn−((2+α)p/(p+1)), ∀r � 4R0.

The dyadic decomposition of the interval [4R0, r) gives the following estimate:
∫ r

4R0

sn−1+αg(s) ds � Crn−((2+α)p/(p+1))+α for all r � 4R0, (2.5)

where we used

n − (2 + α)p
p + 1

+ α = n − 2 +
2 + α

p + 1
> 0.

Note that, for n � 2,
∫ r

r1

t1−n dt = o(r(2+α)/(p+1)) as r → ∞.

Combining (2.5) with (2.3), we have

ū(r) � Cr(2+α)/(p+1) for all r � 4R0,
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which leads to∫
B(y,|y|/4)

u �
∫

B(0,2|y|)\B(0,|y|/2)
u =

∫ 2|y|

|y|/2
sn−1ū(s) ds � C|y|n+(2+α)/(p+1)

for all |y| � 8R0. Since u is subharmonic, we directly obtain

u(y) � C|y|(2+α)/(p+1), ∀|y| � 8R0.

This implies, for any γ < 0, that

uγ−p(y) � C1|y|(2+α)/(p+1)(γ−p), ∀|y| � 8R0. (2.6)

where C1 > 0 is a fixed constant depending on γ.
Furthermore, we know that (see [1]) the unique solution γ to

n + α +
2 + α

p + 1
(γ − p) = n +

(γ + 1)α
p + 1

− 2
p − γ

p + 1
= 0 (2.7)

belongs to (γp,−1] if and only if p > pc(α). Let γ satisfy (2.7). Using (2.6), we
deduce that∫

B(0,r)\B(0,8R0)
|x|αuγ−p � C

∫ r

8R0

ds

s
� C ln r − C2 for all r � 8R0. (2.8)

However, (2.1) with an appropriate test function (see [1,3]) gives that, for γ verifying
(2.7), ∫

B(0,r)\B(0,8R0)
|x|αuγ−p �

∫
Rn\B(0,R0)

|x|αuγ−pψ2m

� C3(1 + rn+((γ+1)α/(p+1))−(2(p−γ)/(p+1)))
= 2C3 < ∞ (2.9)

with C3 independent of r. The estimates (2.8) and (2.9) are clearly in contradiction
and show that u cannot be stable outside any compact set.

3. Proof of theorems 1.2 and 1.3

The main idea is very similar to the previous proof, so we just show the essential
arguments and omit some details. Suppose that u > 0 satisfying ∆u = |x|αu−p in
B(0, R) \ {0} has finite Morse index and a rupture at the origin. Then there exists
R0 > 0 small such that u is stable in B(0, 4R0) \ {0}. We can claim

∫
{0<|x|<4R0}

|x|αuγ−pψ2m

� C

∫
{0<|x|<4R0}

|x|(γ+1)α/(p+1)(|∇ψ|2 + |ψ∆ψ|)(p−γ)/(p+1) (3.1)

for all ψ ∈ C∞
c (B(0, 4R0) \ {0}) verifying |ψ| � 1, γ ∈ (γp,−1], where

γp = −1 − 2p − 2
√

p(p + 1)

and m sufficiently large.
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Taking a suitable cut-off function, it holds, by the estimates [1, (2.2) and (2.3)],
that∫

{r�|x|�2R0}
|x|αuγ−p

� C(1 + rn+α+((2+α)/(p+1))(γ−p)), ∀r ∈ (0, 2R0), γ ∈ (γp,−1], (3.2)

and∫
B(y,|y|/4)

uγ−p � C|y|n−(2+α)(p−γ)/(p+1), ∀0 < |y| � 2R0, γ ∈ (γp,−1]. (3.3)

Define ū and g(r) as above. The estimate (3.3) associated to the covering argu-
ment gives

∫ 2r

r

sn−1g(s) ds =
∫

B(0,2r)\B(0,r)
u−p � Crn−(2+α)p/(p+1) for 0 < r � R0.

Using a dyadic decomposition of (0, r), we have∫ r

0
sn−1+αg(s) ds � Crn−((2+α)p/(p+1))+α for all r � 2R0. (3.4)

As r1−n(rn−1ū′)′ = rαg(r) � 0, rn−1ū′(r) is non-decreasing in r, we claim that

� = lim
r→0

rn−1ū′(r) = 0. (3.5)

Indeed, � ∈ [−∞,∞) exists by monotonicity of rn−1ū′. As

lim
s→0

ū(s) = 0

by the rupture assumption on u, � �= 0 will lead to a contradiction, since r1−n is
not integrable at 0 for n � 2.

Integrating (rn−1ū′)′ = rn−1+αg(r), by (3.4) and (3.5), it holds that

rn−1ū′(r) � Crn−((2+α)p/(p+1))+α if 0 < r � 2R0.

Then, for any r > 0, we see that

lim
s→0

sn−1ū′(s)
∫ r

s

t1−n dt = 0 because 2 + α − (2 + α)p
p + 1

=
2 + α

p + 1
> 0.

Combining with lims→0 ū(s) = 0 and (3.4), tending r1 to 0 in (2.3), we get

ū(r) � Cr(2+α)/(p+1) for all 0 < r < 2R0.

Using the fact that u is subharmonic, we can then conclude that

u(y) � C|y|(2+α)/(p+1) for all 0 < |y| < R0. (3.6)

If p > pc(α), fix γ ∈ (γp,−1] and verify (2.7). The inequality (3.2) (tending r to
0) implies ∫

{0<|x|�2R0}
|x|αuγ−p =

∫ 2R0

0
sn−1+αg(s) ds < ∞.
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However, by estimate (3.6), we see that

∫
{0<|x|�2R0}

|x|αuγ−p =
∫ 2R0

0
sn−1+αg(s) ds

� C1

∫ 2R0

0

ds

s

= ∞,

which is absurd. So such a solution with the rupture at zero cannot exist whenever
p > pc(α). The proof of theorem 1.2 is complete.

Finally, theorem 1.3 is just a direct consequence of the estimate (3.6) to the finite
Morse index solution with isolated rupture at 0, which is valid for any p > 0 and
α > −2.

4. Proof of theorem 1.4

We argue by contradiction. Suppose that a solution u with finite Morse index to
(1.3) exists. Using a very similar argument for (2.1), it is showed that (see esti-
mate (2.1) in [4])

∫
Rn\B(0,R0)

uγ−pψ2m � C

∫
Rn\B(0,R0)

(|∇ψ|2 + |ψ∆ψ|)(p−γ)/(p+1) (4.1)

for all ψ ∈ C∞
c (B(0, R0)c) satisfying |ψ| � 1, γ ∈ (γp,−1]. Here again,

γp = −1 − 2p − 2
√

p(p + 1)

and R0 > R is chosen such that the solution u is stable outside B(0, R0). We can
proceed as above to get the corresponding estimates of (2.1), (2.4) with α = 0, that
is, ∫

B(0,2r)\B(0,r)
u−p � Crn−2p/(p+1) for r � 4R0.

As n − (2p/(p + 1)) > 0 for n � 2 and p > 0, the dyadic decomposition argument
leads to the following estimate:

∫
B(0,r)\B(0,4R0)

u−p � C(1 + rn−2p/(p+1)) � C ′rn−2p/(p+1) for any r � 4R0.

(4.2)
On the other hand, integrating equation (1.3) over B(0, r) \ B(0, 4R0), we have

∫
∂B(0,r)

∂u

∂ν
dσ − C =

∫
B(0,r)\B(0,4R0)

(u−p − 1), ∀r � 4R0.

Applying (4.2), it holds that
∫

∂B(0,r)

∂u

∂ν
dσ � Crn(r−n + r−2p/(p+1) − C4), ∀r � 4R0.
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Define ū as before. Then

ū′(s) =
∫

Sn−1

∂u

∂r
(s, σ) dσ = r1−n

∫
∂B(0,r)

∂u

∂ν
dσ.

Combining the above two formulae, for sufficiently large s,

ū′(s) � Cs(s−n + s−2p/(p+1) − C4) � −C5s,

which then implies limr→∞ ū(r) = −∞. This is impossible since ū > 0.
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