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Several comparison results are obtained for solutions to linear elliptic and parabolic
equations with a singular potential. Solutions to these equations are singular in many
cases, and our results roughly say that they all have comparable singularities,
provided that they belong to an appropriate space. We formulate the hypothesis on
the potential in terms of an inequality, which in the case of the well-known
inverse-square potential, is a consequence of an improvement of Hardy’s inequality
due to Vazquez and Zuazua.

1. Introduction

Here we consider comparison results for linear elliptic and parabolic equations
with singular potentials. Let 2 C R™ be a smooth and bounded domain and let
a € L .(£2), a = 0. To motivate the discussion, assume initially that a(x) is smooth
and bounded, and suppose that

Jo(IVel? — a(2)¢?)

Ay = inf >0, 1.1
LT el = (L)
i.e. the first eigenvalue for the problem
—Ap; —alx =A in £2,
$1 ()¢ 1¥1 (1.2)

p1 =0 on 012
is positive. Since a is smooth, it is well known that

C ' <91 <CG (1.3)
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for some positive constant C, where (y is the solution of

—Afo—a(r)(o=1 in £, } (1.4)
Co=0 on 02

Note that this problem is well posed and that (o > 0, since A; > 0.

We can formulate condition (1.1) without any assumption on the smoothness of
a. An interesting example is the so-called inverse-square potential

c
a(z) = —, 1.5

where n > 3 and 0 < ¢ < i(n —2)2. An improved version of Hardy’s inequality
(see [7,18]) shows that it satisfies (1.1). On the other hand, it just fails to belong
to L”/Q(Q) if 0 € {2, and therefore the standard elliptic regularity theory is not
sufficient to conclude an estimate like (1.3). In fact, for this potential, there exists
a constant a > 0, more precisely,

a=3(n—-2)—/3(n—-2)%—c

such that ¢y and ¢; behave like |z|~* near the origin (see [11]), so that (1.3) can
be interpreted as ‘1 cannot have worse singularities than (y, and vice versa’.

In this paper we prove (1.3) under a slightly stronger condition than (1.1).

We also want to extend the following version of the strong maximum principle
for the heat equation (see, for example, [5,15]). Let T > 0 and v = u(z,t) > 0 be
a solution of

ug—Au=0 in 2 x(0,7T),
u=0 ond2x(0,T).
Then either u = 0 or
u(z,t) = c(t)d(x), (1.6)

where c¢ is a positive function of ¢ € (0,T") and 6(z) = dist(z, 012).
Using Hopf’s boundary lemma on one hand, and elliptic regularity on the other,
observe that, for some C' > 0,

0716 < 0 < Cda

where 50 is the solution of

—Alp=1 in £,
Go=0 ondN.
Hence (1.6) is equivalent to
ul(w,t) > e(t)Co(w). (L.7)

We would like to extend (1.7) to the case where Co is replaced by (o solving (1.4)
and u > 0 solves

w—Au—a(wlu=0 in2x (0.7), } (18)

u=0 ondN x(0,T).
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Inequality (1.7) was already proven for the inverse-square potential in [1] and the
authors mentioned (see remark 7.1 in [1]) that their methods applied to potentials
of the form a(z) = —A¢/p, where ¢ satisfies a certain weighted Sobolev inequality.
In our proof, we derive a similar Sobolev inequality (see lemma 4.1) under an almost
optimal assumption on the potential a(z) (see (2.1)). As in [1], we also make use
of Moser iteration-type arguments, but our approach is, we believe, simpler.

The comparison results obtained in this paper are motivated by, and apply to,
some semilinear parabolic equations studied in [12]. As we shall see, they also
generalize to problems involving other boundary conditions and complement the
results obtained in [10].

2. Main results

The assumption on the potential a(z) is the following: a € L. (£2), a > 0 and there
exists r > 2 such that
Jo Vel — [, a(z)e?

a) := inf > 0. 2.1
)= T e 1)

REMARK 2.1. Observe that if a satisfies equation (1.1), then, for any small € > 0,
ae = (1 — €)a satisfies (2.1) with » = 2* = 2n/(n — 2) (when n = 2, pick any
r € (2,00)), by Sobolev’s embedding. In particular, equation (1.1) can be seen as a
limiting case of (2.1).

We also observe that if n > 3, the inverse square potential (1.5) satisfies (2.1),
with 7 = 2% if 0 < ¢ < 1(n — 2)? and with any 2 < r < 2 for ¢ = 1(n — 2)?
(see [7,18]).

Before stating our results, we clarify in what sense we consider the solutions
to (1.2) and (1.4). This is necessary because, in the context of weak solutions, or
solutions in the sense of distributions, uniqueness may not hold in general, and (1.3)
can fail. For example, in the case of the inverse square potential (1.5), when 2 is
the unit ball B1(0) and 0 < ¢ < 4(n — 2)2, n > 3, there is a positive solution u to

—Au — %u =0 in £,
|z| (2.2)
u=0 on 92,

which is smooth except at the origin and belongs to W11(§2). This shows that
uniqueness, in general, does not hold.

Furthermore, there exists a solution (y of (1.4), smooth in 2\ {0}, behaving like
||~ near the origin, where

o =3(n—2)+/1(n—2)%—c
and a solution ¢ of (1.2), which behaves like |z|~* where

a=3(n—2)—4/3(n—-22%-c<d

But then (1.3) would fail. For details, see [11].
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Hence we only consider solutions that belong to the Hilbert space H, defined as
the completion of C2°(£2) with respect to the norm

2 — U2— amuZ. .
||u||H—/Q|V| /Q () (2.3)

This norm comes from an inner product (:|-)g in H, and, with some abuse of
notation, we can write

(ulv) g :/QVU'VU— /Qa(m)uv.

We denote by H* the dual of H. Observe that HJ(£2) C H C L?({2), and therefore
L3*(2) Cc H* C HY(N).
DEFINITION 2.2. If f € H*, we say that u € H is an H-solution of

—Au—a(z)u=f in £, (2.4)
u=0 on df2

if
(ulo)a = (f,v)me

for all v € H. With the obvious abuse of notation, this is equivalent to

/Vu-Vv—/a(m)uv:/fv for all v € H.
7 7 7

From now on, we only deal with solutions in this sense, i.e. H-solutions.

LEMMA 2.3. Suppose (1.1) holds and let f € H*. Then there exists a unique H-
solution u of (2.2). Furthermore,

lulle = [1f11 5
and if f > 0 in the sense of distributions, then u > 0 a.e.
For a proof, see [12].

We also have to mention how to obtain a first eigenfunction for the operator
—A — a(z) with zero Dirichlet boundary data.

LEMMA 2.4. Suppose a(z) > 0 satisfies (2.1). Then H embeds compactly in L?(£2).
In particular, the operator L := —A — a(z) : D(L) C L*(2) — L*($2), where
D(L) ={u € H| —Au— a(z)u € L?(£2)} has a positive first eigenvalue

. fQ|V4P|2_f_Q a(m)apz
A = inf 3 .
peH\{0} Jo
This infimum is attained at a positive p1 € H that satisfies (1.2). Moreover, A\ is a

simple eigenvalue for —A — a(z) and, if ¢ is a non-negative non-trivial H-solution

of

—Ap —a(z)p=Ap in 02,
=20 on 012
for some A € R, then A = \1.
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Similarly, we can define H-solutions of the evolution equation (1.8) with initial
condition u(0) = ug € L*(12).

DEFINITION 2.5. The operator L defined in lemma 2.4 is a bounded-below self-
adjoint operator with dense domain and generates an analytic semigroup (S(t)):>0
in L2
Hence, for ug € L?({2), there exists a unique
u = S(t)ug € C(]0,00), L*) N C((0,00), L*) N C((0,00); H)

solving

ug + Lu =0 fort >0,
u(0) = wuy,

which we call the H-solution (or simply the solution) of (1.8) with initial condition
u(0) = ug € L?(02).

The main results of this paper are the following.

THEOREM 2.6. Assume a : £2 — [0,00) satisfies (2.1). Let @1 > 0 denote the first
eigenfunction for the operator —A — a(x) with zero Dirichlet boundary condition,
normalized by |12 (2) = 1, and (o denote the solution of (1.4). Then there exists
C =C(2,v(a),r) > 0 such that

C~ ¢ < ¢1 < Oo.

THEOREM 2.7. Assume that a : 2 — [0,00) satisfies (2.1). Let ug € L%(£2), ug = 0,
ug # 0, and let u denote the solution of (1.8) with initial condition ug. Let (o denote
again the solution of (1.4). Then

u(t) = c(t)o
for some ¢(t) > 0 depending on ug, £2, y(a), r and t.

COROLLARY 2.8. Under the assumptions of theorem 2.7, we have, more precisely,

) > o) [ wta) o

where one can choose c(t) = e KTV for some K = K(12,7(a),r) > 0.

COROLLARY 2.9. Assume a : {2 — [0,00) satisfies (2.1) and let u solve (2.4) for

some ’ 2 0. TheTL
2 9
u C(/ f( 0>(0

REMARK 2.10. All of the previous results still hold for a sign-changing potential
a(z) under the following additional hypothesis.

where ¢ = ¢(£2,7v(a),r).
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THEOREM 2.11. Suppose that a : 2 — R satisfies (2.1) and that

a(x)=a(z) —a (z), aT,a” =0, }

at € LL () and a (z)e L™ (). (2:5)

Then theorems 2.6 and 2.7 and corollaries 2.8 and 2.9 still hold if the constants are
allowed to also depend on a™.

REMARK 2.12. Theorem 2.7 and corollary 2.8 can be extended under an even less
restrictive hypothesis. Suppose that, for some M = M(a) > 0, v = y(a) > 0 and
r> 2,

A 16) < [ (968 - at@ye + 1) (2.6
(L) <],

for all ¢ € C(£2), and define H in this case as the completion of C°(£2) under
the norm

Julle = [ (Val? = afe)a? + b1,

THEOREM 2.13. Suppose that a(z) satisfies conditions (2.5) and (2.6). Let ug €
L2(2), ug = 0, ug # 0, and let u denote the H-solution of (1.8) with initial condi-

tion ug. Then
) > ) [ o )
0

where one can choose c(t) = e KUHVY for some K depending on 2, v(a), r, M
and p, and where 0 < @1 € H is the first eigenfunction for —A — a(x) normalized

by lleallr> = 1.
In §7 we outline the proofs of these theorems and mention some examples of

potentials satisfying (2.6) for which the stronger condition (2.1) may fail.
Observe that condition (2.6) implies the more standard inequality

. Jo IVel® —a(x)e?
inf 5
peC(2) Joo

> —00,

which is a necessary condition for the existence of global non-negative solutions
with exponential growth to the linear parabolic equation (1.8) (see [8]).

REMARK 2.14. The method presented here for the parabolic problem also applies to
equations with mixed boundary condition, extending a result of [10] to the parabolic
case. Let I}, I'y be a partition of 82, with I} # (). For simplicity, we can assume
that I, I's are smooth, but this is not important.

In this context, let ¢ denote the solution of

~A(=1 in £,

C_ZO on I,
o9z

8—5 =0 on Iy,

where v denotes the unit outward normal vector to 9f2.
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THEOREM 2.15. Let ug € L%(£2), ug =0, and let u denote the solution to

u—Au=0 in 2 x(0,00),

u=0 on Iy x(0,00),

%:0 on I'y x (0, 00),
u(0) =ug in 2.

utt) > o) [ wc)c

where c(t) = e K for some K = K (02,1, 1%).

Then

We omit the proof, which is a slight modification of the one given for theorem 2.7.

3. Some preliminaries

We start this section with some preliminary results on the linear equation

—Au—a(z)u=f in £, (3.1)
u=0 on 92,

when the potential a(z) satisfies (2.1). As mentioned before, all solutions to (3.1)
are assumed to be in H.

LEMMA 3.1. Assume that a(z) satisfies (2.1) and that f € L?(£2). Then the solution

u to (3.1) satisfies
[ ut=80 = [ at@wc+ [ ¢ (3.2)

for all ¢ € C?*(2), ¢ =0 on 912, and all integrals in (3.2) exvist and are finite. In
particular, by taking ¢ = ( to be the solution of

_AC,N.O =1 n Q,
- (3.3)
Co=0 ondf2,

we conclude that a(z)u + f € L (12).

loc
Proof. By working with fT, f~, we can assume that f > 0. Let
ar(z) = min(a(z), k), k>0,

and let ug be the solution to (3.1), with the potential a(x) replaced by the potential
a(z). Then it is easy to check that uy is non-decreasing in k and converges to u
in L2(£2). Now take ¢ € C?(£2), ¢ = 0 on 942. Then

/ w(~A¢) = / ar (@)t + £C, (3.4)
2 2

and note that here all the integrals are finite. By taking, in particular, ¢ = C:o
(where (g is the solution of (3.3)), and using Fatou’s lemma, we see that [, a(x)u(o
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exists and is finite. Given any ¢ € C?(£2), ¢ = 0 on 92, we can find C > 0 so
that [¢] < CCo. Tt follows that we can pass now to the limit in (3.4) and conclude
that (3.2) holds. O

LEMMA 3.2. Assume that a(x) satisfies (2.1) and let T : L*(2) — LQ(Q) be the
operator defined by T f = u, where u is the H-solution to (3.1) (i.e. T = L™, where
L was defined in lemma 2.4). Then T is compact.

Proof. Let (f;) be a bounded sequence in L?({2), and u; = T'f;. Then u; is bounded
in L"(£2) by (2.1). Let (o be the solution to (3.3). Then, by (3.2), we have

| at@usa < ol [ 151+ 1ol [ fuil

Therefore, —Au; = a(z)u; + f; is bounded in L _(£2) and, by the Gagliardo-
Nirenberg inequality, u; is bounded in W (Q) We conclude that, for a subse-
quence (denoted the same), u; — u in Lq(Q) for some fixed 1 < ¢ <n/(n—1), and
a.e. To conclude that u; converges strongly in L2(02), let € > 0 be given. Then, by
Egorov’s theorem, there exists £ C {2, measurable with |E| < ¢, so that u; — u
uniformly in 2\ E. Hence

limsup/ luj —ul? < limsup/ luj —ul® + limsup/ luj — ul?
2 Q\E E

<y —ullF B2
< 06172/7‘

by the uniform bound of u; in L"(2). a

To prove that the embedding H C L?(2) is compact, we use the following result
combined with the previous lemma.

LEMMA 3.3. Let H, V be real Hilbert spaces and J : H — V be a bounded linear
map. Then J is compact if and only if JJ* is compact.

Proof. Clearly, if J is compact, then JJ* is compact.

Let € > 0. Then the map S, := JJ* + el : V — V is self-adjoint and coercive,
in the sense that [|Scyllv = ¢|ly|lv. It follows that S is invertible. Therefore, given
x € 'H, there is y € V such that

JJ'y + ey = Jux. (3.5)
But
(J*y | 2)n < llzl3 + 5177 vl3,
and so
(J*y |z = Ty)u < Sl — $17°l3 < 2=l (3.6)

From (3.5), it follows that
y=c '(Jr— JJ*Yy).

Plugging this in (3.6), we obtain
(J* (Jz = JTy) [ & = Ty = 17Ty = Jal} < ellz]F- (3.7)
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Now assume that JJ* is compact and let x; be a bounded sequence in H.
Let M =sup; [zl and set e = 272k for k = 1,2,.... Take k = 1 and
let y; = S;ll(ij). Then y; is a bounded sequence and, since JJ* is compact,
there is a subsequence and some z; € V such that JJ*y; — z;. Therefore,
using (3.7), we see that there is some j; such that ||Jzj;, — z1||v < 2M /7 = 2M.
Using a diagonal argument, one can find a subsequence j; and z; € V such that
| Jzj, — 2klly < 27*H1M for all I > k. This implies that ||zx41 — zi[lv < 2752,
and therefore zj is a Cauchy sequence in V. Thus z;, converges, and so Jx;, is also
convergent. O

We are now in a position to prove lemma 2.4.

Proof of lemma 2.4. Take V = L?(£2), H = H and denote by J : H — L*(§2) the
canonical injection. We see that T' = JJ*, where T'f = u, and u is the H-solution
o (3.1). By lemma 3.2, JJ* is compact and hence, by lemma 3.3, the embedding
H C L?(£2) is compact.

Since T is self-adjoint and compact, L = T~! has a smallest eigenvalue. This
eigenvalue is simple, which can be proved in the same way as for smooth elliptic
operators.

In fact, let 1 # 0 be a non-negative minimizer of

Vol|? — a(z)p?
Mo e de0Vel 2 ()e%)
peCL() Jav
which exists by the compactness of T. By the standard arguments of the calculus
of variations, ¢ satisfies (1.2) and, by a version of the strong maximum principle

(see, for example [3]), ¢1 > 0. Now let ¢ denote another eigenfunction for A\;. Then,
for any p € R, we have that ¥ = @1 — up satisfies the equation

—AY —a(x)yp =\ in 02,
=0 on 0f2.

(3.8)

(3.9)

Now, because 1) satisfies (3.9), if ¢ # 0, then it minimizes (3.8). Then |¢| also
minimizes (3.8), and therefore satisfies (3.9). Since

—AlY| = a(z)|Y] + M| =0 in 2,
9] =0 on 042,

by the strong maximum principle (see [3]), we conclude that if ¢ # 0, then || > ¢d
a.e. in (2, where ¢ > 0. This, combined with the fact that ¢ € Wlicl(()) (by
lemma 3.1), shows that either ¢» > 0 or v < 0 in {2 (assuming {2 is connected
(see, for example, [9])). That is, for any p € R, either ¢ > pp1 or ¢ < 1. Setting

fo = sup{p : ¢ = pp1}, we see that ¢ = poepr. O

The last two lemmas of this section will allow us to reduce the proofs of the main
results of this paper to the case of a bounded potential. Define

ar, = min(a, k), k> 0. (3.10)

We denote by )\’f, cp’f, C(lf the first eigenvalue, first eigenfunction and solution of (1.4)
associated with the potential aj, which are all defined in the usual sense, since aj
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is bounded. Let ¢y be the solution to (1.4) in the sense of lemma 2.3. Since a
satisfies (2.1) (hence (1.1)), it is easy to check that (¥ — (o in L2(£2).

LEMMA 3.4. Normalize ©¥ by ||<p’f||L2(Q) =1. Then
)\]f—>)\1 and cp’f—>g01 n H

as k — oo, where A1 is given by (1.1) and @1 is given by lemma 2.4, normalized so
that |l¢1lL2(e) = 1.

Proof. Observe that

v e JolVelP = a@e?

11
peC(02) Jo? (8-11)

is non-increasing as k increases. Therefore, the limit limy_, o )\’f exists. We claim
that

. k _
klirglo Al = A1
Indeed, note that A\; < A¥ for all k, and also that, for any ¢ € C°(£2),
[ aw = [ awe (3.12)
Q Q
by monotone convergence. Now take p € C°(2), with |¢||z2 = 1. Then
A< [ 196 - a(o)g?
Q
and, using (3.12), we see that
limsup A < / |Vol? — a(x)p?
Q
Taking the infimum over ¢, we obtain

lim sup )\]f < AL

Recall that we normalize ©¥ by ||o¥||z2 = 1, and so
/ Vil - / @)t =N = A as k — oo, (3.13)
Q Q

In particular, cp’f is bounded in H and, by lemma 2.4, we can find a subsequence
such that ¢¥ — 1 in L2(£2). We observe that ¢; > 0 and |¢1]/z2 = 1.

CLAIM 3.5. @1 minimizes

_ f_Q |V4P|2 - f_Q a(m)cpz.

M f_Q 4P2
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Indeed, testing the equation for ¢¥ with ¢ € C°(£2), ¢ > 0, we find

/W’f-W—/ ak(m)w’fcp=k’f/ oo,
2 2 2

| vt -o— [ ke <ot [ ete
0 0 0

Taking limits on both sides, we obtain

/le-ch—/a(w)solwéx\l/soua
2 2 2

By density, this is true for all ¢ € H, ¢ > 0, and, taking ¢ = ¢;, we find that

Jo IVerl? = [, a(z)e?
Jo ¥t

and therefore

<>\la

and the claim is proved.

Then the standard arguments of the calculus of variations show that ¢ satis-
fies (1.2), and hence 7 is indeed the first eigenfunction of —A — a(z). The strong
convergence ¥ — 1 in H is a consequence of

lollr = A1 < Ikl < AF

The first inequality follows from the definition of Ay and the second from the fact
that ay < a. This implies that [|o¥||z — [l¢|l#- O

LEMMA 3.6. It suffices to prove theorems 2.6 and 2.7 and corollaries 2.8 and 2.9
in the case where the potential a(x) is bounded.

Proof. We only give the argument for theorem 2.6, which can easily be carried
out for the other results. Let a > 0 be any potential satisfying (2.1) and ay its
truncation defined by (3.10). Observe that

\V4 2 2
in f_Q IVl f_QQak(x)(P > ~(a).
pECL(9) (Jo lelm)2/m

So, if theorem 2.6 holds for bounded potentials, we must have

cTig < <ogk, (3.14)

where ¢, ¥ were defined at the beginning of this section and C' = C(£2,7(a)) > 0
is independent of k. Since (¥ — (p in L? and lemma 3.4 holds, we can pass to the
limit in (3.14). O

4. Proof of theorem 2.6

By lemma 3.6 in the previous section, it is enough to establish the result in the case
that a(z) is bounded.
The main idea is to consider the function
v £
Co
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and notice that it satisfies (formally) an elliptic equation

=V ((fVw) = A1 — 1 in £, }

4.1
@EVw-v=0 on 012, (1)

where v denotes the outer unit normal to the boundary 0f2. Then we will use
Moser’s iteration argument, combined with a Sobolev inequality, to prove that w is
bounded.

STEP 1. Formal derivation of an iteration formula. There exists ¢ > 2 and C' > 0

such that, for all j > 1,
N\ ,
( / <§w‘“> <0j [ GuA. (4.2)
0 0

Proof. Multiplying (4.1) by w?/~! where j > 1, and integrating by parts, we obtain

2j — 1
j2

/ GV ? = / (Mp1Co — p1)w? 1 < )q/ Guw. (4.3)
¢ ¢ ¢
Now we use the next lemma, which is a kind of Sobolev inequality.

LEMMA 4.1. Assume u satisfies

(4.4)

—Au—a(z)u =cl@)u+ f in £,
u=0 on 052,

where ¢, f € L>®(2), f > 0, f # 0. Assume also that a satisfies (2.1). Then, for
any 2 < g < r, there is a constant C > 0 depending only 2, r, v(a), ||c|p~ and f

such that
2/q
([wtelr) < [ wqve+e
0 0

for all p € C1(2), where s is given by the relation

s
- = . 4.5
. (45)
(A proof of this lemma is given in step 4.)

We continue the proof of step 1. Taking u = (o, f =1, ¢c = 0 and s = 2, by
lemma 4.1, there exist ¢ = 2(1 4 (r —2)/r) > 2 and C > 0 such that

2/q
(/@w)<c/@w%+w (4.6)
(9] (9]

for all p € C1(£2). This applied to ¢ = w’ and combined with (4.3) yields (4.2). O

STEP 2. We have
1 < Clo- (4.7)
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Proof. We iterate (4.2). Define p = %q > 1 and j, = 2uF, for k=0,1,.... Let

\L/dk
0p = (/ g&w) :
9]

Then (4.2) can be rewritten as
Br1 < (CH*) 6y

Using this recursively yields

1/2
akgcaozc(/ <g> < o0
2

for all k =0,1,2,..., with C independent of k. But

lim 60 = supw
k—o0 0

(because ¢y > 0 in £2) and this shows that w < C. a

STEP 3. Justification of step 1. To be rigorous, we need to justify the derivation
of (4.2), which has been formal only. One possible approach is the following.

Proof of (4.2). Cousider the family of smooth domains
0. ={z e R" | dist(z, 2) < e},
where € > 0 is small. Let (5 be the solution to

—A(S —a(x)(s =1 in (2.,
¢; =0 on 0f2,

where a is extended by 0 outside (2. Then (5 N\ (o as € — uniformly in 2 (because
we have a uniform bound in C%%(§2)). Furthermore, (§ > c. > 0 in £2, by the
strong maximum principle. Letting

$1

We = )
0

it follows that w. € C’La(f)), we = 0 on 9f2, and all the formal computations
done with w apply rigorously to w,, so that (4.2) holds for w. in place of w and
¢5 in place of (p. It is then easy to pass to the limit as ¢ — 0, using, for example,
monotone convergence. O

STEP 4.

Proof of lemma 4.1. First observe that u > ¢ for some ¢ > 0 (see, for example [3]),
and recall Hardy’s inequality

2
) % < C/Q V2 for all ¢ € CL(£2),
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where §(x) = dist(x, 942). Using this with ¢ = d¢ as in [10], it is easy to check that

[ @<c [ 2ol +e (19)
7 7
for all ¢ € C'(£2). This shows that
[ @< [ @vep+e. (4.10)
7 7

The next step consists in proving

2/r
(/ |u<p|r> < C/ w? (Vo> 4+ ¢?) for all o € C1(2). (4.11)
2 2

To achieve this, note that, by (2.1), we have

wl) <c [ 19 - [ ate)up). (1.12)
|V(u<p)|2 = uQ|ch|2 + VuV(ugoQ), (4.13)
2 2 2

and, multiplying (4.4) by ue? and integrating, we get

/QVUV(pr)—/Qa(m)(wp)Q:/ z)u?p +/ fup?. (4.14)

Combining (4.12), (4.13) and (4.14), we find

2/r
(/ |us0|T> <c/u2|w|2+/ D +/fus0.
(9] (9]

The last two terms in the right-hand side can be estimated by

/Q z)ulp +/ fup? < ||c||Lm/ 20?4 ||l (/{2112%2)1/2(/Q 4p2>1/2

<C [ w196l + )
0

But

by (4.10). This proves (4.11).
Finally, we interpolate (4.10) and (4.11). By Hoélder’s inequality,

[ wtolr < (/QurlcpITY(/Qch)l

if A and s are chosen so that

A

s=M and rA+2(1-))=gq.

This gives the relation (4.5) and proves the lemma. O
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STEP 5. We have
Co < Cor.

Proof. This time, we consider the quotient

G

)

©1

which satisfies

-V (@%VU)) =1 — Mp1p in £,
PiVw v =0 on 012.

Again, we multiply this equation by ¢ = w?~! to find

2i -1 , . .
J-z / QI V> = / (1 — A1p1Go)w? 1 </ prw L,
J 2 2 n

Here, we use (4.7) to conclude that

1wt < OGPt = Cpyw™

and so

[ @veip<cs [ g (4.15)
2 2

Letting ¢ = w/ and using consecutively Holder’s inequality and lemma 4.1 (with
u=¢q, f=0,c= A, s=0and g =2), it follows from (4.15) that

1/2 1/2
/w?IV¢|2<Cj(/ w?ﬁ) (/ w2>
2 2 2
1/2 1/2
<Cj(/ﬂ<p?<p2> (/wa(w%rlvwlg)) :

And, by Young’s inequality,
) 1
/ Y3Vl < Cﬁ/ P1p* + 5(/ 03 (o + |V<p|2)>,
0 0 0

/ AVl < O / 3 (4.16)
(9] (9]

Using lemma 4.1 with u = ¢1, f = 0, ¢ = A\ and s = 2, we obtain a constant
q=2(14(r—2)/r) > 2and C > 0 such that

/o o
(/ %w‘“) <¢ [ Fvel +u).
2 2

Combining with (4.16), we obtain

2/q
(/ w%w‘“) <Cj2/ I, (4.17)
2 2

so that
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An iteration argument as in step 2 then shows that

supw < C.
¢

As in step 3, we need to justify the derivation of (4.17) by an approximation argu-
ment. This time, however, it is more convenient to consider

0. :={z € Q| dist(z,002) > e},

let ¢§ solve (4.8) and do all of the above computations in 2. in place of 2. We
leave the details to the reader. O

5. Proof of theorem 2.7

As in the elliptic case, using lemma 3.6, it is enough to establish the result for
bounded a(x).

Let u be the solution of (1.8) and ¢y be the solution of (1.4). We note that
u(t) = ¢(t)d for some positive function c(t) (see [5]). We will replace u(t) with
u(t — 7) where 7 > 0 is fixed, and so we can assume

u(t) =2 c¢d fortel0,T),

where T' > 0 is fixed and ¢ > 0 is independent of ¢ for ¢ € [0,T]. By (4.9), we then
have

| ¢ <o [ uwrqver+ o) (5.1
for ¢t € [0,T], with C independent of ¢. Since, by theorem 2.6,

CO < C@l,

where @1 denotes the first eigenfunction for —A — a(z), it is enough to show that,
for some constant C, we have
1 < Cu(t).

We will work with

v=eNlpy,

which satisfies
Ov —Av —a(z)v =0 in 2 x (0,00),
v=0 on 92 x (0,00).
Set

and note that it formally satisfies
w?wy — V- (u?Vw) =0 in 2 x (0,T),
u?Vw-v =0 on dfN x (O,T).}
We claim that
w(t) < Ct™P forte|0,T),
where 3,C > 0 are independent of t.
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To accomplish this, we follow the idea in the paper by Brezis and Cazenave [4],
which is inspired by a work of Fabes and Stroock [13]. To simplify the exposition,
we first work formally with (5.2).

First, for j > 1 and ¢ € [0, 7], we define the quantity

aﬂw::/;u@fumwi

We also use the notation
o =w.

Our first step is to derive the following.

CLAIM 5.1. We have
2 — 1
%Aw+mMﬂ%+ijrl[;ﬂvw2:m (5.3)

where || - | was defined in (2.3).
Proof of (5.8). Multiplying (5.2) by w?~!, we find

1
25 Ja

, 97 _ 1 ,
u?(w?); + Jj2 / u?|Vw|? = 0. (5.4)
2

Then observe that

S21(0) = 00y =2 [

y wig? + [ @), (55)
0 0

Hence, by (5.4) and using (5.5), we obtain

1 2j — 1 »
—-y»—z/ ﬁ / 2 Vuw’|? = 0. 6
(=2 [t )+ 222 [ <o (5.6)

Now we multiply (1.8) by uy? and integrate on 2. This gives the relation

/uutch—i—/ VuV(pr)—/ au’? = 0.
Q Q Q

/uutchZ/ au2<p2—/ VuV (up?)
Q Q Q
— [wrer~ [ M+ [ w2V,
Q Q Q

Substituting the expression [ uu;p? from the previous equation in (5.6) yields (5.3).
O

Therefore,

CrAM 5.2. From (5.3), it immediately follows that 65;(t) < 0 and therefore

0,(t) < 0,(0) for allt € [0,T) and j > 2. (5.7)
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CLAIM 5.3. There is a constant C' such that
10x(t)'

G <) forteo.T) (5.8)

5; (1) +

where v > 0 depends only on .

Proof. By Holder’s inequality,

) s 2/(3r—4) , (r—2)/(3r—4) , (2r—4)/(3r—4)
sz(t)=/guw <(/Q(us0)r> (/Q<p> (/Quw> :

Now we use assumption (2.1) and (5.1) to get

P ) ) ) (r—2)/(3r—4) ) (2r—4)/(3r—4)
02,(t) < Cllugll} (/Qu (Ve + )) (/Qu go)

>(r2)/(3r4)

= Cllugp| 3@ ( /Q u?|Vip|? + 0o (1) 6;(1)@r—H/Gr=4),

And, by Young’s inequality,

(2r—2)/(3r—4)
> 9]’ (t)(2r74)/(3r74)' (59)

f,(t) < c(nwnif n /Q |Vl + 0 (1)

Let 3 4
.
= —1>0,
Ry
so that, by (5.9) and (5.7),
0o (1) 17 < C(||w||i, +/ u?|Vel* + 92j(t)>9j(0)27. (5.10)
2

Rearranging (5.10) yields

1 fy5(8)' 7 2 / 2 2
—————— — 5 (t) < + \Y

and, combining the last expression with (5.3), we obtain (5.8). O
CLAMM 5.4. Using (5.8), we have
0o;(t) < Ct=1/70,;(0)%, te€[0,T). (5.11)

The derivation of this estimate has been formal only, but, as in step 3 of §4, we
can make it rigorous using the same approximation argument on 2.

CLAIM 5.5. Iterating (5.11), we find
w(t)|Le < CY* for t €0,T).

Indeed, for k = 1,2, ..., set t;, = t(1—27%"1) and j, = 2%. Then ty1 —t5, = 27"t
So, from (5.11), we have

Ojrer (ter1) = 02, (b +2758) < C2X707176;, (44,)%. (5.12)
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But recall that

0;(t) = /Q u(t)?w(t),

so from (5.12) we have

k+1 1/2k+1 k+1 k 1/2k
( / u(trsn)?w(tesr)? ) < (M2 ( / ul(t )2>
2 2
1/2
<o (/ u(0 > :
2

supw(t) < C't 27|yl 2.
2

Letting kK — 0o, we find that

6. Proof of corollaries 2.8 and 2.9

Again, it is enough to reduce to the case where a(x) is bounded.

STEP 1. A first estimate involving 0(z) = dist(x, 0(2).

Using a fine version of the maximum principle for the heat equation (see [5]
for the time dependence of the constant and [15] for the dependence to the initial
condition), we have that

u(t) > e K/t (/ u06> d(z) forte[0,T],
Q
where K = K(§2,T) > 0. Letting p1 > 0 and 91 > 0 be the first eigenvalue and

eigenfunction of the Laplace operator (with zero boundary condition) and possibly
increasing the constant K, it follows that

u(t) = e K/t (/Q u06> Yi(z) for t €[0,1],

where K = K(£2). Now let

o(t) = e K ( /Q Ws) e Mty (z).

— Av =0, v(1) < u(l).

Then

So, by the maximum principle, u(t) > v(t) for t € (1,00) and we finally obtain

u(t) > e KE+1/0) ( /Q u06> 5(z) fort € [0,00), (6.1)

where K = K(£2).

STEP 2. An estimate for u® = S(t)dz,.
First, looking carefully at the previous section, we see that if u > 0 solves (1.8)
and
u(t) = d(x) fort € [0,T],
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then
u(t) > CtﬁeiAltCO for t € [0, T], (62)

where C and § depend only on §2 and «(a).

Next, fix a ball B CC {2 and for z¢ € B, let §,, denote the Dirac mass supported
by {zo} and u™ the solution of (1.8) with initial condition ug = d,,. Given ty > 0,
we have, by (6.1),

U0 (t) = 8(xg)e” Kot1/10)5(5) > =K (ot 1/00) 5 (),
where K’ depends only on (2. Hence, for t € [0, 7],
e K/t 1/t0) G (15 (ar)
ce” K TS 1) 2)

CefK/(toJrl/to)efultwl ((L’)

u*° (t + to)

A2\ VAR VARV

CefK(toJrl/to%»T)é(m),
where K = K(2). Using (6.2), we obtain, for ¢ € [0,T],

w%o (t + tO) 2 Ctﬁef)\ltefK(to+1/t0+T)<-O’
so that, choosing t =T = tg,

w0 (2tg) > e Kot /t0) ¢

where K" depends solely on {2 and ~(a). Since ¢ty > 0 was chosen arbitrarily, we
finally obtain, for all ¢ > 0,

u®o (t) > efK”(tJrl/t)CO‘ (63)

STEP 3. Let u® be the solution of (1.8) with initial condition ug = x . Proceeding
as in the previous step, we can show that

uP > e K/ (6.4)

Now, let u be the solution of (1.8) with arbitrary initial condition ug € L?(£2),
ug = 0. Using (6.3), we then have, for « € B,

u(t, ) = (64, S(t)ug) :/ ugu® = e*K”(t“/t)/ ugCo-
Q Q

In other words,

u(t) > e~ K7 (t+1/1) (/ UoCo) XB-
Q

Hence, using (6.4), it follows that

u(2t) > e K1/ (/ uoCo) Co,
19

with K = K(§2,v(a)), which completes the proof of corollary 2.8.
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For corollary 2.9, one just needs to apply corollary 2.8 and Duhamel’s principle:
if u solves (2.4), then

1 1
u= S(l)qu/O S(s)f ds > (/O e K(st1/9) d8> (/Q fCo)Co-

7. Further results and open problems

In this section, we question the optimality of our assumption (2.1) on the potential
a(z). As we shall see, potentials of the form a(z) = ¢/d(z)?, where

d(z) = dist(z, %)

is the distance function to an embedded manifold 3 C R™, do not necessarily

satisfy our assumption (2.1), but instead its weaker version (2.6). As stated in

theorem 2.13, some comparison results can still be obtained. The outline of the

proofs of theorems 2.11 and 2.13 is then given. Finally, we ask whether pointwise

estimates for the Green function of the operator —A — a(x) can be obtained.
First, we state the following generalized Hardy inequalities.

THEOREM 7.1. Let X be a smooth manifold of codimension k # 2 embedded in R™
and d(z) = dist(x, X).

(i) If X is compact, then, for any € > 0 and 2 < r < 2n/(n — 2), there exist
C(e) >0, v > 0 such that

\v4 2 o9 _ )2 @2 > T 2
<P + | ol = 4(k—2—¢) =27/ l¢l
2 2

for all ¢ € COO(Q \ 2.

(ii) If X is oriented then for some r > 2, there exist C,~v > 0 such that

2/r
C/ w2+/lvwl2—- - /d2 /7(/ |<pIT>
2 2 2

for all p € C(02\ X).

(iii) If X is such that Ad*=2 < 0 in D'(2\ X), then, for any 2 < r < 2n/(n —2),
there exists v > 0 such that

2 2/r
|4 r
[vel=0e-27 [ Zsa( [ jel)
9] 9] 9]

for all p € C(2\ X).

(iv) In particular, if X = 082 and §2 is convez, then, for any 2 < r < 2n/(n — 2),
there exists v > 0 such that

[roer-t[ 2oa([ o)

for all o € C(12).
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The fourth inequality was discovered with v = 0 by Marcus et al. [14] and
Matskevich and Sobolevskii [16]. It was then improved by Brezis and Marcus [6] to
the case v > 0 and r = 2. The general case for the third and fourth inequalities is
due to Barbatis et al. [2]. We will prove the two others in a forthcoming publication.

Observe that the first two inequalities in theorem 7.1 provide examples of poten-
tials for which (2.6) holds whereas (2.1) may fail. We now describe how to adapt
the methods of this paper to prove theorems 2.11 and 2.13.

7.1. Outline of the proof of theorem 2.11

Proof of theorem 2.13. Pick M > 0 so that (2.6) holds and let a(z) = a(x) — M.
Since a satisfies (2.6), @ satisfies (2.1). Set @ = e~ My, where u solves (1.8), with
the initial condition ug = 0, and observe that @ satisfies (1.8), with a replaced by

a.
Combining theorem 2.6 and corollary 2.9 (which hold for a by theorem 2.11)
and observing that —A — a(z) and —A — a(z) have the same first eigenfunction, it

follows that
) > ) [ e )
2

and the estimate follows for u. O

7.2. Green’s function

Another interesting direction to pursue concerns the Green function for the oper-
ator —A — a(z). We assume here that a(x) satisfies (2.1). Let Gy be the Green
function for the operator —A — ay(x), where ag(z) = min(a(z), k), that is,

—AyGr(z,") — ap(y)Gr(r,-) =6, in §2,
Gi(z,-)=0 on 940,

where §, denotes the Dirac measure at some x € 2. Then one can prove the
following.

LEMMA 7.2. We have Gy = 0 and the sequence Gy, is non-decreasing and bounded
in LY(2 x £2). Therefore, it converges to a function G € L'(§2 x £2). Moreover, for
any f € L>=(12), the solution u to

—Au—a(z)u=f in (2,
u=0 ondf2

can be represented as

u(x) :/QG(amy)f(y) dy a.e. in 0.

Then, as a consequence of the comparison result in corollary 2.9, we have the
following.

COROLLARY 7.3. There exists a constant ¢ > 0, depending on 2, r, y(a), such that

G(z,y) = cCo(x)lo(y) a.e. in 2 x 2.
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We have not investigated the possibility of establishing pointwise upper bounds

for G. For the special case of the inverse square potential a(z) = ¢/|z|?, in dimension
n > 3 and with 0 < ¢ < £(n — 2)2, Milman and Semenov [17] established upper and
lower bounds for the heat kernel associated to the operator —A — a(x), from which
upper bounds for Green’s function can be derived.
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