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Abstract

We are interested in nontrivial solutions of the equation:

−�u + χ[u>0]u−β = λup, u � 0 in Ω,

with u = 0 on ∂Ω , where Ω ⊂ R
N , N � 2, is a bounded domain with smooth boundary, 0 < β < 1, 1 � p < N+2

N−2 if N � 3 (p � 1
if N = 2) and λ > 0. If p > 1 we prove existence of nontrivial solutions for every λ > 0. As λ → +∞ we find that the least energy
solutions concentrate around a point that maximizes the distance to the boundary. We also study the behavior as λ → 0. When
p = 1 we have similar results, extending previous works for radial solutions in a ball.
© 2011 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article on étudie les solutions non triviales de l’équation :

−�u + χ[u>0]u−β = λup, u � 0 dans Ω,

avec u = 0 sur ∂Ω , où Ω ⊂ R
N , N � 2, est un domaine borné de frontière réguliere, 0 < β < 1, 1 � p < N+2

N−2 si N � 3 (p � 1 si
N = 2) avec λ > 0. Si p > 1 on démontre l’existence de solutions non triviales pour λ > 0. Quand λ → +∞ on obtient les solutions
d’energie minimale concentrées autour d’un point qui maximise la distance à la frontière. On étudie égalment le comportement des
solutions lorsque λ → 0. Si p = 1 on obtient des résultats similaires qui étendent ainsi les résultats précédents au cas des solutions
radiales dans une boule.
© 2011 Elsevier Masson SAS. All rights reserved.
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1. Introduction

We are interested in nontrivial solutions of the equation:⎧⎨
⎩

−�u + χ[u>0]u−β = λup in Ω,

u � 0 in Ω,

u = 0 on ∂Ω,

(1.1)

where Ω ⊂ R
N , N � 2, is a bounded domain with smooth boundary, 0 < β < 1, 1 � p < N+2

N−2 if N � 3 (p � 1 if

N = 2) and λ > 0. By a solution of (1.1) we mean a function u ∈ H 1
0 (Ω), u � 0 such that

∫
[u>0] u

−β < ∞, and∫
Ω

∇u∇ϕ +
∫

[u>0]
u−βϕ = λ

∫
Ω

upϕ ∀ϕ ∈ C∞
0 (Ω).

We use the notation [u > 0] = {x ∈ Ω: u(x) > 0}.

1.1. The case 1 < p < N+2
N−2 (p > 1 if N = 2)

The radial problem: {−�u + χ[u>0]u−β = λup, u � 0 in B1,

u = 0 on ∂B1,
(1.2)

where B1 is the unit ball in R
N has been studied by several authors [2,7,13,20,27,28]. In [7,28] it is proved that

there exists λ̄ > 0 such that (1.2) has a positive radial solution if and only if 0 < λ � λ̄, and this solution belongs to
C2(B1) ∩ C1(B1). Moreover the radial solution uλ is unique, u′

λ(1) < 0 if 0 < λ < λ̄ and u′
λ(1) = 0 if λ = λ̄. For

λ > λ̄ (1.2) still possesses a radial solution, but it has compact support.
In this work we address the existence question for (1.1) in general smooth bounded domains. We prove:

Theorem 1.1. For all λ > 0 problem (1.1) has a nontrivial solution uλ ∈ C1(Ω) ∩ C∞(Ω).

We prove this result constructing solutions uλ,ε to{
−�u + u

(u + ε)1+β
= λup, u > 0 in Ω,

u = 0 on ∂Ω,

(1.3)

where ε > 0, through the mountain pass theorem. Then we prove that uλ,ε is bounded in L∞(Ω) and then in C1,μ(Ω)

where μ = 1−β
1+β

, uniformly as ε → 0. Finally we show that for a fixed λ, limε→0 uλ,ε is a nontrivial solution of (1.1).
We then study the asymptotic behavior of the solutions uλ as λ → +∞. For this it convenient to remark the

following. Let ū be the radial solution of (1.2) corresponding to λ = λ̄ and extended by zero outside B1. Set

w(x) = λ̄
1

p+β ū
(
λ̄

− 1+β
2(p+β) x

)
, x ∈ R

N.

Then, since ū has vanishing gradient on ∂B1 we see that w satisfies:

−�w + w−βχ[w>0] = wp in R
N. (1.4)

We will call w the radial ground state of (1.4).

Theorem 1.2. For λ > 0 sufficiently large, the solution uλ of (1.1) obtained as the limit uλ = limε→0 uλ,ε in Theo-
rem 1.1, has the form:

uλ(x) = λ
− 1

p+β w
(
λ

1+β
2(p+β) (x − xλ)

)
,

for some point xλ ∈ Ω . Moreover
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dist(xλ, ∂Ω) → max
x∈Ω

dist(x, ∂Ω)

as λ → ∞.

We note that given a point x0 ∈ Ω , when λ > 0 is sufficiently large the function

u(x) = λ
− 1

p+β w
(
λ

1+β
2(p+β) (x − x0)

)
is a solution of (1.1). However, Theorem 1.2 asserts that the solution constructed as the limit of least energy solutions
of the approximation (1.3) selects the position of its maximum as the one that maximizes the distance to the boundary.
This is because the energy functional associated to (1.3) has an expansion in terms of ε and λ which in the leading
order has a term that penalizes the distance to the boundary.

The above phenomenon is similar to what happens in other equations. For instance Flucher and Wei [11] studied:{−ε2�u = g(u) in Ω,

u = 0 on ∂Ω,
(1.5)

where

g(u) =
{

(u − 1)p for u � 1,

0 for u < 1,
(1.6)

and 1 < p < N+2
N−2 and N > 2. For every ε > 0 small, they proved existence of a positive solution uε , which is of

mountain pass type. The boundary of the core Aε = [uε > 1] is a free boundary. They proved also that as ε → 0
the mountain pass solution uε has a unique maximum point xε which converges to a harmonic center of Ω and
Aε is asymptotically spherical. To achieve these results they established energy estimates, for which they needed to
characterize the kernel of the linearized operator Lv := �v +g′(w)v where w is the ground state solving (1.5) in R

N .
Concentration at a point that maximizes the distance to the boundary was proved by Ni and Wei [24] for the least

energy solution uε of {−ε2�u + u = f (u), u > 0 in Ω,

u = 0 on ∂Ω,
(1.7)

for a nonlinearity f that includes f (u) = up with 1 < p < N+2
N−2 . They have used similar techniques used by Ni and

Takagi [22,23] for the same equation with boundary condition ∂u/∂ν = 0 on Ω . The argument in [24] is based on
precise energy estimates of uε and requires to know uniqueness and nondegeneracy of the ground state:{−�w + w = f (w), w > 0 in R

N,

w(x) → 0 as |x| → 0.
(1.8)

Here we adopt the strategy presented in the work of del Pino and Felmer [9], which does not require uniqueness nor
nondegeneracy of w. The estimates of the least energy of the associated functional are obtained by comparison to the
least energy of solutions in balls.

A problem related to ours is Eq. (1.1) with −1 < β < 0 and p � 1. In [4] and [19] the authors proved that if u is
a solution in R

N with compact support, then any connected component of the set [u > 0] is a ball and u restricted
to that ball is radially symmetric with respect to its center. This phenomenon is reminiscent to the one described in
Theorem 1.2. Actually in the proof of our result it would be useful to have such a symmetry result, but unfortunately
for the case 0 < β < 1 it is not known. We overcome this difficulty because we work with least energy solutions. We
believe that a result similar to Theorem 1.2 should be valid if −1 < β < 0 and 1 < p < N+2

N−2 . The motivation for this
type of classification questions arises in the study of the blow-up set for the porous medium equation:

vt = �vm + vm in R
N, t > 0, (1.9)

where m > 1. Regional blow-up was observed in the one-dimensional situation in [12], and it was proved in the higher
dimensions in [3]. We note that if we consider (1.9) with m < 0, which corresponds to the very fast diffusion equation,
we are lead to an equation with negative exponent of the form

�u + u + u−βχ[u>0] = 0 in R
N,

for some β > 0.
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Finally, we prove:

Theorem 1.3. Let uλ denote the solution obtained as the limit uλ = limε→0 uλ,ε in Theorem 1.1. Then for λ > 0 small
enough the solution uλ is positive in Ω .

1.2. The case p = 1

We consider now, {−�u + χ[u>0]u−β = λu, u � 0 in Ω,

u = 0 on ∂Ω.
(1.10)

It is readily seen that if λ � λ1, where λ1 denotes the first eigenvalue of −� with Dirichlet boundary condition, then a
solution is identically 0. Indeed, let ϕ1 > 0 be an eigenfunction of −� associated to λ1. Then multiplying the equation
by ϕ1 yields:

λ1

∫
Ω

uϕ1 +
∫

[u>0]
u−βϕ1 = λ

∫
Ω

uϕ1.

If u �≡ 0 then λ > λ1.
The radial case in a ball is studied in [2], where it is shown that there exist λ∗ and λ̄ with λ1 � λ∗ < λ̄ such that

there exists a positive radial solution if and only if λ ∈ (λ∗, λ̄]. In the case of dimension N = 1 and Ω = (−1,1) the
results of [2] imply that λ̄ = ( π

1+β
)2 and λ∗ � (π

2 )2. He also shows that the solution corresponding to λ̄ has vanishing
gradient on the boundary of the ball. Similar results for radial solutions in a ball are obtained in [20]. They prove that
there is a positive radial solution, provided λ1 < λ < (1 + 2(1−β)

N(1+β)
)λ1(B), where λ1(B) is the first eigenvalue of −�

with Dirichlet boundary condition on the unit ball B .
We have:

Theorem 1.4. If λ > λ1, then (1.10) has a nontrivial solution.

We prove this theorem by letting p → 1 in the solution uε,λ,p of (1.3) and then ε → 0.
Positive solutions as in [2,20] can be obtained in a general domain for λ > λ1 and λ close to λ1 through the implicit

function theorem.

Theorem 1.5. There exists λ̄ > λ1 such that for λ1 < λ < λ̄ there exists a unique nontrivial solution to (1.10), which
is positive.

In the above theorem the solution has the behavior uλ(x) = c(λ − λ1)
− 1

1+β ϕ1(x)(1 + o(1)) as λ → λ1 where ϕ1 is
the positive eigenfunction of −� with Dirichlet boundary condition normalized such that

∫
Ω

ϕ2
1 = 1, and c is given

by,

c1+β =
∫
Ω

ϕ
1−β

1 .

We conjecture that when λ is sufficiently large a concentration phenomenon similar to the one for the case p > 1
described before takes place. Namely we believe that the solution uλ obtained through the approximation (1.3) takes
the form of a rescaled version of a radial solution, centered at a point, which asymptotically maximizes the distance
to the boundary.

The organization of the paper is the following. In Section 2 we present local and up to the boundary estimates in
C1,μ for solutions of (1.3), which are uniform in ε. Using these estimates we prove Theorems 1.1 and 1.4 in Section 3.
We need to recall a few properties of the ground state w of (1.4) which we do in Section 4. In Section 5 we obtain
some preliminary results on the asymptotic behavior as λ → ∞ of the solution uλ of (1.1), constructed in Theorem 1.1.
Then Section 6 contains estimates of the energy of mountain pass solutions of (1.3) when the domain is a ball. Then
in Section 7 we perform the proof of Theorem 1.2. In Section 8 we prove Theorem 1.3. Finally we prove Theorem 1.5
in Section 9.
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2. Estimates in C1,μ

In this section we shall obtain a local estimate for solutions u to the perturbed equation (1.3). Actually we will
obtain estimates for a slightly more general situation, useful in later sections.

Let D ⊆ R
N be an open set with smooth boundary and consider the equation{

−�u + a(x)
u

(u + ε)1+β
= f (x) in D ∩ B2(0),

u = 0 on ∂D ∩ B2(0),

(2.1)

where 0 < β < 1, a,f ∈ L∞(D), a � 0, ε > 0.

Proposition 2.1. Let M > 0, a � 0 and a,f ∈ L∞(D). Then there exists a constant C > 0 such that for every
u ∈ H 1(D ∩ B2(0)) ∩ C(D ∩ B2(0)), u � 0 satisfying (2.1), and

‖u‖L∞(D∩B2(0)) � M, (2.2)

we have ∥∥∇u(x)
∥∥

Cμ(D∩B1(0))
� C,

where μ = 1−β
1+β

.

The constant C depends on M,‖f ‖L∞,‖a‖L∞,N,β and the smoothness of D, but is independent of the solution
and ε.

Another related estimate that we will need is the following:

Proposition 2.2. Suppose that u ∈ H 1(B2R(0)) satisfies:

−�u + a(x)
u

(u + ε)1+β
= f (x) in B2R(0), (2.3)

where 0 < β < 1, a,f ∈ L∞(B2R(0)), a � 0, ε > 0. Then

|∇u|2 � Cu1−β in BR(0),

where C depends only on R, ‖u‖L∞(B2R(0)), ‖f ‖L∞(B2R(0)), ‖a‖L∞(B2R(0)).

We emphasize here that the estimates above do not depend on ε > 0, which will be kept fixed in all this section.
The arguments are based on the work of Phillips [25], where optimal interior regularity is obtained for minimizers

of a certain functional. The difference with that work is that here we do not assume that solutions are minimizers, and
we deal also with regularity up to the boundary, following techniques introduced in [5,6].

First, we introduce some notation. For ε > 0 we define:

gε(u) =
{ u

(u+ε)1+β if u � 0,

0 if u � 0,
(2.4)

and

Gε(u) =
u∫

0

gε(t) dt, (2.5)

so that

Gε(u) = βu + ε

β(1 − β)(u + ε)β
− ε1−β

β(1 − β)
for u � 0.
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Let

x0 ∈ D ∩ B1(0) and α = 2

β + 1
.

Without loss of generality we may assume in what follows that x0 = 0. Given r > 0 let

ur(x) = r−αu(rx),

which is defined for

x ∈ Dr = 1

r
D.

By the smoothness of D for a small r > 0 one can construct a smooth domain Vr such that

Dr ∩ B3/4(0) ⊆ Vr ⊆ Dr ∩ B1(0).

The smoothness of Vr can be made independent of r if we restrict 0 < r < R for some R > 0.
The proof of Proposition 2.1 involves the construction of a suitable lower barrier.

Lemma 2.3. There exists r1 > 0, m0 > 0 such that if 0 < r < r1 and h ∈ C(∂Vr), h � 0 satisfies,∫
∂Vr

h � m0,

then there exists w > 0 satisfying,

−�w + w−β � 0 in Vr, w = h on ∂Vr ,

and

w(x) � c1

( ∫
∂Vr

h

)
dist(x, ∂Vr) for all x ∈ Vr . (2.6)

Here r1, m0, c1 are fixed positive constants depending only on β , N and the smoothness of D.

The function w depends on x0 and r , but for simplicity we will write just w. For the construction of w see [5]. The
scaling r is going to be in the range 0 < r � r0 where r0 is given by:

r0 = max

{(
u(x0)

C1

)1/α

,

(
u(x0)

C1 dist(x0, ∂D)

)1/(α−1)}
, (2.7)

where C1 > 0 is a universal constant to be specified later. It will be convenient to note that(
u(x0)

C1

)1/α

�
(

u(x0)

C1 dist(x0, ∂D)

)1/(α−1)

that is, r0 = (
u(x0)
C1

)1/α , if and only if

C1 dist(x0, ∂D)α � u(x0).

To proceed further we need the following consequence of standard elliptic estimates.

Lemma 2.4. Suppose v ∈ H 1(Vr) satisfies:

−�v � h in Vr, v = 0 on ∂Vr ∩ B3/4(0),

where h ∈ L∞(Vr). Then

v(y) � C dist(y, ∂Vr)

(
‖h‖L∞(Vr ) +

∫
∂Vr

|v|
)

for all y ∈ B1/2(0),

the constant C depends only on r .
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Note that ur satisfies,

−�ur + ar(x)gε,r (ur ) = fr(x) in Dr,

where

ar(x) = a
(
r(x + x0)

)
, fr (x) = r2−αf

(
r(x + x0)

)
,

gε,r (v) = r2−αgε

(
rαv

)
.

Lemma 2.5. Assume 0 < r � r0. Then ∫
∂Vr

ur � m0.

Proof. Using Lemma 2.4 we have: ∫
Vr

ur � ur(0)

C dist(0, ∂Vr)
− r2−α‖f ‖L∞ .

On the other hand from the definitions,

1

C0
min

(
dist(x0, ∂D), r

)
� r dist(0, ∂Vr) � C0 min

(
dist(x0, ∂D), r

)
,

for some constant C0 depending only on the geometry of D. This and ur(0) = r−αu(x0) yield∫
∂Vr

ur � u(x0)

C0Crα−1 min(dist(x0, ∂D), r)
− r2−α‖f ‖L∞

� u(x0)

C0Crα−1
0 min(dist(x0, ∂D), r0)

− r2−α
0 ‖f ‖L∞ .

Suppose that C1 dist(x0, ∂D)α � u(x0). Then r0 = (
u(x0)

C1 dist(x0,∂D)
)1/(α−1) and we deduce:

rα−1
0 = u(x0)

C1 dist(x0, ∂D)
� dist(x0, ∂D)α−1,

so that r0 � dist(x0, ∂D). It follows that∫
∂Vr

ur � C1

C0C
− r2−α

0 ‖f ‖L∞ � C1

C0C
− r2−α

0 ‖f ‖L∞ . (2.8)

Suppose now that C1 dist(x0, ∂D)α � u(x0). Then r0 = (
u(x0)
C1

)1/α and we deduce r0 � dist(x0, ∂D). Hence (2.8) is
still valid in this case.

To conclude we need to verify that r0 has an upper bound. If r0 = (
u(x0)
C1

)1/α from (2.2) it follows that

r0 � (M/C1)
1/α . If r0 = (

u(x0)
C1 dist(x0,∂D)

)1/(α−1) an upper bound for u(x0)/dist(x0, ∂D) follows from Lemma 2.4. By
choosing C1 large we see from (2.8) that∫

∂Vr

ur � m0, for all 0 < r � r0. �

The main point in the proof of Proposition 2.1 is the following:

Proposition 2.6. Assume 0 < r � r0 and let w be the function constructed in Lemma 2.3 with w = ur on ∂Vr . Then

ur � w in Vr .
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To prove the above result consider the problem:{−�v + ar(x)gε,r (v) = fr(x) in Vr,

v = ur on ∂Vr ,
(2.9)

where we regard ur as a given boundary data. Notice that v = ur is a solution to (2.9) and that the solutions of (2.9)
are critical points of the functional,

Jr(v) =
∫
Vr

(
1

2
|∇v|2 + ar(x)Gε,r (v) − fr(x)v

)
dx, v ∈ H 1

0 (Vr) + ur,

where

Gε,r (v) =
v∫

0

gε,r (s) ds.

Lemma 2.7. Suppose u1, u2 are subsolutions of (2.9) such that

u1 � u2 on ∂Vr

and ∫
∂Vr

u1 � m0.

Let w be the function constructed in Lemma 2.3 with w = u1 on ∂Vr and assume that

u1 � w in Vr .

Then

Jr

(
max(u1, u2)

)
� Jr(u2) +

(
−1

2
+ C

m
1+β

0

)∫
Vr

∣∣∇(
max(u1, u2) − u2

)∣∣2
.

Proof. Let u = max(u1, u2), which satisfies:{−�u + ar(x)gε,r (u) � fr(x) in Vr,

u � ur on ∂Vr .
(2.10)

Multiplying (2.10) by u − u2 � 0 and integrating by parts we obtain:∫
Vr

∇u · ∇(u − u2) dx +
∫
Vr

ar (x)gε,r (u)(u − u2) dx �
∫
Vr

fr(x)(u − u2) dx. (2.11)

On the other hand

Jr(u) − Jr(u2) = −1

2

∫
Vr

∣∣∇(u − u2)
∣∣2

dx +
∫
Vr

∇u · ∇(u − u2) dx

+
∫
Vr

ar (x)
(
Gε,r (u) − Gε,r (u2)

)
dx −

∫
Vr

fr(x)(u − u2) dx.

Combining with (2.11) we find:

Jr(u) − Jr(u2) = −1

2

∫ ∣∣∇(u − u2)
∣∣2

dx +
∫

ar(x)
[
Gε,r (u) − Gε,r (u2) − gε,r (u)(u − u2)

]
dx. (2.12)
Vr Vr
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But we have,

Gε,r (u) − Gε,r (u2) − gε,r (u)(u − u2) � C
(
r2 + u−1−β

)
(u − u2)

2. (2.13)

Before proving this we note here that Gε,r (v) = r2−2αGε(r
αv). Since 0 � gε(u) � u−β we see that

0 � Gε,r (v) � v1−β

1 − β
for v � 0. (2.14)

Now,

Gε,r (u) − Gε,r (u2) − gε,r (u)(u − u2) = 1

2

∂gε,r

∂v
(ξ)(u − u2)

2,

for some ξ ∈ [u2, u]. But from ∂gε,r

∂v
(ξ) = r2 ∂gε

∂u
(rαξ) and the inequality,∣∣∣∣∂gε

∂u
(u)

∣∣∣∣ =
∣∣∣∣ ε − βu

(u + ε)2+β

∣∣∣∣ � Cu−1−β for all u � 0, ε > 0,

we have: ∣∣∣∣∂gε,r

∂v
(ξ)

∣∣∣∣ � Cξ−1−β.

If u � 2u2 then ξ � u2 � u/2, and ∣∣∣∣∂gε,r

∂v
(ξ)

∣∣∣∣ � Cu−1−β.

If, on the other hand, u > 2u2 then u � 2(u − u2) and hence using (2.14) and gε,r � 0 we find:

Gε,r (u) − Gε,r (u2) − gε,r (u)(u − u2) � u1−β

1 − β
� Cu−1−βu2 � Cu−1−β(u − u2)

2.

This proves (2.13) and combining with (2.12) we obtain:

Jr(u) − Jr(u2) � −1

2

∫
Vr

∣∣∇(u − u2)
∣∣2

dx + C‖a‖L∞
∫
Vr

u−1−β(u − u2)
2 dx.

But u � u1 � w and w satisfies (2.6) we have:∫
Vr

u−1−β(u − u2)
2 dx � Cm

−1−β

0

∫
Vr

dist(x, ∂Vr)
−1−β(u − u2)

2 dx.

By Hölder’s and Hardy’s inequality,∫
Vr

u−1−β(u − u2)
2 dx � Cm

−1−β

0

∫
Vr

∣∣∇(u − u2)
∣∣2

.

Hence

Jr(u) � Jr(u2) +
(

−1

2
+ C

m
1+β

0

)∫
Vr

∣∣∇(u − u2)
∣∣2

. �

Proof of Proposition 2.6. Throughout this proof we assume 0 < r � r0. By Lemma 2.5 we can apply Lemma 2.3.
Henceforth we let w be the function constructed in Lemma 2.3 with w = ur on ∂Vr .

Step 1. If r > 0 is small enough then (2.9) has a unique solution.
Suppose that there exists a sequence rj → 0 and different solutions v1

j , v2
j to the problem (2.9). Let wj = v1

j − v2
j .

Then wj �≡ 0 and satisfies:
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{−�wj + bj (x)wj = 0 in Vr,

wj = 0 on ∂Vr ,
(2.15)

where bj is given by,

bj (x) = arj (x)
∂gε,rj

∂v

(
ξj (x)

)
,

and ξj (x) is in between v1
j (x) and v2

j (x). But

∂gε,rj

∂v
(v) = r2

j

ε − βrα
j v

(rα
j v + ε)2+β

.

Since ε > 0 is fixed and aj is uniformly bounded in L∞ we have:

bj → 0 uniformly in Vr as j → ∞.

Hence the operator in (2.15) becomes coercive as j → ∞ and therefore wj ≡ 0 for large j .

Step 2. Suppose u ∈ H 1
0 (Vr) + ur is a minimizer of Jr on this set. Then

u � w in Vr .

To prove this, we apply Lemma 2.7 with u1 = w and u2 = u. Taking m0 large we see that if u is a minimizer then
max(u,w) ≡ u, that is, u � w in Vr .

Step 3. The functional Jr has unique minimum in H 1
0 (Vr) + ur , which we will write as ũr . By the previous step,

ũr � w in Vr .

Indeed, the existence of at least one minimizer of Jr follows from the lower semi-continuity and coercivity of the
functional in H 1

0 (Vr) + ur . If u1, u2 are minimizers, then u1 � w and u2 � w by the previous step. Taking m0 large
we deduce, applying Lemma 2.7, that u1 � u2 and u2 � u1.

Step 4. The function ur is the minimizer of Jr on the set H 1
0 (Vr) + ur . By the previous steps we conclude that

ur � w in Vr .

Indeed, problem (2.9) has a unique solution for small r > 0. Thus ur is the minimizer of Jr for r > 0 small. If
0 < r � r0 the linear operator DJr(ũr ) is coercive on H 1

0 (Vr). Indeed

(
DJr(ũr )ϕ,ϕ

) =
∫
Vr

(|∇ϕ|2 + ar(x)g′
ε,r (ũr )ϕ

2)dx, for all ϕ ∈ H 1
0 (Vr).

But gε,r (v) � −βv−1−β , and therefore

(
DJr(ũr )ϕ,ϕ

)
�

∫
Vr

(|∇ϕ|2 − β‖ar‖L∞ ũ−1−β
r ϕ2)dx.

From ũr � w, (2.6) and Lemma 2.5

ũr � c1m0 dist(x, ∂Vr) for all x ∈ Vr .

Thus (
DJr(ũr )ϕ,ϕ

)
�

∫
Vr

(|∇ϕ|2 − β‖ar‖L∞(c1m0)
−1−β dist(x, ∂Vr)

−1−βϕ2)dx.

If we take m0 large enough we can apply Hardy’s inequality and obtain the coercivity of DJr(ũr ) on H 1
0 (Vr). Hence

the branch of minimizers cannot bifurcate if 0 < r � r0, and since the branches ur and ũr coincide for small r we
must have ur = ũr for 0 < r � r0. �



J. Dávila, M. Montenegro / J. Math. Pures Appl. 97 (2012) 545–578 555
Proof of Propositions 2.1 and 2.2. By Proposition 2.6 and (2.6) we have established

ur � c1

( ∫
∂Vr

ur

)
dist(x, ∂Vr) for all x ∈ Vr,

and for all 0 < r � r0, where r0 is given by (2.7). The estimates for ∇u can then be proved exactly in the same way as
in Lemmas 10 and 11 and Theorem 3 of [5]. �
3. Existence of solutions: proof of Theorems 1.1 and 1.4

Given 1 < p < N+2
N−2 we define the following functionals in H 1

0 (Ω):

Jλ(u) = 1

2

∫
Ω

|∇u|2 + 1

1 − β

∫
Ω

u
1−β
+ − λ

p + 1

∫
Ω

|u|p+1, (3.1)

and

Jλ,ε(u) = 1

2

∫
Ω

|∇u|2 +
∫
Ω

Gε(u) − λ

p + 1

∫
Ω

|u|p+1, (3.2)

where Gε is defined in (2.5). Note that

Gε(u) =
u∫

0

gε(s) ds = βu + ε

β(1 − β)(u + ε)β
− ε1−β

β(1 − β)
for all u � 0.

Let A > 0 be sufficiently large and fixed to ensure,

1

2

∫
Ω

∣∣∇(Aϕ1)
∣∣2 − λ

p + 1

∫
Ω

(Aϕ1)
p+1 < 0,

for all λ > λ1. Then

Jλ,ε(Aϕ1) < 0, (3.3)

for all ε > 0 and λ > λ1.

Lemma 3.1. Let 1 < p < N+2
N−2 and λ > 0. Then{−�u + gε(u) = λup in Ω,

u � 0 in Ω,

u = 0 on ∂Ω,

(3.4)

has a positive solution uε,λ,p .

Proof. We solve (3.4) using the mountain pass theorem for the functional Jλ,ε defined in (3.2). Note that since Gε � 0
this functional satisfies:

there exist ρ > 0, c > 0 such that Jλ,ε(u) � c ∀‖u‖H 1
0 (Ω) = ρ.

This and (3.3) give the geometric condition for the mountain pass theorem, and the Ambrosetti–Rabinowitz condition,
namely

∃θ > 2 such that

θ

(
λ

p + 1
up+1 − Gε(u)

)
� λup − gε(u) for sufficiently large |u|

is satisfied since the term that dominates in the nonlinearity for large u is up . Therefore there exists a critical point u

of Jλ,ε in H 1(Ω). By standard regularity theory u is C2(Ω) and satisfies:
0
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−�u + gε(u) = λ|u|p in Ω, u = 0 on ∂Ω.

We claim that u > 0 in Ω . To prove this it suffices to verify that u � 0 in Ω . Suppose on the contrary that
ω = {x ∈ Ω: u(x) < 0} is non-empty. Then

−�u = λ|u|p > 0 in ω, u = 0 on ∂ω,

and we deduce u > 0 in ω, a contradiction. Thus we have produced a positive solution u of (3.4) for every λ > 0. �
Proof of Theorem 1.1. By Lemma 3.1 we know that (3.4) has a solution uλ,ε > 0, which we write for short uε . We
claim that there exists a constant C independent of ε such that

‖uε‖L∞(Ω) � C. (3.5)

To prove this, we use a blow-up argument. Assuming that mε ≡ maxΩ uε → +∞ as ε → 0, define:

vε(x) = uε(m
− p−1

2
ε x)

mε

, x ∈ Ωε = m
p−1

2
ε Ω.

Then 0 � vε � 1 and satisfies ⎧⎨
⎩−�vε + 1

m
1+β
ε

vε

(vε + ε/mε)p+β
= λvp

ε in Ωε,

vε = 0 on ∂Ωε.

(3.6)

For a subsequence we may assume that Ωε → U where U = R
N or U is a half space. By Proposition 2.1, vε is

bounded in C1,μ(BR(0) ∩ Ωε) norm for every R > 0, where μ = 1−β
1+β

. It follows that vε converges uniformly as

ε → 0 on compact sets of U to some function v which is C1(U) and satisfies ‖v‖L∞(U) = 1 and v(0) = 1. Using test
functions with support in the open set [v > 0] we see that −�v = vp in the set [v > 0]. Using the strong maximum
principle we deduce that actually v > 0 in all U and hence{−�v = vp in U,

v = 0 on ∂U if ∂U �= ∅,
0 � v � 1.

By the results due to Gidas and Spruck [15,16] we conclude v ≡ 0, which contradicts v(0) = 1. This proves (3.5).
In addition we also have a fixed lower bound for ‖uε‖L∞(Ω). Indeed, if x0 is a maximum of uε , then

uε(x0)

(uε(x0) + ε)1+β
� λuε(x0)

p.

This implies that

uε(x0) � c > 0.

Since uε is uniformly bounded in L∞(Ω), applying Proposition 2.1 we have that uε is uniformly bounded in
C1,μ(Ω). Therefore up to a subsequence uε converges in C1(Ω) to a non-zero function u ∈ C1,μ(Ω). We need to
show that u is a solution to (1.1). Since ∇u = 0 on the set Ω \ [u > 0] we then need to prove that∫

[u>0]
∇u∇ϕ =

∫
[u>0]

(−u−β + λup
)
ϕ for all ϕ ∈ C∞

0 (Ω). (3.7)

First we remark that using test functions supported in the open set [u > 0] we find that u satisfies:

−�u + u−β = λup in [u > 0]. (3.8)

Then observe that integrating (3.4) one obtains,∫
uε

(uε + ε)1+β
� λ

∫
up

ε � C,
Ω Ω
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since uε is bounded in L∞(Ω). By Fatou’s lemma we find:

χ[u>0]u−β ∈ L1(Ω).

Take ϕ ∈ C∞
0 (Ω) and η ∈ C∞

0 ([u > 0]). Then, using (3.8) we have:∫
Ω

η∇u∇ϕ +
∫
Ω

ϕ∇u∇η =
∫
Ω

(−u−β + λup
)
ϕη.

Let h ∈ C∞(R) be such that h(t) = 0 for t � 1 and h(t) = 1 for t � 2. Given ε > 0 we take ηε = h(u/ε). By dominated
convergence,

lim
ε→0

∫
Ω

ηε∇u∇ϕ =
∫

[u>0]
∇u∇ϕ,

and

lim
ε→0

∫
Ω

(−u−β + λu
)
ϕηε =

∫
[u>0]

(−u−β + λup
)
ϕ.

Let S be the support of ϕ. Then by Proposition 2.2 there exists some constant C such that

|∇u|2 � Cu1−β in S.

Hence in S

|∇u∇ηε| = 1

ε

∣∣h′(u/ε)
∣∣|∇u|2 � C

ε
u1−βχ[ε<u<2ε] � Cu−βχ[ε<u<2ε]

and it follows that ∣∣∣∣
∫
Ω

ϕ∇u∇ηε

∣∣∣∣ � C‖ϕ‖L∞(Ω)

∫
[u>0]

u−βχ[ε<u<2ε] → 0,

since χ[ε<u<2ε] → 0 as ε → 0 and χ[u>0]u−β ∈ L1(Ω). This establishes (3.7). �
Proof of Theorem 1.4. By Lemma 3.1 we know that (3.4) has a solution uλ,ε,p > 0. We let first p → 1. For this we
claim that if λ > λ1 then there exists p0 = p0(ε, λ) > 1 such that

‖uε,λ,p‖L∞(Ω) � Cε for 1 < p < p0(ε, λ). (3.9)

To prove (3.9), let us write u = uλ,ε,p . Multiply the equation by ϕ1 and integrate,

λ

∫
Ω

upϕ1 =
∫
Ω

λ1uϕ1 + gε(u)ϕ1 � λ1

p

∫
Ω

upϕ1 + λ1

p′ + max(gε)‖ϕ1‖L1 ,

which yields: (
λ − λ1

p

)∫
Ω

upϕ1 � λ1

p′ + Cε.

This implies, ∫
Ω

upϕ1 � Cε,

if we take p > λ1/λ. By a bootstrap argument, if p − 1 is small, we can reach the estimate ‖u‖L∞ � Cε . The constant
Cε is independent of p.

As in the proof of Theorem 1.1 we also have:
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‖uλ,ε,p‖L∞(Ω) � c,

with c > 0 independent of p and ε.
By Proposition 2.1 uε = limp→1 uλ,ε,p exists and is a nontrivial solution of{−�u + gε(u) = λu, u � 0 in Ω,

u = 0 on ∂Ω.
(3.10)

By the strong maximum principle uε > 0 in Ω .
We claim that there exists a constant C independent of ε such that

‖uε‖L∞ � C. (3.11)

To prove this, we use a similar blow-up argument as in the proof of Theorem 1.1, except that now the domain stays
fixed. Assuming that mε ≡ maxΩ uε → +∞ as ε → 0. Define:

vε(x) = uε(x)

mε

, x ∈ Ω.

Then 0 � vε � 1 and satisfies: ⎧⎨
⎩−�vε + 1

m
1+β
ε

vε

(vε + ε/mε)1+β
= λvε in Ω ,

vε = 0 on ∂Ω .

(3.12)

By Proposition 2.1, vε is bounded in C1,μ(Ω), μ = 1−β
1+β

, and therefore along some subsequence it converges in C1(Ω)

to a function v ∈ C1,μ(Ω). Since ‖vε‖L∞(Ω) = 1 we also have ‖v‖L∞(Ω) = 1. Taking test functions with support in
[v > 0] it follows that v satisfies,

−�v = λv in [v > 0].
Since v � 0 in Ω and v �≡ 0 by the strong maximum principle we deduce that v > 0 in Ω . This yields a contradiction
with λ > λ1 and establishes (3.11).

Since uε is uniformly bounded in L∞(Ω), applying Proposition 2.1 we have that uε is uniformly bounded in
C1,μ(Ω). Therefore up to a subsequence uε converges in C1(Ω) to a function u ∈ C1,μ(Ω). We may now prove that
u is a solution to (1.10) following the same steps as in the proof of Theorem 1.1. �
4. Ground states

We recall that there exists a radial solution with compact support of the equation

−�w + χ[w>0]w−β = wp in R
N. (4.1)

More precisely, consider,

−�u + u−β = up, u > 0 in BR, u = 0 on ∂BR, (4.2)

where 1 < p < N+2
N−2 (p > 1 if N = 2) and R > 0. In [7, Corollary 1.2] (see also [28]) it is proved that there exists

R > 0 such that (4.2) has a radial solution u if and only if 0 < R � R, and it is unique in the class of radial solutions.
Moreover the radial solution to (4.2) with R = R has vanishing gradient on the boundary and hence satisfies (4.1). For
0 < R < R the radial solution u to (4.2) satisfies u′(R) < 0.

Let us write w the solution of (4.2) with R = R. We call this function the radial ground state of (4.1).
For u ∈ H 1(RN) ∩ L1−β(RN) define:

J (u) =
∫

RN

(
1

2
|∇u|2 + u1−β

1 − β
− up+1

p + 1

)
, M(u) =

∫
RN

(|∇u|2 + u1−β − up+1). (4.3)
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Proposition 4.1. Let R1 > R. Suppose u ∈ H 1
0 (BR1(0)), u �= 0 solves (4.1) in the sense χ[u>0]u−β ∈ L1(RN), and∫

RN

∇u∇ϕ + χ[u>0]u−βϕ =
∫

RN

upϕ ∀ϕ ∈ C∞
c

(
R

N
)
, (4.4)

and satisfies

J (u) � J (ϕ),

for all ϕ ∈ H 1
0 (BR1(0)) such that M(ϕ) = 0. Then up to translation u = w.

Proof. Let u∗ denote the Schwarz symmetrization of u. Then u∗ is radially symmetric, radially nonincreasing and
u∗ ∈ H 1

0 (BR(0)). It also satisfies
∫

RN (u∗)p+1 = ∫
RN up+1,

∫
RN (u∗)1−β = ∫

RN u1−β , and∫
RN

∣∣∇u∗∣∣2 �
∫

RN

|∇u|2,

with equality if and only if u = u∗ (after translating). For these properties see for example [21]. Choose t0 > 0 such
that M(t0u

∗) = 0. Since u solves (4.1) it satisfies M(u) = 0. Note that there is a unique t > 0 such that M(tu) = 0
and this number is the one that maximizes t �→ J (tu). Therefore

J (u) = sup
t�0

J (tu).

Thus

J
(
t0u

∗) =
∫

BR(0)

(
t2
0

2

∣∣∇u∗∣∣2 + t
1−β

0

1 − β

(
u∗)1−β − t

p+1
0

p + 1

(
u∗)p+1

)
� J (t0u) � J (u),

with strict inequality unless
∫

RN |∇u∗|2 = ∫
RN |∇u|2, that is, u = u∗ after translation. Since u minimizes J with re-

spect to functions ϕ ∈ H 1
0 (BR1(0)) with M(ϕ) = 0 we deduce that J (t0u

∗) = J (u). Therefore u = u∗ after translating,
which means u is a radial solution of (4.1). Let 0 < R0 � R1 be such that u > 0 in BR0 and u(r) = 0 for r � R0. Then
u′(R0) = 0. By the uniqueness of R and the solution we find R0 = R and u = w. �
5. Asymptotic behavior as λ → +∞, Part 1

Proposition 5.1. Let uλ be the solution to{−�u + χ[u>0]u−β = λup in Ω,

u = 0 on ∂Ω,

constructed in Theorem 1.1 or Theorem 1.4 where 1 � p < N+2
N−2 . Then for some C > 0,

λ
− 1

p+β � ‖uλ‖L∞(Ω) � Cλ
− 1

p+β for all large λ. (5.1)

Proof. Let xλ ∈ Ω be a point where uλ attains its maximum. The first inequality in the statement follows from

u(xλ)
−β − λu(xλ)

p = �u(xλ) � 0.

Let

mλ = ‖uλ‖L∞(Ω),

and assume by contradiction that for some sequence λ → +∞ we have:

mλλ
1

p+β → +∞. (5.2)

Define:
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vλ(x) = uλ(xλ + λ−1/2m
1−p

2
λ x)

mλ

.

Then vλ satisfies,

−�vλ + 1

λm
p+β
λ

χ[vλ>0]v−β
λ = v

p
λ in Ωλ,

where Ωλ = λ1/2m
p−1

2
λ (Ω − xλ). If mλ → +∞ as λ → +∞ then λ1/2m

p−1
2

λ → +∞ as well. If mλ is bounded, then

λm
p−1
λ = λm

p+β
λ m

−1−β
λ → +∞ by (5.2). Thus in all cases λ1/2m

p−1
2

λ → +∞ as λ → +∞. For a subsequence we
may assume that Ωλ → U where either U = R

N or U is a half space.
Observe that 0 � vλ � 1 and vλ(0) = 1. For a fixed λ > 0, vλ is the limit of vλ,ε as ε → 0 which are uniformly

bounded solutions of ⎧⎨
⎩−�v + 1

λm
p
λ

gε(mλv) = vp in Ω,

v = 0 on ∂Ω,

to which Proposition 2.1 can be applied. Therefore vλ is bounded in the C1,μ(BR(0) ∩ Ωλ) norm for every R > 0.
It follows that vλ converges uniformly as λ → +∞ on a bounded set of U to some function v which is C1(U) and
satisfies ‖v‖L∞(U) = 1 and v(0) = 1.

Using test functions with support in the open set [v > 0] we see that −�v = vp in the set [v > 0]. Using the strong
maximum principle we deduce that actually v > 0 in all U and hence{−�v = vp in U,

v = 0 on ∂U if ∂U �= ∅,
0 � v � 1.

If 1 < p < N+2
N−2 by the results Gidas and Spruck [15,16] we conclude v ≡ 0. If p = 1 then also v ≡ 0 because

otherwise v is a positive supersolution for the operator −� − λ1(R) in every large ball BR(x) ⊆ U where the first
eigenvalue with Dirichlet boundary condition is O(R−2). Thus v ≡ 0 which contradicts v(0) = 1. �

Define:

μλ = inf
γ∈Γλ

sup
t∈[0,1]

Jλ

(
γ (t)

)
,

where

Γλ = {
γ : [0,1] → H 1

0 (Ω): γ is continuous, γ (0) = 0, γ (1) = Aϕ1
}
,

and

Nλ =
{
u ∈ H 1

0 (Ω): u �= 0 and
∫
Ω

|∇u|2 =
∫
Ω

(
λ

|u|p+1

p + 1
− u

1−β
+

1 − β

)}
.

In the above definition of Γλ the constant A is fixed such that Jλ,ε(Aϕ1) < 0 for all ε > 0 and all λ > λ1.
The following lemma is standard for continuous nonlinearities f (u) satisfying the classical hypotheses for the

existence of mountain pass solutions, see [1], and the condition f (u)/u increasing, see [10,29]. The nonlinearity
f (u) = λup − u−β satisfies the last assumption, but since it is discontinuous we provide the proof.

Lemma 5.2. Let Jλ be the functional defined in (3.1). We have:

Jλ(uλ) = μλ = inf
Nλ

Jλ.
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Proof. Let uε denote the solution of (3.4) constructed in Lemma 3.1 with the mountain pass theorem. Multiplying
Eq. (3.4) by uε and integrating we have:∫

Ω

(|∇uε|2 + gε(uε)uε − λup+1
ε

) = 0.

Since gε(u)u → u
1−β
+ uniformly for u on compact sets of R we have:∫

Ω

(|∇uε|2 + u1+β
ε − λup+1

ε

) = o(ε)

where o(ε) → 0 as ε → 0. Thus there exists t (ε) = 1 + o(ε) with the property t (ε)uε ∈ Nλ. Hence

inf
Nλ

Jλ � Jλ

(
t (ε) uε

)
.

But

Jλ

(
t (ε) uε

) = Jλ(uε) + o(ε) = Jλ,ε(uε) + o(ε),

where Jλ,ε is the functional defined in (3.2). By construction of uε

Jλ,ε(uε) = μλ,ε,

where

μλ,ε = inf
γ∈Γλ

sup
t∈[0,1]

Jλ,ε

(
γ (t)

)
.

Thus

inf
Nλ

Jλ � μλ,ε + o(ε).

For a fixed γ ∈ Γλ

μλ,ε � sup
t∈[0,1]

Jλ,ε

(
γ (t)

)
,

and letting ε → 0

lim sup
ε→0

μλ,ε � sup
t∈[0,1]

Jλ

(
γ (t)

)
.

Therefore

lim sup
ε→0

μλ,ε � μλ,

and we deduce

inf
Nλ

Jλ � μλ.

To prove the converse let u ∈ Nλ. Given c1 > 0, c2 � 0, c3 > 0 we consider the function:

f (t) = c1
t2

2
+ c2

t1−β

1 − β
− c3

tp+1

p + 1
for t > 0.

Note that

f ′(t)
t

= c1 + c2t
−β−1 − c3t

p−1

is a decreasing function with limit +∞ as t → 0 and −∞ as t → +∞. Thus f has a unique critical point, which
corresponds to a maximum and is nondegenerate. Thus there is a unique t∗(u) > 0 which is critical point of
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t �→ Jλ(tu),

and hence t∗(u) = 1. Thus Jλ(tu) � Jλ(t
∗(u)u) for all t � 0. Let t1 > t∗(u) be large such that Jλ(t1u) < 0. We

take γ as the path that connects 0 with t1u with a straight line and then t1u with Aϕ1 on the affine space
{s1(t1u) + s2Aϕ1: s1, s2 ∈ R} along which Jλ is negative. Then maxt∈[0,1] Jλ(γ (t)) = Jλ(u). �
Lemma 5.3. If 1 < p < N+2

N−2 we have:∫
Ω

|∇uλ|2 � Cλ−q, λ

∫
Ω

u
p+1
λ � Cλ−q,

∫
Ω

u
1−β
λ � Cλ−q, (5.3)

where q = 2+N+(N−2)β
2(p+β)

.

Proof. Let ϕ = aϕ0 where ϕ0 ∈ C∞
0 (RN), ϕ0 � 0 and ϕ0 �≡ 0. We choose the constant a > 0 such that∫

RN

(|∇ϕ|2 + ϕ1−β − ϕp+1) = 0.

For the next calculation we assume that 0 ∈ Ω , so that the support of ϕλ(x) = λ
− 1

p+β ϕ(λ
1+β

2(p+β) x) is contained in Ω

for λ sufficiently large. Then ∫
Ω

|∇ϕλ|2 = λ
−2−N−(N−2)β

2(p+β)

∫
RN

|∇ϕ|2,
∫
Ω

ϕ
1−β
λ = λ

−2−N−(N−2)β
2(p+β)

∫
RN

ϕ1−β,

∫
Ω

ϕ
p+1
λ = λ

−2−N−(N−2)β
2(p+β)

∫
RN

ϕp+1.

Hence ϕλ ∈ Nλ and since Jλ(ϕλ) = Cλ
−2−N−(N−2)β

2(p+β) we obtain:

Jλ(uλ) � Cλ
−2−N−(N−2)β

2(p+β) .

Therefore

Cλ
−2−N−(N−2)β

2(p+β) � Jλ(uλ) =
∫
Ω

1

2
|∇uλ|2 + u

1−β
λ

1 − β
− λ

up+1

p + 1

=
∫
Ω

λ

(
1

2
− 1

p + 1

)
u

p+1
λ +

(
1

1 − β
− 1

2

)
u

1−β
λ

� cλ

∫
Ω

u
p+1
λ � c

∫
Ω

|∇uλ|2. �

Let xλ ∈ Ω be a maximum point of uλ. Let us introduce the rescaled function

vλ(x) = λ
1

p+β uλ

(
xλ + λ

− 1+β
2(p+β) x

)
,

so that vλ solves,

−�vλ + χ[vλ>0]v−β
λ = v

p
λ in Ωλ, vλ = 0 on ∂Ωλ, (5.4)

where Ωλ = λ
1+β

2(p+β) (Ω − xλ).
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Lemma 5.4. For a large λ > 0 the solution uλ has support in a ball BRλ(xλ) with Rλ = Cλ
− 1+β

2(p+β) .

Proof. By (5.1)

1 � ‖vλ‖L∞(Ωλ) � C,

and in particular 1 � vλ(0) � C. By Proposition 2.1 for every R > 0 there exists CR > 0 such that for every x ∈ Ωλ,

‖∇vλ‖L∞(BR(x)∩Ωλ) � CR,

and therefore

‖∇vλ‖L∞(Ωλ) < +∞. (5.5)

On the other hand by (5.3) there is some constant such that∫
Ωλ

v
p+1
λ � C. (5.6)

Define FBλ = ∂{x ∈ Ωλ: vλ(x) > 0}. There exists c, c′ > 0 such that if x0 ∈ FBλ then for every 0 < r � c,

there exists xr ∈ Ω with |xr − x0| = r such that vλ(xr) � c′rα. (5.7)

This is standard, see e.g. [26], but to be self-contained we give the explanation. By (5.5) we can select c > 0 such that

vλ(y)p+β � 1

2
for all y ∈ Ωλ, |y − x0| � 2c.

Then on the set {vλ > 0} ∩ B2c(x)

�
(
v

1+β
λ

) = (1 + β)
(
1 − v

p+β
λ

) + (1 + β)βv
β−1
λ |∇vλ|2 � 1 + β

2
.

Let z(y) = 1+β
4N

|x − x̄|2 where x̄ is a point close to x0, say |x̄ − x0| � c/2, such that vλ(x̄) > 0. Let 0 < r � c. If

v
1+β
λ � z for y ∈ ∂Br(x̄) ∩ Ωλ then by the maximum principle vλ(x̄) � z(x̄) = 0, which is not possible. Hence there

is a point y ∈ ∂Br(x̄) ∩ Ωλ such that

vλ(y)1+β � z(y).

Letting x̄ → x0 establishes the assertion.
We observe that {x ∈ Ωλ: vλ(x) > 0} is connected. Otherwise let ω denote the connected component containing

the origin, and assume that vλ > 0 for some point outside ω. Let v1 = vχω and v2 = vχΩ\ω, which are nontrivial
solutions to (5.4). Let

J (v) =
∫
Ωλ

1

2
|∇v|2 + v1−β

1 − β
− vp+1

p + 1
.

By the characterization of Lemma 5.2

J (vλ) � J (v1) and J (vλ) � J (v2).

Since J (vλ) = J (v1) + J (v2) we must have J (v1) � 0 and J (v2) � 0, which implies J (vλ) = 0. But this and the fact
that vλ is a solution give, ∫

Ωλ

(
1

2
− 1

p + 1

)
v

p+1
λ +

(
1

1 − β
− 1

2

)
v

1−β
λ = 0,

which implies vλ = 0, a contradiction.
Using the previous properties and (5.5) and (5.6) we can now show that the support of vλ is contained in a ball of

fixed radius. Suppose xk ∈ FBλ, k = 1, . . . ,m, are at distance at least 2c from each other. By (5.7) there exists yk ∈ Ω

with |yk − xk| = c such that
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vλ(yk) � c̃ > 0.

By the uniform Lipschitz bound we deduce that ∫
Ωλ

v
p+1
λ � mc′′

for some c′′ > 0. Thus from the upper bound (5.6) we deduce m � C for some constant C independent of λ. This
shows that the support of vλ is contained in ball BM(0) with M bounded independently of λ and this establishes the
lemma. �
6. Energy estimates in balls

We work here with 1 < p < N+2
N−2 and 0 < β < 1. Given ρ > 0 and ε > 0 we consider the equation,⎧⎨
⎩−�w + w

(w + ε)1+β
= wp, w > 0 in Bρ,

w = 0 on ∂Bρ,

(6.1)

and its associated functional Jρ,ε : H 1
0 (Bρ) → R defined by:

Jρ,ε(u) =
∫
Bρ

1

2
|∇u|2 + Gε(u) − (u+)p+1

p + 1
.

This functional has a least positive critical value cρ,ε . Since the nonlinearity f (u) = up − u

(u+ε)1+β satisfies that
f (u)/u is strictly increasing for u > 0, then cρ,ε can be characterized by,

cρ,ε = inf
u∈H 1

0 (Bρ),u �=0
sup
t�0

Jρ,ε(tu), (6.2)

see [10,29].
For ε > 0 we also consider the equation:{

−�w + w

(w + ε)1+β
= wp, w > 0 in R

N,

w(x) → 0 as |x| → +∞.

(6.3)

Critical points of the functional,

JRN ,ε(u) =
∫

RN

1

2
|∇u|2 + Gε(u) − (u+)p+1

p + 1
, u ∈ H 1(

R
N

)
,

give rise to solutions of (6.3). This functional has a least positive critical value cε characterized by:

cε = inf
u∈H 1(RN),u �=0

sup
t�0

JRN ,ε(tu). (6.4)

The main result in this section is

Proposition 6.1. There are R1 > R2 > 0, C > 0 and ε0 > 0 such that for all ρ � R1 + 2 and 0 < ε � ε0: we have

cρ,ε � cε + e−2(ε−(1+β)/2+C)(ρ−R2)−C logρ, (6.5)

cρ,ε � cε + e−2(ε−(1+β)/2−C)(ρ−R1)+C logρ. (6.6)

Solutions of (6.1) with energy cρ,ε are called least energy solutions, and similarly for solutions of (6.3) with
energy cε . Using the Schwarz symmetrization we can show that the existence of a radial, decreasing least energy
solution of (6.1) that we call wρ,ε and a radial, decreasing least energy solution wε of (6.3).
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Lemma 6.2. Let R0 > 0, σ > 0 and w̄ be the solution to

w̄′′ = 1

2

w̄

(w + ε)1+β
, r > R0, (6.7)

w̄(R0) = σ, lim
r→+∞ w̄(r) = 0. (6.8)

If σ > 0 is sufficiently small, only depending on β , there is c0 > 0 such that

w̄(R0 + 1) � e−c0ε
−(1+β)/2

. (6.9)

Proof. We write in this proof w instead of w̄. The solution to (6.7), (6.8) is obtained by multiplying (6.7) by w′ and
integrating:

1

2

(
w′)2 = 1

2
Gε(w),

which gives the relation

σ∫
w(r)

1√
Gε(s)

ds = r − R0. (6.10)

Using the definition of gε we see that

gε(u) = u

(u + ε)1+β
� u

(2ε)1+β
for 0 � u � ε,

and therefore

Gε(u) � u2

22+βε1+β
for 0 � u � ε.

Similarly

gε(u) � 1

22+βuβ
for u � ε,

and

Gε(u) � ε1−β

22+β
+ u1−β − ε1−β

21+β(1 − β)
for u � ε.

By choosing σ > 0 small we get w(R0 + 1) � ε. Indeed, assume w(R0 + 1) � ε. Then Eq. (6.10) and the estimates
for Gε imply that

σ∫
ε

(
ε1−β

22+β
+ s1−β − ε1−β

21+β(1 − β)

)−1/2

ds � 1.

But
σ∫

ε

(
ε1−β

22+β
+ s1−β − ε1−β

21+β(1 − β)

)−1/2

ds � C

σ∫
ε

1

s(1−β)/2
ds � Cσ(1+β)/2 � 1

2
, (6.11)

if we choose σ > 0 small. This gives a contradiction.
Since w(R0 + 1) � ε we find from (6.10) and the estimates for Gε that

Cε(1+β)/2

ε∫
w(R0+1)

1

s
ds +

σ∫
ε

(
ε1−β

22+β
+ s1−β − ε1−β

21+β(1 − β)

)−1/2

ds � 1, (6.12)

where C > 0. Then (6.11) and (6.12) yield:
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Cε(1+β)/2 log

(
ε

w(R0 + 1)

)
� 1

2
.

This estimate implies the inequality (6.9). �
Lemma 6.3. Let w be a radial, decreasing solution w of (6.1) or (6.3). There is a fixed R1 > 0 such that for every
δ > 0 there is ε0 > 0 such that

w(r) � e−(ε−1−β−δ)1/2(r−R1) for all r � R1 and all 0 < ε � ε0.

Proof. We first remark that there is an a priori bound M for every radial, decreasing solution w of (6.3), that is,
w(r) � M for all r � 0. Moreover given a σ > 0 there is some R0 > 0 such that for every radial solution w of (6.3)

w(r) � σ for all r � R0. (6.13)

We apply this property with σ > 0 given in Lemma 6.2 and find R0 such that (6.13) holds. Let w̄ be the function
constructed in Lemma 6.2. Then, taking σ > 0 smaller if necessary, we see that w̄ is a supersolution to (6.3) and we
deduce w(r) � w̄(r) for all r � R0. In particular

w(R0 + 1) � e−c0ε
−(1+β)/2

,

where c0 > 0. Set R1 = R0 + 1. Let δ > 0 be given and define:

w̄2(r) = e−c0ε
−(1+β)/2

e−(ε−1−β−δ)1/2(r−R1).

Then w̄2 satisfies,

w̄′′
2 = (

ε−1−β − δ
)
w̄2,

and we can arrange the constants so that w̄2 is a supersolution. Indeed,

�w̄2 + w̄
p

2 − w̄2

(w̄2 + ε)1+β
� − δ

2
w̄2 + w̄

p

2 + w̄2

(
ε−1−β − δ

2
− 1

(w̄2 + ε)1+β

)
.

Provided w̄
p−1
2 � δ/2 and w̄2/ε � 1/2 we have:

�w̄2 + w̄
p

2 − w̄2

(w̄2 + ε)1+β
� w̄2

(
− δ

2
+ O

(
w̄2

ε2+β

))
� 0,

if also w̄2 � Cδε2+β . But since w̄2(r) � e−c0ε
−(1+β)/2

for r � R1 we can achieve the inequalities by taking ε > 0
small, depending on δ. By comparison

w(r) � w̄2(r) ∀r � R1. �
Lemma 6.4. Let w be a radial, decreasing solution of (6.1). There are fixed numbers R2 > 0, C > 0 and ε0 > 0 such
that

w
(
ρ − ε−(1+β)/2) � e−(ε−(1+β)/2+C)(ρ−R2)−C for all r � R2 and all 0 < ε � ε0.

Proof. There is a uniform lower bound for wρ,ε(0). Indeed, at the origin �wρ,ε � 0 and the equation yields
wρ,ε(0)p−1(wρ,ε + ε)1+β � 1 and this implies wρ,ε(0) � c for some c > 0 independent of ε ∈ (0,1] and of ρ � 1.
The uniform estimate for the gradient Proposition 2.2 implies that if we fix R2 > 0 small, then wρ,ε(R2) � c/2 for all
0 < ε � 1 and all ρ � 1.

Let w(r) be the solution of

w′′ + N − 1

R2
w′ = 1

ε1+β
w, r ∈ (0, ρ),

w(R2) = c, w(ρ) = 0.
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Then w is explicitly given by:

w(r) = c
eλ+(ρ−r) − eλ−(ρ−r)

eλ+(ρ−R2) − eλ−(ρ−R2)
, r ∈ [0, ρ],

where

λ± = −N − 1

2R2
±

√(
N − 1

2R2

)2

+ ε−1−β.

Moreover, w is a subsolution of (6.1). Therefore wρ,ε(ρ − ε(1+β)/2) � w(ρ − ε(1+β)/2), so

wρ,ε

(
ρ − ε(1+β)/2) � c

eλ+ε(1+β)/2 − eλ−ε(1+β)/2

eλ+(ρ−R2) − eλ−(ρ−R2)
.

Since

λ± = ±ε−(1+β)/2 − N − 1

2R2
+ O

(
ε(1+β)/2

R2
2

)

the conclusion follows. �
Proof of Proposition 6.1. We prove first the upper estimate. Let wε denote a radial, decreasing least energy solution
of (6.3). Let ρ > 0 and vρ be the solution to

�vρ = 1

ε1+β
vρ in Bρ \ Bρ−1, (6.14)

with vρ(ρ − 1) = wε(ρ − 1) and vρ(ρ) = 0. Define:

w̄ρ,ε(r) =
{

wε(r) if 0 � r � ρ − 1,

vρ(r) if ρ − 1 � r � ρ.

Then

cρ,ε = Jρ,ε(wρ,ε) = max
t�0

Jρ,ε(twρ,ε) � max
t�0

Jρ,ε(tw̄ρ,ε) = Jρ,ε(tρ,εw̄ρ,ε),

where tρ,ε > 0 is the unique t where the last maximum is attained. Since wρ,ε → wε as ρ → +∞ uniformly for ε > 0
small, we have tρ,ε → 1 as ρ → +∞, uniformly for ε > 0 small. Then

Jρ,ε(tρ,εw̄ρ,ε) �
∫

Bρ−1

1

2
t2
ρ,ε|∇wε|2 + Gε(tρ,εwε) − (tρ,εwε)

p+1

p + 1
+

∫
Bρ\Bρ−1

1

2
t2
ρ,ε|∇vρ |2 + Gε(tρ,εvρ).

We have the following expansion for Gε

Gε(u) = u2

2ε1+β
+ O

(
u3

ε2+β

)
, (6.15)

where O( u3

ε2+β ) is uniform for u � ε/2. Let δ > 0 be given and ε0 > 0, R1 > 0 be as in Lemma 6.3. Let us work with

ρ � R1 + 2. Then we have vρ(r) � e−(ε−1−β−δ)1/2
for r ∈ [ρ − 1, ρ]. Thus by taking ε > 0 small we have

Jρ,ε(tρ,εw̄ρ,ε) �
∫

RN

1

2
t2
ρ,ε|∇wε|2 + Gε(tρ,εwε) − (tρ,εwε)

p+1

p + 1

+
∫

Bρ\Bρ−1

(
1

2
t2
ρ,ε|∇vρ |2 + t2

ρ,ε

v2
ρ

2ε1+β
+ Ct3

ρ,ε

v3
ρ

ε2+β

)

since also 1 t2
ρ,ε|∇wε|2 + Gε(tρ,εwε) − (tρ,εwε)

p+1
� 0 for r � ρ − 1. Therefore
2 p+1
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cρ,ε � JRN ,ε(tρ,εwε) − 1

2
t2
ρ,εaNρN−1v′

ρ(ρ − 1)vρ(ρ − 1) + C
t3
ρ,ε

ε2+β

∫
Bρ\Bρ−1

v3
ρ

� cε − 1

2
t2
ρ,ε

∫
∂Bρ−1

v′
ρvρ + C

t3
ρ,ε

ε2+β

∫
Bρ\Bρ−1

v3
ρ.

To estimate the last integral note that vρ � wε for ρ − 1 � r � ρ because wε is a supersolution of (6.14). Hence∫
Bρ\Bρ−1

v3
ρ � CρN−1e−3(ε−1−β−δ)1/2(ρ−R1−1),

so

C
t3
ρ,ε

ε2+β

∫
Bρ\Bρ−1

v3
ρ � e−3(ε−1−β−δ)1/2(ρ−R1−1)+C1 logρ+C2 log(1/ε)+C3 .

To estimate the boundary integral let z be the solution to{
�z = 0 in Bρ \ Bρ−1,

z(ρ − 1) = 1, z(ρ) = 0.

Then ∫
∂Bρ−1

v′
ρ =

∫
∂Bρ−1

vρz′ − 1

ε1+β

∫
Bρ\Bρ−1

vρz.

As before

1

ε1+β

∫
Bρ\Bρ−1

vρz � e−(ε−1−β−δ)1/2(ρ−R1−1)+C1 logρ+C2 log(1/ε)+C3,

so

cρ,ε � cε + e−2(ε−1−β−δ)1/2(ρ−R1−1)+C1 logρ+C2 log(1/ε)+C3 .

Taking a fixed δ > 0, we obtain for ρ � R1 + 2 the inequality (6.6).
To prove the lower bound, let wρ,ε be a radial, decreasing least energy solution of (6.1). We let also ṽρ be the

solution of

�ṽρ = 1

ε1+β
ṽρ in R

N \ Bρ−ε(1+β)/2 ,

with ṽρ(ρ − ε(1+β)/2) = wρ,ε(ρ − ε(1+β)/2) and limr→+∞ ṽρ(r) = 0. Define:

w̄ρ,ε(r) =
{

wρ,ε(r) if 0 � r � ρ − ε(1+β)/2,

ṽρ(r) if r � ρ − ε(1+β)/2.

The for all t > 0,

cρ,ε � Jρ,ε(twρ,ε) � JRN ,ε(tw̄ρ,ε) +
∫

Bρ\B
ρ−ε(1+β)/2

(
1

2
t2|∇wρ,ε|2 + Gε(twρ,ε) − (twρ,ε)

p+1

p + 1

)

−
∫

RN\B
ρ−ε(1+β)/2

(
1

2
t2|∇ṽρ |2 + Gε(tṽρ)

)
.

We take now t = tρ,ε such that JRN ,ε(tρ,εw̄ρ,ε) � cε . Since wρ,ε → wε as ρ → +∞ uniformly for ε > 0 small, we
have tρ,ε → 1 as ρ → +∞, uniformly for ε > 0 small.
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We use the expansion (6.15). Let δ > 0 be given and ε0 > 0, R1 > 0 be as in Lemma 6.3. Let us work with
ρ � R1 + 2. Then we have wρ,ε(r) � e−(ε−1−β−δ)1/2

for ρ − 1 � r � ρ. Thus by taking ε > 0 small we can estimate:∫
Bρ\B

ρ−ε(1+β)/2

Gε(tρ,εwρ,ε) − (tρ,εwρ,ε)
p+1

p + 1

�
∫

Bρ\B
ρ−ε(1+β)/2

t2
ρ,ε

w2
ρ,ε

2ε1+β
− Ct3

ρ,ε

w3
ρ,ε

ε2+β
− (tρ,εwρ,ε)

p+1

p + 1

= t2
ρ,ε

2ε1+β

∫
Bρ\B

ρ−ε(1+β)/2

w2
ρ,ε

(
1 − 2ε1+β

p + 1
tp−1
ρ,ε wp−1

ρ,ε

)
− Ct3

ρ,ε

ε2+β

∫
Bρ\B

ρ−ε(1+β)/2

w3
ρ,ε

�
t2
ρ,ε

2ε1+β
mρ,ε

∫
Bρ\B

ρ−ε(1+β)/2

w2
ρ,ε − Ct3

ρ,ε

ε2+β

∫
Bρ\B

ρ−ε(1+β)/2

w3
ρ,ε,

where

mρ,ε = max
ρ−ε(1+β)/2�r�ρ

(
1 − 2ε1+β

p + 1
tp−1
ρ,ε wp−1

ρ,ε

)
.

We also have ṽρ(r) � e−(ε−1−β−δ)1/2
for r � ρ − 1. Then for ε > 0 small we can estimate:

∫
RN\B

ρ−ε(1+β)/2

(
1

2
t2|∇ṽρ |2 + Gε(tṽρ)

)
�

∫
RN \B

ρ−ε(1+β)/2

(
1

2
t2|∇ṽρ |2 + t2

ρ,ε

ṽ2
ρ

2ε1+β
+ Ct3

ρ,ε

ṽ3
ρ

ε2+β

)
.

Let z be the solution to

�z = mρ,ε

ε1+β
z in Bρ \ Bρ−ε(1+β)/2 ,

with z(ρ − ε(1+β)/2) = wρ,ε(ρ − ε(1+β)/2) and z(ρ) = 0. Then,

cρ,ε � cε + t2
ρ,ε

2

∫
Bρ\B

ρ−ε(1+β)/2

(
|∇z|2 + mρ,ε

ε1+β
z2

)

− t2
ρ,ε

2

∫
RN\B

ρ−ε(1+β)/2

(
|∇ṽρ |2 + 1

ε1+β
ṽ2
ρ

)

− Ct3
ρ,ε

ε2+β

∫
Bρ\B

ρ−ε(1+β)/2

w3
ρ,ε − Ct3

ρ,ε

ε2+β

∫
RN\B

ρ−ε(1+β)/2

ṽ3
ρ

= cε − t2
ρ,ε

2
wρ,ε

(
ρ − ε(1+β)/2) ∫

∂B
ρ−ε(1+β)/2

(
∂z

∂ν
− ∂ṽρ

∂ν

)

− Ct3
ρ,ε

ε2+β

∫
Bρ\B

ρ−ε(1+β)/2

w3
ρ,ε − Ct3

ρ,ε

ε2+β

∫
RN\B

ρ−ε(1+β)/2

ṽ3
ρ.

By similar estimates as for the upper bound,
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t3
ρ,ε

ε2+β

∫
Bρ\B

ρ−ε(1+β)/2

w3
ρ,ε � e−3(ε−1−β−δ)1/2(ρ−R1−1)+C1 logρ+C2 log(1/ε)+C3,

and

Ct3
ρ,ε

ε2+β

∫
RN\B

ρ−ε(1+β)/2

ṽ3
ρ � e−3(ε−1−β−δ)1/2(ρ−R1−1)+C1 logρ+C2 log(1/ε)+C3 .

Using suitable barriers one can prove:

ṽ′
ρ

(
ρ − ε(1+β)/2) � wρ,ε

(
ρ − ε(1+β)/2)[−ε−(1+β)/2 − N − 1

2(ρ − ε−(1+β)/2)
+ O

(
ε(1+β)/2

ρ2

)]
,

and

z′(ρ − ε(1+β)/2) � −wρ,ε

(
ρ − ε(1+β)/2) m

1/2
ρ,ε

ε(1+β)/2

em
1/2
ρ,ε + e−m

1/2
ρ,ε

em
1/2
ρ,ε − e−m

1/2
ρ,ε

.

This implies

ṽ′
ρ

(
ρ − ε(1+β)/2) − z′(ρ − ε(1+β)/2) � wρ,ε

(
ρ − ε(1+β)/2)2

[
ε−(1+β)/2

(
m1/2

ρ,ε

em
1/2
ρ,ε + e−m

1/2
ρ,ε

em
1/2
ρ,ε − e−m

1/2
ρ,ε

− 1

)
− C

ρ

]
.

Since mρ,ε → 1 as ρ → +∞ uniformly for ε > 0, combining the previous inequalities with Lemma 6.4, we deduce:

cρ,ε � cε + e−2(ε−(1+β)/2+C)(ρ−R2)−C logρ−C log(1/ε)−C,

where R2 > 0 is a small constant. From this we obtain (6.5) for ρ large. �
7. Asymptotic behavior as λ → +∞, Part 2

In this section we prove Theorem 1.2 following the argument of [9]. For λ > 0 and ε > 0, let uλ,ε denote the
solution of (1.3) obtained through the mountain pass theorem, as in the proof of Theorem 1.1. Let xλ,ε ∈ Ω denote a
point where uλ,ε attains its maximum. It will be convenient to introduce the rescaled functions,

vλ,ε(x) = λ
1

p+β uλ,ε

(
xλ,ε + λ

− 1+β
2(p+β) x

)
, x ∈ Ωλ,ε,

where Ωλ,ε = λ
1+β

2(p+β) (Ω − xλ,ε). Then vλ,ε solves

−�v + v

(v + ελ
1

p+β )1+β
= vp in Ωλ,ε, v = 0 on ∂Ωλ,ε. (7.1)

Associated to (7.1) we have the functional,

Jλ,ε(v) =
∫

Ωλ,ε

(
1

2
|∇v|2 + G

ελ
1

p+β
(v) − (v+)p+1

p + 1

)
, v ∈ H 1

0 (Ωλ,ε),

with least energy

cλ,ε = inf
v∈H 1

0 (Ωλ,ε),v �=0
sup
t�0

Jλ,ε(tv).

Let cε be the value defined in (6.4) and c̄λ,ε = cελ1/(p+β) . Let

dλ,ε = dist(0, ∂Ωλ,ε) and dmax = max
x∈Ω

dist(x, ∂Ω)

so that
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max
x∈Ωλ,ε

dist(x, ∂Ωλ,ε) = λ
1+β

2(p+β) dmax.

We will prove that

cλ,ε � c̄λ,ε + exp
(−2

(
ε− 1+β

2 λ
− 1+β

2(p+β) − C
)(

λ
1+β

2(p+β) dmax − R1
) + C log(λ)

)
, (7.2)

and

cλ,ε � c̄λ,ε + exp
(−2

(
ε− 1+β

2 λ
− 1+β

2(p+β) + C
)(

dλ,ε + o(1) − R2
) − C log(λ)

)
, (7.3)

where for each fixed λ large, o(1) → 0 as ε → 0, and C, R1, R2 are constants. Inequalities (7.2) and (7.3) imply that

lim inf
ε→0

dist(xλ,ε, ∂Ω) � dmax − Cλ
− 1+β

2(p+β) (7.4)

for some constant C.
We postpone the proof of (7.2), (7.3) and finish the proof of the theorem. As in the proof of Theorem 1.1 up to a

subsequence uλ,ε converges in C1(Ω) as ε → 0 to a non-zero function uλ ∈ C1,μ(Ω) which solves (1.1). Let xλ ∈ Ω

be a maximum point of uλ. Then (7.4) implies that

dist(xλ, ∂Ω) � dmax − Cλ
− 1+β

2(p+β) .

By Lemma 5.4, for a large λ > 0 the solution uλ has support contained in a ball BRλ(xλ) with Rλ = Cλ
− 1+β

2(p+β) for
some constant C. Thus by taking λ > 0 large, uλ has compact support in Ω and hence solves,

−�u + χ[u>0]u−β = λup in R
N.

Let

vλ(x) = λ
1

p+β uλ

(
xλ + λ

− 1+β
2(p+β) x

)
,

so that vλ solves

−�vλ + χ[vλ>0]v−β
λ = v

p
λ in R

N.

Let J , M be defined by (4.3). By Lemma 5.2

J (v) � J (ϕ)

for all ϕ ∈ H 1
0 (Ωλ) where Ωλ = λ

1+β
2(p+β) (Ω − xλ), which satisfies M(ϕ) = 0. By Proposition 4.1, v = w because we

have fixed the maximum of v at the origin. This concludes the proof of Theorem 1.2, up to (7.2) and (7.3).
The proof of (7.2) and (7.3) are similar to those in [9], except for one estimate of the energy. For completeness we

give the details. To prove the upper bound (7.2) let x̄λ,ε ∈ Ωλ,ε be a point that realizes the maximum distance to ∂Ωλ,ε .

Since the least energy values for the functional Jλ,ε in Ωλ,ε and the ball with center x̄λ,ε and radius λ
− 1+β

2(p+β) dmax are
ordered we have:

cλ,ε � c
ρ,ελ

1
p+β

,

where cρ,ε is defined in (6.2) and ρ = λ
1+β

2(p+β) dmax. By estimate (6.5) we deduce (7.2).
We now derive (7.3). For simplicity of the notation we write v = vλ,ε . Up to subsequence we can assume that

xλ,ε → xλ ∈ Ω as ε → 0. Then

dist(xλ,ε, ∂Ω) → dist(xλ, ∂Ω) as ε → 0.

Let Rλ,ε = dist(xλ,ε, ∂Ω) and R0 = dist(xλ, ∂Ω). Let δ > 0 be given and take R′
0 > 0 such that

vol
(
BR′ (xλ)

) = vol
(
Ω ∩ BR0+δ(xλ)

)
.

0
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Now let 0 < δ′ < δ be such that R′
0 < R0 + δ′. Let η be a C∞(R) cut-off function such that η(s) = 1 for 0 � s �

Rλ,ε + δ′, η(s) = 0 for s � Rλ,ε + δ, and with uniformly bounded gradient. We set ηλ(s) = η(λ
− 1+β

2(p+β) s), and

ṽ(x) = v(x)ηλ

(|x|), x ∈ Ωλ,ε.

We claim that for every t ∈ [0, t0] (here t0 is a large positive constant),

Jλ,ε(t ṽ) � Jλ,ε(tv) + exp
(−2

((
ελ

1
p+β

)−1−β − 1
)1/2((

Rλ,ε + δ′)λ 1+β
2(p+β) − R1

) + C log(1/ε) + C logλ
)
. (7.5)

Indeed,

Jλ,ε(t ṽ) =
∫

Ωλ,ε

(
t2

2
|∇ṽ|2 + G

ελ
1

p+β
(t ṽ) − tp+1

p + 1
ṽp+1

)

� Jλ,ε(tv) + t2
∫

Ωλ,ε

ηλ

(|x|)|η′
λ

(|x|)v|∇v| + t2

2

∫
Ωλ,ε

v2
∣∣η′

λ

(|x|)∣∣2

+
∫

Ωλ,ε

(
G

ελ
1

p+β
(tv) − G

ελ
1

p+β

(
tvηλ

(|x|))) + tp+1

p + 1

∫
Ωλ,ε

vp+1(1 − ηλ

(|x|)p+1)
.

Using the same supersolutions as in Lemmas 6.2 and 6.3 we find R1 and ε0 > 0 such that

v(x) � exp
(−((

ελ
1

p+β
)−1−β − 1

)1/2(|x| − R1
))

(7.6)

for all x ∈ Ωλ,ε with |x| � R1, and all 0 < ε � ε0. This implies also a similar estimate for the gradient, namely∣∣∇v(x)
∣∣ � exp

(−((
ελ

1
p+β

)−1−β − 1
)1/2(|x| − R1

) + C log(1/ε) + C logλ
)
,

for all x ∈ Ωλ,ε with |x| � R1, and all 0 < ε � ε0. We can write,

G
ελ

1
p+β

(tv) = v2

2ε1+βλ
1+β
p+β

+ O

(
v3

ε2+βλ
2+β
p+β

)
,

provided v

ελ
1

p+β

� 1/2. Using (7.6) we see that this holds in Ωλ,ε \ Br(λ,ε)(0), where r(λ, ε) = (Rλ,ε + δ′)λ
1+β

2(p+β) . So

we may estimate ∫
Ωλ,ε

(
G

ελ
1

p+β
(tv) − G

ελ
1

p+β

(
tvηλ(x)

))

� Ct3

ε2+βλ
2+β
p+β

∫
Ωλ,ε\B(0,Rλ,ελ

1+β
2(p+β) )

v3

� exp
(−3

((
ελ

1
p+β

)−1−β − 1
)1/2(

r(λ, ε) − R1
) + C log(1/ε) + C logλ

)
.

Similarly we find the following estimates:

tp+1

p + 1

∫
Ωλ,ε

vp+1(1 − ηλ

(|x|)p+1)

� exp
(−(p + 1)

((
ελ

1
p+β

)−1−β − 1
)1/2(

r(λ, ε) − R1
) + C log(1/ε) + C logλ

)
,

t2
∫

Ωλ,ε

ηλ

(|x|)|η′
λ

(|x|)v|∇v|

� exp
(−2

((
ελ

1
p+β

)−1−β − 1
)1/2(

r(λ, ε) − R1
) + C log(1/ε) + C logλ

)
,
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and

t2

2

∫
Ωλ,ε

v2
∣∣η′

λ

(|x|)∣∣2 � exp
(−2

((
ελ

1
p+β

)−1−β − 1
)1/2(

r(λ, ε) − R1
) + C log(1/ε) + C logλ

)
,

which combined imply (7.5).
Let R′

λ,ε > 0 be such that

vol(BR′
λ,ε

) = vol(Ω ∩ BRλ,ε+δ).

Using the Schwarz symmetric rearrangement we find:

Jλ,ε(t ṽ) � J
ρ,ελ

1
p+β

(
t ṽ∗)

where cρ,ε is defined in (6.2), ρ = R′
λ,ελ

1+β
2(p+β) and ṽ∗ is the radially decreasing rearrangement of ṽ. We choose now

t ∈ [0, t0] such that J
ρ,ελ

1
p+β

(t ṽ∗) is maximized, and find, using (7.5)

cλ,ε � c
ρ,ελ

1
p+β

− exp
(−2

((
ελ

1
p+β

)−1−β − 1
)1/2((

Rλ,ε + δ′)λ 1+β
2(p+β) − R1

) + C log(1/ε) + C logλ
)
.

Therefore, using (6.6),

cλ,ε � c̄λ,ε + exp
(−2

(
ε− 1+β

2 λ
− 1+β

2(p+β) + C
)(

R′
λ,ελ

1+β
2(p+β) − R2

) − C logλ
)

− exp
(−2

((
ελ

1
p+β

)−1−β − 1
)1/2((

Rλ,ε + δ′)λ 1+β
2(p+β) − R1

) + C log(1/ε) + C logλ
)

� c̄λ,ε + exp
(−2

(
ε− 1+β

2 λ
− 1+β

2(p+β) + C
)
(Rλ,ε + δ)λ

1+β
2(p+β) − R2

) − C logλ,

for ε > 0 small. This establishes (7.3). �
8. Proof of Theorem 1.3

Let uλ be the solution constructed in Theorem 1.1 and let

vλ = λ
1

p−1 uλ.

Then vλ satisfies: {
−�v + λ

1+β
p−1 v−βχ{v>0} = vp, v � 0 in Ω,

v = 0 on ∂Ω.

(8.1)

Let us recall the classical equation: {−�v = vp, v � 0 in Ω,

v = 0 on ∂Ω,
(8.2)

which arises as the limit of (8.1) as λ → 0. It is well known that (8.2) admits a nontrivial solution, for example by
minimizing the H 1

0 (Ω) norm on the unit sphere of Lp(Ω) or by using the mountain pass theorem [1]. If Ω is a ball,
it is furthermore known that positive solutions of that (8.1) are radial [14] and that there is a unique positive solution,
which is furthermore nondegenerate.

We will first prove:

Lemma 8.1. Suppose Ω is the unit ball in R
N . Then the solution vλ to (8.1) converges in the C1(B1) sense to the

unique positive solution of (8.2).
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Proof. Let v0 denote the unique nontrivial solution of (8.2). We can show that for λ > 0 sufficiently close to 0, (8.1)
in the ball has a solution close to v0. One can construct this solution of the form v = v0 + w, where w has now to
satisfy, assuming w is small in C1(B1),

−�w − pv
p−1
0 w = (v0 + w)p − v

p

0 − pv
p−1
0 w − λ

1+β
p−1 (v0 + w)−β in Ω,

w = 0 on ∂Ω.

Using the nondegeneracy of v0 we may set up a fixed point argument, similar to the one in the proof of Theorem 1.5
and deduce that (8.1) has a solution vλ for λ > 0. By construction vλ → v0 as λ → 0. But radial solutions to (8.1) are
unique, see [7], and this proves the result. �
Proof of Theorem 1.3. An argument similar to that of the proof of Theorem 1.1 shows that ‖vλ‖L∞(Ω) remains
bounded as λ → 0. Therefore, thanks to Proposition 2.1, vλ is also bounded in C1,μ(Ω) where μ = 1−β

1+β
. Up to

subsequence vλ then converges to a function v ∈ C1(Ω). We have to discard the possibility that v = 0.
Let,

Jλ(v) =
∫
Ω

(
1

2
|∇v|2 + λ

1+β
p−1

1 − β
v

1−β
+ − 1

p + 1
|v|p+1

)
, v ∈ H 1

0 (Ω),

so that its critical points give rise to solutions of (8.1). The solution uλ constructed in Theorem 1.1 is a least energy
solution and therefore

Jλ(vλ) = sup
t�0

Jλ(tλv).

Let R > 0 be such that vol(BR(0)) = vol(Ω) and let v∗
λ be the Schwarz symmetrization of v. Then for every t � 0,

Jλ(vλ) � Jλ(tvλ) � Jλ

(
tv∗

λ

)
,

and therefore,

Jλ(vλ) � inf
v∈H 1

0 (BR(0)), v �=0
sup
t�0

Jλ

(
v,BR(0)

) = Jλ

(
vrad,λ;BR(0)

)
,

where vrad,λ is the unique radial solution of (8.1) in the ball BR(0). By Lemma 8.1 vrad,λ → vrad,0 as λ → 0 in
C1(BR(0)), where vrad,0 is the unique nontrivial solution of (8.2). Therefore there is c > 0 such that

Jλ(vλ) � c

for λ > 0. It follows that v = limλ→0 vλ cannot be identically zero. Testing the equation with functions supported on
the set [v > 0] we see that

−�v = vp in [v > 0].
But this and the Hopf lemma imply that [v > 0] = Ω , that is, v > 0. Since vλ → v in C1(Ω), we deduce that in fact
vλ > 0 for λ > 0 small. �
9. Positive solutions for p = 1 and λ close to λ1

We look for a solution of (1.10) of the form:

u = ε
− 1

1+β ϕ for ε = λ − λ1 > 0 small. (9.1)

A calculation shows that u is a solution of (1.10) if and only if ϕ solves:{−�ϕ + εϕ−β = λϕ in Ω,

ϕ = 0 on ∂Ω,
(9.2)
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which we write as {−�ϕ − λ1ϕ = −εϕ−β + εϕ in Ω,

ϕ = 0 on ∂Ω.
(9.3)

We are going to find a solution for (9.3) of the form ϕ = cϕ1 + z with z orthogonal to ϕ1 in L2(Ω), and z small
compared to ϕ1 so that (cϕ1 + z)−β � c′δ−β , for some constant c′ > 0. Inserting the expression of ϕ into (9.2), one
finds: {

−�z − λ1z = ε
[−(cϕ1 + z)−β + cϕ1 + z

]
in Ω,

z = 0 on ∂Ω.
(9.4)

For a function h : Ω → R we introduce the norm,

‖h‖β = sup
x∈Ω

∣∣h(x)
∣∣δ(x)β,

where

δ(x) = dist(x, ∂Ω).

We recall, see [17], that if ‖h‖β < ∞ then the problem:{
�u = h in Ω,

u = 0 on ∂Ω,

has a solution u ∈ C(Ω) ∩ C1,ν(Ω) (for every 0 < ν < 1). Moreover by the results of Gui and Lin [18], see also
del Pino [8], one has:

‖u‖C1,1−β(Ω) � C‖h‖β.

We need the following:

Lemma 9.1. If h : Ω → R satisfies ‖h‖β < ∞ and
∫
Ω

hϕ1 = 0 then there is a solution u to{−�u − λ1u = h in Ω,

u = 0 on ∂Ω,
(9.5)

with
∫
Ω

uϕ1 = 0 and

‖u‖C1,1−β(Ω) � C‖h‖β. (9.6)

Proof. If h ∈ L∞(Ω) and
∫
Ω

hϕ1 = 0 then there is a solution u ∈ C1,ν(Ω) (for every 0 < ν < 1) to (9.5) with∫
Ω

uϕ1 = 0. Thus it is sufficient to prove (9.6) in this situation and then proceed by density.
First we prove that there is C > 0 depending only on Ω , β such that∣∣u(x)

∣∣ � C‖h‖βδ(x)−N for all x ∈ Ω. (9.7)

By standard arguments, if u solves (9.5) and
∫
Ω

uϕ1 = 0, then

‖u‖L1(Ω) � C‖h‖L1(Ω)

with C independent of u and h. Now let x0 ∈ Ω and r = δ(x0)/2. Solve

−�v − λ1v = h in Br(x0),

v = 0 on ∂Br(x0).

Then, by standard elliptic estimates, ∣∣v(x0)
∣∣ � Cr2 sup

∣∣h(x)
∣∣ � r2−β‖h‖β,
x∈Br (x0)
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and

‖v‖L1(Br (x0))
� Cr2‖h‖L1(Br (x0))

� CrN+2−β‖h‖β,

where C does not depend on h or r . Define w = u − v. Then

�w + λ1w = 0 in Br(x0).

Again by elliptic estimates

∣∣w(x0)
∣∣ � C

rN

∫
Br(x0)

|w| � C

rN

∫
Br(x0)

|v| + C

rN

∫
Br (x0)

|u|

� Cr2−β‖h‖β + Cr−N‖u‖L1(Ω) � Cr−N‖h‖β.

This proves (9.7).
Fix a τ ∈ (0,1) and let η > 0 be small so that δ(x) is smooth in the region

Nη = {
x ∈ Ω: δ(x) < η

}
.

Let ū = k‖h‖βδτ . Then

−�ū − λ1ū = k‖h‖β

(−τ(τ − 1)|∇δ|2δτ−2 − τδτ−1�δ − λ1δ
τ
)
� |h| in Nη,

if we take η > 0 small and k sufficiently large. Now we fix η. By increasing k if necessary we have |u| � ū on ∂Nη .
By the maximum principle, which is valid for the operator −� − λ1 in Nη, we deduce that |u| � ū in Nη. Thus we
have obtained

|�u| � λ1|u| + |h| � C‖h‖βδ−β.

By the estimates of Gui and Lin [18] we deduce (9.6). �
Proof of Theorem 1.5. Let 0 < c < c̄ be arbitrary constants, to be chosen later on. We are going to prove that for
every c ∈ [c, c̄] there is a solution z in an appropriate space and μ ∈ R to the problem:{−�z − λ1z = ε

[−(cϕ1 + z)−β + cϕ1 + z
] + μϕ1 in Ω,

z = 0 on ∂Ω,
(9.8)

if ε > 0 is sufficiently small.
To do this consider the spaces E = {h : Ω → R: ‖h‖β < ∞, h ⊥ ϕ1}, F = {u ∈ C0,1(Ω): u ⊥ ϕ1} where the

orthogonality is with respect to the L2 inner product. Define S : E → F by Sh = u with u the solution of (9.5) such
that

∫
Ω

uϕ1 = 0. By Lemma 9.1, S is a linear bounded operator.
For ρ > 0 define Bρ := {z ∈ C0,1(Ω): ‖z‖C0,1 � ρ, z = 0 on ∂Ω}, where ‖z‖C0,1(Ω) is the smallest Lipschitz

constant of z.
Let A > 0, B > 0 be such that Aδ � ϕ1 � Bδ in Ω . If ρ > 0 is such that ρ < cA and h ∈ Bρ we have that

‖(cϕ1 + h)−β‖β < +∞. Thus, for such ρ we can define Φ : Bρ → C0,1(Ω) by:

Φ(h) := S
(
ε
[−(cϕ1 + h)−β + cϕ1 + h

] + μϕ1
)
,

where μ ∈ R is such that

ε

∫
Ω

[−(cϕ1 + h)−β + cϕ1 + h
]
ϕ1 + μ

∫
Ω

ϕ2
1 = 0.

Thus z = Φ(h) solves: {−�z − λ1z = ε
[−(cϕ1 + h)−β + cϕ1 + h

] + μϕ1 in Ω,

z = 0 on ∂Ω,

with
∫

zϕ1 = 0.

Ω
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For ε > 0 small enough Φ is a contraction in Bρ . Indeed, if h ∈ Bρ , then∥∥Φ(h)
∥∥

C0,1 � ‖S‖(ε∥∥−(cϕ1 + h)−β + cϕ1 + h
∥∥

β
+ μ‖ϕ1‖β

)
� ρ,

for ε small enough, and∥∥Φ(z1) − Φ(z2)
∥∥ � ε‖S‖∥∥(cϕ1 + z2)

−β − (cϕ1 + z1)
−β + z1 − z2

∥∥ � εC‖z1 − z2‖.
Applying the Banach fixed point theorem, for c ∈ [c, c̄] there is a solution z(c) ∈ Bρ of (9.8) with a corresponding
μ(c) ∈ R, provided ε > 0 is small. Since Φ is continuous in c, by the fixed point characterization of z(c) we deduce
that it is continuous with respect to c, and hence c �→ μ(c) is also continuous.

We proceed to show that if we take c > 0 small and c̄ > 0 is large, then for some c ∈ [c, c̄] we have μ(c) = 0. We
have the expression:

μ(c) =
∫
Ω

−(cϕ1 + z(c))−βϕ1 + (cϕ1 + z(c))ϕ1∫
Ω

ϕ2
1

.

Let us work with c > 0 small so that

−c−β(A/2 + B)−βA

∫
Ω

δ1−β + c(A/2 + B)B

∫
Ω

δ2 < 0,

and with ρ < Ac/2. Since z ∈ Bρ we have |z| � ρδ, and then cϕ1 + z � (A
2 + B)cδ. Hence

[−(cϕ1 + z)−β + cϕ1 + z
]
ϕ1 � −

(
A

2
+ B

)−β

c−βAδ1−β +
(

A

2
+ B

)
cBδ2.

This implies μ(c) < 0.
Similarly, using that cϕ + z � (cA − ρ)δ � cAδ/2, we see that taking c̄ > 0 large enough μ(c̄) > 0. �
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