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Abstract

For the equation

−�u + u−β = up, u > 0 in BR, u = 0 on ∂BR,

where BR ⊆ R
N , 0 < β < 1 and 1 < p < N+2

N−2 if N � 3, 1 < p < +∞ if N = 2, we show that there is R̄ > 0 such that a radial

solution uR exists if and only if 0 < R � R̄. It is unique in the class of radial solutions and u′
R

(R) < 0 if R < R̄, while u′
R̄

(R̄) = 0.
We also give a variational characterization of uR̄ .
© 2008 Elsevier Inc. All rights reserved.
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1. Summary

In this work we are interested in radially symmetric solutions to the singular equation⎧⎪⎨
⎪⎩

−�u + u−β = λup in B1,

u > 0 in B1,

u = 0 on ∂B1,

(1)

where B1 is the unit ball in R
N , 0 < β < 1, λ > 0 is a parameter and 1 < p < N+2

N−2 if N � 3, 1 < p < +∞ if N = 2.

Solutions are understood as u ∈ C2(B1) ∩ C(B̄1).
Several authors [1,5,7,15,16] have studied existence and uniqueness of radial solutions for equations involving

singular nonlinearities. Serrin and Tang [16] established uniqueness of radial solutions of �mu + f (u) = 0 in BR

with u = u′ = 0 on ∂BR provided N > m > 1 and f satisfies certain hypotheses, which allow f (u) = −up + uq with
p < q (no restriction on the sign of p,q).
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We prove

Theorem 1.1. Let 1 < p < N+2
N−2 if N � 3, 1 < p < +∞ if N = 2. There exists λ̄ > 0 such that (1) has a radial

solution if and only if 0 < λ � λ̄. Moreover the radial solution uλ is unique, uλ ∈ C1(B̄1) and u′
λ(1) < 0 if 0 < λ < λ̄

and u′
λ(1) = 0 if λ = λ̄.

Eq. (1) is equivalent to

−�u + u−β = up, u > 0 in BR, u = 0 on ∂BR, (2)

where R > 0 replaces the parameter λ. Thus we may restate Theorem 1.1 as follows.

Corollary 1.2. There exists R̄ > 0 such that (2) has a radial solution u if and only if 0 < R � R̄, and it is unique in
the class of radial solutions. Moreover the solution to (2) with R = R̄ has vanishing gradient on the boundary and
hence satisfies the equation

−�u + χ{u>0}u−β = up, u � 0 in R
N. (3)

For 0 < R < R̄ the solution u to (2) satisfies u′(R) < 0.

If N � 3 part of Corollary 1.2 is contained in [16]. More precisely, the result of [16] implies the existence of a
unique R̄ such that (2) admits a radial solution with zero gradient on the boundary, and that this radial solution is
unique. Our contribution is that we prove the uniqueness for (2) for any R, with an alternative proof which is valid in
dimension 2.

The case p = 1 has been considered in [1,7]. Chen [1] showed that there exist λ∗, λ̄ with λ1 � λ∗ < λ̄, λ1 being
the first eigenvalue of −� under Dirichlet boundary conditions, such that there exists a positive radial solution of (1)
if and only if λ∗ < λ � λ̄. Moreover, whenever a solution exists, it is unique. In [1] it was also proved that the solution
corresponding to λ̄ has vanishing gradient on the boundary of the ball. Hirano and Shioji [7] obtained existence results
for variants of this problem in a ball or annulus. In particular they clarified that λ∗ = λ1 in the result of [1]. Ouyang,
Shi and Yao [14] studied the case 0 < p < 1 finding zero, 1 or 2 positive solutions for λ in different intervals.

From the previous discussion (3) possesses a unique radially symmetric solution whose support is a ball. We are
interested in the uniqueness question in a broader class. Define

N = {
u ∈ H 1(

R
N

) ∩ L1−β
(
R

N
)
: u � 0, u �≡ 0, G(u) = 0

}
,

where

G(u) =
∫

RN

|∇u|2 + u1−β − up+1.

For u ∈ N let

J (u) =
∫

RN

1

2
|∇u|2 + u1−β

1 − β
− up+1

p + 1
.

Theorem 1.3. Let ū be the radial solution to (2) with R = R̄ extended by zero to R
N . Then ū ∈ N and satisfies

J (ū) � J (ϕ) ∀ϕ ∈ N . (4)

Moreover if u ∈ N is any other function satisfying (4) then up to translation u = ū.

Cortázar, Elgueta and Felmer [4] studied a similar problem:

�u − uq + up = 0, u � 0 in R
N,

where 0 < q < 1 < p < N+2
N−2 and N � 3. They showed that if u ∈ H 1(RN) is a solution such that {x: u(x) > 0} is

connected then u is radial about some point. The proof relies on the moving plane method, which works well even
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with the non-Lipschitz nonlinearity f (u) = −uq + up because it is nonincreasing on some interval [0, δ], δ > 0. This
result raises the question whether a solution u ∈ H 1(RN) ∩ L1−β(RN) to (3) such that {x: u(x) > 0} is connected
is radial about some point. Since our nonlinearity f (u) = −u−β + up is increasing and singular the moving plane
method is difficult to apply.

2. Some properties of radial solutions

We study the initial value problem

u′′ + N − 1

r
u′ + f (u) = 0, u > 0, r ∈ (0, T ), (5)

u(0) = q, u′(0) = 0 (6)

for a given q > 0 where

f (u) = up − u−β.

The solution u(r, q) to (5)–(6) is defined on a maximal interval [0, T (q)) where T (q) > 0 or T (q) = +∞. We shall
write just u(r) when the initial condition q is clear from the context.

In this section we deal with some properties of solutions to (5)–(6). We give some basic properties in Lemma 2.1. In
Lemma 2.2 and Remark 2.3 we find the behavior of the solution near T (q) and in Lemma 2.4 we prove a uniqueness
result. Lemma 2.5 is the differentiability of T (q) when u′(T (q)) < 0. Properties similar to those mentioned here have
appeared in Chen [1], Kwong [10], Ouyang, Shi and Yao [14], Serrin and Tang [16].

Given a solution u to (5) it will be useful to define

Eu(r) = 1

2
u′(r)2 + F

(
u(r)

)
,

where

F(u) = up+1

p + 1
− u1−β

1 − β
.

Then if u is a solution of (5) we have

d

dr
Eu(r) = −N − 1

r
u′(r)2.

In particular Eu is nonincreasing. Actually, d
dr

Eu(r̄) = 0 for some r̄ > 0 if and only if u′(r̄) = 0. If this happens and
u(r̄) = 1 then u ≡ 1 which is the case only for q = 1. If u(r̄) �= 1 then u′′(r̄) �= 0 and hence d

dr
Eu(r) < 0 for r close

to r̄ , r �= r̄ . This shows that Eu is strictly decreasing if u �≡ 1.

Lemma 2.1. Let q1 = (
p+1
1−β

)
1

p+β > 1 so that F(q1) = 0, and let u be a solution to (5)–(6). Then

(a) 0 � u(r) � max(q, q1) for all r ∈ [0, T (q)).
(b) If Eu(r0) < 0 for some r0 ∈ [0, T (q)) then T (q) = ∞.
(c) If 0 < q � q1 then T (q) = ∞.
(d) If T (q) = ∞ then limr→∞ u(r) = 1.
(e) If T (q) < ∞ then u is decreasing, u is C1 up to T (q) with u(T (q)) = 0 and u′(T (q)) � 0.

Proof. (a) Suppose this fails and define r1 = inf{r > 0: u(r) = max(u(0), q1)}. If u(0) � 1 then r1 > 0. If u(0) > 1
then from the equation u(r) is decreasing for small r and hence r1 > 0 also in this case. But then Eu(r1) �
F(max(u(0), q1)) � F(u(0)) which is impossible because Eu is strictly decreasing (unless u ≡ 1, in which case
the proof of this part is trivial).

(b) By contradiction assume T = T (q) < ∞. By hypothesis Eu(r) � Eu(r0) < 0 for r ∈ [r0, T (q)). Suppose that
for some sequence rn → T , u(rn) → 0. Then lim infEu(rn) � 0 which is impossible. By standard results on ODE
limr→T u(r) exists and is positive. Then the solution can be continued beyond T and hence T = ∞.
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(c) We have Eu(0) = F(u(0)) � 0 and therefore Eu(r) � 0 for all 0 � r < T . If u �≡ 1 then Eu is strictly decreasing
and therefore there exists δ > 0 such that Eu(r) � −δ for all r ∈ [δ, T ). Thus we may apply (b).

(d) We first show that if Eu(r0) < 0 for some r0 ∈ [0, T (q)) then limr→∞ u(r) = 1. Suppose that for some sequence
rn → ∞ we have u(rn) → 0. Then lim infEu(rn) � 0 which is impossible. Let u0 be any accumulation point of u(r)

as r → ∞. Then u0 > 0 and by the ODE u′′(r) remains also bounded. We must have u′(r) → 0, because otherwise,
integrating E′

u(r) = −(N − 1)u′(r)2/r and using u′′ bounded we would get that Eu(r) → −∞ as r → ∞. Hence
the accumulation point must be a positive zero of f and then u0 = 1. Actually one may check that u(r) oscillates
around 1 as r → ∞.

Now let us deal with the general case. If u(r) > 1 for all r then the same argument as before implies
limr→∞ u(r) = 1.

Now suppose that u(r) � 1 for some r > 0 and let r̄ > 0 be the first one. Then u′(r̄) < 0.
If u′(r) = 0 for some r ∈ (r̄, T ), let r0 be the first one. Then u(r0) < 1 and we deduce Eu(r0) < 0. In this case we

have already proved that limr→∞ u(r) = 1.
Let us analyze the case u′(r) < 0 for r ∈ (r̄, T ). From

(
rN−1u′)′ = rN−1(u−β − up

)
> 0 (7)

we deduce that rN−1u′ is increasing in (r̄,∞) and since rN−1u′ � 0 this quantity remains bounded as r → ∞. It
follows that limr→∞ u′(r) = 0. Since u is decreasing limr→∞ u(r) exists. From the ODE we deduce that u′′(r) � −C

for all r large where C > 0 is some constant, which is impossible.
(e) If T (q) < ∞ then necessarily limr→T (q) u(r) = 0, because otherwise u can be continued beyond T . Apply-

ing the symmetry result of Gidas, Ni, Nirenberg [6] in the ball BRε where given ε > 0 we define Rε = inf{r ∈
[0, T (q)): u(r) � ε} and deduce that u is decreasing. Then by (7) rN−1u′ is increasing near T (q) which shows that
limr→T (q) u

′(r) exists. �
Lemma 2.2. Suppose u is solution to (5)–(6) with R = T (q) < ∞ and such that u′(R) = 0. Then for some δ > 0 we
have as r → R,

u(r) = c(R − r)α + O
(
(R − r)α+δ

)
, (8)

u′(r) = −cα(R − r)α−1 + O
(
(R − r)α−1+δ

)
, (9)

u′′(r) = cα(α − 1)(R − r)α−2 + O
(
(R − r)α−2+δ

)
, (10)

where α = 2
1+β

and c > 0 is given by the relation c−1−β = α(α − 1).

Proof. Since u′ � 0 for some δ > 0,

u′′ = −N − 1

r
u′ − f (u) � 0 in (R − δ,R)

which implies that u is convex near R. Let us change R − r = t and write u′ = du
dt

. Then

u′′ − N − 1

R − t
u′ + f (u) = 0 in (0,R) (11)

and u is increasing and convex near 0. Multiplying by u′ and integrating on (0, t) we obtain

1

2
u′(t)2 − (N − 1)

t∫
0

u′(s)2

R − s
ds + F

(
u(t)

) = 0 in (0,R).

By convexity

(N − 1)

t∫
u′(s)2

R − s
ds � Ctu′(t)2 ∀t ∈ (0,R/2),
0
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and hence

u′(t)2(1 + O(t)
) + 2F

(
u(t)

) = 0 as t → 0.

After the change of variables R − r = t we have u′ > 0, and therefore we can rewrite this as

u′(t)
(−2F(u(t)))1/2

= 1 + O(t) as t → 0,

and integrate

t∫
0

u′(s)
(−2F(u(s)))1/2

ds = t + O
(
t2).

But
u∫

0

1

(−2F(s))1/2
ds =

(
2(1 − β)

(1 + β)2

)1/2

u
1+β

2 + O
(
u

1+β
2 +p+β

)
.

This gives

u(t) =
(

(1 + β)2

2(1 − β)

) 1
1+β [(

t + O
(
t2)) 2

1+β
(
1 + O

(
t

2(p+β)
1+β

))] =
(

(1 + β)2

2(1 − β)

) 1
1+β

t
2

1+β
(
1 + O

(
t

2β
1+β

))
.

This proves (8). By standard elliptic estimates we find u′(t) = O(tα−1) and u′′(t) = O(tα−2) as t → 0. Going back
to (11) we obtain (10) and then by integration (9). �
Remark 2.3. Suppose u is solution to (5)–(6) with R = T (q) < ∞ and such that u′(R) < 0. Then as r → R,

u(r) = O(R − r), (12)

u′(r) = O(1), (13)

u′′(r) = O
(
(R − r)−β

)
. (14)

The first 2 assertions are direct, since limr→R u′(r) exists and is negative. The third statement follows from the
equation.

Lemma 2.4. Suppose u1(r, q1), u2(r, q2) are solutions to (5)–(6) such that T (q1) = T (q2) = T < ∞ and u1(T ) =
u′

1(T ) = 0 and u2(T ) = u′
2(T ) = 0. Then u1 ≡ u2 in (0, T ).

Proof. First we transform the problem. Assume that u is a solution to (5) in (0, T ) such that u(T ) = u′(T ) = 0.
Changing variables t = T − r and writing u′ = du

dt
we have

u′′ − N − 1

T − t
u′ + f (u) = 0, u > 0 in (0, T ),

u(0) = u′(0) = 0.

Let v(t) = t−αu(t). Then v > 0 and satisfies in (0, T ),

v′′ + 2αt−1v′ + α(α − 1)t−2v − N − 1

T − t

(
v′ + αt−1v

) + t−αf
(
tαv

) = 0.

Moreover, by (8), v(t) = c + O(tδ) as t → 0. Set

w(t) = v(t) − c.

Then the equation for w becomes

Lw = E(w,w′, t) + t−2Q(w),
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where L is the linear differential operator

Lw = w′′ + 2αt−1w′ + 2(α − 1)w

and

E(w,w′, t) = N − 1

T − t

(
w′ + αt−1w + αt−1c

)
,

Q(w) = (w + c)−β − c−β + βc−1−βw − tα(p−1)+2(w + c)p.

The operator L has 2 linearly independent elements in its kernel given by: if α �= 3/2,

ϕ1(t) = tγ1 and ϕ2(t) = tγ2 ,

γ1 = −1 and γ2 = 2 − 2α,

and if α = 3/2 then

ϕ1(t) = t−1 and ϕ2(t) = t−1 log(t).

By the variation of parameters formula a solution to

Lw = h in (0, T ),

can be written as

w(t) = c1ϕ1(t) + c2ϕ2(t) − ϕ1(t)

t∫
t0

ϕ2h

W
ds + ϕ2(t)

t∫
t0

ϕ1h

W
ds,

where W = ϕ1ϕ
′
2 − ϕ′

1ϕ2, t0 ∈ (0, T ) is arbitrary, and c1, c2 are given by

c1 = w(t0)ϕ
′
2(t0) − w′(t0)ϕ2(t0)

W(t0)
,

c2 = −w(t0)ϕ
′
1(t0) − w′(t0)ϕ1(t0)

W(t0)
.

From now on we will assume that α �= 3/2. The case α = 3/2 can be treated analogously. We know by Lemma 2.2 that
w(t) = O(tδ) and w′(t) = O(t−1+δ) for some δ > 0, which implies that c1(t0), c2(t0) → 0 as t0 → 0. Thus letting
t0 → 0 we find that in the case α �= 3/2,

w(t) = t2

γ2 − γ1

1∫
0

(
τ 1−γ2 − τ 1−γ1

)(
E(w,w′, tτ ) + (tτ )−2Q(w)

)
dτ.

Thus, to show uniqueness for solutions to (5) which together with the first derivative vanish at T it suffices to prove
that the above fixed point equation has at most one solution. We do this in the space X of C1 functions on (0, T1) for
which the following norm is finite

‖w‖X = sup
t∈[0,T1]

t−δ
∣∣w(t)

∣∣,
where T1 > 0 is a small constant to be fixed later on. Define the linear operator

Sh(t) = t2

γ2 − γ1

1∫
0

(
τ 1−γ2 − τ 1−γ1

)
h(tτ ) dτ,

and the mapping

A(w) = S
[
E(w,w′, t) + t−2Q(w)

]
.
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The space X is not complete but verifying that A is a contraction on an appropriate ball is sufficient to prove unique-
ness. Since γ1, γ2 < 0 we have

∣∣Sh(t)
∣∣ � C‖h‖Xt2+δ,

∣∣Sh(t)
∣∣ � C

∥∥s−1h(s)
∥∥

X
t1+δ,∣∣Sh(t)

∣∣ � C
∥∥s−2h(s)

∥∥
X
tδ.

Hence
∥∥A(w1) − A(w2)

∥∥
X

� C
∥∥Q(w1) − Q(w2)

∥∥
X
.

But
∣∣Q(w1)(t) − Q(w2)(t)

∣∣ � C
∣∣w1(t) − w(t)

∣∣2 + tα(p−1)+2
∣∣(w1(t) + c

)p − (
w2(t) + c

)p∣∣
� C

∣∣w1(t) − w2(t)
∣∣2 + Ctα(p−1)+2

∣∣w1(t) − w2(t)
∣∣

� Ct2δ‖w1 − w2‖2
X + Ctα(p−1)+2+δ‖w1 − w2‖X

so that
∥∥A(w1) − A(w2)

∥∥
X

� CT δ
1 ‖w1 − w2‖2

X + CT
α(p−1)+2
1 ‖w1 − w2‖X

� CT δ
1

(‖w1‖X + ‖w2‖X

)‖w1 − w2‖X.

Given w1, w1 solutions of the fixed point equation A(w) = w with ‖w1‖X + ‖w2‖X < ∞, by decreasing T1 we
see that w1 ≡ w2 in (0, T1). This shows that if u1 and u2 are solutions to (5) and satisfy u1(T ) = u′

1(T ) = 0 and
u2(T ) = u′

2(T ) = 0 then u1 ≡ u2 is a neighborhood to the left of T . Then by the standard uniqueness result for ODE’s
we deduce that u1 ≡ u2 in (0, T ), which proves the lemma. �
Lemma 2.5. Suppose u(r, q̄) is a solution to (5)–(6) such that T (q̄) < ∞ and u′(T ) < 0. Then the map q → T (q) is
finite and differentiable for q near q̄ .

Proof. Write T = T (q̄). By standard results on ODE, given ε > 0 there is δ > 0 such that if |q − q̄| � δ then u(r, q)

is defined in [0, T − ε] and the map q → u(·, q) is differentiable into the space C([0, T − ε]).
Changing variables t = T − r and writing u′ = du

dt
we study the initial value problem

u′′ − N − 1

T − t
u′ + f (u) = 0, u > 0 in (0, T1), (15)

u(0) = 0, u′(0) = c, (16)

where T , c > 0 are parameters and T1 > 0 is fixed suitably small. We will establish:

Claim. Given T̄ , c̄ > 0, problem (15)–(16) has a solution u(t; T̄ , c̄) defined for t ∈ [0, T1], T1 > 0. Moreover for T , c

close to T̄ , c̄ this solution is well defined up to same fixed T1 and T , c → u(·;T , c) is differentiable into the space
C1([0, T1]). The conclusion of the lemma then follows from the implicit function theorem.

To prove the claim fix 0 < δ < 1 − β and define the initial approximation for the solution as

u0(t) = ct + c′t2−β,

where c′ > 0 is such that

c′(2 − β)(1 − β) = c−β.

We seek a solution to (15)–(16) of the form u = u0 + φ where φ ∈ X:

X = {
φ ∈ C1([0, T1]

)
: ‖φ‖X < ∞}

,

where
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‖φ‖X = sup
t∈[0,T1]

tβ−2−δ
∣∣φ(t)

∣∣ + sup
t∈[0,T1]

tβ−1−δ
∣∣φ′(t)

∣∣.
Given h : [0, T1] → R integrable define T (h) = φ by φ(t) = ∫ t

0 (t − s)h(s) ds. This means just that φ′′ = h and φ(0) =
φ′(0) = 0.

Then (15)–(16) is equivalent to the following fixed point equation:

φ = T
[
A(φ) + E

]
,

where

A(φ) = N − 1

T − t
φ′ − (u0 + φ)p + u

p

0 + (u0 + φ)−β − u
−β

0

and

E = u
−β

0 − u′′
0 + N − 1

T − t
u′

0 − u
p

0 .

Then we have E = O(t1−2β). Define ‖h‖Y = supt∈[0,T1] t
β−δ|h(t)|. Then ‖E‖Y � CT

1−β−δ

1 . The other terms can be
estimated as follows∥∥∥∥N − 1

T − t
φ′

∥∥∥∥
Y

� CT1‖φ‖X,

∥∥−(u0 + φ)p + u
p

0

∥∥
Y

� CT 2
1 ‖φ‖X,∥∥(u0 + φ)−β − u

−β

0

∥∥
Y

� CT
1−β

1 ‖φ‖X.

Then for small T1 > 0 the operator T (A(φ) + E) is a contraction in the closed unit ball of X, and therefore a unique
fixed point exists in this ball. The fixed point characterization of φ and the differentiability of this operator with respect
to T , c imply the desired differentiability of φ. �
3. Uniqueness of radial solutions

The proof here is similar to the work of Cortázar, Elgueta and Felmer [4] with ideas that go back to Kolodner [9],
Coffman [3], Ni and Nussbaum [13], McLeod and Serrin [12], Kwong [10], Kwong and Zhang [11], Chen and Lin [2],
and Yanagida [17].

The uniqueness proof of [16] is carried out by studying the function t (u) = ρ1(u) − ρ2(u), where ρi = ρi(u) are
the inverses of two existing solutions u1(ρ) and u2(ρ) defined on (0, αi) with ρi(αi) = 0. This analysis, as well as
their Separation Lemma stating that t (u)t ′(u) < 0, require N > 2. Here we are able to obtain the same result of the
paper [16] for N � 2, that is, we can handle the case N = 2 not treated before, for a more restricted nonlinearity. Our
approach relies on the estimate and regularity with respect to the initial data q of the maximal time T (q) of existence
of a solution. We prove that T ′(q) < 0 and limq→∞ T (q) = 0.

The main result in this section is

Proposition 3.1. There exists q̄ > 0 such that

• if 0 < q < q̄ then T (q) = +∞;
• if q = q̄ then T (q) < ∞ and the corresponding solution satisfies

u′(T (q̄)
) = 0;

• if q > q̄ then T (q) < +∞ and the corresponding solution satisfies

u′(T (q)
)
< 0.

By Lemma 2.1 we know that T (q) = ∞ if q � 1. So in the rest of the section we will work only with q > 1.
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Let

ϕ(r, q) = ∂u

∂q
(r, q) for all r ∈ [

0, T (q)
)
.

Again, when it is clear from the context we will write just ϕ(r).

Lemma 3.2. If q > 1 is such that T (q) < ∞ then ϕ has at least one zero in (0, T (q)).

For the proof we need the next computation.

Lemma 3.3. If a > 0 is small then

f ′(u)(u − a) − f (u) > 0 ∀u � a. (17)

Proof. Let a > 0 and compute

f ′(u)(u − a) − f (u) = up−1[(p − 1)u − ap + au−p−β
]
.

Note that

min
u�0

[
(p − 1)u − ap + au−p−β

]

is attained at a unique point u∗ by convexity. This point is given by

u∗ =
(

a(p + β)

p − 1

) 1
p+β+1

and replacing this value we find

min
u�0

[
(p − 1)u − ap + au−p−β

] = −ap + (p − 1)(p + β + 1)

p + β

(
a(p + β)

p − 1

) 1
p+β+1

.

This number is positive provided we take a > 0 suitably small. �
Proof of Lemma 3.2. Let a > 0 be such that (17) holds. Then choose r0 ∈ (0, T (q)) such that u(r0) = a. Then
u(r) > a for all r ∈ [0, r0). Using Green’s identity we find

r0∫
0

ϕ
(
f ′(u)(u − a) − f (u)

)
tN−1 dt = rN−1

0 ϕ(r0)u
′(r0).

If ϕ > 0 in (0, r0) then the integral above is positive, which is not possible because ϕ(r0) � 0 and u′(r0) < 0. �
Lemma 3.4. Suppose q > 1 is such that u(T (q)) < ∞. Then ru′(r)

u(r)
is strictly decreasing on (0, T (q)).

Proof. The proof is essentially the same as in [4]. Let R = T (q) and v(r) = ru′(r). Then

rN−1
(

− ru′(r)
u(r)

)′
u(r)2 = rN−1(v(r)u′(r) − u(r)v′(r)

)

for all r ∈ [0,R). Integrating in (0, r) we obtain

rN−1(v(r)u′(r) − u(r)v′(r)
) = (

f
(
u(r)

)
u(r) − 2F

(
u(r)

))
rN

+
r∫ [

2NF
(
u(t)

) − (N − 2)f
(
u(t)

)
u(t)

]
tN−1 dt. (18)
0
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We have

f (u)u − 2F(u) = up+1
(

1 − 2

p − 1

)
+ u1−β

(
2

1 − β
− 1

)
> 0 ∀u > 0,

so we obtain

rN−1(v(r)u′(r) − u(r)v′(r)
)
>

r∫
0

[
2NF

(
u(t)

) − (N − 2)f
(
u(t)

)
u(t)

]
tN−1 dt. (19)

We claim that if r ∈ (0,R) then

r∫
0

[
2NF

(
u(t)

) − (N − 2)f
(
u(t)

)
u(t)

]
tN−1 dt > 0. (20)

To prove this we observe that 2NF(u) − (N − 2)f (u)u has a unique positive zero which we write as d and satisfies
2NF(u) − (N − 2)f (u)u > 0 for all u > d and 2NF(u) − (N − 2)f (u)u < 0 for 0 < u < d . If u(r) � d then (20)
holds. If u(r) < d then

r∫
0

[
2NF

(
u(t)

) − (N − 2)f
(
u(t)

)
u(t)

]
tN−1 dt >

R∫
0

[
2NF

(
u(t)

) − (N − 2)f
(
u(t)

)
u(t)

]
tN−1 dt.

To compute the above quantity we let r → R in (18). Note that

lim
r→R

(
f

(
u(r)

)
u(r) − 2F

(
u(r)

))
rN = 0.

If u′(T (q)) = 0 then by (8)–(10)

v(r)u′(r) = O
(
(R − r)2α−2) as r → R,

and

v′(r)u(r) = O
(
(R − r)2α−2) as r → R.

Hence

lim
r→R

v(r)u′(r) = lim
r→R

v′(r)u(r) = 0. (21)

If u′(T (q)) < 0 then by (12)–(14)

v(r)u′(r) = O
(
(R − r)1−β

)
, v′(r)u(r) = O

(
(R − r)1−β

)
as r → R,

and hence (21) also holds in this case. Thus

R∫
0

[
2NF

(
u(t)

) − (N − 2)f
(
u(t)

)
u(t)

]
tN−1 dt = 0

and (20) follows. From (19) and (20) we deduce

rN−1(v(r)u′(r) − u(r)v′(r)
)
> 0 ∀r ∈ (0,R),

and this proves the lemma. �
Proposition 3.5. Suppose q > 1 is such that T (q) < ∞.

(a) Then ϕ = ∂u
∂q

has exactly one zero in (0, T (q)) which we call r0. Moreover ϕ > 0 in [0, r0), ϕ < 0 in (r0, T (q)).

(b) If u′(T (q)) < 0 then ϕ(T (q)) < 0.
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(c) If u′(T (q)) = 0 then

lim
r→T (q)

ϕ(r) = 0

and there exists a unique r1 ∈ (r0, T (q)) such that ϕ′(r1) = 0 and we have ϕ′ < 0 in (r0, r1) and ϕ′ > 0
in (r1, T (q)).

Proof. Write R = T (q).
(a) Let

v(r) = ru′ + cu,

where c ∈ R is to be determined. Then

v′′ + N − 1

r
v′ + f ′(u)v = −(2 + c)f (u) + cf ′(u)u.

Let r0 ∈ (0,R) denote the smallest zero of ϕ. We know by Lemma 3.2 that it exists. Choose c ∈ R such that

−(2 + c)f
(
u(r0)

) + cf ′(u(r0)
)
u(r0) = 0.

The value of c is given explicitly by

c = 2(u(r0)
p+β − 1)

(p − 1)u(r0)p+β + β + 1
.

Note that c > 0 if and only if u(r0) > 1, which we cannot assert in our situation as opposed to the work [4]. Having
fixed c as above define

φ(u) = −(2 + c)f (u) + cf ′(u)u.

We claim that{
if u(r) > u(r0) then φ(u(r)) < 0,

if u(r) < u(r0) then φ(u(r)) > 0.
(22)

Indeed, φ(u) is given by

φ(u) = uβ
(
up+β

(
c(p − 1) − 2

) + c(β + 1) + 2
)

and hence (22) is valid if c(p − 1) − 2 < 0, which can be easily checked.
Now suppose that ϕ has another zero in (0,R) and let r1 denote the next one, that is, the smallest zero bigger

than r0. Then, integrating by parts and using that �ϕ + f ′(u)ϕ = 0 for r ∈ (0, r1) we have

r∫
0

ϕ(t)φ
(
u(t)

)
tN−1 dt = rN−1(ϕ(r)v′(r) − ϕ′(r)v(r)

)
. (23)

By (22) we have

r∫
0

ϕ(t)φ
(
u(t)

)
tN−1 dt < 0 ∀r ∈ (0, r1).

Hence, evaluating (23) at r0 we deduce that −ϕ′(r0)v(r0) < 0. But ϕ′(r0) � 0 and therefore v(r0) < 0. By Lemma 3.4
we deduce v(r1) < 0 and therefore, using (23), we obtain ϕ′(r1) < 0, which is not possible. This shows that ϕ has
only one zero in (0,R).

(b) Assume u′(R) < 0 and ϕ(R) = 0. Then using (12)–(14) we see that ϕ(r) = O(R − r) as r → R. Then
limr→R ϕ(r)v′(r) = 0. On the other hand limr→R ϕ′(r) � 0. But letting r → R in (23) we find as in the previous
case limr→R ϕ′(r) < 0 which is a contradiction.
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(c) Assume u′(R) = 0. We first verify that ϕ′ > 0 on some point in (r0,R). Suppose on the contrary that ϕ′ � 0
in [r0,R). Then L = limr→R ϕ(r) exists and L < 0. But

ϕ′′ + N − 1

r
ϕ′ + f ′(u)ϕ = 0

and by (8)

f ′(u) = βα(α − 1)(R − r)−2(1 + O
(
(R − r)δ

))
as r → R,

for some fixed δ > 0. This shows that ϕ′′ � b(R−r)2 for some b > 0 and r close to R, which implies that ϕ(r) → +∞
as r → R, which is impossible.

Since f ′(u) < 0 we see that ϕ cannot have a local maximum at points where ϕ < 0 and cannot have a local
minimum at point where ϕ > 0. Thus in (0, r0) we must have ϕ′ � 0. In (r0,R) we have seen that ϕ < 0 and ϕ′ changes
sign, because ϕ′(r0) < 0. Let r1 denote the smallest zero of ϕ′ in (r0,R). Then ϕ′ cannot have another zero in (r1,R).
Hence ϕ′ > 0 near R and hence limr→R ϕ(r) = L exists. Suppose L < 0. Then the argument in the previous paragraph
gives that ϕ(r) → +∞ as r → R, which is impossible. This shows that limr→R ϕ(r) = 0. �
Lemma 3.6. Suppose q > 1 is such that T (q) < ∞ and u′(T (q)) = 0. Let r0 ∈ (0, T (q)) be the zero of ϕ and
r1 ∈ (r0, T (q)) such that ϕ′(r1) = 0. Then there exists r∗ ∈ (r0, r1) such that u(r∗) < 1.

Proof. Suppose that u � 1 on [r0, r1]. Let a = u(r0) � 1 so that 1 � u � a on [r0, r1]. Then using Green’s identity
we find

r1∫
r0

ϕ
(
f ′(u)(u − a) − f (u)

)
tN−1 dt = rN−1

1 ϕ(r1)u
′(r1) < 0.

But for 1 � u � a we have

f ′(u)(u − a) − f (u) = up−1[(p − 1)u − ap + au−p−β
]

� up−1[(p − 1)u + a(1 − p)
] = (p − 1)up−1(u − a) � 0

and since ϕ < 0 on (r0, r1) we obtain that
∫ r1
r0

ϕ(f ′(u)(u − a) − f (u))tN−1 dt � 0, a contradiction. �
Lemma 3.7. Suppose q > 1 is such that T (q) < ∞ and u′(T (q)) = 0. Then for q1 ∈ (1, q) with q − q1 sufficiently
small we have T (q1) = ∞.

Proof. Let R = T (q), u(r) = u(r, q) and u1(r) = u(r, q1). As before let ϕ(r) = ∂u
∂q

(r, q) and let r0 be the unique zero
of ϕ in (0,R). Fix r1 ∈ (r0,R) such that u(r1) < 1, ϕ(r1) < 0 and ϕ′(r1) < 0. Then for q1 < q , q − q1 small we have

1 > u1(r1) > u(r1) and u′
1(r1) > u′(r1).

These inequalities imply that

Eu1(r1) < Eu(r1). (24)

Step 1.

u1 > u ∀r ∈ (r1,R).

Suppose that this claim is false and define

r2 = inf
{
r ∈ (r1,R): u(r) = u1(r)

}
.

Then u′
1(r2) � u′(r2) and equality cannot hold for otherwise by standard uniqueness results for ODE’s we would have

u ≡ u1 in [r1, r2]. Since u1(r2) = u(r2) we find

Eu1(r2) > Eu(r2).
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On the other hand we have (24) and hence we may define

r3 = inf
{
r ∈ (r1, r2): Eu1(r) = Eu(r)

}
.

In this way we have

E′
u(r3) � E′

u1
(r3),

which implies

u′(r3)
2 � u′

1(r3)
2. (25)

By definition of r2 we have u1 > u in (r1, r2) and in particular u1(r3) > u(r3). This yields F(u1(r3)) < F(u(r3)) and
together with (25) we find

Eu(r3) > Eu1(r3),

contradicting the definition of r3.
Step 2. We have

Eu1 < Eu in (r1,R).

The argument is almost the same as in the previous claim. Suppose by contradiction that this claim is false and
define

r2 = inf
{
r ∈ (r1,R): Eu1(r) = Eu(r)

}
.

Then E′
u(r2) � E′

u1
(r2) which implies

u′(r2)
2 � u′

1(r2)
2.

Since u1(r2) > u(r2) we have F(u1(r2)) < F(u(r2)) and we deduce

Eu(r2) > Eu1(r2),

contradicting the definition of r2.
Step 3.

u1(R) > 0.

Suppose that u1(R) = 0. Then since Eu1(R) � Eu(R) = 0 we also deduce u′
1(R) = 0. By Lemma 2.4 u1 ≡ u in (0,R),

which leads to a contradiction, since u1(0) = q1 �= q = u(0), and proves the claim.
We deduce that u1(R) > 0 with Eu1(R) < 0. This shows that u1 is defined for all t , that is T (q1) = +∞. �

Lemma 3.8. Suppose q > 1 is such that T (q) < ∞ and u′(T (q)) = 0. Then for q1 > q with q1 − q sufficiently small
we have T (q1) < ∞ and u′(R(q1), q1) < 0.

Proof. The proof is analogous to that of Lemma 3.7. Let R = T (q), u(r) = u(r, q), u1(r) = u(r, q1) and ϕ(r) =
∂u
∂q

(r, q) and let r0 be the unique zero of ϕ in (0,R). Fix r1 ∈ (r0,R) such that u(r1) < 1, ϕ(r1) < 0 and ϕ′(r1) < 0.

Then for q1 > q , q1 − q small we have

1 > u(r1) > u1(r1) > 0 and 0 > u′(r1) > u′
1(r1).

These inequalities imply that

Eu1(r1) > Eu(r1). (26)

Step 1. Let [0, T1) be the interval of existence of u1. Then T1 � R and

u1 < u for all r ∈ [r1, T1).
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It is enough to establish that u1 < u in [r1,min(R,T1)) since this property forces u1 to vanish before (or at the same
time) as u. Suppose this is not true and define

r2 = inf
{
r ∈ [

r1,min(T1,R)
)
: u1(r) > u(r)

}
.

Then u(r2) = u1(r2) and u′(r2) < u′
1(r2) < 0. But then F(u(r2)) > F(u1(r2)) and u′(r2)

2 > u′
1(r2)

2 which implies
that Eu(r2) > Eu1(r2). Since (26) holds, we may define

r3 = inf
{
r ∈ (r1, r2): Eu(r) = Eu1(r)

}
.

Then Eu(r3) = Eu1(r3) and d
dr

Eu1(r3) � d
dr

Eu(r3). This implies u′
1(r3)

2 � u′(r3)
2. On the other hand, since u1(r3) <

u(r3) < 1 we have Eu1(r3) > Eu(r3), which contradicts the definition of r3.
Step 2.

Eu1 > Eu in [r1, T1).

Suppose the contrary and define

r2 = inf
{
r ∈ [r1, T1): Eu1(r) > Eu(r)

}
.

Then Eu1(r2) = Eu(r2) and d
dr

Eu1(r2) � d
dr

Eu(r2). This gives u′
1(r2)

2 � u′(r2)
2. By the previous step u1(r2) <

u(r2) < 1 and therefore F(u1(r2)) > F(u(r2)). We deduce then that Eu1(r2) > Eu(r2), a contradiction.
Step 3. We have R(q1) = T1 < R and u′

1(R(q1)) < 0.
Let us write R1 = R(q1). Observe that R1 � T1 � R and also R1 > r1. If R1 < T1 then Eu1(R1) > Eu(R1) � 0.

Since 1 > u1(r1) > u1(R1) we must have F(u1(R1)) � 0 and we conclude that u′
1(R1) �= 0. But then u1(R1) = 0 and

T1 = R1.
If T1 = R then u1(R) = u′

1(R) = 0 and then by the uniqueness result Lemma 2.4 we would have u1 = u in [0,R]
which is not possible. Thus T1 < R. Then the same argument as in the previous paragraph leads to u′

1(R1) �= 0. �
Proof of Proposition 3.1. Define

P = {
q > 1: T (q) = ∞}

,

C = {
q > 1: T (q) < ∞, u′(T (q)

)
< 0

}
,

Q0 = {
q > 1: T (q) < ∞, u′(T (q)

) = 0
}

so that (1,∞) = Q0 ∪ P ∪ C and these sets are disjoint. The set C is open by Lemma 2.5. An argument using Eu

similar to the proof of Lemma 2.1 implies that P is open. By Lemma 3.7 if q ∈ Q0 then for some δ > 0 we have
(q − δ, q) ⊂ P . Similarly, by Lemma 3.8 if q ∈ Q0 then for some δ > 0 we have (q, q + δ) ⊂ C . Then the same
argument as in [4] implies that Q0 consists of only one point Q0 = {q̄}, P = (1, q̄) and C = (q̄,∞). �
Proof of Theorem 1.1. For q ∈ C the map T (q) is differentiable (Lemma 2.5) and differentiating u(T (q), q) yields

u′(T (q), q
)
T ′(q) + ϕ

(
T (q), q

) = 0,

which shows that T ′(q) < 0, because by Proposition 3.5(b) ϕ(T (q)) < 0. To finish, we claim that

lim
q→∞T (q) = 0.

One way to prove this is to assume that limq→∞ T (q) > 0. Let

vq(x) = 1

q
u
(
q

1−p
2

)
,

which is then defined for |x| � T (q)q
p−1

2 → ∞ as q → ∞. Then

�vq − q−p−βv−β
q + v

p
q = 0.

Using the same arguments as in Lemmas 4.2 and 4.3 we can show that vq converges locally uniformly as q → ∞
in R

N to v > 0 satisfying �v + vp = 0 in R
N , which is impossible. �
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4. Proof of Theorem 1.3

Given ε > 0 and a fixed large R > 0, we study the problem
⎧⎨
⎩

−�u + gε(u) = up in BR,

u > 0 in BR,

u = 0 on ∂BR,

(27)

where for ε > 0,

gε(u) =
{ u

(u+ε)1+β , u � 0,

0, u < 0.
(28)

Then we prove that (27) has a solution uε , which is radial and bounded in L∞(BR). Then we show that u = limε→0 uε

is a minimizer of J on N .

Lemma 4.1. Problem (27) admits a solution uε . Moreover uε is radial and radially nonincreasing.

Proof. Define the following functional in H 1
0 (BR):

Jε(u) =
∫
BR

1

2
|∇u|2 + Gε(u) − |u|p+1

p + 1
, (29)

where

Gε(u) =
u∫

0

gε(t) dt = βu + ε

β(1 − β)(u + ε)β
− ε1−β

β(1 − β)
for all u � 0.

Let ϕ1 > 0 denote the first eigenfunction of −� in BR with Dirichlet boundary conditions, normalized such that
‖ϕ1‖2

L = 1. Let A > 0 be fixed sufficiently large and fixed to ensure

1

2

∫
Ω

∣∣∇(Aϕ1)
∣∣2 − 1

p + 1

∫
Ω

(Aϕ1)
p+1 < 0.

Then

Jε(Aϕ1) < 0 (30)

for all ε > 0.
We solve (27) using the mountain pass theorem for the functional Jε . Since Gε � 0 this functional satisfies:

there exist ρ > 0, c > 0 such that Jλ,ε(u) � c ∀‖u‖H 1
0 (Ω) = ρ.

This and (30) give the geometric condition for the mountain pass theorem, and the Ambrosetti–Rabinowitz condition

∃θ > 2 such that θ

(
λ

p + 1
up+1 − Gε(u)

)
� λup − gε(u) for sufficiently large |u|

is satisfied since the term that dominates in the nonlinearity for large u is up . Therefore there exists a critical point uε

of Jε in H 1
0 (BR). By standard regularity theory uε is C2(B̄R). We claim that u > 0 in BR . To prove this it suffices to

verify that uε � 0 in BR . Suppose to the contrary that ω = {x ∈ BR: uε(x) < 0} is nonempty. Then

−�uε = |uε|p > 0 in ω, uε = 0 on ∂ω,

and we deduce uε > 0 in ω, a contradiction. Thus we have produced a positive solution u of (27). By the result of
Gidas, Ni and Nirenberg [6] uε is radially symmetric and radially nonincreasing. �



J. Dávila, M. Montenegro / J. Math. Anal. Appl. 352 (2009) 360–379 375
Lemma 4.2. Let uε denote any radial solution of (27). Then there is some constant C > 0 such that

‖uε‖L∞(BR) � C as ε → 0. (31)

Proof. Define

mε = supuε

and assume by contradiction that mε → ∞ as ε → 0. Let

vε(x) = uε(ρεx)

mε

,

where ρε = m
1−p

2
ε . Then vε is radially symmetric, radially nonincreasing and uniformly bounded by 1. We also have

ρε → 0 as ε → 0 and vε satisfies

−�vε + ρ2
ε

m
1+β
ε

v−β
ε = vε in BR/ρε , vε = 0 on ∂BR/ρε . (32)

Multiplying this equation by vε and integrating we obtain ‖∇vε‖L2(BR/ρε ) � C. Since vε is radial, it has a subsequence

such that vε convergence locally uniformly in R
N − {0} to a radially symmetric, radially nonincreasing function

v ∈ H 1
0 (RN), v � 0. We claim that vε(r) � 1

2 for 0 � r � 1. Indeed, let us rewrite (32) as

(
rN−1v′

ε

)′ = ρ2
ε

m
1+β
ε

rN−1v−β
ε − rN−1vp

ε .

Hence

rN−1vε(r)
′ � −

r∫
0

sN−1vε(s)
p ds (33)

from which we deduce that rN−1vε(r)
′ � −rN and therefore vε(r) � 1 − 1

2 r2 for r � 0. This proves our claim and,
using elliptic regularity, shows that vε → v locally uniformly in R

N . If v(r) > 0 for all r � 0 then v satisfies

−�v = vp, v > 0 in R
N,

which is not possible. Define

R0 = sup
{
r > 0: v(r) > 0

}
.

Then R0 > 0 is well defined and finite and v satisfies

−�v = vp, v > 0 in BR0 , v = 0 on ∂BR0 .

By the Hopf lemma v′(R0) < 0. We will find a contradiction with this fact as follows. Let R0 − 1 < r < R0 and
η(x) = r + 1 − x if x � r + 1 and η(x) = 0 for x � r + 1. Multiplying Eq. (32) by v′

εη and integrating we find

−1

2
v′
ε(r)

2 − 1

2

r+1∫
r

(
v′
ε

)2
η′ + (N − 1)

r+1∫
r

(
v′
ε

)2
η
ds

s

= − ρ2
ε

m
1+β
ε

vε(r)
1−β

1 − β
− ρ2

ε

m
1+β
ε

r+1∫
r

vε(r)
1−β

1 − β
η′ + vε(r)

p+1

p + 1
+

r+1∫
r

v
p+1
ε

p + 1
η′. (34)

Letting ε → 0,

−1

2
v′(r)2 − 1

2

r+1∫
(v′)2η′ + (N − 1)

r+1∫
(v′)2η

ds

s
= v(r)p+1

p + 1
+

r+1∫
vp+1

p + 1
η′.
r r r
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Since v = v′ = 0 to the right of R0 the previous formula shows that

v′(r) → 0 as r → R0, r < R0.

This contradicts Hopf’s lemma, and proves the claim (31). �
Lemma 4.3. Let R̄ be as in Corollary 1.2 and ū the solution to (2) extended by 0 to R

N . If R > R̄ then uε → ū

uniformly in BR and in H 1
0 (BR).

Proof. Multiplying (27) by uε and integrating by parts we find that ∇uε is bounded in L2(RN). Also, inequality (33)
is also valid for uε and since uε is uniformly bounded we deduce that uε(r) � 1

2 in a neighborhood of 0. Thus up to
subsequence u = limε→0 uε exists and the convergence is locally uniformly in BR . Moreover u � 0, u > 0 near the
origin, u is radially symmetric and radially nonincreasing. Define

R0 = sup
{
r > 0: u(r) > 0

}
.

Then u satisfies

−�u + u−β = up, u > 0 in BR0, u = 0 on ∂BR0 .

By Theorem 1.1 R0 � R̄ (actually we should argue that R0 is finite, which follows from the results of the previous
section). We will verify now that u′(R0) = 0. Let R0 − 1 < r < R0 and η(x) = r + 1 − x if x � r + 1 and η(x) = 0
for x � r + 1. Multiplying Eq. (27) by u′

εη and following a calculation similar to (34) we find

−1

2
u′(r)2 − 1

2

r+1∫
r

(u′)2η′ + (N − 1)

r+1∫
r

(u′)2η
ds

s
= −v(r)1−β

1 − β
−

r+1∫
r

v1−β

1 − β
η′ + v(r)p+1

p + 1
+

r+1∫
r

vp+1

p + 1
η′.

Since u = u′ = 0 to the right of R0 the previous formula shows that

u′(r) → 0 as r → R0, r < R0.

By Corollary 1.2 R0 = R̄, u = ū and by uniqueness it is the complete sequence that converges. We have seen that the
convergence is locally uniformly in BR and by the previous estimate it is actually uniformly in BR . The convergence
in H 1(BR) follows from the weak convergence in this space and the equality:∫

BR

|∇uε|2 =
∫
BR

Gε(uε) − up+1
ε . �

Define

(mp)ε = inf
γ∈Γ

sup
t∈[0,1]

Jε

(
γ (t)

)
,

where

Γ = {
γ : [0,1] → H 1

0 (BR): γ is continuous, γ (0) = 0, γ (1) = Aϕ1
}
.

In the above definition the constant A is fixed such that Jε(Aϕ1) < 0 for all ε > 0. Then by construction of uε ,

Jε(uε) = (mp)ε.

We also define

(mp)0 = inf
γ∈Γ

sup
t∈[0,1]

J
(
γ (t)

)

and

NR = {
u ∈ H 1

0 (BR): u � 0, u �≡ 0, G(u) = 0
}
.
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Lemma 4.4. Let ū be the solution to (2) extended by 0 to R
N . Then

J (ū) = lim
ε→0

(mp)ε = (mp) = inf
NR

J.

Proof. Let uε denote the solution of (27) constructed in Lemma 4.1 with the mountain pass theorem. Multiplying
Eq. (27) by uε and integrating we have∫

BR

|∇uε|2 + gε(uε)uε − up+1
ε = 0.

Since gε(u)u → u
1−β
+ uniformly for u on compact sets of R we have∫

BR

|∇uε|2 + u1+β
ε − up+1

ε = o(ε),

where o(ε) → 0 as ε → 0. Thus there exists t (ε) = 1 + o(ε) with the property t (ε)uε ∈ NR . Hence

inf
NR

J � J
(
t (ε)uε

)
.

But

J
(
t (ε)uε

) = J (uε) + o(ε) = Jε(uε) + o(ε) = (mp)ε + o(ε).

Thus

inf
NR

J � (mp)ε + o(ε). (35)

For any fixed γ ∈ Γ ,

(mp)ε � sup
t∈[0,1]

Jε

(
γ (t)

)

and letting ε → 0

lim sup
ε→0

(mp)ε � sup
t∈[0,1]

J
(
γ (t)

)
.

Therefore

lim sup
ε→0

(mp)ε � (mp)0. (36)

To prove the converse let u ∈ NR . Given c1 > 0, c2 � 0, c3 > 0, we consider the function

f (t) = c1
t2

2
+ c2

t1−β

1 − β
− c3

tp+1

p + 1
for t > 0.

Note that

f ′(t)
t

= c1 + c2t
−β−1 − c3t

p−1

is a decreasing function with limit +∞ as t → 0 and −∞ as t → +∞. Thus f has a unique critical point, which
corresponds to a maximum and is nondegenerate. Thus there is a unique t∗(u) > 0 which is critical point of

t �→ J (tu)

and hence t∗(u) = 1. Therefore J (tu) � J (t∗(u)u) for all t � 0. Let t1 > t∗(u) be large such that J (t1u) < 0. We take
as γ the path that connects 0 with t1u through a straight line and then t1u with Aϕ1 on the affine space {s1(t1u) +
s2Aϕ1: s1, s2 ∈ R} along which J is negative. Then maxt∈[0,1] J (γ (t)) = J (u) and hence

(mp)0 � inf J. (37)

NR
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Collecting (35), (36) and (37) we find

lim
ε→0

(mp)ε = (mp) = inf
NR

J.

On the other hand (mp)ε = Jε(uε) = J (ū) + o(ε) and the result follows. �
Proof of Theorem 1.3. By density it is sufficient to show that J (ū) � J (ϕ) for any ϕ ∈ N with compact support. But
then ϕ ∈ NR with R > 0 large and the conclusion follows from Lemma 4.4.

For the uniqueness part, we assume that u ∈ N minimizes J on N . Let u∗ denote the Schwarz symmetrization
of u. Then u∗ is radially symmetric and radially nonincreasing and it is well known [8] that

∫
RN (u∗)p+1 = ∫

RN up+1,∫
RN (u∗)1−β = ∫

RN u1−β and∫

RN

∣∣∇u∗∣∣2 �
∫

RN

|∇u|2

with equality if and only if u = u∗ (after translating). As a consequence G(u∗) � 0 and we can select t∗ > 0 such that
G(t∗u∗) = 0. This number t∗ is the one that maximizes t �→ J (tu∗), that is,

J
(
t∗u∗) = sup

t�0
J (tu).

Similarly

J (u) = sup
t�0

J (tu).

Given b, c > 0 the function a ∈ (0,∞) �→ supt�0(at2 + bt1−β − ctp+1) is increasing and therefore

J
(
t∗u∗) � J (u),

with strict inequality unless
∫

RN |∇u∗|2 = ∫
RN |∇u|2, that is, u = u∗. Since u minimizes J in N we deduce that also

t∗u∗ minimizes J in N and J (t∗u∗) = J (u) and therefore u = u∗ after translating. By Corollary 1.2 u = ū. �
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