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Abstract

We find existence of a nonnegative compactly supported solution of the praklesmu® in Rﬁ ,

du/dv =u on aRﬁ. Moreover, we prove that every nonnegative solution with finite energy is com-
pactly supported and radially symmetric in the tangential variables.
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1. Introduction

We study existence of nonnegative solutions of the following problem:
Au=u%* in Rﬁ,
ou N (1.2)
3y =u  OnaRY,

whered/dv is the outer unit normal derivative andx < 1.
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This elliptic problem appears naturally when one considers self-similar blowing up so-
lutions of the porous medium equation > 1)
v =Av" inRY x (0, 7),
= — " ondRY x (0, 7).

v

(1.2)

The blow-up problem for the porous medium equation has deserved a great deal of
attention; see, for example, [3,10-12,19].

In the study of blow-up problems, self-similar profiles are used to study the fine as-
ymptotic behavior of a solution of the parabolic equation near its blow-up time; see, for
example, [14,15]. It often happens that the spatial shape of the solution near blow-up is
close to a self-similar profile [5,6,12,15].

In our case, assume thagx, 7) is a solution of (1.2) with blow-up tim&. Then the
rescaled function(x, t) = (T — )Y ™=Dy(x, r) should converge as,” T to a stationary
profile z(x) satisfying

m_ _1 ; N
:AZ —mz IHR+,

" _ _m N
5 =2 OH8R+,

as is often the case when dealing with parabolic problems; see [5-7,10].4Thga-
cz(x)™ is a solution of (1.1) withe = 1/m for a suitable choice of the constant

On the other hand, given a nonnegative solutian) of (1.1),z(x) = (u(x)/c)Y/™ gives
rise to a special solution to (1.2) (in self-similar form) blowing up at timeof the form

v(x, 1) = (T — )" Y" Dz(x). (1.3)

Remark that in our case the self-similar scaling does not change the spatial variable, and
hence the blow-up set of (1.3) is given by the suppot(@.

Therefore there is an interest in studying self-similar profiles, in our case solutions of
(1.2).

In order to motivate our study, let uscall what is known for the problem

v =Av" +v" inRY x (0, 7). (1.4)

Problem (1.4) admits self-similar solutions of the form (1.3). In this case the profile
is a solution of

0=A7"+7"—

! z inRV. (1.5)
m—1
One way to look for solutions of (1.5) is to search for radial ones. The existence of a
radial compactly supported nontrivial solution reduces to the study of an ODE and was
done in [7,17]. Moreover, a symmetry analysis using moving planes implies that every
solution with finite energy has compact support and is composed by a finite number of
radial “bumps” located such that their supports do not intersect; see [7,18].

Concerning the existence of solutions of (1.1), let us observe that in one space dimension
we are facing an ODE that can be solved explicitly and it turns out that there exists only
one compactly supported solutioni,

u(x) = c1((ez —x)4) 7 (1.6)
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Unfortunately, forN > 2, an easy inspection of problem (1.1) shows that there is no
hope to look for radial solutions since thean not verify the boundary condition. There-
fore, in the case under study, the elliptic problem remains a PDE that can not be solved by
ODE methods.

However, the problem has still some natural symmetry in the tangential variables. In
fact, if we call a pointx € Rﬁ, x = (', xn) (x’ e R¥N—1) we can search for solutions that
are radial in the tangential variables, i.e.,

u(x) =u(|x/|,xN). .7

It has to be noted that this symmetry assumption does not reduce the problem to an ODE.
Our first result reads as follows.

Theorem 1.1. There exists a nontrivial, nonnegative compactly supported soluti¢h. bf
of the form(1.7).

Next, we use the moving planes device (with a moving plane parallel to\tliirection)
to prove the following result.

Theorem 1.2. Letu € Hl(Ri’) be a nonnegative solution ¢1.1)with connected support.
Thenu is compactly supported and radial in the tangential variables, that is it has the form
a.7).

Remark that this theorem justifies our symmetry assumption in Theorem 1.1.
When this analysis is performed we can obtain some easy corollaries concerning prob-
lem (1.2).

Corollary 1.1. Every nonnegative nontrivial solution ¢1.2)blows up in finite time.

The proof of this fact follows by contradiction. Assume thais a global nontrivial
solution. Asv is a supersolution of the porous medi equation its support expands [20],
and eventually covers the support of a self-similar prafil@he proof ends just with the
use of a comparison argument using a solution of the form (1.3) Withrge enough as
subsolution.

Corollary 1.2. There exists a solution @fL..2)with a blow-up set composed by an arbitrary
number of connected components.

In fact, we may consider a solution of the form (1.3) with a prafile) composed by:
disjoint copies of the compactly supported solution provided by Theorem 1.1.

Moreover, we conjecture that the self-similar solutions that we have constructed give the
asymptotic behavior of any solution of (1.2) as it happens in one space dimension; see [9].

The problem of uniqueness of solutions to (1.1) with compact support remains open. In
the case of Eq. (1.5) it is known that solutions with compact support are unique except for
translations, see [8], but the argument relies strongly on ODE techniques.
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The rest of the paper is organized as follows. In Section 2 we prove our existence result,
Theorem 1.1, and in Section 3, we prove our symmetry result, Theorem 1.2.

Throughout the paper, by we mean a constant that may vary from line to line but
remains independent of the relevant quantities.

2. Existence of a symmetric solution

In this section we obtain the existence of a nontrivial nonnegative compactly supported
solution of (1.1).
The main idea of the proof is to consider the problem in a large halfB&@l R); =
{x,|x] < R, xy > 0} with mixed boundary conditions, namely,
Aug = ug)* inB(O,R)y,
Br —yp ondB(0, R)4 N {xy =0}, (2.1)
ug =0 ondB(0, R), N {xy > O}.
And then obtain the desired solution proving that the suppartoferifies

max |x| <R.
XESUPQUR)
Thereforeuy is a solution of (1.1).

This approach has already been employed by other authors. For instance, in [4] they
prove existence of positive solutions to a nonlinear problem in a half-space by first solving
a related problem in a half baB}; and then letting? — oo. Our problem is different
in that we deal with a non Lipschitz nonlinearity and the solutions we find have compact
support.

For R > 0 let us introduce the notation:

BY =B(0,R)y, B =0BfN{xy=0}, &Bf=0B}N{xy >0}
To prove existence of a solution to (2.1) we consider the functional

2 2
fB,ﬁ IVul® - falBg u
a+1)2/(a+1)

Ir(u) =

on the space
H = {u e H*(B}}) | such that = 0 ond, B} }

equipped with the norm
|7 = f |Vuf?.
By

This is indeed a norm o/ by Poincaré’s inequality, which is valid for functions H
since they vanish on a nontrivial part of the boundaryf

Lemma 2.1. For everyR large enough/y attains a minimum and there is a minimizer
u > 0, u # 0 which is a solution of2.1).
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Proof. First, let us verify that

inf Ig(u) > —o0.
ueH, u#0

This statement is equivalent to ediab the following Sobolev inequality:

2/(a+1)
/qu|2+K</|u|°‘+1> > / u?> VueH, (2.2)

BY B aBY

whereK is a constant (it may depend @¥). If (2.2) fails there exists a sequencge H
with [y, g+ uj =1 such that

2/(a+1)
/qu,1|2+n</ |u,,|°‘+1> <1 Van>1l (2.3)

R R

But then, up to a subsequence, we haye— u weakly in H, u, — u strongly in
Lé*(Bg) anduy|y g+ — uly g+ strongly in L2(31Bg). Since [, pi uf =1 we must
havefalB+ u? =1 on one hand, but (2.3) implies that= 0, a contradiction.

R

Let A1(R) denote the first eigenvalue for the problem

Au=0 inBY,

8u =)u ondiBy, (2.4)
u=0 ondBY,

and letp1 g > 0 be the eigenfunction associated\t@R). Theni1(R) > 0 and

2
falB; P1R
a+1\2/(a+1) "
(. B:PLR)
We claim that ifR is sufficiently large then the expression above is negative. In fact, ob-
serve thak1(R) is given by

[ Vel
AR = min X ——
ver\O} [y pt 97

Ir(p1.R) = (A1(R) — 1)

and a change of variables shows that
[pIVel? 1[5 1VOP
falg,t o R fale 2
whereg(x) = ¢(Rx). Therefore
21(1)

R
and this establishes that

A1(R) =

(2.5)
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infIg(u) <0 (2.6)

for R sufficiently large.
Let (u,) be a minimizing sequence fd. We can assume thg(ng; u,zl = 1. Since

inf I < 0 we can also assume thiat(u,) < 0. ThereforefB; |Vu,|? < 1 and hence up to
subsequence, — u weakly in H, u, — u strongly inL““(B;) andun|313$ — u|313$
strongly inL2(31B}). SincefalB; u? = 1 we conclude thai # 0 and by the lower semi-
continuity of || - ||z under weak convergence i we see that
infIg < Ig(u) <liminf Ig(u,) =inf Ig.
n—00

Thuslig has minimizew £ 0 and we can assume that: 0. There is a Lagrange multiplier
A such that

/VuV(p—/u(p:A/u“go Vo € H.

+ + +
B} 0B} B}

Using this withg = u we see thak has the same sign dg(«), and thus. < 0. Choosing
6 =(—2*"1>0itis easy to verify thadu solves (2.1). Finally note that is also a
minimizer ofIg. O

Remark 2.1. From the previous proof we may observe that/iaf) < O if and only if
there exists a nontrivial nonnegative solution of (2.1). Moreover this occurs if and only if
M(R) < 1.

Lemma 2.2. Let up be a nonnegative minimizer dfz. Then for R large enough
there existsC independent ofR such thatlluRllLaH(B;) <C, ||“R||Loo(3;) < C, and

Vug ”LOO(B;/Z) < C.

Proof. The first step is to show that

/ uttt < c (2.7)
By
with C independent oR.
Indeed, multiplying (2.1) byt g and integrating by parts we obtain

/|WR|2+M°,§+1= / uz. (2.8)
BY 9B}

On the other hand we have shown in (2.6) that< O for R large enough, but in fact we
have more. Indeed fiRg so thati1(Rg) — 1 < 0, wherer1(Rp) is the first eigenvalue for
(2.4). Letyy, g, be the first eigenfunction associated.ig Rg) and extend it by zero tB;g.
Then forR > Ro,

2
/; Bk %1, Ro

+1 =
(fB;o (pi RO)Z/(a+1)

inf Ig < Ir(91.R) = (M(Ro) — 1) —Co.
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Thus

2/(a+1)
/quR|2+C0</u%+l> < / uz. (2.9

B B nBy

From (2.8) and (2.9) we see that (2.7) follows.
The proof of the uniform estimatelﬂRllLoc(B;) <C and||VuR/2||Loo(BRf) < Cis stan-

dard. For simplicity let us assume first thB¢(xo) C B};. Sinceu e L@/ (B (xp))

by L7 regularity theoryug € W2©@+D/¢(By 5(xg)) and then by the Sobolev embedding
ur € LY(By/2(x0)) With 1/q = a/(a + 1) — 2/n. Repeating this argument a finite number
of times we deduce the boundiri®. The bound foVug in L is similar, using Schauder
estimates. Finally the same proof workscif € 9RY N Bg. The only point that deserves
an explanation is thé? regularity theory for the Laplace equation with the boundary con-
dition du/dv = u on aRi’. This is well known, but for completeness we present a short
proof in Appendix A. O

Remark 2.2. The mountain pass theorem of Ambrosetti and Rabinowitz [2] can also be
used to prove the existence of a solution to (2.1). Indeed, the functional

1 2 1 1 1 2
Fuy=—- ||V — te_ =
(u) 2/IIAIJrH_O[/IMI 2/14
BY B}

+
R 1By

satisfies the hypotheses of the theorem. An estimate similar to (2.2),

1 2/(1+a)
E/|v14|2+1<</|u|1+0‘) > / u? VueH,

+ P
R Bg N By

shows that ifr is small enough anix|| iz = r then

F()>1/V 2_1.
Ru/4 |M|—4r
B+

On the other hand 'z (u1) < r2/4 and||u1||g > r, whereus = rg1 g With @1 ¢ the first
eigenfunction for (2.4) and is large.

Finally, the estimates of Lemma 2.2 can also be obtained for the mountain pass solution
ump. It suffices to verify that the critical value of the mountain pass solufidimp) is
bounded independently &.

Remark 2.3. Let us writex € RY asx = (x, xy) with x’ e RV L andxy € R. Minimizing
Ig in the subspace aff consisting of functiona such that
u(x', xy) =u(]x’l, xn), (2.10)

that is, functions that are radial with respecttpwe can find a solution to (2.1) with this
property.
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Definition 2.1. From now on we let:g > 0 denote a nontrivial solution of (2.1) that satis-
fies (2.10), obtained by minimizinkk on the space of functions i satisfying (2.10).

We need now a result which will be proved in the next section.

Lemma 2.3. Letuy be the solution of DefinitioB.1 Thenu(|x’|, xy) is decreasing inx’|
andxy.

The next result will establish Theorem 1.1.

Lemma 2.4. Letur denote the solution of Definitich 1. Then forR large enoughtz has
compact support.

Proof. As before we will writex € RY asx = (x’, xy) with x’ € RV~ andxy > 0. First
let us show thai ; satisfies

Cc

|x/|(N=D/(e+D) |y |1/ (@+D) " (2.11)

ur(x’,xn) <

In fact, by Lemma 2.3,
ur(x’,xn) <ur(y',yn) VIYI<Ix'|, 0<yy <xw.

Raising to the powes + 1 on both sides, integrating in the regiéty’, yn): |y'| < |x'],
0 < yy < xn} and using the estimate of Lemma 2.2 we deduce (2.11).
Let L denote a constant such t”muR”Loo(B;/z) < L for all R large. By (2.11) there

is R1 such that forR > R1,
ur(x’,xy) <1/2 Vix'| > % Xy = R1.
This together with the Lipschitz bound implies that
up(x’,R1) <1 Vx'.
Consider
w1 =a((b—xy)t)7 Y, (2.12)

where £+ denotes the positive part ¢f, that is f* = max(f, 0) anda, b are determined
by
a1 _ (1-)?
21l+a)’
Then Awy = wf andwi(R1) = 1. We claim that from the maximum principle it follows

thatug < w1 in {xy > R1} N B;g. In fact first note thaivy > u on d({xy > R1} N B;g).
Then observe that

a(b— R =1, (2.13)

0=—-A(wy —u) +wi —u* =—A(wr —u) + c(x)(w1 — u),
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where

c::w‘l’u“ >0 ifwys#u,

w1—u
0 if wi=u.

Thus the maximum principle can be applied and froam< w1 in {xy > R1} N B;g we
deduce thati(x’, xy) =0if xy = R2, R > R>.

Finally, to prove that the support afz is bounded in the direction of’ we need to
apply the maximum principle in a region which has part of its boundarjxgn= 0}. For
an arbitrary region as before the maximurmpiple may not hold, because of the boundary
conditiondu/dv = u on {xy = 0}. However if the part of the boundary dany = 0} is
small enough the maximum principle is valid.

Lemma 2.5. LetU C Rﬁ be open, bounded with a Lipschitz boundary. Supposeihat
HY(U) satisfies

Aw<ax)w inU,

w>=0 onaU N{xy > 0}, (2.14)
%—’f}w onoU N {xy = 0},

wherea(x) > 0. Then there exist8 such that, if theV — 1 dimensional measur®U N
{xy =0}| <8 thenwe havev > 0in U.

Proof of Lemma 2.4 continued. Letxg € aRﬁ. We shall show that ifxp| andR are large
enough them g = 0 in a neighborhood ofg. We utilize Lemma 2.5 witl/ = {xy > 0} N

B(xo, rp), With 0 < ro < 1 small enough. We are going to construct a suitable comparison
functionw, which satisfies the following properties:

Awr<wi  inD, (2.15)

% >wy ondDNxy=0, (2.16)

w2 = 0 in a neighborhood afo, (2.17)
and

aDriwr;Tpsz > 0. (2.18)
Write xo = (x, 0) and define the coordinate= |x" — x;|. Set

wy = a((r? + (xy —d)? —b)yt)7 ), (2.19)

wherea, b, d > 0 are going to be fixed below depending only/gnN anda (w2 is just a
radial function about the poirik}, d)).
First we deal with (2.16). OAD N {xy = 0} we have
dw2 ow? 4ad 2 2 +\ (1+a)/(1-a)
— == d“—b
v oxy l—« ((r + ) )

so thatdowy/dv > wap is equivalent to

> (% +d®—b)Tt. (2.20)

l-«
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We choose! such that
2
”_20 >d > %0 (2.212)
and thus
4d 2

—1 " > ro.
Then pickb so that

d?>—b<0. (2.22)

Therefore for 0< r < ro, (2.20) holds. Note that condition (2.22) also implies tiag-
(xy —d)?> — b < 0in a neighborhood of = 0 andxy = 0, so that (2.17) holds.
To verify (2.18) observe that if? + x2 = rZ then

r2 4 (xy —d)?> —b =18 — 2xyd 4+ d* — b > ro(ro — 2d) + d? — b.

Because of (2.21)0(ro — 2d) > 0 so we restrich to haverg(ro — 2d) +d? —b > 0 in
addition to (2.22).
To achieve (2.15) let us compute

N -2
Awo = (W2)xyxy + (W2)rr + T(wZ)r

=a((r2+ (y — d)? — b))/

AN 8(1+ )
x |:1_a(r2+ (v —d)?—b)" + A—ay? (r?+ (xn —d)z)}

_ AN 8(1+ @)
1 2 2 +
=a O‘wgl:l_a(r 4+ (xy —d) —b) +(1—oz)2

(r?+ (xn — d)z)]

If we choosez > 0 small enough thedw, < w in D.
Let

€ f  wy>0.

= in
dDN{xy >0}
By (2.11) we can findR3 such that for allR > R3,
ur(x',xy) <e/2 VX' > Ra, xn > o
whereL is a uniform Lipschitz constant farg. As argued before, we deduce that

ur(x',xy) <e V|x'| > Rz, xy > 0.

Now let xg € aRﬁ be such thatxg| = R3 + ro and letR > R3 + 2rg. Then we have the
hypotheses of Lemma 2.5 and sinee\(wz — ug) = c(x)(wz — ug) with ¢(x) > 0, we
conclude thatig < w2 in U = B(xg, ro) N Rﬁ. Sincew> vanishes in a neighborhood of
xo andxp was chosen arbitrarily id Bg, -, N 9RY, we conclude that z vanishes in a
neighborhood of that set. By monotonicity @ with respect tdx’| andxy we reach the
desired conclusion. O
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Finally we provide a short argument for Lemma 2.5.
Proof of Lemma 2.5. Let us multiply (2.14) byw™ = — min(w, 0) and integrate i/,

/|Vw_|2+a(x)(w_)2— / w)2<0.
U AUN{xy=0}
Then

/|Vw*|2+a(x)(w*>2< / (w2
U

AUN{xy=0}
aUN(

XNIO}

\2/2
(w)z) 6U N {xy =0},

where2 = 2(N — 1)/(N — 2) is the critical exponent for the Sobolev trace embedding.
Using the Sobolev trace embedding we can bound

i 2/2
( (w)z) <cC / Vw2,
U

where the constartf can be chosen independentldf Hence

AUN{xy=0}

/|Vw_|2+a(x)(w_)2<C|8Uﬂ{xN=0}|l/(N_l)/|Vw_|2
U U

and ifC|1oU N {xy = 0}|YN-D <1 thenw~ =0inU. O

3. Symmetry properties

In this section we study symmetry properties of solutions of (1.1). In particular we
will show that every solution with finite energy is compactly supported and radial in the
tangential variables.

Lemma3.1. Letu € HX(RY) be a solution of(1.1). Then the following norms are finite
||Lt ||LO(+1(R{X)! ||M ||L°°(R$)’ and “Vu ”L’”(Rﬂ) .

Proof. By the equation
/|Vu|2+u°‘+l= / u?,
RY aRY

and sincer € H*(RY), we deduce thafy, u*** < co. From here the estimates forand
Vu in L* are obtained as in Lemma 2.20
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Lemma3.2. Letu € HY(RY) be a solution of(1.1). Thenu is compactly supported.

Proof. First we remark that
lim sup u=0. (3.2)

R—>ooRN
F\Br
We prove this by contradiction, that is v8eppose that (3.1) fails. Then there exists 0

and a sequence of pointg € Ri’ such thatx,| — oo andu(x,) > ¢ for all n. But, by
Lemma 3.1, su@ |Vu| < oo and therefore there exists> 0 independent of such that

u>e/20nB.(x;)N Rﬁ for all n. By taking a subsequence we can assume that the balls
B (xy) are disjoint. But this implies thafyy u®** > 37, [5 (, \ry u®* = oo, contra-
dicting Lemma 3.1.

We proceed now with an argument similar to the one of Lemma 2.4. First, by (3.1) we
can findR; > 0 such that

u(x',R1) <1 forallx’ e RN-1.

Consider now the functiorw; defined in (2.12). Sincevs > u in {xy = R1} and
liminf)x- 0o w1 — u > 0, by the maximum principle we deduce tha& w1 in {xy > R1}
and thus there existR2 > 0 such thatu(x’, xy) = 0 for all x’ andxy > R>. (A direct
way of verifying that the maximum principle holds in this situation is as follows: suppose
that SURy >Ry % — w1 > 0. Then this supremum is attained at a poigt= (x;, xon)
with xony > R1. Hence A(u — w1)(xg) < 0 but on the other hand\(y — w1)(xg) =
u(xp)* — wi(xp)* > 0, a contradiction.)

Let us show now that if” € R¥—1 with |x’| large enough them(x’, 0) = 0. Indeed, first
chooserg > 0 small so that the comparison principle of Lemma 2.5 holdB,jix) N RY

forall balls B,, (x) with x € RY . Givenxo € 9RY we constructed a functian; in (2.19). It
satisfies infpnixy >0 w2 = ¢ > 0 (see (2.18)). Using (3.1) we can fild > 0 large so that
if xo € aRﬁ and|xp| > R3 thenu < & on By, (xg) N Ri’. Using the comparison principle
Lemma 2.5 inB,,(xg) N Rﬁ we conclude that < w2 in this domain and henee=0in a
neighborhood oko.

Finally, to see thai has compact support we take the same expression of (2.12) but we
consider it as a function of; for a directionk =1,..., N —1,

wz=a((b— xk)+)2/(lia),

where the constants b are as in (2.13) anfl; is large enough so tha{x) < 1if xx > R1,

xy > 0. We argue as before, using the maximum principle in the regips R1} N Rﬁ
and conclude that < w3 in {x;x > R1} N Ri’. Thereforeu(x) = 0 for x; large and
xy > 0. Applying the same procedure in théhet directions we reach the conclusion of
the lemma. O

To prove radial symmetry in the tangential variables, we will use the moving planes
technique introduced in [13]; see also [7]. To this end first we need to introduce some
notation. We will callZ; = {x e R | x1 > A}, T;, is the hyperplan& ¥, , x* is the reflection
of x across the plan&,, that isx* = 2(A — x1)e1 + x, u;.(x) = u(x*) and finallyw;, =
u; — u. Also we assume thdd = supfu) is connected.
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Lemma 3.3. If there exists a pointg € X N D such thatw; (xg) = 0, thenw;, (x) = 0 for
all x e X, ND.

Proof. The proof is almost identical to the one of Lemma 2.1 in [7], with the only remark
that if xg € 8Rﬂ is such thatw, (xg) = 0, then we can use Hopf boundary lemma to deduce
thatw;, =0. O

Proof of Theorem 1.2. Let us define.g as follows:
Lo =inf{A | wy(x) > 0forallx € ;}.

This value g is well defined and finite due to the compactness of the suppout of
(Lemma 3.2).

Stepl. First, we observe thatoo < g < co and X, N D # 0.

The first assertion follows from the fact thais compactly supported. The second one
is a direct consequence of the maximum principle in small domains, Lemma 2.5. In fact for
A large we have thaX; N D = @ thereforew, > 0. While for—Ax Iarge(Ri’ \X)ND=0¢
thereforew, % 0. Moreover, there exists such that¥; N DN 8Rﬂ has small measure,
therefore we can apply Lemma 2.55 N D N Rﬁ gettingw; > 0.

Step2. Wy = Oin 2)\0 N Rﬁ

We prove this by contradiction. ib;, # 0 then, by Lemma 3.3, > 0 in X}, N D.
The objective is to show that ¥ < Ap but very close, themw;, > 0 in X, N D, which
is a contradiction with the definition ofp. If X, N DN 8Ri’ # () let us fix a compact set
K C Z; nDNIRY suchthats; N DNARY \ K has measure less thay. Sincew;, > 0
in K thenw;, > 0in K for A sufficiently close to.g. By the definition ofig for A < Ag,

D™ = {x e Xy, wilx) < O} #40,

and, by our previous considerations, we have that the measube of aM is small.

Therefore we may apply Lemma 2.5in~, obtaining thatv, > 0 in D™, a contradiction.
Step3. To end the proof of the theorem we just observe that, by Step 2, for any given

direction perpendicular t@Ri’ there exists a plan&), such that: is symmetric with

respect tdl;,. Since this holds for any direction perpendiculaﬁM we conclude that

must be radial in the tangential variabless u(|x'|, xy). O

Proof of Lemma 2.3. The same argument as in the proof of Theorem 1.2, using the mov-
ing plane method with planes parallel to the direction, shows that if g € Hl(ng) is a
solution to (2.1) themg is symmetric with respect to the tangential variableand that it

is decreasing with respect {o'|.

Next we prove that:g is decreasing with respect &g,. For this we consider the half
spaceX;, = {x e R | xy > A} and the hyperplan&, = 9%, . The reflection acrosg, is
given byx — x* = 2(A — xy)ey + x and we define;, (x) = u(x*) andw), = u;, — u.

Fori € (R/2, R) w,, satisfiesAw, = c(x)w;, with c¢(x) > 0 in the region~; N Bg, and
wy, =0o0nT, N Bg,w, >00nX, NdBg. Hencew, > 0in X, N Bg and we deduce that
ug is decreasing with respect ig; in the region{xy > R/2} N Bg.

If » € (0,R/2) w, is defined in{A < xy < 2)} N Bg and satisfiesv;, > 0 on {A <
Xy <20} N dBg, w), =0 on{xy = A} N Bg. Suppose now that € (R/4, R/2). Then
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using thatuy is decreasing with respect gy for xy > R/2 we see thabw, /v > 0

on {xy = 21} N Bg. By the maximum principle we deduce tha} > 0 in {A < xy <

20} N Bg and thereforer g is decreasing in this region. Repeating this process we obtain
the conclusion. O
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Appendix A. An L? estimate

Let By := B1(xo) be a ball withxg € BRZ and consider the linear elliptic equation

(A1)

Au=f inBiNRY,
3 —=u onBLNIRY.

What is needed in the proof of Lemma 2.2 is the following result filofnregularity
theory.

LemmaA.1 Letl < p < co and assume thaf € L?(B1 NRY) andu € W27 (BN RY)
satisfiegA.1). Then

letll 2. gy ey < €O DY o ymyy + 16l Lo gyrmyy)- (A2)

We present a proof using the following? estimate which can be found in [1, Theo-
rem 14.1, p. 701].

Theorem A.L. Let1 < p < oo, suppose thag € Wi-1/7-P(3RY) and letv € W27 RY)
with support inB; satisfy

H N
Av=f inRY,
=g ondRY.
Then

||U||W2,p(RQ/) < C(n, P)(”f”Lp(Rﬁ) + ||g||W1—1/pyp(aRQ’) + ||U||Lp(RQ’))- (A.3)

Proof of (A.2). (This is an argument adapted from [16, Theorem 9.11].) l/@8tdp < 1
andn € C8°(RN) be such that & n <1,n=1inB,, n=0onR" \ B4p)/2, V] <
C/(1—p)and|D?y| < C/(1— p)? with C independent op. Letv = nu. Then

Av= fn+2VuVn+udn

av an n
— = — u.
av av g

and
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Applying (A.3)
< 1 1
||u||w2,p(3;;) <C ”f”LP(Bz') + m”unwl,p(g(‘LP)/Z) + m”u”LP(B(L—p)/Z)

(1+p)/2

+ H(aﬂ/av + }’])M ” Wl_l/p'p(BRﬁ) + ”I't“L[’(B+ ))

and by the trace inequality

1 1
||u||w2,p(3/‘f) < C(||f||Lp(31+) + 1-p ||u||wlyp(3(+l+p)/2) + mllullm(gam/z )
(A.4)

Define the weighted norm

lullkp=_sup (L= p)lullyepgs):
1/2<p<1

Then from (A.4) we get
Idl2.p < C(Lf oy + Il p + ludlo.p).

Using the following interpolation inequality (see [16]):

Cc
[ulls,p < ellullz,p + ;I[u]lo,p,

we get (A.2). O
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