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Abstract

We find existence of a nonnegative compactly supported solution of the problem∆u = uα in R
N+ ,

∂u/∂ν = u on ∂R
N+ . Moreover, we prove that every nonnegative solution with finite energy is c

pactly supported and radially symmetric in the tangential variables.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

We study existence of nonnegative solutions of the following problem:{
∆u = uα in R

N+ ,
∂u
∂ν

= u on∂R
N+ ,

(1.1)

where∂/∂ν is the outer unit normal derivative and 0< α < 1.
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This elliptic problem appears naturally when one considers self-similar blowing u
lutions of the porous medium equation(m > 1){

vt = ∆vm in R
N+ × (0, T ),

∂vm

∂ν
= vm on∂R

N+ × (0, T ).
(1.2)

The blow-up problem for the porous medium equation has deserved a great d
attention; see, for example, [3,10–12,19].

In the study of blow-up problems, self-similar profiles are used to study the fin
ymptotic behavior of a solution of the parabolic equation near its blow-up time; se
example, [14,15]. It often happens that the spatial shape of the solution near blow
close to a self-similar profile [5,6,12,15].

In our case, assume thatv(x, t) is a solution of (1.2) with blow-up timeT . Then the
rescaled functionz(x, t) = (T − t)1/(m−1)v(x, t) should converge ast ↗ T to a stationary
profilez(x) satisfying{

∆zm = 1
m−1z in R

N+ ,
∂zm

∂ν
= zm on∂R

N+ ,

as is often the case when dealing with parabolic problems; see [5–7,10]. Thenu(x) =
cz(x)m is a solution of (1.1) withα = 1/m for a suitable choice of the constantc.

On the other hand, given a nonnegative solutionu(x) of (1.1),z(x) = (u(x)/c)1/m gives
rise to a special solution to (1.2) (in self-similar form) blowing up at timeT , of the form

v(x, t) = (T − t)−1/(m−1)z(x). (1.3)

Remark that in our case the self-similar scaling does not change the spatial variab
hence the blow-up set of (1.3) is given by the support ofz(x).

Therefore there is an interest in studying self-similar profiles, in our case solutio
(1.1).

In order to motivate our study, let usrecall what is known for the problem

vt = ∆vm + vm in R
N × (0, T ). (1.4)

Problem (1.4) admits self-similar solutions of the form (1.3). In this case the profilez(x)

is a solution of

0 = ∆zm + zm − 1

m − 1
z in R

N . (1.5)

One way to look for solutions of (1.5) is to search for radial ones. The existence
radial compactly supported nontrivial solution reduces to the study of an ODE an
done in [7,17]. Moreover, a symmetry analysis using moving planes implies that
solution with finite energy has compact support and is composed by a finite num
radial “bumps” located such that their supports do not intersect; see [7,18].

Concerning the existence of solutions of (1.1), let us observe that in one space dim
we are facing an ODE that can be solved explicitly and it turns out that there exists
one compactly supported solution inR+,

u(x) = c1
(
(c2 − x)+

)2/(1−α)
. (1.6)
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Unfortunately, forN � 2, an easy inspection of problem (1.1) shows that there i
hope to look for radial solutions since they can not verify the boundary condition. Ther
fore, in the case under study, the elliptic problem remains a PDE that can not be sol
ODE methods.

However, the problem has still some natural symmetry in the tangential variabl
fact, if we call a pointx ∈ R

N+ , x = (x ′, xN) (x ′ ∈ R
N−1), we can search for solutions th

are radial in the tangential variables, i.e.,

u(x) = u
(|x ′|, xN

)
. (1.7)

It has to be noted that this symmetry assumption does not reduce the problem to an
Our first result reads as follows.

Theorem 1.1. There exists a nontrivial, nonnegative compactly supported solution of(1.1)
of the form(1.7).

Next, we use the moving planes device (with a moving plane parallel to thexN direction)
to prove the following result.

Theorem 1.2. Letu ∈ H 1(RN+) be a nonnegative solution of(1.1)with connected suppor
Thenu is compactly supported and radial in the tangential variables, that is it has the
(1.7).

Remark that this theorem justifies our symmetry assumption in Theorem 1.1.
When this analysis is performed we can obtain some easy corollaries concerning

lem (1.2).

Corollary 1.1. Every nonnegative nontrivial solution of(1.2)blows up in finite time.

The proof of this fact follows by contradiction. Assume thatv is a global nontrivial
solution. Asv is a supersolution of the porous medium equation its support expands [2
and eventually covers the support of a self-similar profilez. The proof ends just with th
use of a comparison argument using a solution of the form (1.3) withT large enough a
subsolution.

Corollary 1.2. There exists a solution of(1.2)with a blow-up set composed by an arbitra
number of connected components.

In fact, we may consider a solution of the form (1.3) with a profilez(x) composed byn
disjoint copies of the compactly supported solution provided by Theorem 1.1.

Moreover, we conjecture that the self-similar solutions that we have constructed g
asymptotic behavior of any solution of (1.2) as it happens in one space dimension; s

The problem of uniqueness of solutions to (1.1) with compact support remains op
the case of Eq. (1.5) it is known that solutions with compact support are unique exce
translations, see [8], but the argument relies strongly on ODE techniques.
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The rest of the paper is organized as follows. In Section 2 we prove our existence
Theorem 1.1, and in Section 3, we prove our symmetry result, Theorem 1.2.

Throughout the paper, byC we mean a constant that may vary from line to line
remains independent of the relevant quantities.

2. Existence of a symmetric solution

In this section we obtain the existence of a nontrivial nonnegative compactly supp
solution of (1.1).

The main idea of the proof is to consider the problem in a large half ballB(0,R)+ =
{x, |x| < R, xN > 0} with mixed boundary conditions, namely,


∆uR = (uR)α in B(0,R)+,
∂uR

∂ν
= uR on∂B(0,R)+ ∩ {xN = 0},

uR = 0 on∂B(0,R)+ ∩ {xN > 0}.
(2.1)

And then obtain the desired solution proving that the support ofuR verifies

max
x∈supp(uR)

|x| < R.

ThereforeuR is a solution of (1.1).
This approach has already been employed by other authors. For instance, in [

prove existence of positive solutions to a nonlinear problem in a half-space by first s
a related problem in a half ballB+

R and then lettingR → ∞. Our problem is differen
in that we deal with a non Lipschitz nonlinearity and the solutions we find have com
support.

ForR > 0 let us introduce the notation:

B+
R = B(0,R)+, ∂1B

+
R = ∂B+

R ∩ {xN = 0}, ∂2B
+
R = ∂B+

R ∩ {xN > 0}.
To prove existence of a solution to (2.1) we consider the functional

IR(u) =
∫
B+

R
|∇u|2 − ∫

∂1B
+
R

u2

(
∫
B+

R
|u|α+1)2/(α+1)

on the space

H = {
u ∈ H 1(B+

R

) | such thatu = 0 on∂2B
+
R

}
equipped with the norm

‖u‖2
H =

∫
B+

R

|∇u|2.

This is indeed a norm onH by Poincaré’s inequality, which is valid for functions inH
since they vanish on a nontrivial part of the boundary ofB+

R .

Lemma 2.1. For everyR large enoughIR attains a minimum and there is a minimiz
u � 0, u 
≡ 0 which is a solution of(2.1).
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Proof. First, let us verify that

inf
u∈H,u 
=0

IR(u) > −∞.

This statement is equivalent to establish the following Sobolev inequality:

∫
B+

R

|∇u|2 + K

( ∫
B+

R

|u|α+1

)2/(α+1)

�
∫

∂1B
+
R

u2 ∀u ∈ H, (2.2)

whereK is a constant (it may depend onR). If (2.2) fails there exists a sequenceun ∈ H

with
∫
∂1B

+
R

u2
n = 1 such that

∫
B+

R

|∇un|2 + n

( ∫
B+

R

|un|α+1

)2/(α+1)

� 1 ∀n � 1. (2.3)

But then, up to a subsequence, we haveun ⇀ u weakly in H , un → u strongly in
Lα+1(B+

R ) and un|∂1B
+
R

→ u|∂1B
+
R

strongly in L2(∂1B
+
R ). Since

∫
∂1B

+
R

u2
n = 1 we must

have
∫
∂1B

+
R

u2 = 1 on one hand, but (2.3) implies thatu = 0, a contradiction.

Let λ1(R) denote the first eigenvalue for the problem


∆u = 0 in B+
R ,

∂u
∂ν

= λu on∂1B
+
R ,

u = 0 on∂2B
+
R ,

(2.4)

and letϕ1,R > 0 be the eigenfunction associated toλ1(R). Thenλ1(R) > 0 and

IR(ϕ1,R) = (
λ1(R) − 1

) ∫
∂1B

+
R

ϕ2
1,R

(
∫
B+

R
ϕα+1

1,R )2/(α+1)
.

We claim that ifR is sufficiently large then the expression above is negative. In fact
serve thatλ1(R) is given by

λ1(R) = min
ϕ∈H\{0}

∫
B+

R
|∇ϕ|2∫

∂1B
+
R

ϕ2

and a change of variables shows that∫
B+

R
|∇ϕ|2∫

∂1B
+
R

ϕ2 = 1

R

∫
B+

1
|∇ϕ̃|2∫

∂1B
+
1

ϕ̃2 ,

whereϕ̃(x) = ϕ(Rx). Therefore

λ1(R) = λ1(1)

R
(2.5)

and this establishes that
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inf IR(u) < 0 (2.6)

for R sufficiently large.
Let (un) be a minimizing sequence forIR . We can assume that

∫
∂1B

+
R

u2
n = 1. Since

inf IR < 0 we can also assume thatIR(un) � 0. Therefore
∫
B+

R
|∇un|2 � 1 and hence up to

subsequenceun ⇀ u weakly inH , un → u strongly inLα+1(B+
R ) andun|∂1B

+
R

→ u|∂1B
+
R

strongly inL2(∂1B
+
R ). Since

∫
∂1B

+
R

u2
n = 1 we conclude thatu 
≡ 0 and by the lower semi

continuity of‖ · ‖H under weak convergence inH we see that

inf IR � IR(u) � lim inf
n→∞ IR(un) = inf IR.

ThusIR has minimizeru 
≡ 0 and we can assume thatu � 0. There is a Lagrange multiplie
λ such that∫

B+
R

∇u∇ϕ −
∫

∂1B
+
R

uϕ = λ

∫
B+

R

uαϕ ∀ϕ ∈ H.

Using this withϕ = u we see thatλ has the same sign asIR(u), and thusλ < 0. Choosing
θ = (−λ)α−1 > 0 it is easy to verify thatθu solves (2.1). Finally note thatθu is also a
minimizer ofIR . �
Remark 2.1. From the previous proof we may observe that infI (u) < 0 if and only if
there exists a nontrivial nonnegative solution of (2.1). Moreover this occurs if and o
λ1(R) < 1.

Lemma 2.2. Let uR be a nonnegative minimizer ofIR . Then for R large enough
there existsC independent ofR such that‖uR‖Lα+1(B+

R ) � C, ‖uR‖L∞(B+
R ) � C, and

‖∇uR‖L∞(B+
R/2)

� C.

Proof. The first step is to show that∫
B+

R

uα+1
R � C (2.7)

with C independent ofR.
Indeed, multiplying (2.1) byuR and integrating by parts we obtain∫

B+
R

|∇uR|2 + uα+1
R =

∫
∂1B

+
R

u2
R. (2.8)

On the other hand we have shown in (2.6) thatIR < 0 for R large enough, but in fact w
have more. Indeed fixR0 so thatλ1(R0) − 1 < 0, whereλ1(R0) is the first eigenvalue fo
(2.4). Letϕ1,R0 be the first eigenfunction associated toλ1(R0) and extend it by zero toB+

R .
Then forR > R0,

inf IR � IR(ϕ1,R0) = (
λ1(R0) − 1

) ∫
∂1B

+
R0

ϕ2
1,R0

(
∫
B+ ϕα+1

1,R0
)2/(α+1)

= −C0.
R0
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Thus ∫
B+

R

|∇uR|2 + C0

( ∫
B+

R

uα+1
R

)2/(α+1)

�
∫

∂1B
+
R

u2
R. (2.9)

From (2.8) and (2.9) we see that (2.7) follows.
The proof of the uniform estimates‖uR‖L∞(B+

R ) � C and‖∇uR/2‖L∞(B+
R ) � C is stan-

dard. For simplicity let us assume first thatB1(x0) ⊂ B+
R . Sinceuα

R ∈ L(α+1)/α(B1(x0))

by Lp regularity theoryuR ∈ W2,(α+1)/α(B1/2(x0)) and then by the Sobolev embeddi
uR ∈ Lq(B1/2(x0)) with 1/q = α/(α + 1) − 2/n. Repeating this argument a finite numb
of times we deduce the bound inL∞. The bound for∇uR in L∞ is similar, using Schaude
estimates. Finally the same proof works ifx0 ∈ ∂R

N+ ∩ BR . The only point that deserve
an explanation is theLp regularity theory for the Laplace equation with the boundary c
dition ∂u/∂ν = u on ∂R

N+ . This is well known, but for completeness we present a s
proof in Appendix A. �
Remark 2.2. The mountain pass theorem of Ambrosetti and Rabinowitz [2] can als
used to prove the existence of a solution to (2.1). Indeed, the functional

F(u) = 1

2

∫
B+

R

|∇u|2 + 1

1+ α

∫
B+

R

|u|1+α − 1

2

∫
∂1B

+
R

u2

satisfies the hypotheses of the theorem. An estimate similar to (2.2),

1

2

∫
B+

R

|∇u|2 + K

( ∫
B+

R

|u|1+α

)2/(1+α)

�
∫

∂1B
+
R

u2 ∀u ∈ H,

shows that ifr is small enough and‖u‖H = r then

FR(u) � 1

4

∫
B+

R

|∇u|2 = 1

4
r2.

On the other handFR(u1) < r2/4 and‖u1‖H � r, whereu1 = tϕ1,R with ϕ1,R the first
eigenfunction for (2.4) andt1 is large.

Finally, the estimates of Lemma 2.2 can also be obtained for the mountain pass s
ump. It suffices to verify that the critical value of the mountain pass solutionF(ump) is
bounded independently ofR.

Remark 2.3. Let us writex ∈ R
N asx = (x ′, xN) with x ′ ∈ R

N−1 andxN ∈ R. Minimizing
IR in the subspace ofH consisting of functionsu such that

u(x ′, xN) = u
(|x ′|, xN

)
, (2.10)

that is, functions that are radial with respect tox ′, we can find a solution to (2.1) with th
property.
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Definition 2.1. From now on we letuR � 0 denote a nontrivial solution of (2.1) that sat
fies (2.10), obtained by minimizingIR on the space of functions inH satisfying (2.10).

We need now a result which will be proved in the next section.

Lemma 2.3. LetuR be the solution of Definition2.1. Thenu(|x ′|, xN) is decreasing in|x ′|
andxN .

The next result will establish Theorem 1.1.

Lemma 2.4. LetuR denote the solution of Definition2.1. Then forR large enoughuR has
compact support.

Proof. As before we will writex ∈ R
N+ asx = (x ′, xN) with x ′ ∈ R

N−1 andxN > 0. First
let us show thatuR satisfies

uR(x ′, xN) � C

|x ′|(N−1)/(α+1)|xN |1/(α+1)
. (2.11)

In fact, by Lemma 2.3,

uR(x ′, xN) � uR(y ′, yN) ∀|y ′| � |x ′|, 0 < yN � xN.

Raising to the powerα + 1 on both sides, integrating in the region{(y ′, yN): |y ′| � |x ′|,
0 < yN � xN } and using the estimate of Lemma 2.2 we deduce (2.11).

Let L denote a constant such that‖∇uR‖L∞(B+
R/2)

� L for all R large. By (2.11) there

is R1 such that forR � R1,

uR(x ′, xN) � 1/2 ∀|x ′| � 1

2L
, xN � R1.

This together with the Lipschitz bound implies that

uR(x ′,R1) � 1 ∀x ′.

Consider

w1 = a
(
(b − xN)+

)2/(1−α)
, (2.12)

wheref + denotes the positive part off , that isf + = max(f,0) anda, b are determined
by

aα−1 = (1− α)2

2(1+ α)
, a(b − R1)

2/(1−α) = 1. (2.13)

Then∆w1 = wα
1 andw1(R1) = 1. We claim that from the maximum principle it follow

thatuR � w1 in {xN > R1} ∩ B+
R . In fact first note thatw1 � u on ∂({xN > R1} ∩ B+

R ).
Then observe that

0 = −∆(w1 − u) + wα − uα = −∆(w1 − u) + c(x)(w1 − u),
1
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where

c =
{

wα
1 −uα

w1−u
� 0 if w1 
= u,

0 if w1 = u.

Thus the maximum principle can be applied and fromuR � w1 in {xN > R1} ∩ B+
R we

deduce thatu(x ′, xN) = 0 if xN � R2, R � R2.
Finally, to prove that the support ofuR is bounded in the direction ofx ′ we need to

apply the maximum principle in a region which has part of its boundary on{xN = 0}. For
an arbitrary region as before the maximum principle may not hold, because of the bound
condition∂u/∂ν = u on {xN = 0}. However if the part of the boundary on{xN = 0} is
small enough the maximum principle is valid.

Lemma 2.5. Let U ⊂ R
N+ be open, bounded with a Lipschitz boundary. Suppose thatw ∈

H 1(U) satisfies


∆w � a(x)w in U ,

w � 0 on∂U ∩ {xN > 0},
∂w
∂ν

� w on∂U ∩ {xN = 0},
(2.14)

wherea(x) � 0. Then there existsδ such that, if theN − 1 dimensional measure|∂U ∩
{xN = 0}| < δ then we havew � 0 in U .

Proof of Lemma 2.4 continued. Let x0 ∈ ∂R
N+ . We shall show that if|x0| andR are large

enough thenuR = 0 in a neighborhood ofx0. We utilize Lemma 2.5 withU = {xN > 0} ∩
B(x0, r0), with 0< r0 < 1 small enough. We are going to construct a suitable compa
functionw2 which satisfies the following properties:

∆w2 � wα
2 in D, (2.15)

∂w2

∂ν
� w2 on∂D ∩ xN = 0, (2.16)

w2 ≡ 0 in a neighborhood ofx0, (2.17)

and

inf
∂D∩xN>0

w2 > 0. (2.18)

Write x0 = (x ′
0,0) and define the coordinater = |x ′ − x ′

0|. Set

w2 = a
(
(r2 + (xN − d)2 − b)+

)2/(1−α)
, (2.19)

wherea, b, d > 0 are going to be fixed below depending only onr0, N andα (w2 is just a
radial function about the point(x ′

0, d)).
First we deal with (2.16). On∂D ∩ {xN = 0} we have

∂w2

∂ν
= −∂w2

∂xN

= 4ad

1− α

(
(r2 + d2 − b)+

)(1+α)/(1−α)

so that∂w2/∂ν � w2 is equivalent to

4d � (r2 + d2 − b)+. (2.20)

1− α
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of
We choosed such that

r0

2
> d >

r2
0

4
(2.21)

and thus

4d

1− α
> r2

0 .

Then pickb so that

d2 − b < 0. (2.22)

Therefore for 0� r � r0, (2.20) holds. Note that condition (2.22) also implies thatr2 +
(xN − d)2 − b < 0 in a neighborhood ofr = 0 andxN = 0, so that (2.17) holds.

To verify (2.18) observe that ifr2 + x2
N = r2

0 then

r2 + (xN − d)2 − b = r2
0 − 2xNd + d2 − b � r0(r0 − 2d) + d2 − b.

Because of (2.21),r0(r0 − 2d) > 0 so we restrictb to haver0(r0 − 2d) + d2 − b > 0 in
addition to (2.22).

To achieve (2.15) let us compute

∆w2 = (w2)xNxN + (w2)rr + N − 2

r
(w2)r

= a
((

r2 + (xN − d)2 − b
)+)2α/(1−α)

×
[

4N

1− α

(
r2 + (xN − d)2 − b

)+ + 8(1+ α)

(1− α)2

(
r2 + (xN − d)2)]

= a1−αwα
2

[
4N

1− α

(
r2 + (xN − d)2 − b

)+ + 8(1+ α)

(1− α)2

(
r2 + (xN − d)2)].

If we choosea > 0 small enough then∆w2 � wα
2 in D.

Let

ε := inf
∂D∩{xN >0}w2 > 0.

By (2.11) we can findR3 such that for allR > R3,

uR(x ′, xN) � ε/2 ∀|x ′| � R3, xN � ε

2L
,

whereL is a uniform Lipschitz constant foruR. As argued before, we deduce that

uR(x ′, xN) � ε ∀|x ′| > R3, xN > 0.

Now let x0 ∈ ∂R
N+ be such that|x0| = R3 + r0 and letR � R3 + 2r0. Then we have the

hypotheses of Lemma 2.5 and since−∆(w2 − uR) = c(x)(w2 − uR) with c(x) � 0, we
conclude thatuR � w2 in U = B(x0, r0) ∩ R

N+ . Sincew2 vanishes in a neighborhood
x0 andx0 was chosen arbitrarily in∂BR3+r0 ∩ ∂R

N+ , we conclude thatuR vanishes in a
neighborhood of that set. By monotonicity ofuR with respect to|x ′| andxN we reach the
desired conclusion. �
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Finally we provide a short argument for Lemma 2.5.

Proof of Lemma 2.5. Let us multiply (2.14) byw− = −min(w,0) and integrate inU ,∫
U

|∇w−|2 + a(x)(w−)2 −
∫

∂U∩{xN=0}
(w−)2 � 0.

Then∫
U

|∇w−|2 + a(x)(w−)2 �
∫

∂U∩{xN=0}
(w−)2

�
( ∫

∂U∩{xN=0}
(w−)2̃

)2/2̃∣∣∂U ∩ {xN = 0}∣∣1/(N−1)
,

where2̃ = 2(N − 1)/(N − 2) is the critical exponent for the Sobolev trace embedd
Using the Sobolev trace embedding we can bound( ∫

∂U∩{xN=0}
(w−)2̃

)2/2̃

� C

∫
U

|∇w−|2,

where the constantC can be chosen independent ofU . Hence∫
U

|∇w−|2 + a(x)(w−)2 � C
∣∣∂U ∩ {xN = 0}∣∣1/(N−1)

∫
U

|∇w−|2

and ifC|∂U ∩ {xN = 0}|1/(N−1) < 1 thenw− ≡ 0 in U . �

3. Symmetry properties

In this section we study symmetry properties of solutions of (1.1). In particula
will show that every solution with finite energy is compactly supported and radial in
tangential variables.

Lemma 3.1. Let u ∈ H 1(RN+) be a solution of(1.1). Then the following norms are finite:
‖u‖Lα+1(RN+ ), ‖u‖L∞(RN+ ), and‖∇u‖L∞(RN+ ).

Proof. By the equation∫
R

n+

|∇u|2 + uα+1 =
∫

∂R
N+

u2,

and sinceu ∈ H 1(RN+), we deduce that
∫

R
n+ uα+1 < ∞. From here the estimates foru and

∇u in L∞ are obtained as in Lemma 2.2.�
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Lemma 3.2. Letu ∈ H 1(RN+) be a solution of(1.1). Thenu is compactly supported.

Proof. First we remark that

lim
R→∞ sup

R
N+\BR

u = 0. (3.1)

We prove this by contradiction, that is wesuppose that (3.1) fails. Then there existsε > 0

and a sequence of pointsxn ∈ R
N+ such that|xn| → ∞ andu(xn) � ε for all n. But, by

Lemma 3.1, sup
R

N+ |∇u| < ∞ and therefore there existsr > 0 independent ofn such that

u � ε/2 onBr(xn) ∩ R
N+ for all n. By taking a subsequence we can assume that the

Br(xn) are disjoint. But this implies that
∫

R
N+ uα+1 �

∑
n

∫
Br (xn)∩R

N+ uα+1 = ∞, contra-
dicting Lemma 3.1.

We proceed now with an argument similar to the one of Lemma 2.4. First, by (3.
can findR1 > 0 such that

u(x ′,R1) � 1 for all x ′ ∈ R
N−1.

Consider now the functionw1 defined in (2.12). Sincew1 � u in {xN = R1} and
lim inf |x|→∞ w1 − u � 0, by the maximum principle we deduce thatu � w1 in {xN > R1}
and thus there existsR2 > 0 such thatu(x ′, xN) = 0 for all x ′ andxN > R2. (A direct
way of verifying that the maximum principle holds in this situation is as follows: supp
that sup{xN>R1} u − w1 > 0. Then this supremum is attained at a pointx0 = (x ′

0, x0N)

with x0N > R1. Hence∆(u − w1)(x0) � 0 but on the other hand∆(u − w1)(x0) =
u(x0)

α − w1(x0)
α > 0, a contradiction.)

Let us show now that ifx ′ ∈ R
N−1 with |x ′| large enough thenu(x ′,0) = 0. Indeed, first

chooser0 > 0 small so that the comparison principle of Lemma 2.5 holds inBr0(x) ∩ R
N+

for all ballsBr0(x) with x ∈ R
N+ . Givenx0 ∈ ∂R

N+ we constructed a functionw2 in (2.19). It
satisfies inf∂D∩{xN>0} w2 = ε > 0 (see (2.18)). Using (3.1) we can findR3 > 0 large so tha
if x0 ∈ ∂R

N+ and|x0| > R3 thenu � ε on Br0(x0) ∩ R
N+ . Using the comparison principl

Lemma 2.5 inBr0(x0) ∩ R
N+ we conclude thatu � w2 in this domain and henceu = 0 in a

neighborhood ofx0.
Finally, to see thatu has compact support we take the same expression of (2.12) b

consider it as a function ofxk for a directionk = 1, . . . ,N − 1,

w3 = a
(
(b − xk)

+)2/(1−α)
,

where the constantsa, b are as in (2.13) andR1 is large enough so thatu(x) � 1 if xk � R1,
xN > 0. We argue as before, using the maximum principle in the region{xk > R1} ∩ R

N+
and conclude thatu � w3 in {xk > R1} ∩ R

N+ . Thereforeu(x) = 0 for xk large and
xN > 0. Applying the same procedure in the other directions we reach the conclusion
the lemma. �

To prove radial symmetry in the tangential variables, we will use the moving p
technique introduced in [13]; see also [7]. To this end first we need to introduce
notation. We will callΣλ = {x ∈ R | x1 > λ}, Tλ is the hyperplane∂Σλ, xλ is the reflection
of x across the planeTλ, that isxλ = 2(λ − x1)e1 + x, uλ(x) = u(xλ) and finallywλ =
uλ − u. Also we assume thatD = supp(u) is connected.
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Lemma 3.3. If there exists a pointx0 ∈ Σλ ∩ D such thatwλ(x0) = 0, thenwλ(x) = 0 for
all x ∈ Σλ ∩ D.

Proof. The proof is almost identical to the one of Lemma 2.1 in [7], with the only rem
that if x0 ∈ ∂R

N+ is such thatwλ(x0) = 0, then we can use Hopf boundary lemma to ded
thatwλ ≡ 0. �
Proof of Theorem 1.2. Let us defineλ0 as follows:

λ0 = inf
{
λ | wλ(x) � 0 for all x ∈ Σλ

}
.

This valueλ0 is well defined and finite due to the compactness of the supportu
(Lemma 3.2).

Step1. First, we observe that−∞ < λ0 < ∞ andΣλ0 ∩ D 
= ∅.
The first assertion follows from the fact thatu is compactly supported. The second o

is a direct consequence of the maximum principle in small domains, Lemma 2.5. In fa
λ large we have thatΣλ ∩D = ∅ thereforewλ � 0. While for−λ large(RN+ \Σλ)∩D = ∅
thereforewλ 
� 0. Moreover, there exists̃λ such thatΣλ̃ ∩ D ∩ ∂R

N+ has small measure
therefore we can apply Lemma 2.5 inΣ

λ̃
∩ D ∩ R

N+ gettingw
λ̃

� 0.
Step2. wλ0 ≡ 0 in Σλ0 ∩ R

N+ .
We prove this by contradiction. Ifwλ0 
≡ 0 then, by Lemma 3.3,wλ0 > 0 in Σλ0 ∩ D.

The objective is to show that ifλ < λ0 but very close, thenwλ � 0 in Σλ ∩ D, which
is a contradiction with the definition ofλ0. If Σλ ∩ D ∩ ∂R

N+ 
= ∅ let us fix a compact se
K ⊂ Σλ ∩D∩∂R

N+ such thatΣλ ∩D∩∂R
N+ \K has measure less thanδ/2. Sincewλ0 > 0

in K thenwλ > 0 in K for λ sufficiently close toλ0. By the definition ofλ0 for λ < λ0,

D− = {
x ∈ Σλ, wλ(x) < 0

} 
= ∅,

and, by our previous considerations, we have that the measure ofD− ∩ ∂R
N+ is small.

Therefore we may apply Lemma 2.5 inD−, obtaining thatwλ � 0 in D−, a contradiction
Step3. To end the proof of the theorem we just observe that, by Step 2, for any

direction perpendicular to∂R
N+ there exists a planeTλ0 such thatu is symmetric with

respect toTλ0. Since this holds for any direction perpendicular to∂R
N+ we conclude thatu

must be radial in the tangential variables,u = u(|x ′|, xN). �
Proof of Lemma 2.3. The same argument as in the proof of Theorem 1.2, using the
ing plane method with planes parallel to thexN direction, shows that ifuR ∈ H 1(B+

R ) is a
solution to (2.1) thenuR is symmetric with respect to the tangential variablesx ′ and that it
is decreasing with respect to|x ′|.

Next we prove thatuR is decreasing with respect toxN . For this we consider the ha
spaceΣλ = {x ∈ R | xN > λ} and the hyperplaneTλ = ∂Σλ. The reflection acrossTλ is
given byx �→ xλ = 2(λ − xN)eN + x and we defineuλ(x) = u(xλ) andwλ = uλ − u.

Forλ ∈ (R/2,R) wλ satisfies∆wλ = c(x)wλ with c(x) � 0 in the regionΣλ ∩BR , and
wλ = 0 onTλ ∩ BR , wλ � 0 onΣλ ∩ ∂BR . Hencewλ � 0 in Σλ ∩ BR and we deduce tha
uR is decreasing with respect toxN in the region{xN > R/2} ∩ BR .

If λ ∈ (0,R/2) wλ is defined in{λ < xN < 2λ} ∩ BR and satisfieswλ � 0 on {λ <

xN < 2λ} ∩ ∂BR , wλ = 0 on {xN = λ} ∩ BR . Suppose now thatλ ∈ (R/4,R/2). Then
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btain

o-
using thatuR is decreasing with respect toxN for xN > R/2 we see that∂wλ/∂ν � 0
on {xN = 2λ} ∩ BR . By the maximum principle we deduce thatwλ � 0 in {λ < xN <

2λ} ∩ BR and thereforeuR is decreasing in this region. Repeating this process we o
the conclusion. �
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Appendix A. An Lp estimate

Let B1 := B1(x0) be a ball withx0 ∈ ∂R
N+ and consider the linear elliptic equation{

∆u = f in B1 ∩ R
N+ ,

∂u
∂ν

= u onB1 ∩ ∂R
N+ .

(A.1)

What is needed in the proof of Lemma 2.2 is the following result fromLp regularity
theory.

Lemma A.1. Let 1< p < ∞ and assume thatf ∈ Lp(B1 ∩ R
N+) andu ∈ W2,p(B1 ∩ R

N+)

satisfies(A.1). Then

‖u‖W2,p (B1/2∩R
N+ ) � C(n,p)

(‖f ‖Lp(B1∩R
N+ ) + ‖u‖Lp(B1∩R

N+ )

)
. (A.2)

We present a proof using the followingLp estimate which can be found in [1, The
rem 14.1, p. 701].

Theorem A.1. Let 1 < p < ∞, suppose thatg ∈ W1−1/p,p(∂R
N+) and letv ∈ W2,p(RN+)

with support inB1 satisfy{
∆v = f in R

N+ ,
∂v
∂ν

= g on∂R
N+ .

Then

‖v‖W2,p (RN+) � C(n,p)
(‖f ‖Lp(RN+) + ‖g‖W1−1/p,p (∂R

N+) + ‖v‖Lp(RN+ )

)
. (A.3)

Proof of (A.2). (This is an argument adapted from [16, Theorem 9.11].) Let 1/2 < ρ < 1
andη ∈ C∞

0 (RN) be such that 0� η � 1, η ≡ 1 in Bρ , η ≡ 0 onR
N \ B(1+ρ)/2, |∇η| �

C/(1− ρ) and|D2η| � C/(1− ρ)2 with C independent ofρ. Let v = ηu. Then

∆v = f η + 2∇u∇η + u∆η

and

∂v =
(

∂η + η

)
u.
∂ν ∂ν
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Applying (A.3)

‖u‖W2,p (B+
ρ ) � C

(
‖f ‖Lp(B+

1 ) + 1

1− ρ
‖u‖W1,p (B+

(1+ρ)/2)
+ 1

(1− ρ)2‖u‖Lp(B+
(1+ρ)/2)

+ ∥∥(∂η/∂ν + η)u
∥∥

W1−1/p,p(∂R
N+ )

+ ‖u‖Lp(B+
(1+ρ)/2)

)

and by the trace inequality

‖u‖W2,p (B+
ρ ) � C

(
‖f ‖Lp(B+

1 ) + 1

1− ρ
‖u‖W1,p (B+

(1+ρ)/2)
+ 1

(1− ρ)2
‖u‖Lp(B+

(1+ρ)/2)

)
.

(A.4)

Define the weighted norm

|[u]|k,p = sup
1/2<ρ<1

(1− ρ)k‖u‖Wk,p(B+
ρ ).

Then from (A.4) we get

|[u]|2,p � C
(‖f ‖Lp(B+

1 ) + |[u]|1,p + |[u]|0,p

)
.

Using the following interpolation inequality (see [16]):

|[u]|1,p � ε|[u]|2,p + C

ε
|[u]|0,p,

we get (A.2). �

References

[1] S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential
equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959) 623–727.

[2] A. Ambrosetti, P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Fun
Anal. 14 (1973) 349–381.

[3] C. Bandle, H. Brunner, Blow-up in diffusion equations: a survey, J. Comput. Appl. Math. 97 (1998) 3–2
[4] M. Chipot, M. Chlebík, M. Fila, I. Shafrir, Existence of positive solutions of a semilinear elliptic equa

in Rn+ with a nonlinear boundary condition, J. Math. Anal. Appl. 223 (1998) 429–471.
[5] C. Cortázar, M. Del Pino, M. Elgueta, On the blow-up set forut = ∆um + um, m > 1, Indiana Univ. Math.

J. 47 (1998) 541–561.
[6] C. Cortázar, M. Del Pino, M. Elgueta, Uniqueness and stability of regional blow-up in a porous-m

equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002) 927–960.
[7] C. Cortázar, M. Elgueta, P. Felmer, Symmetry in an elliptic problem and the blow-up set of a quas

heat equation, Comm. Partial Differential Equations 21 (1996) 507–520.
[8] C. Cortázar, M. Elgueta, P. Felmer, On a semilinear elliptic problem inR

N with a non-Lipschitzian non
linearity, Adv. Differential Equations 1 (1996) 199–218.

[9] C. Cortázar, M. Elgueta, O. Venegas, On the blow-up set forut = (um)xx , m > 1, with nonlinear boundary
conditions, preprint.

[10] V. Galaktionov, On the blow-up set for the quasilinear heat equationut = (uσ ux)x + uσ+1, J. Differential
Equations 101 (1993) 66–79.

[11] V. Galaktionov, J.L. Vazquez, Continuation of blow-up solutions of nonlinear heat equations in several sp
dimensions, Comm. Pure Appl. Math. 50 (1997) 1–67.



J. Dávila, J.D. Rossi / J. Math. Anal. Appl. 296 (2004) 634–649 649

tin.

omm.

42

7)

nd-

)

al

a-

p-
i.,
[12] V. Galaktionov, J.L. Vázquez, The problem of blow-up in nonlinear parabolic equations, Discrete Con
Dynam. Systems A 8 (2002) 399–433.

[13] B. Gidas, W.M. Ni, L. Niremberg, Symmetry and related properties via the maximum principle, C
Math. Phys. 68 (1979) 209–243.

[14] Y. Giga, R.V. Kohn, Nondegeneracy of blow up for semilinear heat equations, Comm. Pure Appl. Math.
(1989) 845–884.

[15] Y. Giga, R.V. Kohn, Characterizing blow-up using similarity variables, Indiana Univ. Math. J. 42 (198
1–40.

[16] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, second ed., in: Gru
lehren der Mathematischen Wissenschaften, vol. 224, Springer-Verlag, Berlin, 1998.

[17] C. Gui, Symmetry of the blow-up set of a porous medium type equation, Comm.Pure Appl. Math. 48 (1995
471–500.

[18] H.G. Kaper, M.K. Kwong, Y. Li, Symmetry results for reaction diffusion equations, Differential Integr
Equations 6 (1993) 1045–1056.

[19] A. Samarski, V.A. Galaktionov, S.P. Kurdyunov, A.P. Mikailov, Blow-Up in Quasilinear Parabolic Equ
tions, de Gruyter, Berlin, 1995.

[20] J.L. Vazquez, An introduction to the mathematicaltheory of the porous medium equation, in: Shape O
timization and Free Boundaries (Montreal, PQ, 1990), in: NATO Adv. Sci. Inst. Ser. C Math. Phys. Sc
vol. 380, Kluwer Academic, Dordrecht, 1992, pp. 347–389.


