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Abstract

We prove regularity and partial regularity results for finite Morse index solutions u ∈ H 1(Ω) ∩ Lp(Ω)

to the Lane–Emden equation −�u = |u|p−1u in Ω .
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1. Introduction

Given an open set Ω ⊂ R
N , N � 1, and p > 1, consider the Lane–Emden equation

−�u = |u|p−1u in Ω. (1.1)

We are interested in the classical question of regularity of solutions to (1.1). Namely, given a class
of weak solutions C , we ask: what is the largest exponent p > 1, such that

u ∈ C ⇒ u ∈ C2(Ω)? (1.2)

* Corresponding author.
E-mail addresses: jdavila@dim.uchile.cl (J. Dávila), louis.dupaigne@math.cnrs.fr (L. Dupaigne),

alberto.farina@u-picardie.fr (A. Farina).
0022-1236/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jfa.2010.12.028



J. Dávila et al. / Journal of Functional Analysis 261 (2011) 218–232 219
Consider first C = L
p

loc(Ω) and assume (1.1) is understood in the sense of distributions. Then, as
follows from a well-known bootstrap argument, (1.2) holds true for all p < p0(N), where

p0(N) =
{+∞ if 1 � N � 2,

N
N−2 if 3 � N .

The exponent p0(N) is sharp. Indeed, for all p > p0(N), u(x) = cN,p|x|− 2
p−1 is a singular

solution belonging to C . A (radial) singular solution also exists if p = p0(N), see [2,14].
Consider next the case C = H 1

loc(Ω)∩L
p

loc(Ω). Then (1.2) holds true for all p � pS(N) where

pS(N) =
{+∞ if 1 � N � 2,

N+2
N−2 if 3 � N .

When p < pS(N), the proof uses the same bootstrap argument and the extra assumption that
u ∈ H 1

loc(Ω) for the initial step. See [6] for the critical case p = pS(N). The Sobolev exponent
pS(N) is again sharp in the considered class, using the same counter-example.

Restrict at last to the class C of energy solutions having finite Morse index, i.e., u ∈ C if
u ∈ H 1

loc(Ω) ∩ L
p

loc(Ω) and the maximal dimension of a vector space X ⊂ C1
c (Ω) such that

Qu(ϕ) :=
∫
Ω

|∇ϕ|2 dx − p

∫
Ω

|u|p−1ϕ2 dx < 0, for all ϕ ∈ X \ {0}

is an integer k, called the Morse index of u. If k = 0, we say that u is stable. Note that this class
of weak solutions is a natural choice, since any C2 solution to (1.1) is bounded on any open set
ω � Ω and so must have finite Morse index on ω. We obtain the following result.

Theorem 1.1. Let u ∈ H 1
loc(Ω) ∩ L

p

loc(Ω) be a solution to (1.1) of finite Morse index. If
p < pc(N), where

pc(N) =
{+∞ for 1 � N � 10,

(N−2)2−4N+8
√

N−1
(N−2)(N−10)

for 11 � N ,

then, u ∈ C2(Ω).

Under the stronger assumptions that Ω is smoothly bounded, u is stable, and u|∂Ω = 1, the
smoothness of u was first proved in [7,13]. At no surprise, the proof of Theorem 1.1 is by
bootstrap (using the additional information that u has finite Morse index in the initial step).
The Joseph–Lundgren exponent pc(N) is again sharp in the considered class, using the same
counter-example.

In the supercritical cases (p � p0(N), p > pS(N), p � pc(N)), solutions can be singular at
a point, as discussed earlier, but also on larger sets. E.g. if there exists an integer k such that
0 � k � N − 1 and k < N − 2 p

p−1 , then

u(x) = CN,p,k

(
x2 + · · · + x2 )− 1

p−1 (1.3)
1 N−k
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is a solution having k-dimensional singular set. See also an example in [19] where the Hausdorff
dimension of the singular set is not an integer.

Nevertheless, if solutions are assumed to be positive and stationary, the singular set can be
estimated as follows.

Theorem 1.2. (See [16].) Let N � 3 and p � pS(N). Let u ∈ H 1
loc(Ω) ∩ L

p+1
loc (Ω) be a positive

weak solution to (1.1). Assume in addition that u is stationary. Then, u ∈ C2(Ω \ Σ), where Σ

is a closed set of Hausdorff dimension bounded above by

Hdim(Σ) � N − 2
p + 1

p − 1
.

The precise definition of stationary solution can be found in [16]. Smooth solutions (and limits
thereof in the H 1(Ω) ∩ Lp+1(Ω) topology) are stationary.

When the solution has finite Morse index, we prove that the singular set is in fact much
smaller.

Theorem 1.3. Let N � 11 and p � pc(N). Let u ∈ H 1
loc(Ω) ∩ L

p

loc(Ω) be a positive solution to
(1.1) of finite Morse index. Then, u ∈ C2(Ω \Σ), where Σ is a closed set of Hausdorff dimension
bounded above by

Hdim(Σ) � N − 2
p + γ

p − 1
,

with γ = 2p + 2
√

p(p − 1) − 1.

Remark 1.4. The dimension of the singular set computed in Theorem 1.3 is optimal at least
when it is an integer. Indeed, the solution given by (1.3) is stable in R

N if p > pc(N − k), while
pc(N − k) solves

N − 2
p + γ

p − 1
= k.

Remark 1.5. If u ∈ H 1
loc(Ω) ∩ L

p

loc(Ω) is a positive solution with finite Morse index, we prove
in the next section that for any point x ∈ Ω , there exists a ball B = B(x, r) such that u is the
limit of C2 solutions in the H 1(B) ∩ Lp+1(B) topology. Hence, u is stationary in B .

Theorem 1.3 remains valid for sign-changing solutions, provided they are stationary.

Remark 1.6. After completing this work, K. Wang informed us that he obtained results similar
to our Theorem 1.3 for stable positive solutions. See [21].

We discuss at last the question of universal a priori estimates.

Theorem 1.7. Assume 1 < p < pc(N) and p 
= pS(N). Assume u ∈ H 1
loc(Ω) ∩ L

p

loc(Ω) is a
solution to (1.1) of finite Morse index m. Then, there exists a constant C depending on N,p,m

only, such that for all x ∈ Ω ,

∣∣u(x)
∣∣ + ∣∣∇u(x)

∣∣ 2
p+1 � C dist(x, ∂Ω)

− 2
p−1 . (1.4)
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Remark 1.8. Assume p = pS(N). Then, (1.4) remains true for stable solutions (see [10]). How-
ever, the estimate is false for solutions of finite Morse index, since for λ > 0,

uλ(x) =
(

λ
√

N(N − 2)

λ2 + |x|2
)N−2

2

provides an unbounded family of solutions of constant Morse index.

The universal estimate (1.4) was first proved for positive solutions and 1 < p < pS(N) (see
[4,8,11,20]), with a constant C independent of the Morse index m. Note however that for such p,
there do exist sign-changing solutions of arbitrary large Morse index, for which the dependance
of the constant C to m must be kept (see [1,3,18]). Estimate (1.4) was then proved in [10] for C2

solutions which are stable, for the full range 1 < p < pc(N).
We provide at last a universal estimate for C2 solutions of the more general problem:

−�u = f (u) in Ω (1.5)

where f ∈ C1(R,R) behaves like a power of u at infinity. More precisely,

Theorem 1.9. Suppose

lim
t→±∞

f ′(t)
p|t |p−1

= a (1.6)

for some a > 0 and 1 < p < pc(N) and p 
= pS(N). Let u ∈ H 1
loc(Ω) ∩ L

p

loc(Ω) be a solution of
(1.5) of finite Morse index m. Then, there exists a constant C depending on N,f,m only, such
that for all x ∈ Ω ,

∣∣u(x)
∣∣ + ∣∣∇u(x)

∣∣ 2
p+1 � C

(
1 + dist(x, ∂Ω)

− 2
p−1

)
.

Theorem 1.9 was proved in [17] for positive solutions, 1 < p < pS(N), and with a constant C

independent of the Morse index m. In the case p = pS(N), the theorem remains valid for stable
solutions, but fails for solutions of finite Morse index (see the counter-example in Remark 1.8).
Similar statements can be derived for the nonlinearity f (u) = eu, as we shall demonstrate in a
future publication. See [22] for recent results in this direction.

2. Preliminary results

2.1. Reduction to the case of stable solutions

Proposition 2.1. Let u ∈ H 1
loc(Ω) ∩ L

p

loc(Ω) be a solution to (1.1) with finite Morse index. Then,
for every x0 ∈ Ω , there exists r0 > 0 such that u is stable in B(x0, r0).

Proof. When N = 1, any function u ∈ H 1
loc(Ω) is locally bounded by Morrey’s inequality. In

particular, the linearized operator L = −� − p|u|p−1 has positive principal eigenvalue in any
sufficiently small ball, whence u is stable on such a ball. Assume now N � 2. We may always
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assume that B(0,1) ⊂ Ω and it suffices to prove that u is stable near the origin. Assume first that
u has Morse index 1. Either u is stable in B(0,1/n) for some n � 2 and we are done. Or, for all
n � 2, there exists a direction ϕn ∈ C1

c (B(0,1/n)) such that Qu(ϕn) < 0. Since u has index 1,
this implies that u is stable in B(0,1) \ B(0,1/n). This being true for all n � 2, we deduce that
u is stable in B(0,1) \ {0}. In fact, since N � 2, points have zero Newtonian capacity and so u

is stable in B(0,1). So, every solution of index 1 is stable in a neighborhood of 0. Take now a
solution u of index k � 2. Working exactly as above, we deduce that u has index k − 1 in some
ball B(0, r1). Working inductively on k, we deduce that u is stable in some ball B(0, rk). �
2.2. Approximation of singular stable solutions

Lemma 2.2. Suppose u ∈ H 1
loc(Ω) ∩ L

p

loc(Ω) is a nonnegative stable weak solution to (1.1).
Then, there exists a sequence of nonnegative stable solutions un ∈ C2(Ω) to (1.1), such that
un ↗ u a.e. and in H 1

loc(Ω).

Proof. The proof is a refinement of a concave truncation technique found in [5].
Let us first observe that since u ∈ H 1

loc(Ω) and u solves (1.1), we have u ∈ L
p+1
loc (Ω). Take

now ω � Ω with smooth boundary, so that u ∈ H 1(ω) ∩ Lp+1(ω). We are going to produce a
sequence un converging to u in H 1(ω). By a standard diagonal argument, we then reach the
desired conclusion.

In the sequel, we write ω = Ω for notational convenience. Given c > 0, consider the function

φc(t) = (
c + t−(p−1)

)− 1
p−1 , defined for t > 0.

We set also φc(0) = 0. Then, φc is increasing, concave, and smooth for t > 0. In addition,
φc(t) ↗ t as c ↘ 0+, and φc(t) � t , for all t � 0. Also, if c > 0, then φc , φ′

c are uniformly
bounded. We have

φ′
c(t) = φc(t)

p

tp
, ∀t > 0.

Let wc denote the unique solution to

{−�wc = 0 in Ω,

wc = φc(u) on ∂Ω.

Then, wc � 0, wc ∈ L∞(Ω) ∩ H 1(Ω). Moreover, wc is non-increasing with respect to c. We
claim that wc → w in H 1(Ω) as c → 0, where w is the solution to

{−�w = 0 in Ω,

w = u on ∂Ω.

To see this, consider the problem

{−�v = (v + wc)
p in Ω,

(2.1)

v = 0 on ∂Ω.
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Since wc ∈ L∞(Ω), (2.1) has a minimal nonnegative solution vc, which can be constructed by the
method of sub- and super-solutions, as follows. Note that v = 0 is a sub-solution, since wc � 0.
Moreover, by Kato’s inequality, v = φc(u) − wc is a bounded super-solution:

−�
(
φc(u) − wc

) = −�φc(u) � −φ′
c(u)�u = φc(u)p = (

φc(u) − wc + wc

)p
.

In particular, (2.1) has a minimal nonnegative solution vc. This minimal solution is bounded and
by elliptic regularity, vc belongs to C1,α(Ω). Moreover, vc is stable in the sense that

p

∫
Ω

(vc + wc)
p−1ϕ2 dx �

∫
Ω

|∇ϕ|2 dx, for all ϕ ∈ C1
c (Ω).

Since vc is minimal and wc is non-increasing with respect to c, we deduce that vc is also non-
increasing with respect to c. It follows that v(x) = limc→0 vc(x) is well defined for all x ∈ Ω .
Since vc ∈ C1(Ω), we have

∫
Ω

|∇vc|2 dx =
∫
Ω

(vc + wc)
pvc dx �

∫
Ω

up+1 dx.

In particular, vc is bounded in H 1
0 (Ω). It follows that vc ⇀ v weakly in H 1

0 (Ω). Multiplying
(2.1) by ϕ ∈ C∞

c (Ω), integrating, and passing to the limit as c → 0, we see that v is a weak
solution to

{−�v = (v + w)p in Ω,

v = 0 on ∂Ω.
(2.2)

Let ϕk ∈ C
0,1
c (Ω) be a sequence such that ϕk → v in H 1

0 (Ω). Since v � 0 we can assume ϕk � 0.
We can also assume that ϕk → v a.e. in Ω . Multiplying (2.2) by ϕk and integrating, we obtain

∫
Ω

∇v∇ϕk dx =
∫
Ω

(v + w)pϕk dx.

By Fatou’s lemma,

∫
Ω

(v + w)pv dx � lim inf
k→∞

∫
Ω

∇v∇ϕk dx =
∫
Ω

|∇v|2 dx.

By monotone convergence,

lim
c→0

∫
Ω

|∇vc|2 dx = lim
c→0

∫
Ω

(vc + wc)
pvc dx =

∫
Ω

(v + w)pv dx.
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Hence,

lim
c→0

∫
Ω

|∇vc|2 dx =
∫
Ω

(v + w)pv dx �
∫
Ω

|∇v|2 dx.

Since vc ⇀ v weakly in H 1
0 (Ω), the reverse inequality

∫
Ω

|∇v|2 dx � lim inf
c→0

∫
Ω

|∇vc|2 dx

also holds, which proves that vc → v in H 1
0 (Ω).

We claim that u = v + w, from which Lemma 2.2 follows. By construction, v = limvc �
lim(φc(u) − wc) = u − w. We need thus only prove that u � v + w. Note that ṽ = u − w

solves (2.2). Let z = ṽ − v � 0. Then, z ∈ H 1
0 (Ω), and since u is stable,

p

∫
Ω

(ṽ + w)p−1(ṽ − v)2 dx �
∫
Ω

∣∣∇(ṽ − v)
∣∣2

dx. (2.3)

Now, ṽ − v satisfies

∫
Ω

∇(ṽ − v)∇ϕ dx =
∫
Ω

(
(ṽ + w)p − (v + w)p

)
ϕ dx, ∀ϕ ∈ C∞

c (Ω).

We would like to take ϕ = ṽ − v. First, we claim that we can take ϕ ∈ H 1
0 (Ω) ∩ L∞(Ω). These

functions can be approximated in H 1
0 (Ω) by functions in C∞

c (Ω) with a uniform bound. Then,
take ϕ = min(ṽ − v, t), t > 0, which belongs to H 1

0 (Ω) ∩ L∞(Ω). We get

∫
[ṽ−v�t]

∣∣∇(ṽ − v)
∣∣2

dx =
∫
Ω

(
(ṽ + w)p − (v + w)p

)
min(ṽ − v, t) dx.

Now let t → ∞. Then,

∫
Ω

∣∣∇(ṽ − v)
∣∣2

dx =
∫
Ω

(
(ṽ + w)p − (v + w)p

)
(ṽ − v)dx.

Combined with (2.3) we find

∫
Ω

(ṽ − v)
[
p(ṽ + w)p−1(ṽ − v) − (ṽ + w)p + (v + w)p

]
dx � 0.

By convexity, p(ṽ + w)p−1(ṽ − v) − (ṽ + w)p + (v + w)p � 0 with strict inequality, unless
ṽ ≡ v. �
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2.3. Some well-known ingredients

Proofs of all the results in this section can be found in [9]. We begin with a so-called ε-
regularity result for weak solutions to (1.1) in Morrey spaces. Recall the following definition.

Definition 2.3. Let Ω be a bounded open set of R
N , N � 1. Given p > 1 and λ ∈ [0,N], the

Morrey space Lp,λ(Ω) is the set of functions u in Lp(Ω) such that the following norm is finite:

‖u‖p

Lp,λ(Ω)
= sup

x0∈Ω,r>0
r−λ

∫
B(x0,r)∩Ω

|u|p dx < ∞.

Then,

Theorem 2.4. (See [12,16].) Let N � 3, p > 1, and λ = N − 2p+1
p−1 . Let also B(x0, r0) be a ball.

There exists ε = ε(N,p) > 0 such that for any weak solution u ∈ H 1(B(x0, r0)) ∩ C(B(x0, r0))

to (1.1) satisfying

‖u‖Lp+1,λ(B(x0,r0))
� ε, (2.4)

there holds

‖u‖L∞(B(x0,r0/2)) �
(

4

r0

) 2
p−1

.

Also recall the following classical result from geometric measure theory.

Theorem 2.5. Let Ω denote an open set of R
N , N � 1, u a function in L1

loc(Ω) and 0 � s < N .
Set

Es =
{
x ∈ Ω: lim sup

r→0+
r−s

∫
Br (x)

∣∣u(y)
∣∣dy > 0

}
.

Then,

Hs(Es) = 0,

where Hs denotes the Hausdorff measure of dimension s.

The next ingredient in the proof of Theorem 1.3 is the following monotonicity formula.

Theorem 2.6. (See [15].) Let u ∈ H 1(Ω)∩Lp+1(Ω) denote a stationary weak solution to (1.1).
For x ∈ Ω , r > 0, such that B(x, r) ⊂ Ω , consider the energy Eu(x, r) given by

Eu(x, r) = r−μ

∫ (
1

2
|∇u|2 − 1

p + 1
|u|p+1

)
dx + r−μ−1

p − 1

∫
|u|2 dσ, (2.5)
B(x,r) ∂B(x,r)
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where

μ = N − 2
p + 1

p − 1
.

Then,

• Eu(x, r) is nondecreasing in r .
• Eu(x, r) is continuous in x ∈ Ω and r > 0.

Remark 2.7. (See [15].) The energy Eu(x, r) can be equivalently written as

Eu(x, r) = p − 1

p + 3
r−μ

∫
B(x,r)

(
1

2
|∇u|2 + 1

p + 1
|u|p+1

)
dy

+ 1

p + 3

d

dr

(
r−μ

∫
∂B(x,r)

|u|2 dσ

)
. (2.6)

We shall use at last the following capacitary estimate.

Proposition 2.8. (See [10].) Let Ω be an open set of R
N , p > 1. Let u ∈ H 1

loc(Ω) ∩ L
p

loc(Ω)

denote a stable solution to (1.1). Then, for any γ ∈ [1,2p + 2
√

p(p − 1) − 1), any ψ ∈ C1
c (Ω),

0 � ψ � 1, and any integer m � max{p+γ
p−1 ,2}, there exists a constant Cp,m,γ > 0 such that

∫
Ω

(∣∣∇(|u| γ−1
2 u

)∣∣2 + |u|p+γ
)
ψ2m dx � Cp,m,γ

∫
Ω

|∇ψ |2(
p+γ
p−1 )

dx.

In the case where u ∈ C2(Ω), the proof of this result is given in [10]. This proof can be
adapted to the case u ∈ H 1

loc(Ω)∩L
p

loc(Ω) as follows: multiply (1.1) with |Tk(u)|γ−1uϕ2, where

Tk(s) = max(−k,min(u, k)) and ϕ ∈ C2
c (Ω) and apply stability with test function |Tk(u)| γ−1

2 uϕ.

3. Proofs of Theorems 1.1 and 1.3.

Proof of Theorem 1.1. Thanks to Proposition 2.8, u ∈ L
p+γ

loc (Ω) for all γ ∈ [1,2p +
2
√

p(p − 1) − 1). Using elliptic estimates and a standard bootstrap argument, we deduce that
u ∈ C2(Ω), provided N � 10 or N � 11 and p < pc(N). �
Proof of Theorem 1.3. By Proposition 2.1, we may assume that u is a nonnegative stable weak
solution to (1.1). Given ε > 0, define

Σε =
{
x ∈ Ω: ∀r > 0,

∫
B(x,r)

(
up+1 + |∇u|2)dx � εr

N−2 p+1
p−1

}
.

Step 1. There exists a fixed value of ε > 0 such that for every x /∈ Σε , u is bounded (hence C2)
in a neighborhood of x.
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To see this, let x0 /∈ Σε: there exists r0 > 0 such that

r
−μ
0

∫
B(x0,r0)

(
up+1 + |∇u|2)dx < ε,

where μ = N − 2p+1
p−1 . By (2.5), for r < r0,

Eu(x0, r) � r−μ

∫
B(x0,r)

1

2
|∇u|2 dy + r−μ−1

p − 1

∫
∂B(x0,r)

u2 dσ

� r−μ

∫
B(x0,r0)

1

2
|∇u|2 dy + r−μ−1

p − 1

∫
∂B(x0,r)

u2 dσ

� ε

2

(
r

r0

)−μ

+ r−μ−1

p − 1

∫
∂B(x0,r)

u2 dσ.

Integrating between r = r0/2 and r0, and recalling that Eu(x, r) is nondecreasing in r , we deduce
that

r0

2
Eu(x0, r0/2) � 2μ−2εr0 + 1

p − 1

r0∫
r0/2

r−μ−1
( ∫

∂B(x0,r)

u2 dσ

)
dr

� Cεr0 + Cr
−μ−1
0

∫
B(x0,r0)

u2 dy

� Cεr0 + Cr
−μ−1
0

( ∫
B(x0,r0)

up+1 dy

) 2
p+1

r
N(1− 2

p+1 )

0

< Cεr0.

Hence,

Eu(x0, r0/2) < Cε.

Since Eu is continuous in x, there exists r1 < r0/2 such that Eu(x, r0/2) < 2Cε, for x ∈ B(x0, r1).
Since Eu is non-increasing in r , we deduce that for all x ∈ B(x0, r1) and all r < r1,

Eu(x, r) < 2Cε. (3.1)

Now take an approximating sequence un given by Lemma 2.2. Integrating (2.6) between 0 and
r2 < r1, we find
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p − 1

p + 3

r2∫
0

r−μ

( ∫
B(x,r)

(
1

2
|∇un|2 + 1

p + 1
u

p+1
n

)
dy

)
dr + r

−μ
2

p + 3

∫
∂B(x,r2)

u2
n dσ

� r2 Eun(x, r2).

It follows that

Cr2 Eu(x, r2) �
r2∫

0

(
r−μ

∫
B(x,r)

up+1 dy

)
dr

�
r2∫

r2/2

(
r−μ

∫
B(x,r)

up+1 dy

)
dr.

By the fundamental theorem of calculus, we deduce that there exists r3 ∈ (r2/2, r2) such that

CEu(x, r2) � r
−μ
3

∫
B(x,r3)

up+1 dy � r
−μ
2

∫
B(x,r2/2)

up+1 dy.

Apply now (3.1). Then,

r−μ

∫
B(x,r)

up+1 dy � Cε,

for all x ∈ B(x0, r1) and all r < r1/2. Taking ε sufficiently small, it follows from Theorem 2.4
that (un) is uniformly bounded near x0 and so, u is C2 in a neighborhood of x0.

Step 2. For all γ � 1, there exists ε′ > 0 such that

Σε ⊇ Σ̃ε′ :=
{
x ∈ Ω: ∀r > 0,

∫
B(x,r)

up+γ dx � ε′rN−2 p+γ
p−1

}
.

Indeed, suppose x /∈ Σ̃ε′ . Then,

∫
B(x,r)

up+γ dx < ε′rN−2 p+γ
p−1

for some r > 0. By Hölder’s inequality,

∫
B(x,r)

up+1 dx � C

( ∫
B(x,r)

up+γ dx

) p+1
p+γ

r
N(1− p+1

p+γ
)

< C
(
ε′rN−2 p+γ

p−1
) p+1

p+γ r
N(1− p+1

p+γ
) = C

(
ε′) p+1

p+γ r
N−2 p+1

p−1 . (3.2)
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Take a function ϕ ∈ C2
c (Ω) and multiply the Lane–Emden equation (1.1) by uϕ2. Then,

∫
Ω

|∇u|2ϕ2 dx +
∫
Ω

u∇u · ∇ϕ2 dx =
∫
Ω

up+1ϕ2 dx

i.e. ∫
Ω

|∇u|2ϕ2 dx =
∫
Ω

up+1ϕ2 dx + 1

2

∫
Ω

u2�ϕ2 dx.

Choose now ϕ such that ϕ = 1 in B(x, r/2), ϕ = 0 outside B(x, r), and |�ϕ2| � C/r2. Then,

∫
B(x,r/2)

|∇u|2 dx � C

∫
B(x,r)

up+1 dx + C

r2

∫
B(x,r)

u2 dx.

We estimate

1

r2

∫
B(x,r)

u2 dx � C

r2

( ∫
B(x,r)

up+γ dx

) 2
p+γ

r
1− 2

p+γ

<
C

r2

(
ε′rn−2 p+γ

p−1
) 2

p+γ r
1− 2

p+γ = C
(
ε′) 2

p+γ r
N−2 p+1

p−1 .

Using (3.2), we deduce that

∫
B(x,r/2)

(
up+1 + |∇u|2)dx < C

(
ε′) 2

p+γ r
N−2 p+1

p−1 .

Choosing ε′ such that C(ε′)
2

p+γ � ε, we deduce that x /∈ Σε . And so, Σ̃ε′ ⊃ Σε .

Step 3. By the capacitary estimate (Proposition 2.8), u ∈ L
p+γ

loc (Ω) if γ ∈ [1,2p +
2
√

p(p − 1) − 1). By Theorem 2.5 it follows that for ε′ > 0 small,

HN−2 p+γ
p+1 (Σ̃ε′) = 0.

This being true for all γ ∈ [1,2p + 2
√

p(p − 1) − 1), Theorem 1.3 follows. �
4. Proof of the a priori estimates

Proof of Theorem 1.7. The proof of (1.4) is the same as the one given in [17], except for the
use of Theorem 2 of [10] stating that there are no entire solutions of finite Morse index if p is in
the range of Theorem 1.1. �
Proof of Theorem 1.9. By Theorem 1.1, any finite Morse index solution to (1.1) is C2, provided
p < pc(N). Working by contradiction, as in the proof of Theorem 2.3 of [17], we can find a
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sequence (uk) of solutions of (1.5) (with Morse index at most m) and a sequence of points (xk)

such that by setting

λk = (∣∣uk(xk)
∣∣ p−1

2 + ∣∣∇uk(xk)
∣∣ p−1

p+1
)−1

,

vk(y) = λ
2

p−1
k uk(xk + λky)

we have λk → 0,

−�vk = fk(vk) in B(0, k)

where

fk(v) = λ

2p
p−1
k f

(
λ

− 2
p−1

k v
)
,

and

|vk| p−1
2 + |∇vk|

p−1
p+1 � 2 in B(0, k),∣∣vk(0)

∣∣ p−1
2 + ∣∣∇vk(0)

∣∣ p−1
p+1 = 1.

Note that fk(vk) and ∇[fk(vk)] are both uniformly bounded. Then, up to subsequence vk → v

in the C1
loc(R

N) topology, fk(vk) → g in the C
0,α
loc (RN) topology (for some α ∈ (0,1)) and

−�v = g in the sense of distributions. By standard elliptic estimates v is then a classical
C

2,α
loc (RN) solution of −�v = g in R

N .
We claim that v satisfies

−�v = a|v|p−1v in R
N. (4.1)

To this end it is enough to prove that g = a|v|p−1v in R
N . The assumption (1.6) implies

lim
t→±∞

f (t)

|t |p−1t
= a. (4.2)

Therefore, on the open set [v 
= 0], fk(vk(x)) → a|v(x)|p−1v(x) pointwise, hence g =
|v|p−1v on [v 
= 0] and also on [v 
= 0] by continuity. If y /∈ [v 
= 0] then v is zero in a neighbor-
hood Uy of y and hence 0 = −�v = g in Uy , giving in particular that g(y) = 0.

It remains to verify that v has Morse index at most m. We first prove that limk→+∞f ′
k(vk(y))=

ap|v(y)|p−1 pointwise in R
N . This is clearly true for y ∈ [v 
= 0], thanks to (1.6). On the other

hand, for y ∈ [v = 0], the desired conclusion holds true since lim supk→+∞ |f ′
k(vk(y))| = 0. In-

deed, let us suppose the contrary, then limn→+∞ |f ′
kn

(vkn(y))| > 0 for a sequence kn ↗ +∞.

Since f ′
kn

(vkn(y)) = λ2
kn

f ′(λ
− 2

p−1
kn

vkn(y)), the sequence λ
− 2

p−1
kn

|vkn(y)| must be unbounded.

Hence, up to a subsequence, λ
− 2

p−1
kn

|vkn(y)| → +∞ and then, by (1.6), |f ′
kn

(vkn(y))| �
C|vkn(y)|p−1 → 0. A contradiction.
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To conclude we work again by contradiction. Assume there exist m + 1 linearly independent
functions ϕj ∈ C∞

c (RN) such that Qv(ϕj ) < 0, j = 1, . . . ,m + 1, where

Qv(ϕ) =
∫

RN

(|∇ϕ|2 − ap|v|p−1ϕ2)dx.

Then, since limk→+∞ f ′
k(vk(y)) = ap|v(y)|p−1 pointwise in R

N , we have

lim
k→∞

∫
B(0,k)

(|∇ϕ|2 − f ′
k(vk)ϕ

2)dx = Qv(ϕ),

for any ϕ ∈ C∞
c (RN). Therefore, for k large enough, uk has Morse index greater or equal than

m + 1, which is a contradiction.
We have constructed a nontrivial C2 solution of (4.1) of finite Morse index, which is not

possible by Theorem 2 of [10] if p 
= pS(N) (and by Theorem 1 of [10] when p = pS(N) and
m = 0). �
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