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Abstract

In this paper we consider the Green function for the Laplacian in a smooth bounded domain Ω ⊂ R
N

with Robin boundary condition

∂Gλ

∂ν
+ λb(x)Gλ = 0, on ∂Ω,

and its regular part Sλ(x, y), where b > 0 is smooth. We show that in general, as λ → ∞, the Robin function
Rλ(x) = Sλ(x, x) has at least 3 critical points. Moreover, in the case b ≡ const we prove that Rλ has critical
points near non-degenerate critical points of the mean curvature of the boundary, and when b �≡ const there
are critical points of Rλ near non-degenerate critical points of b.
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1. Introduction

Let Ω ⊂ R
N be a bounded domain with smooth boundary and b(x) > 0 a smooth function

defined on ∂Ω . We will consider the fundamental solution of the Laplacian in Ω with Robin
boundary condition, that is, ⎧⎨⎩

−�Gλ = dNδy, in Ω,

∂Gλ

∂ν
+ λb(x)Gλ = 0, on ∂Ω,

(1.1)

where ν denotes the exterior unit normal vector, λ > 0 is parameter and

dN =
{

2π, N = 2,

N(N − 2)ωN, N � 3

(ωN denotes the volume of the unit ball in R
N ).

Let Γ be the fundamental solution to � in R
N i.e.

Γ (x − y) =
{− log |x − y|, N = 2,

1
|x−y|N−2 , N > 2.

The regular part of Gλ is then defined as

Sλ(x, y) = Gλ(x, y) − Γ (x − y). (1.2)

In general we will be interested in the asymptotic behavior of Sλ as λ → +∞. More precisely,
our goal is to understand the asymptotic behavior of critical points of the Robin function defined
by

Rλ(x) = Sλ(x, x), as λ → ∞. (1.3)

We notice that, formally, as λ → +∞ we have that Gλ approaches Green’s function G∞ for
the Laplacian with zero Dirichlet boundary condition. The corresponding Robin function R∞(x)

turns out to play an important role in many applications. For instance in the context of singular
perturbation problems the location of the critical points of R∞(x) determines the location where
concentration phenomena occur. To name a few examples, the locations of: a blow-up point in
nonlinear elliptic problems near criticality [4,13,14], a single bubble in the Liouville problem [3,
7,9] and a single vortex in the Ginzburg–Landau equation [8] are all determined by the location
of critical points of R∞. An interesting relation between R∞ and an isoperimetric inequality was
established in [1]. Many other applications as well as the most important properties of the Robin
function and its relation to the harmonic radius and harmonic center of a domain can be found
in [2]. For other applications of the function R∞ we refer the reader to [10]. When some of the
problems mentioned above are considered with Robin instead of Dirichlet boundary condition it
is expected that Rλ(x) may play a similar role.

The first result we will establish says that in general Rλ possesses at least 3 critical points for
λ sufficiently large.
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Theorem 1.1. There exists a λ0 > 0 such that for any λ ∈ [λ0,∞) there are at least 3 critical
points of Rλ. Two of them are at distance O(λ−1) from ∂Ω .

Note that R∞(x) → −∞ as x → ∂Ω and therefore R∞ has always a maximum. When Ω ⊂
R

2 is a bounded, smooth and convex domain the result of Caffarelli and Friedman [5] (N = 2)
and Cardaliaguet and Tahraoui [6] (N � 3) implies that the level sets of R∞ are convex. Hence
generically for a convex domain R∞ has a unique maximum point. A similar situation occurs
when Ω is a symmetric domain [12], quite in contrast with the behavior of Rλ. In this sense
Theorem 1.1 says that the set of critical points of Rλ is larger than the set of critical points of
R∞, with some of the critical points of Rλ approaching the boundary of the domain. This in
turn implies that for λ < ∞ the set of points where concentration phenomena may occur is much
richer than that corresponding to λ = ∞.

To explain our results we introduce the notation

d(x) = dist(x, ∂Ω), x ∈ Ω.

One of the major achievements in this paper is that we obtain a precise asymptotic formula for
Rλ as λ → +∞ near ∂Ω . As a consequence of this formula we will see that if λd(x) = o(1)

then, formally,

Rλ(x) ∼ Γ
(
2d(x)

)
,

which means that for x very near ∂Ω the function Rλ blows up asymptotically (to leading order)
as the Robin function with Neumann boundary condition, R0. On the other hand it is not difficult
to see that Rλ → R∞ uniformly on compact subsets of Ω as λ → +∞. These facts imply that in
the intermediate region λd(x) = O(1) the function Rλ attains a local minimum. Using a linking
argument the existence of a second critical point can be obtained, and we show that in fact there
is at least one more critical point of Rλ located away from the boundary and which corresponds
to a local maximum, leading thus to the proof of Theorem 1.1.

Next we will consider two cases: (1) b ≡ 1; (2) b is not a constant function. In the first case
we have the following, for any N � 2:

Theorem 1.2. Assume b ≡ 1. Let κ(x) denote the mean curvature of ∂Ω at x. If x0 ∈ ∂Ω is a
non-degenerate critical point of κ then for each β ∈ (0,1) there exists a λ0 > 0 such that for any
λ � λ0 there exists a critical point xλ ∈ Ω of Rλ such that |xλ − x0| = O(λ−β).

Theorem 1.2 is a consequence of a precise asymptotic formula for Rλ.

Theorem 1.3. Assume b ≡ 1. For any K > 1 there exists λK such that for each λ � λK and for
each x ∈ Ω ⊂ R

N , such that λd(x) ∈ (K−1,K) the following asymptotic expansion formula is
true

Rλ(x) = λN−2hλ

(
λd(x)

) + λN−3(N − 1)κ(x̂)v
(
λd(x)

) + O
(
λN−3−α

)
, (1.4)

where 0 < α < 1 and κ(x̂) is the mean curvature of ∂Ω at x̂ and
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hλ(θ) = − logλ − log(2θ) + 4θ

∞∫
0

e−2θt log(1 + t) dt,

when N = 2,

hλ(θ) = (2θ)2−N

[
1 − 4θ

∞∫
0

e−2θt dt

(1 + t)N−2

]
,

when N > 2. (1.5)

The function v is given by

v(θ) = −θ

2
− θ

∞∫
0

e−2θs 1

(1 + s)2
ds, when N = 2,

v(θ) = (2θ)2−N(N − 2)

[
N − 2 − 3θ

2
+ (

2θ2 − (N − 2)2)I0,N−1(2θ)

]

when N > 2, with I0,N−1(2θ) =
∞∫

0

e−2θs 1

(1 + s)N−1
ds. (1.6)

For the proof of Theorem 1.1 it suffices to know the leading order term in (1.4). On the other
hand Theorem 1.2 is more delicate and requires a very precise knowledge of the asymptotic
behavior of Rλ, not only of its leading order, but also the next term in (1.4) which is of order
O(λN−3) in the intermediate region λd(x) = O(1). A remarkable fact is that this term depends
on the domain Ω only through the mean curvature of ∂Ω . In particular v(·) is a “universal”
function depending only on the dimension, a property of Rλ which is of interest by itself.

Our approach to obtain Theorem 1.3 involves first the construction of an approximation of
Sλ(x, y) based on the corresponding Green function for a half space appropriately translated and
rotated, and the use of a rescaling ξ = λx to analyze the behavior of Sλ(x, y) for a point y such
that λd(y) = O(1). To control the difference between Sλ(x, y) and its approximation we use a
suitable barrier in the new variables. This procedure leads to an expansion like (1.4) but not as
explicit. To remedy this situation we compare this expansion with the corresponding one in a
ball, where the Green function with Robin boundary condition can be explicitly written.

When b is not a constant we have:

Theorem 1.4. Let x0 ∈ ∂Ω be a non-degenerate critical point of b. Then there exists a λ0 > 0
such that for any λ � λ0 there exists an xλ ∈ Ω which is a critical point of Rλ such that
|xλ − x0| = O(λ−β), 0 < β < 1, as λ → ∞.

The proof of this last theorem is based on a formula similar to (1.4). We should point out here
that when b is not a constant the relation between its critical points and those of Rλ is seen at the
leading order of the expansion of Rλ as λ → ∞.

The rest of this paper will be devoted to the proofs of the above theorems. In Section 2 we
construct an approximation to Sλ and compute asymptotically the difference of the operator
∂ + λ applied to Sλ and this approximation. This already gives the first term of Rλ and leads to

∂ν
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a proof of Theorem 1.1 in Section 3. In Section 4, under the assumption b ≡ 1 we improve the
expansion of Rλ to the next order, and in Section 5 we show that this expansion holds also for the
derivatives of Rλ. Then in Section 6 we prove Theorems 1.2 and 1.3 and in Section 7 we present
the proof of Theorem 1.4.

2. Asymptotic behavior of Sλ in Ω

In the sequel we will write d(x) = dist (x, ∂Ω) and if x ∈ Ω is sufficiently close to ∂Ω we let
x̂ ∈ ∂Ω be the unique point in ∂Ω for which d(x) = |x − x̂|.

The Green function for the Robin boundary condition in a half-space is well known [11] and
will be important in our analysis. In order to define it we will denote x = (x′, xN) ∈ R

N−1 × R

and let H = {(x′, xN) | xN > 0} be the half-space. We recall (see [11, p. 121]) that if y ∈ H and
a > 0 the Green function for the Robin problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−�GH
a (x, y) = dNδy in H,

−∂GH
a

∂xN

+ aGH
a = 0 on ∂H,

lim|x|→+∞GH
a (x, y) = 0

is given by

GH
a (x, y) = Γ (x − y) − Γ (x − y∗) − 2

0∫
−∞

eas ∂

∂xN

Γ (x − y∗ − eNs) ds, (2.1)

where y∗ is the reflection of y = (y′, yN) across ∂H , that is y∗ = (y′,−yN), and ej , j = 1, . . . ,N

denotes the canonical basis in R
N .

To explain our definition of an approximation to Gλ let y ∈ Ω be close to ∂Ω and such that
ŷ = 0 ∈ ∂Ω , ∂H is tangent to ∂Ω at the origin and the outer normal unit vector to ∂Ω is −eN .
Thus we assume that y = (0, yN), where yN = d(y) > 0. For such y we define the approximation
as

Ĝλ(x, y) = Γ (x − y) − Γ (x − y∗) − 2

0∫
−∞

eλb(ŷ)s ∂

∂xN

Γ (x − y∗ − eNs) ds, (2.2)

where eN = (0,1) and y∗ = (0,−yN).
We generalize this definition for an arbitrary y ∈ Ω , sufficiently close to ∂Ω as follows.

Locally, say near a point ŷ ∈ ∂Ω there exists a smooth rotation matrix Rŷ such that

Rŷν(ŷ) = −eN,

where ν(ŷ) denotes the outer unit normal to ∂Ω at ŷ. One such rotation can be written explicitly:

Rŷ (x) = (
τ1(ŷ), . . . , τN−1(ŷ),−ν(ŷ)

)T · xT, (2.3)
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where τ1(ŷ), . . . , τN−1(ŷ) form an orthonormal basis of Tŷ∂Ω which can be assumed to be

smooth. Then a precise way to define Ĝλ is as follows:

Ĝλ(x, y) = GH
λb(ŷ)

(
Rŷ (x − ŷ),

(
0, d(y)

))
. (2.4)

Observe that there is an ambiguity in the choice of the rotation Rŷ since composing it with any
other rotation that leaves −eN fixed may also be considered. But any choice of the rotation matrix
with the above restriction leads to the same definition of Ĝλ, which allows us to define globally
this function for any y ∈ Ω close to ∂Ω , for instance 0 < d(x) < δ and any x ∈ R

N except y and
the line segment {y∗ + ν(ŷ)s: s � 0}. Note that Ĝλ(x, y) is also smooth for x in this region. In
general the line segment {y∗ + ν(ŷ)s: s � 0} may have an intersection with Ω , but Ĝλ(x, y) is
smooth for x ∈ (Ω ∩ Bδ(ŷ)) \ {y}, if δ > 0 is fixed suitably small.

We will write

Sλ(x, y) = uλ + hλ,

where

uλ = Gλ(x, y) − Ĝλ(x, y)

and

hλ = Ĝλ − Γ (x − y).

Lemma 2.1. Let x ∈ Ω be such that there exists a unique x̂ ∈ ∂Ω for which d(x) = |x − x̂|. Then
the following formula holds

hλ(x, x) = λN−2hλ

(
λd(x), b(x̂)

)
, (2.5)

where hλ is defined by

hλ(θ, b) = − logλ − log(2θ) + 2

∞∫
0

e−t log(2θ + t/b) dt, when N = 2,

hλ(θ, b) = (2θ)2−N − 2

∞∫
0

e−t

(2θ + t
b
)N−2

dt, when N > 2. (2.6)

Moreover the map θ �→ hλ(θ, b) has the following properties:

1. If N = 2, for fixed λ > 0

hλ(θ, b) ∼ − log(2θ) as θ → 0,

hλ(θ, b) ∼ log(2θ) as θ → +∞. (2.7)
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2. If N � 3

hλ(θ, b) ∼ (2θ)2−N as θ → 0,

hλ(θ, b) ∼ −(2θ)2−N as θ → +∞. (2.8)

3. For any N � 2 and b > 0 the function hλ(·, b) has a unique minimum θ0 in (0,∞). This
minimum is non-degenerate.

4. If x0 ∈ ∂Ω is a critical point of b then the function hλ(λd(x), b(x)) has a critical point
xλ ∈ Ω such that x̂λ = x0 and d(xλ) = O(λ−1).

Remark 2.2. Note that in the case b = 1 formula (2.6) reduces to the one in (1.5).

Proof. With y ∈ Ω such that y = (0, yN) and ν = −(0,1) we have by (2.2)

hλ(x, y) = −Γ (x − y∗) + 2eλb(0)sΓ (x − y∗ − eNs)
∣∣0
s=−∞

− 2λb(0)

0∫
−∞

eλb(0)sΓ (x − y∗ − eNs) ds

= Γ (x − y∗) − 2λb(0)

0∫
−∞

eλb(0)sΓ (x − y∗ − eNs) ds.

Letting y = x = (0, xN) we get

hλ(x, x) = Γ (2xN) − 2b(0)λ

0∫
−∞

eλb(0)sΓ (2xN − eNs) ds

= Γ (2xN) − 2

0∫
−∞

etΓ

(
2xN − t

λb(0)

)
dt.

Identity (2.5) in the case of an arbitrary y ∈ Ω close to ∂Ω follows from the above formula after
applying R−1

y (cf. (2.3)) and translating.
Now we deal with the properties of hλ(θ, b). Assume first N = 2. Then

hλ(θ, b) = − logλ − log(2θ) + 2

∞∫
0

e−t log

(
2θ + t

b

)
dt. (2.9)

Integrating by parts we get

hλ(θ, b) = − logλ + log(2θ) + 2

∞∫
0

e−t

2θb + t
dt,

and these formulas imply (2.7).
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When N � 3 the argument is similar. Indeed, in this case

hλ(θ, b) = (2θ)2−N − 2

∞∫
0

e−t

(2θ + t
b
)N−2

dt. (2.10)

Integrating by parts, we see from the formula above that

hλ(θ, b) = (2θ)2−N + O

(
log

1

θ

)
, as θ → 0, if N = 3,

hλ(θ, b) = (2θ)2−N + O
(
θ3−N

)
, as θ → 0, if N > 3.

Integrating by parts (2.10), we also have

hλ(θ, b) = −(2θ)2−N + O
(
θ1−N

)
, as θ → +∞,

and these properties imply (2.7).
By the above considerations we deduce that hλ(·, b) has at least one minimum. To see that it

is unique we may assume that b = 1 and consider

f2(t) = log t − 2

∞∫
0

e−s log(t + s) ds.

fN(t) = t2−N − 2

∞∫
0

e−s

(t + s)N−2
ds.

Then

f ′
2 = f3, f ′

N = (2 − N)fN+1 for all N � 3.

We claim that for all N � 3 fN has a unique zero tN and that tN is increasing. Indeed fN(t) = 0
is equivalent to

kN(t) = 1

2
where kN(t) =

∞∫
0

e−s

(
1 − s

t + s

)N−2

ds.

But d
dt

kN(t) > 0. To see that tN is increasing note that 1
2 = kN(tN ) > kN+1(tN ) so tN+1 > tN .

Finally tN is a non-degenerate minimum of fN−1 because f ′′
N−1 = (N − 3)(N − 2)fN+1 has its

zero at tN+1 and is positive to the left of tN+1.
The proof of the last property is direct from the previous considerations. �

Remark 2.3. For x near ∂Ω consider hλ(x, x) as a function of the variables (d(x), x̂) and let
us still denote it by hλ(d(x), x̂). From the proof of the above lemma for x̂ ∈ ∂Ω held fixed
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the function d �→ hλ(d, x̂) has a local minimum at d = d∗(x̂). Moreover there exist constants
0 < m < M such that for all x̂ ∈ ∂Ω we have d∗(x) ∈ (mλ−1,Mλ−1) and as λ → +∞

hλ

(
d∗(x̂), x̂

) ∼ − logλ if N = 2, (2.11)

hλ

(
d∗(x̂), x̂

) ∼ −λN−2 if N � 3. (2.12)

In the sequel we investigate the asymptotic behavior of uλ as λ → +∞. It is rather easy to
see that uλ satisfies ⎧⎨⎩�uλ = 0, in Ω ∩ Bδ(ŷ),

∂uλ

∂ν
+ λb(x)uλ = gλ, on ∂Ω ∩ Bδ(ŷ),

(2.13)

where

gλ(x, y) = −
[

∂

∂ν
+ λb(x)

]
Ĝλ(x, y).

A convenient way to describe the behaviors of uλ and gλ is using stretched variables. More
precisely define

ũλ(ξ, η) = uλ(x, y),

g̃λ(ξ, η) = gλ(x, y), (2.14)

where ξ, η, ŷ are in 1–1 correspondence with x, y by relations

ξ = λRŷ (x − ŷ), η = λd(y). (2.15)

Notice that ũ, g̃ depend also on ŷ and we may have to write ũλ(ξ, η, ŷ) = uλ(x, y), but we will
avoid this notation.

With the purpose to keep the notation simple we write

Ωλ = {
λRŷ (x − ŷ) | x ∈ Ω

}
.

Note that in our definition Ωλ depends also on ŷ but we will not emphasize this dependence.
For a fixed ŷ ∈ ∂Ω , as λ → +∞ the set Ωλ approaches the upper half-space. For g̃ it is similar
except that the limit domain of definition is ∂H = {ξ | ξ = (ξ ′,0)}.

Lemma 2.4. Let N � 2. There exists λ0 > 0 such that for each λ � λ0, each constant K > 0 and
each y ∈ Ω such that

K−1 � λd(y) � K (2.16)

we have ∥∥gλ(·, y)
∥∥

L∞(∂Ω∩Bδ(ŷ))
� C(K)λN−2. (2.17)
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Proof. Let λ0 be a large number such that for each y ∈ Ω , with d(y) � λ−1
0 , its projection

ŷ ∈ ∂Ω is uniquely determined. Let y ∈ Ω satisfying (2.16) be fixed. Since the linear isometry
Rŷ (x − ŷ) takes Tŷ∂Ω onto ∂H and Rŷ (y − ŷ) = (0, d(y)), without loss of generality we can
assume that ŷ = 0, y = (0, yN), ν(ŷ) = −eN and K−1 < λyN < K . Let δ > 0 be a small, fixed
number such that in a δ-neighborhood of 0 ∂Ω is represented as a graph, i.e.

∂Ω ∩ Bδ(0) = {
xN = ϕ(x′)

}
,

where g is a smooth function. We have

ϕ(x′) = 1

2
〈Ax′, x′〉 + O

(|x′|3) as |x′| → 0, (2.18)

where A = D2ϕ(0).
When x ∈ ∂Ω ∩ Bδ(0) we have

∂

∂ν
= − ∂

∂xN

+ a(x′) · ∇, (2.19)

where

a(x′) = (
D2ϕ(0) · x′,0

) + O
(|x′|2). (2.20)

Writing

∂

∂ν
+ λb(x) = − ∂

∂xN

+ λb(0) + a(x′) · ∇ + λ
(
b(x) − b(0)

)
,

we get at xN = ϕ(x′),

−gλ(x, y) =
[

∂

∂ν
+ λb(x)

]
Ĝλ(x, y)

=
[
− ∂

∂xN

+ λb(0)

]
Ĝλ + a(x′) · ∇Ĝλ + λ

[
b(x) − b(0)

]
Ĝλ

:= g1λ + g2λ + g3λ.

Let us first consider g1λ. Notice that after integration by parts we have

Ĝλ(x, y) = Γ (x − y) + Γ (x − y∗) − 2λb(0)

0∫
−∞

eλb(0)sΓ (x − y∗ − eNs) ds.

Then
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∂Ĝλ(x, y)

∂xN

= ∂Γ

∂xN

(x − y) + ∂Γ

∂xN

(x − y∗)

− 2λb(0)

0∫
−∞

eλb(0)s ∂Γ

∂xN

(x − y∗ − eNs) ds

= ∂Γ

∂xN

(x − y) + ∂Γ

∂xN

(x − y∗) + 2λb(0)Γ (x − y∗)

− 2λ2b2(0)

0∫
−∞

eλb(0)sΓ (x − y∗ − eNs) ds,

and therefore

g1λ = −
[

∂Γ

∂xN

(x − y) + ∂Γ

∂xN

(x − y∗)
]

+ λb(0)
[
Γ (x − y) − Γ (x − y∗)

]
:= g̃1λ + ĝ1λ.

In what follows we will consider stretched variables as defined in (2.14), (2.15). In terms of these
new variables we have at xN = ϕ(x′)

g̃1λ = γN

[
xN − yN

|(x′, xN − yN)|N + xN + yN

|(x′, xN + yN)|N
]

= λN−1γN

[
λϕ(ξ ′/λ) − η

[|ξ ′|2 + (λϕ(ξ ′/λ) − η)2]N/2
+ λϕ(ξ ′/λ) + η

[|ξ ′|2 + (λϕ(ξ ′/λ) + η)2]N/2

]
, (2.21)

where

γN =
{

1 if N = 2,

N − 2 if N � 3.

We observe that ∣∣∣∣λ2ϕ

(
ξ ′

λ

)∣∣∣∣ � C|ξ ′|2,

with some C > 0 independent on λ. Let us write

α(ξ ′) = λ2ϕ

(
ξ ′

λ

)
. (2.22)

Expanding then the term inside the brackets in (2.21) in powers of 1
λ

we get:

g̃1λ(ξ
′, η) = λN−2γN 〈Aξ ′, ξ ′〉 |ξ

′|2 + η2(1 − N)

′ 2 2 N/2+1

(
1 + O

( |ξ ′|))
. (2.23)
(|ξ | + η ) λ
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In order to estimate ĝ1λ we will separately consider the cases N = 2 and N � 3. In the former
case we claim that

ĝ1λ = λb(0)
(− log |x − y| + log |x − y∗|)

= λb(0)

2
log

( |ξ ′|2 + (α(ξ ′)/λ + η)2

|ξ ′|2 + (α(ξ ′)/λ − η)2

)
= b(0)〈Aξ ′, ξ ′〉 η

|ξ ′|2 + η2
+ O

(
λ−1(1 + |ξ ′|)). (2.24)

Indeed, observe that

log

( |ξ ′|2 + (α(ξ ′)/λ + η)2

|ξ ′|2 + (α(ξ ′)/λ − η)2

)
= log(1 + θ),

where

θ = 4α(ξ ′)η
λ(|ξ ′|2 + (α(ξ ′)/λ − η)2)

= O
(
λ−1),

by (2.22). Hence

log

( |ξ ′|2 + (α(ξ ′)/λ + η)2

|ξ ′|2 + (α(ξ ′)/λ − η)2

)
= θ + O

(
λ−2).

Applying the Mean value theorem we get

θ = 4α(ξ ′)η
λ(|ξ ′|2 + η2)

+ O

(
λ−2 |ξ ′|2(1 + |ξ ′|)

|ξ ′|2 + η2

)
= 4α(ξ ′)η

λ(|ξ ′|2 + η2)
+ O

(
λ−2(1 + |ξ ′|)),

where O(·) is uniform for |ξ ′| � δλ and K−1 � η � K . From this we get our claim (2.24) if
N = 2.

When N � 3 we get by a similar argument

ĝ1λ = (N − 2)λN−2b(0)〈Aξ ′, ξ ′〉 η

(|ξ ′|2 + η2)N/2
+ O

(
λN−3

(1 + |ξ ′|)N−4

)
. (2.25)

We will now compute g2λ. From the definition of g2λ we have

g2λ = a(x′) · ∇Ĝλ(x, y)

= −γNa(x′) ·
[

x − y

|x − y|N + x − y∗

|x − y∗|N

− 2λb(0)

0∫
−∞

eλb(0)s x − y∗ − eNs

|x − y∗ − eNs|N ds

]
. (2.26)

We notice that, going from the original to stretched variables, we have
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a(x′) =
( ∇ϕ(x′)√

1 + |∇ϕ(x′)|2 ,
−1√

1 + |∇ϕ(x′)|2 + 1

)

=
( 1

λ
∇α(ξ ′)√

1 + 1
λ2 |∇α(ξ ′)|2

,
−1√

1 + 1
λ2 |∇α(ξ ′)|2

+ 1

)
.

Noting that ∣∣∣∣1

λ
∇α(ξ ′)

∣∣∣∣ � C
|ξ ′|
λ

,

we get

a

(
ξ ′

λ

)
=

(
1

λ
∇α(ξ ′), 1

2λ2

∣∣∇α(ξ ′)
∣∣2)(

1 + O

( |ξ ′|2
λ2

))
.

Then we have, again changing to stretched variables,

a(x′) ·
[

x − y

|x − y|N + x − y∗

|x − y∗|N
]

= 2λN−2 〈Aξ ′, ξ ′〉
(|ξ ′|2 + η2)N/2

+ O

(
λN−3

(1 + |ξ ′|)N−3

)
.

The second term in (2.26) can be written as follows:

a(x′) ·
[

2λb(0)

0∫
−∞

eλb(0)s x − y∗ − eNs

|x − y∗ − eNs|N ds

]

= 2λN−2b(0)〈Aξ ′, ξ ′〉
0∫

−∞

e b(0)t

(|ξ ′|2 + (η − t)2)N/2
dt + O

(
λN−3

(1 + |ξ ′|)N−3

)
.

Summarizing we have for g2λ

g2λ(ξ
′, η) = λN−2γN 〈Aξ ′, ξ ′〉

[
− 2

(|ξ ′|2 + η2)N/2
+ 2b(0)

0∫
−∞

e b(0)t

(|ξ ′|2 + (η − t)2)N/2
dt

]

+ O

(
λN−3

(1 + |ξ ′|)N−3

)
, (2.27)

where the O(·) term is bounded uniformly in the region |ξ ′|
λ

� δ and K−1 � η � K .
To compute g3λ(ξ

′, η) we notice first that, denoting β(ξ ′) = λ[b(ξ ′/λ) − b(0)], we have∣∣β(ξ ′)
∣∣ � C|ξ ′|.

Using then the explicit formula for Ĝλ(x, y) (2.2) expressed in stretched variables we get in case
N � 3
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λ
[
b(x) − b(0)

][
Γ (x − y) − Γ (x − y∗)

]
= λN−2β(ξ ′)

[
Γ
(
ξ ′, η − α(ξ ′)/λ

) − Γ
(
ξ ′,−η − α(ξ ′)/λ

)]
= 2γNβ(ξ ′)λN−3 α(ξ ′)η

(|ξ ′|2 + η2)N/2
+ O

(
λN−4

(1 + |ξ ′|)N−5

)
,

while, when N = 2, we get

λ
[
b(x) − b(0)

][
Γ (x − y) − Γ (x − y∗)

] = 4γ2β(ξ ′)λ−1 α(ξ ′)η
(|ξ ′|2 + η2)1/2

+ O

(
(1 + |ξ ′|)2

λ2

)
.

Likewise, we get

−2λ
[
b(x) − b(0)

] 0∫
−∞

eλb(0)s ∂

∂xN

Γ (x − y∗ − seN)ds

= 2λN−2γNβ(ξ ′)
0∫

−∞
e b(0)t η − t

(|ξ ′|2 + η2)N/2
dt

+ O

(
λN−3

(1 + |ξ ′|)N−3

)
.

Combining the last two estimates we get when N � 3

g3λ(ξ
′, η) = 2λN−2γNβ(ξ ′)

0∫
−∞

e b(0)t η − t

(|ξ ′|2 + η2)N/2
dt + O

(
λN−3

(1 + |ξ ′|)N−4

)
, (2.28)

and when N = 2 we get

g3λ(ξ
′, η) = 2γ2β(ξ ′)

0∫
−∞

e b(0)t η − t

(|ξ ′|2 + η2)N/2
dt + O

(
1 + |ξ ′|

λ

)
. (2.29)

The assertion of the lemma in the region

|ξ ′|
λ

� δ, K−1 � η � K,

follows now from formulas (2.23)–(2.29). �
Observe that in the proof of Lemma 2.4 we have actually shown an asymptotic formula for

gλ(ξ, η) which can be conveniently written in terms of powers of λ. The following corollary

summarizes this observation.
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Corollary 2.5. Let ξ, η denote stretched variables defined in (2.14), (2.15) and let g̃λ(ξ, η) =
gλ(x, y). Let K > 0. In the region

|ξ ′| � C1λ, K−1 � η � K,

where C1 > 0 is fixed and small, we have

g̃λ(ξ, η) = g0(ξ
′, η) + O

(
1 + |ξ ′|

λ

)
if N = 2, (2.30)

g̃λ(ξ, η) = λN−2g0(ξ
′, η) + O

(
λN−3

(1 + |ξ ′|)N−4

)
if N � 3, (2.31)

where g0 is given by

g0(ξ
′, η) = γN 〈Aξ ′, ξ ′〉 |ξ ′|2 + (N + 1)η2

(|ξ ′|2 + |η|2)N/2+1
+ gb(ξ

′, η), (2.32)

where

gb(ξ
′, η) = −γN 〈Aξ ′, ξ ′〉b(ŷ)

[
η

(|ξ ′|2 + |η|2)N/2
+ 2

0∫
−∞

e b(ŷ)t

(|ξ ′|2 + (η − t)2)N/2
dt

]

+ 2γN

〈∇b(ŷ), ξ ′〉 0∫
−∞

e b(ŷ)t (η − t)

[|ξ ′|2 + (η − t)2]N/2
dt (2.33)

and A = D2ϕ(ŷ).

Observe that in the above formulas g̃λ(ξ, η) is defined for ξ close to a part of ∂Ωλ that asymp-
totically as λ → +∞ becomes ∂H . For such ξ we may write ξ = (ξ ′, ξN) for unique ξ ′ and ξN ,
and the magnitudes of ξ and ξ ′ are comparable in the sense 1

C
|ξ ′| � |ξ | � C|ξ ′|.

We show now an a priori estimate which is essentially a version of the maximum principle
with Robin boundary condition:

Lemma 2.6. Let b : ∂Ω → R be a smooth such that b > 0, F : ∂Ω → R be a smooth function
and u be the solution to {

�u = 0 in Ω,
∂u

∂ν
+ λb(x)u = F on ∂Ω,

(2.34)

where λ > 0. Then

‖u‖L∞(Ω) + ∥∥d(x)∇u
∥∥

L∞ � C(N,b)

λ
‖F‖L∞(∂Ω). (2.35)



1072 J. Dávila et al. / Journal of Functional Analysis 255 (2008) 1057–1101
Proof. We may assume that F � 0 and then, by the maximum principle, u � 0. Let j � 1 and
multiply (2.34) by uj . Integrating and using Hölder’s inequality we obtain

λ
(

min
∂Ω

b
) ∫
∂Ω

uj+1 �
∫

∂Ω

Fuj �
( ∫

∂Ω

uj+1
)j/(j+1)( ∫

∂Ω

F j+1
)1/(j+1)

which implies

λ
(

min
∂Ω

b
)( ∫

∂Ω

uj+1
)1/(j+1)

�
( ∫

∂Ω

F j+1
)1/(j+1)

.

Letting j → +∞ we find

λ
(

min
∂Ω

b
)
‖u‖L∞(∂Ω) � ‖F‖L∞(∂Ω).

Using first the maximum principle and then the gradient estimate for the Poisson equation we
deduce now estimate (2.35). �

As a consequence of estimate (2.17) and Lemma 2.6 we deduce that uλ has the following
uniform estimate:

Corollary 2.7. We have

‖uλ‖L∞(Ω∩Bδ(ŷ)) � CλN−3. (2.36)

3. Existence of at least 3 critical points of Rλ

Proof of Theorem 1.1. The proof is based on the asymptotic formula for Rλ found in the previ-
ous section combined with a linking argument.

We have

Rλ(x) = hλ(x, x) + uλ(x, x).

When x ∈ Ω is sufficiently close to ∂Ω , with some abuse of notation we can write

Rλ(x) = λN−2hλ

(
λd(x), b(x̂)

) + ũ
(
λd(x), x̂

)
,

where hλ is the function defined in (2.6) and ũ(λd(x), x̂) = uλ(x, x). Let m,M be the constants
in Remark 2.3. Let us define

U(m,M) ≡ {
x ∈ Ω

∣∣ λd(x) ∈ (m,M)
} ⊂ Ω. (3.1)

Further, let d∗(x) be the point at which hλ achieves its minimum when we allow to vary x ∈
U(m,M) with x̂ fixed. We define

S∗ = {
x ∈ U(m,M)

∣∣ d(x) = d∗(x)
}
. (3.2)
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Arguing as in Lemma 2.1 one can show that

inf
∂U (m,M)

hλ

(
λd(x), x̂

)
> sup

S∗
hλ

(
λd(x), x̂

)
. (3.3)

By (2.36) it follows that

‖ũ‖L∞(Ω) � CλN−3,

and therefore from (3.3) and the formulas (2.9), (2.10) we get for λ large

inf
∂U(m,M)

Rλ(x) > sup
S∗

Rλ(x). (3.4)

In particular we see that there exists xmin ∈ U(m,M) such that

inf
U(m,M)

Rλ(x) = Rλ(xmin). (3.5)

To find another critical point of Rλ in U(m,M) let us assume that there exists an x1 ∈ U(m,M)∩
S∗ such that

Rλ(x1) > Rλ(xmin). (3.6)

If such a point does not exist then the theorem is proven. Let x̂1 be the projection of x1 onto ∂Ω

and let

Q ≡ {
x ∈ U(m,M) | x̂ = x̂1

} ⊂ U (m,M).

Then the sets S∗ and ∂Q link in U(m,M). Moreover, by (3.4), we have

inf
∂Q

Rλ > sup
S∗

Rλ. (3.7)

Let

G = {
f ∈ C0(U(m,M),U(m,M)

) ∣∣ f |∂Q = id
}
.

Then

β ≡ sup
f ∈G

inf
Q

Rλ

(
f (x)

)
is a critical value of Rλ which, by (3.6), is different than Rλ(xmin).

The existence of a third critical point can be obtained by maximizing Rλ on the set Uλ =
{x ∈ Ω | d(x) > δ} where δ > 0 is fixed suitably small. Indeed, we have by (2.11), (2.12) that
sup∂Uλ

Rλ → −∞ as δ → 0 uniformly for all large λ > 0 while Rλ → R∞ on compact sets
of Ω . This shows that for sufficiently large λ the maximum of Rλ on Uλ is attained at some
point xmax ∈ Uλ, and hence is a critical point of Rλ. The proof of the theorem is complete. �
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4. More on the asymptotic behavior of Sλ

To find the asymptotic behavior of uλ as λ → +∞ we need a suitable candidate for an appro-
priately rescaled limit. According to Corollary 2.5 we need a function v which is harmonic in H

and satisfies the boundary condition − ∂v
∂ξN

+ v = g0 on ∂H . For this purpose we have:

Lemma 4.1. Let K � 1 be a fixed constant and let η be such that K−1 < η < K . There exists a
smooth function v in H satisfying

�v = 0 in H,

− ∂v

∂ξN

+ v = g0(·, η) on ∂H.

Moreover

lim|ξ |→+∞v(ξ) = −(1 + η)κ(ŷ) if N = 2 (4.1)

and ∣∣v(ξ, η)
∣∣ � C(K)

1 + |ξ |N−2
∀ξ ∈ H, if N � 3. (4.2)

In (4.1) by κ(ŷ) we denoted the curvature of the boundary at ŷ.

Proof. If N = 2 we note that formula (2.32) for g0 may be written in the form

g0(ξ
′, η) = −(1 + η)κ(ŷ) + g1(ξ

′, η),

where g1 has the property that

∣∣g1(ξ
′, η)

∣∣ � C(K)

1 + |ξ ′|2 ∀ξ ′ ∈ R, when ∇b(ŷ) = 0,

∣∣g1(ξ
′, η)

∣∣ � C(K)

1 + |ξ ′| ∀ξ ′ ∈ R, when ∇b(ŷ) �= 0.

Thus, in dimension N = 2 we define

v = −(1 + η)κ(ŷ) + v1, where v1(ξ, η) = 1

d2

∫
∂H

G(ζ, ξ)g1(ζ, η) dζ

and G(ζ, ξ) = GH
1 (ζ, ξ), where GH

a is the function defined in (2.1) with a = 1.
In dimension N � 3 we define directly

v(ξ, η) = 1

dN

∫
G(ζ, ξ)g0(ζ, η) dζ. (4.3)
∂H
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Note that in all dimensions when ζ ∈ ∂H then Γ (ζ − ξ) = Γ (ζ − ξ∗). Thus in all cases we
are led to examine:

Iμ(ξ) =
∫

RN−1

0∫
−∞

et (ξN − t)

(|ζ ′ − ξ ′|2 + (ξN − t)2)N/2

1

1 + |ζ ′|μ dt dζ ′,

where μ = 1,2 in dimension 2 and μ = N −2 if N � 3. Then, the assertion of the lemma follows
directly from the following.

Lemma 4.2. Let μ > 0. Then if μ < N − 1

Iμ(ξ) � C

1 + |ξ |μ ∀ξ ∈ H, (4.4)

if μ = N − 1 then

Iμ(ξ) � C max(1, log |ξ |)
1 + |ξ |N−1

∀ξ ∈ H, (4.5)

and if μ > N − 1 then

Iμ(ξ) � C

1 + |ξ |N−1
. (4.6)

We will prove Lemma 4.2 in Appendix A.
As a consequence of (4.6) we have in dimension N = 2

∣∣v1(ξ, η)
∣∣ � C max(1, log |ξ |)

1 + |ξ | ∀ξ ∈ H,

and this proves (4.1). Estimate (4.2) is a direct consequence of (4.4). The proof of Lemma 4.1 is
complete. �

We will need a more explicit form of v(ξ, η), when ξ = (0, η), in particular in the way it
depends on the geometry of ∂Ω .

Corollary 4.3. Under the assumptions of Lemma 4.1 we have

v
(
(0, η), η

) = (N − 1)κ(ŷ)v(η), (4.7)

where v : (0,+∞) → R is a smooth function given by

v(η) = 1

dN

∫
RN−1

G
(
ζ, (0, η)

)
ζ 2

1 g
(|ζ ′|, η)dζ ′, (4.8)

g(|ζ ′|, η) is given by
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g
(|ξ ′|, η) = γN

|ξ ′|2 + (N + 1)η2

(|ξ ′|2 + |η|2)N/2+1

− γNb(ŷ)

[
η

(|ξ ′|2 + |η|2)N/2
+ 2

0∫
−∞

eb(ŷ)t

(|ξ ′|2 + (η − t)2)N/2
dt

]

+ 2γN

〈∇b(ŷ), ξ ′〉 0∫
−∞

e b(ŷ)t (η − t)

[|ξ ′|2 + (η − t)2]N/2
dt

and G(ζ, ξ) = GH
1 (ζ, ξ), where GH

a is the function defined in (2.1) with a = 1.

Observe that v is independent of Ω . Later on we shall give another formula for v.

Proof. The case N = 2 is direct, so we focus only on the case N > 2. Indeed, in this situation
the function g0(ξ

′, η) can be written in the form

g0(ξ, η) =
N−1∑
i,j=1

Aij (ŷ)ξiξj g
(|ξ ′|, η),

where Aij (ŷ) are the coefficients of A(ŷ) = D2ϕ(ŷ). Thus, by the construction (4.3) of v in
Lemma 4.1

v(ξ, η) = 1

dN

N−1∑
i,j=1

Aij (ŷ)

∫
RN−1

G(ζ, ξ)ζiζjg
(|ζ ′|, η)dζ ′

= 1

dN

N−1∑
i=1

Aii(ŷ)

∫
RN−1

G(ζ, ξ)ζ 2
i g

(|ζ ′|, η)dζ ′.

Observe that the value of the above integrals does not depend on i when evaluated at point ξ of
the form (0, ξN). In particular, with v defined as in (4.8) we see that

v
(
(0, η), η

) =
N−1∑
i=1

Aii v(η) = (N − 1)κ(ŷ)v(η). �

Let us consider a fixed y = (0, yN) as in the proof of Lemma 2.4. Let δ > 0 be a small
number. In order to relate uλ(x, y) for x ∈ Ω ∩ Bδ(0) with v we will pass to stretched variables
and combine v with a change of variables so that v is defined in Ωλ ∩ Bδλ:

ṽ(ξ, η) = v
(
Tλ(ξ), η

)
ξ ∈ Ωλ ∩ Bδλ,

where

Tλ(ξ,′ ξN) = (
ξ ′, ξN − λg(ξ ′/λ)

)
. (4.9)

We will also denote ũλ(ξ, η) = uλ(x, y) where (ξ, η) and (x, y) are related by relations (2.15).
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Lemma 4.4. Assume that b ≡ 1. For any 0 < α < 1 there exists a C > 0 independent of λ such
that ∣∣λ3−Nũλ(ξ, η) − ṽ(ξ, η)

∣∣ � C
1 + |ξ |α

λα
∀ξ ∈ Ωλ ∩ Bδλ.

Proof. Note that estimate (2.17) and Lemma 2.6 imply

λ‖ũ‖L∞(Ωλ∩Bδλ) � C. (4.10)

It can be seen easily that the function ũ satisfies

�ũ = 0, in Ωλ ∩ Bδλ,

λ

(
∂ũ

∂ν
+ ũ

)
=

{
g0 + O(

1+|ξ ′|
λ

), N = 2,

g0 + O( 1
λ(1+|ξ ′|)N−4 ), N � 3,

, on ∂Ωλ ∩ Bδλ. (4.11)

We shall use a barrier to estimate the difference λũ − ṽ. This barrier is given by

ū = (dλ(ξ) + c1)
α

λα
+ c2(|ξ |2 + 1)α/2

λα
,

where 0 < α < 1 and c1, c2 > 0 are constants to be fixed later on and

dλ(ξ) = dist(ξ, ∂Ωλ).

We claim that there exists a C > 0 such that

|λũ − ṽ| � Cū in Ωλ ∩ Bδλ, (4.12)

provided that δ > 0 is sufficiently small.
We compute

�ū = α(dλ + c1)
α−1�dλ

λα
+ α(α − 1)(dλ + c1)

α−2

λα

+ c2(N − 1)α(|ξ |2 + 1)(α/2−1)

λα
+ c2α(α − 2)(|ξ |2 + 1)(α/2−2)|ξ |2

λα
.

Observing that |�dλ| � Cλ−1 in Ωλ ∩ Bλδ and fixing δ > 0, c2 > 0 small we see that

�ū � −c
(dλ + c1)

α−2

λα
in Ωλ ∩ Bλδ, (4.13)

for some c > 0. From the change of variables (4.9) we find

�ṽ = ∂2v
O

( |ξ |) + ∂v
O

(
1
)

in Ωλ ∩ Bλδ.

∂ξi∂ξj λ ∂ξi λ
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Using the explicit formula for v in Lemma 4.1 and applying Lemma 4.2 we get

∂2v

∂ξi∂ξj

= O
((

1 + |ξ |)−N )
,

∂v

∂ξi

= O
((

1 + |ξ |)1−N )
,

and hence

�ṽ = O

(
1

λ(1 + |ξ |)N−1

)
in Ωλ ∩ Bλδ. (4.14)

From (4.13), (4.14) we have, taking δ > 0 sufficiently small,

�
(
Cū − (λũ − ṽ)

)
� 0 in Ωλ ∩ Bλδ

for some fixed constant C.
Now let us compute the boundary condition on ∂Ωλ ∩ Bδλ where ν is the outer unit normal

vector to ∂Ωλ. We note that from (2.19), (2.20), at ξN = λg(ξ ′/λ),

∂

∂ν
= − ∂

∂ξN

+ O

( |ξ ′|
λ

)∣∣∇(·)∣∣.
Hence

∂ū

∂ν
� −αcα−1

1

λα
− c2C

(|ξ |2 + 1)α/2

λα

|ξ |
λ

on ∂Ωλ ∩ Bδλ,

where C is some constant. We then find

∂ū

∂ν
+ ū �

cα
1 − αcα−1

1

λα
− c2C

(|ξ |2 + 1)α/2

λα

|ξ |
λ

+ c2
(|ξ |2 + 1)α/2

λα

� c
(|ξ | + 1)α

λα
, (4.15)

in the region of ∂Ωλ such that |ξ | � δλ where c > 0 provided c1 > 0 is fixed large and δ > 0 is
taken small. On the other hand, (2.30), (2.31) and (4.11) imply

λ

(
∂ũ

∂ν
+ ũ

)
= g0 + O

(
(1 + |ξ |)

λ

)
on ∂Ωλ ∩ Bδλ, if N = 2, (4.16)

λ

(
∂ũ

∂ν
+ ũ

)
= g0 + O

(
1

λ(1 + |ξ |)N−4

)
on ∂Ωλ ∩ Bδλ, if N � 3. (4.17)

For ∂ṽ
∂ν

we have

∂ṽ + ṽ = g0 + O

(
1

N−2

)
on ∂Ωλ ∩ Bδλ. (4.18)
∂ν λ(1 + |ξ |)
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From (4.16)–(4.18) and (4.15) we obtain

∂(Cū − (λũ − ṽ))

∂ν
+ Cū − (λũ − ṽ) � 0 on ∂Ωλ ∩ Bδλ.

Finally, by Lemma 4.1 and (4.10), we have

|λũ − ṽ| � Cū on Ωλ ∩ ∂Bδλ.

The maximum principle now implies λũ− ṽ � Cū in Ωλ ∩Bδλ and reversing the roles of λũ and
ṽ we obtain ṽ − λũ � Cū in Ωλ ∩ Bδλ. This establishes (4.12) and the conclusion of the lemma
follows from this inequality and the behavior of ū on bounded sets. �

Using an elliptic estimate for the gradient we get from Lemma 4.4:

Lemma 4.5. Assume that b ≡ 1. Then there is a fixed δ > 0 such that for any 0 < α < 1 there
exists a constant C such that the following estimate holds:

∣∣λ3−N∇ξ ũλ(ξ, η) − ∇ξ ṽ(ξ, η)
∣∣ � C

1 + |ξ |α
λα

∀ξ ∈ Ωλ ∩ Bδλ. (4.19)

In addition we will need an estimate for the derivatives of the function ũλ(ξ, η) with respect
to η.

Lemma 4.6. Assume that b ≡ 1. For any 0 < α < 1 there is C independent of λ such that

∣∣λ3−N∂ηũλ(ξ, η) − ∂ηṽ(ξ, η)
∣∣ � C

1 + |ξ |α
λα

∀ξ ∈ Ωλ ∩ Bδλ. (4.20)

Proof. The proof of this lemma goes along the same lines as the proof of Lemma 4.4. Indeed,
after rotation and translation as in the proof of Lemma 2.4 we get that the function uλ,yN

(x, y) ≡
∂yN

uλ(x, y), where y = (0, yN), satisfies⎧⎨⎩
�uλ,yN

= 0, in Ω,

∂uλ,yN

∂ν
+ λuλ,yN

= gλ,yN
, on ∂Ω.

Calculations similar to those in the proof of Lemma 2.4 lead to the analogs of (2.30), (2.31) of
Corollary 2.5 with g0 replaced by g0,η. Then Lemma 4.1 can be applied to find the function
∂ηṽ(ξ, η). An application of a comparison argument as in Lemma 4.4 yields finally (4.20). �
5. Estimates for the derivatives of Rλ

Throughout this section b ≡ 1. Let us observe that combining Corollary 4.3, Lemma 4.4 and
the change of variables (2.14), (2.15) we find

uλ(x, x) = λN−3(N − 1)κ(x̂)v
(
λd(x)

) + O
(
λN−3−α

)
uniformly for K−1 � λd(x) � K .
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Let ∇T denote the tangential which is defined in a neighborhood of ∂Ω . The aim in this
section is to show that the following estimates hold:

Proposition 5.1. Let K > 1, 0 < α < 1. Then

∇Tuλ(x, x) = λN−3(N − 1)∇κ(x̂)v
(
λd(x)

) + O
(
λN−3−α

)
(5.1)

uniformly for K−1 � λd(x) � K .

Proposition 5.2. Let K > 1, 0 < α < 1. Then〈∇uλ(x, x), ν(x̂)
〉 = −λN−2(N − 1)κ(x̂)v′(λd(x)

) + O
(
λN−2−α

)
(5.2)

uniformly for K−1 � λd(x) � K , where ν(x̂) is the unit normal vector at x̂.

For simplicity of the presentation we shall give the detailed calculations in dimension N = 2.
We rotate and translate Ω such that 0 ∈ ∂Ω and the exterior unit normal vector at 0 points

down, that is ν(0) = −e2.
Let us fix δ > 0 small and let ϕ : (−δ, δ) → R be a smooth function whose graph is ∂Ω near 0,

or more precisely{
(x1, x2) ∈ ∂Ω

∣∣ |x1|, |x2| < δ
} = {

(x1, x2)
∣∣ x2 = ϕ(x1), |x1| < δ

}
and note that

ϕ(0) = 0, ϕ′(0) = 0.

We shall write

a0 = ϕ′′(0), a1 = ϕ′′′(0)

so that

ϕ(y1) = a0

2
y2

1 + a1

6
y3

1 + O
(
y4

1

)
for y1 near 0. (5.3)

The exterior unit normal vector at a point (y1, ϕ(y1)) is then given by

ν(y1) = 1√
1 + ϕ′(y1)2

(
ϕ′(y1),−1

)T
.

Recall that the curvature at 0 is given by

κ(0) = ϕ′′(0) = a0

and

κ ′(0) = ϕ′′′(0) = a1.
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The smooth rotation matrix R introduced in (2.3) can be considered to depend on y1:

R(y1) = 1√
1 + ϕ′(y1)2

[
1 ϕ′(y1)

−ϕ′(y1) 1

]
so that

R(y1)ν(y1) = −e2.

As before, we introduce the change of variables

ξ = λR(y1)
(
x − (

y1, ϕ(y1)
))

, η = λd(y),

and the functions

ũλ(ξ, η, y1) = uλ(x, y),

g̃λ(ξ, η, y1) = gλ(x, y).

The difference with respect to the change of variables (2.14), (2.15) is that now ũλ and g̃λ depend
on y1 rather than on ŷ.

To show (5.1) we will need:

Lemma 5.3. Let K > 1, 0 < α < 1. Then for K−1 � η � K we have

∂ũλ

∂ξ1

(
(0, η), η,0

) = O

(
1

λ1+α

)
. (5.4)

Lemma 5.4. Let K > 1, 0 < α < 1. Then for K−1 � η � K we have

∂y1 ũλ

(
(0, η), η,0

) = 1

λ
κ ′(0)v0(η) + O

(
1

λ1+α

)
. (5.5)

Proof of Proposition 5.1. Assume for a moment that (5.4), (5.5) hold. At a point x close to ∂Ω

of the form x = (0, x2) the tangential direction is given by e1 and hence

∇Tuλ(x, x) = ∂uλ(x, x)

∂x1
+ ∂uλ(x, x)

∂y1
. (5.6)

By the chain rule

∂uλ

∂x1
= λ∇ξ ũλR(y1)

[
1
0

]
and

∂uλ = λ∇ξ ũλ

(
dR(

x −
[

y1
ϕ(y )

])
−R

[
1

ϕ′(y )

])
+ λ∂ηũλ

∂d(y) + ∂y1 ũλ.

∂y1 dy1 1 1 ∂y1
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We want to evaluate these expressions at y1 = 0. For a point x close to ∂Ω of the form x = (0, x2)

with x2 = η/λ we have

∂uλ

∂x1
(x, x) = λ

∂ũλ

∂ξ1

(
(0, η), η,0

)
.

On the other hand, since ∂d(y)
∂y1

= 0 at a point y = (0, y2), and

d

dy1
R(0) =

[
0 a0

−a0 0

]
,

it follows that

∂uλ

∂y1
(x, x) = a0λ

∂ũλ

∂ξ1

(
(0, η), η,0

)
x2 − λ

∂ũλ

∂ξ1

(
(0, η), η,0

) + ∂y1 ũλ

(
(0, η), η,0

)
.

Therefore, for such x and since x2 = η/λ

∂uλ

∂x1
(x, x) + ∂uλ

∂y1
(x, x) = a0

∂ũλ

∂ξ1

(
(0, η), η,0

)
η + ∂y1 ũλ

(
(0, η), η,0

)
. (5.7)

Combining (5.4), (5.5) and (5.7) we find

∇Tuλ(x, x) = 1

λ
κ ′(0)v0(η) + O

(
1

λ1+α

)
for K−1 � η � K , which is the desired estimate (5.1). �
Proof of Lemma 5.3. We showed in Lemma 4.4 that for any fixed R > 0

λũλ − ṽ = O
(
1/λα

)
uniformly for |ξ | � R

(0 < α < 1) and in Lemma 4.5

∇ξ [λũλ − ṽ] = O
(
1/λα

)
uniformly for |ξ | � R.

But observe that v is even with respect to ξ1, which implies ∂ṽ
∂ξ1

((0, η), η, y1) = 0 and therefore

∂ũλ

∂ξ1

(
(0, η), η,0

) = O

(
1

λ1+α

)
. �

As before, let Ωλ denote the set

Ωλ = {
λR(y1)

(
x − (

y1, ϕ(y1)
)) ∣∣ x ∈ Ω

}
.

Near 0 the boundary ∂Ω is represented as the graph of ϕ. Hence, near the origin ∂Ωλ may be
also represented by a graph of a function ψλ(ξ1, y1), that is,

(ξ1, ξ2) ∈ ∂Ωλ ⇐⇒ ξ2 = ψλ(ξ1, y1)

for |ξ1|, |ξ1| < λδ.
We shall need the following formula which can be obtained by a direct calculation:
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Lemma 5.5.

∂ψλ

∂y1
(ξ1,0) = 1

λ

[
ϕ′(λξ1) − a0λξ1 − a2

0ϕ′(λξ1)ϕ(λξ1)
]

and hence, using (5.3),

∂ψλ

∂y1
(ξ1,0) = a1

2λ
ξ2

1 + O

( |ξ1|3
λ2

)
. (5.8)

Before proving Lemma 5.4 we need the following expansion for ∂g̃λ

∂y1
at y1 = 0.

Lemma 5.6. Assume N = 2 and let K > 1. Then for some suitably small δ > 0 we have

∂g̃λ

∂y1
(ξ1, η,0) = κ ′(0)g(ξ1, η) + O

(
1 + |ξ1|

λ

)
(5.9)

for |ξ1| � δλ, K−1 � η � K , where

g(ξ1, η) = ξ2
1

ξ2
1 + 3η2

(ξ2
1 + η2)2

− ηξ2
1

ξ2
1 + η2

− 2ξ2
1

∞∫
0

e−t

ξ2
1 + (η + t)2

dt.

Proof. The calculation is analogous to that in Lemma 2.4. In particular, recalling the notation in
that lemma and using that b ≡ 1 we have

−g̃λ =
[

∂

∂ν
+ λb(x)

]
Ĝλ(x, y) =

[
− ∂

∂xN

+ λ

]
Ĝλ + a(x′) · ∇Ĝλ

:= g1λ + g2λ.

For g1λ we had the formula

g1λ = −
[

∂Γ

∂xN

(x − y) + ∂Γ

∂xN

(x − y∗)
]

+ λ
[
Γ (x − y) − Γ (x − y∗)

]
:= g̃1λ + ĝ1λ.

In terms of these new variables we have at ξ2 = ψλ(ξ1, y1)

g̃1λ = λ

[
ψλ(ξ1, y1) − η

ξ2
1 + (ψλ(ξ1, y1) − η)2

+ ψλ(ξ1, y1) + η

ξ2
1 + (ψλ(ξ1, y1) + η)2

]
.

Differentiating with respect to y1 and setting then y1 = 0 yields

∂g̃1λ

∂y1
(ξ1, η,0) = λ

∂ψλ(ξ1,0)

∂y1

[
1

ξ2
1 + (ϕλ − η)2

+ 1

ξ2
1 + (ϕλ + η)2

− 2
(ϕλ − η)2

(ξ2 + (ϕ − η)2)2
− 2

(ϕλ + η)2

(ξ2 + (ϕ + η)2)2

]
,

1 λ 1 λ
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where for convenience we have written

ϕλ = ϕλ(ξ1) = λϕ(ξ1/λ) = ψλ(ξ1,0).

Expanding in powers of λ−1 yields:

1

ξ2
1 + (ϕλ − η)2

+ 1

ξ2
1 + (ϕλ + η)2

= 2

ξ2
1 + η2

+ O
(
λ−2)

and

(ϕλ − η)2

(ξ2
1 + (ϕλ − η)2)2

+ (ϕλ + η)2

(ξ2
1 + (ϕλ + η)2)2

= 2η2

(ξ2
1 + η2)2

+ O
(
λ−2).

Therefore, using (5.8) we obtain

∂g̃1λ

∂y1
(ξ1, η,0) = a1ξ

2 ξ2
1 − η2

(ξ2
1 + η2)2

+ O

(
1 + |ξ1|

λ

)
.

The other terms are all similar:

∂ĝ1λ

∂y1
(ξ1, η,0) = a1

ηξ2
1

ξ2
1 + η2

+ O

(
1 + |ξ1|

λ

)
and

g2λ = −2a1
ξ2

1

ξ2
1 + η2

+ 2a1ξ
2
1

∞∫
0

e−t

ξ2
1 + (η + t)2

dt + O

(
1 + |ξ1|

λ

)
. �

Proof of Lemma 5.4. With the same argument as in Lemma 4.1 we can construct a smooth
function v in H satisfying

�v = 0 in H,

− ∂v

∂ξ2
+ v = κ ′(0)g(·, η) on ∂H.

Indeed, since

lim|ξ |→+∞g(ξ, η) = −1 − η

we define

v = κ ′(0)(−1 − η + v1) where v1(ξ, η) = 1

d2

∫
G(ζ, ξ)g1(ζ, η) dζ
∂H
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with g1 = κ ′(0)(g+ 1 + η). Then, using Lemma 4.2 we have

lim|ξ |→+∞v(ξ) = −κ ′(0)(1 + η).

Note that

v
(
(0, η), η

) = κ ′(0)v(η), (5.10)

where v is the function defined in (4.8). Define

ṽ(ξ, η) = v
(
Tλ(ξ), η

)
, ξ ∈ Ωλ ∩ Bδλ,

where

Tλ(ξ1, ξ2) = (
ξ1, ξ2 − ϕλ(ξ1)

)
.

Let

w(ξ,η) = λ
∂ũλ

∂y1
(ξ, η,0). (5.11)

Then w is harmonic in Ωλ ∩ Bδλ. Since λ(∂ũλ

∂ν
+ ũ) = g̃λ we obtain the following boundary

condition for w

∂w

∂ν
+ w = ∂g̃λ

∂y1
− λ

∂ũλ

∂ξ1

∂ν1

∂y1
− λ

∂ũλ

∂ξ2

∂ν2

∂y1
on ∂Ωλ ∩ Bδλ,

where we have written ν = (ν1, ν2).
Observe that by (5.9), the definition of v and a calculation similar to (4.18) we have

∂(ṽ − w)

∂ν
+ ṽ − w = −λ

∂ũλ

∂ξ1

∂ν1

∂y1
− λ

∂ũλ

∂ξ2

∂ν2

∂y1
+ O

(
1 + |ξ1|

λ

)
on ∂Ωλ ∩ Bδλ.

Now we just need to estimate λ∂ũλ

∂ξ1

∂ν1
∂y1

and λ∂ũλ

∂ξ2

∂ν2
∂y1

. By direct computation

∂ν1

∂y1

∣∣∣∣
y1=0

= ∂2ψλ

∂y1ξ1

(
1 +

(
∂ψλ

∂ξ1

)2)−3/2

= O

(
1 + |ξ1|

λ

)
(5.12)

by a formula similar to (5.8). Similarly

∂ν2

∂y1

∣∣∣∣
y1=0

= ∂2ψλ

∂y1ξ1

∂ψλ

∂ξ1

(
1 +

(
∂ψλ

∂ξ1

)2)−3/2

= O

(
1 + |ξ1|2

λ2

)
. (5.13)

On the other hand, from (4.19) it follows that

λ
∂ũλ = O

(
1 + |ξ1|α

α

)
, λ

∂ũλ = O

(
1 + |ξ1|α

α

)

∂ξ1 λ ∂ξ2 λ
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with 0 < α < 1. Hence

λ
∂ũλ

∂ξ1

∂ν1

∂y1
+ λ

∂ũλ

∂ξ2

∂ν2

∂y1
= O

(
1 + |ξ1|

λ

)
.

Then using the barrier ū constructed in Lemma 4.4 and the maximum principle we deduce

|w − ṽ| � Cū in ∂Ωλ ∩ Bδλ

and this implies that for any R > 0

∣∣w(ξ,η) − ṽ(ξ, η)
∣∣ � CRα

λα
for ξ ∈ Ωλ, |ξ | � R.

Using now (5.10), (5.11) and the previous estimate we deduce (5.5). �
Now let us turn out attention to Proposition 5.2.

Proof of Proposition 5.2. Again we assume that 0 ∈ ∂Ω and the exterior unit normal vector at
0 points down, that is ν(0) = −e2. At a point x close to ∂Ω of the form x = (0, x2) the normal
direction is given by −e2 and hence

∇uλ(x, x) · ν(x̂) = −
[
∂uλ(x, x)

∂x2
+ ∂uλ(x, x)

∂y2

]
.

By the chain rule, and evaluating at a point x close to ∂Ω of the form x = (0, x2) with x2 = η/λ

we have

∂uλ

∂x2
(x, x) = λ

∂ũλ

∂ξ2

(
(0, η), η,0

)
and

∂uλ

∂y1
(x, x) = λ∂ηũλ

(
(0, η), η,0

)
.

By Lemmas 4.5 and 4.6

∂uλ

∂x2
(x, x) = ∂ṽ

∂ξ2

(
(0, η), η,0

) + O

(
1

λα

)
,

∂uλ

∂y1
(x, x) = ∂ṽ

∂η

(
(0, η), η,0

) + O

(
1

λα

)
uniformly for K−1 � η � K . Hence

∇uλ(x, x) · ν(x̂) = −κ(x̂)v′(η) + O

(
1

λα

)
. �
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6. Locating critical points of Rλ when b ≡ 1

Proof of Theorem 1.3. Let y0 ∈ ∂Ω be a fixed point. We work with x, y in a neighborhood
BR/λ(y0) ∩ Ω where R > 0 is fixed suitably large. For x, y in this neighborhood, by Lemma 4.4

uλ(x, y) = λN−3(N − 1)κ(x̂)v
(
λd(x)

) + O
(
λ−α

)
, x, y ∈ BR/λ(y0). (6.1)

We will show now asymptotic formulas (1.6). We begin by noticing that the right-hand side of
(6.1) depends on Ω only through the mean curvature κ at x̂, appearing as a multiplicative factor.
Therefore replacing Ω with a ball BR , such that ∂BR is tangential to ∂Ω and R = 1

κ(x̂)
will

lead to the same formula for vλ. To determine vλ we will use the fact that the Green function
Gλ,R(x, y) for a ball with corresponding Robin boundary condition is known explicitly:

−�Gλ,R = dNδy, in BR(0),

∂Gλ,R

∂ν
+ λGλ,R = 0, on ∂BR.

Let us consider first the case N = 2. As it can be verified directly the following formula holds

Gλ,R(x, y) = − log|x − y| + log

∣∣∣∣(x − y∗) |y|
R

∣∣∣∣ + 1

λR

+ 2

R∫
0

(
1 − s

R

)λR
∂

∂s
log

∣∣∣∣x(1 − s

R

)
− y∗

∣∣∣∣ds, (6.2)

where y∗ = R2y

|y|2 (see Appendix B). We have

Sλ(x, y) = Gλ,R + log|x − y|,

and Rλ(y) = Sλ(y, y). We will find an asymptotic formula for Rλ in terms of powers of 1/λ

assuming that y is a point such that λd(y) ∈ (K−1,K), for some fixed K > 0. We can write

y = ŷ − ŷ

R
d(y) = ŷ(1 − εδ),

where for convenience we have denoted ε = 1
λR

and δ = λd(y). In terms of ε and δ we get the
following formula

Rλ(y) = − log 2λ + log δ + 2

∞∫
0

e−t dt

t + 2δ

+ ε

[
1 − δ

2
−

∞∫
e−t t2 dt

t + 2δ
− 6δ2

∞∫
e−t dt

(t + 2δ)2

]
+ O

(
ε2).
0 0
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Denoting the O(ε) term above by ṽ(δ) we see, since ε = 1/Rλ, that vλ(d(y)) = ṽ(λd(y)) and
the required formula follows. A straightforward calculation involving integration by parts shows
that in fact

ṽ(δ) = − δ

2
− 2δ2

∞∫
0

e−t dt

(t + 2δ)2
.

An important consequence of this last formula is that we have vλ(d(y)) < 0, for d(y) � K−1.
Now let us assume that N � 3. The Green function Gλ,R can be written explicitly (see Ap-

pendix B)

Gλ,R(x, y) = |x − y|2−N −
(

1 − N − 2

λR

)( |y|
R

)2−N

|x − y∗|2−N

−
(

2 − N − 2

λR

)( |y|
R

)2−N
R∫

0

(
1 − s

R

)λR
∂

∂s

∣∣∣∣x(1 − s

R

)
− y∗

∣∣∣∣2−N

ds. (6.3)

When N � 3 an argument similar to the previous one yields the formula

v(θ) = (2θ)2−N(N − 2)ṽ(2θ),

where

ṽ(t) = 1 − θ

2
+ 1

2

∞∫
0

e−ts t (N − 1)(1 + 4s)

(1 + s)N

−
∞∫

0

e−ts (N − 2) + t (2 + ts2)

(1 + s)N−1
ds. (6.4)

We write

ṽ(t) = 1 − t

4
+ t (N − 1)

2
I0,N−1(t) + 3t (N − 1)

2
I1,N (t)

− (N − 2 + 2t)I0,N−1(t) − t2I2,N−1, (6.5)

where

Ij,N (t) =
∞∫

0

e−ts sj

(1 + s)N
ds. (6.6)

Using the relations
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Ij+1,N+1 = Ij,N − Ij,N+1,

I0,N = 1

N − 1
− t

N − 1
I0,N−1,

and integration by parts we get

−t2I2,N−1(t) = −N + 3 − t + [−2 − (N − 4)(N − 1) − 2t (N − 2)t − t2]I0,N−1(t),

and

ṽ(t) = N − 2 − 3t

4
+

[
t2

2
− (N − 2)2

]
I0,N−1(t). (6.7)

The proof is completed. �
Before giving the proof of Theorem 1.2 we need a technical but crucial result.

Lemma 6.1. Let N � 3 and consider the functions hλ and v defined in (1.5) and (1.6). Then h′
λ

and v have no zero in common in the positive real axis, that is v(θ) �= 0, whenever h′
λ(θ) = 0

and θ > 0.

We give the proof of this fact in Appendix C.

Proof of Theorem 1.2. Let y0 ∈ ∂Ω be a non-degenerate critical point of the mean curvature κ .
In the proof of this theorem we take advantage of the asymptotic formula of Theorem 1.3 to
relate the topological degree of the ∇Rλ in a suitable small set close to y0 with that of the ∇κ .

Note that as a consequence of (5.1) and (5.2) we have, writing ∇T as the tangential gradient

∇TRλ(x) = λN−3(N − 1)∇κ(x̂)v
(
λd(x)

) + O
(
λN−3−α

)
(6.8)

and 〈∇Rλ(x), ν
〉 = −λN−1h′

λ

(
λd(x)

) − λN−2(N − 1)κ(x̂)v′(λd(x)
) + O

(
λN−2−α

)
(6.9)

uniformly for K−1 � λd(x) � K .
Since y0 ∈ ∂Ω is a non-degenerate critical point of κ , there exist c > 0, σ > 0 such that∣∣∇κ(x̂)

∣∣ � c|x̂ − y0| for all x̂ such that |x̂ − y0| � σ.

On the other hand, we know that hλ has a unique minimum θ0 > 0, which is non-degenerate, and
hence by taking c > 0, σ > 0 smaller if necessary, we have∣∣h′

λ(θ)
∣∣ � c|θ − θ0| for all |θ − θ0| � σ.

Using that v< 0 in R if N = 2 or Lemma 6.1 if N � 3, we see that selecting σ > 0 smaller we
can achieve

inf
∣∣ v(θ)

∣∣ > 0. (6.10)

θ∈[θ0−σ,θ0+σ ]
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We can also assume σ < θ0. Let 0 < β < α and consider the compact set

Kλ = {
x ∈ Ω

∣∣ ∣∣λd(x) − θ0
∣∣ � σ, |x̂ − y0| � λ−β

}
.

Now define

R0
λ(x) = λN−2hλ

(
λd(x)

) + λN−3(N − 1)κ(x̂)v
(
λd(x)

)
and for 0 � t � 1

Rt
λ = tRλ + (1 − t)R0

λ.

We observe that there are λ0 > 0 and c′ > 0 such that if λ � λ0 and x ∈ ∂Kλ then:

(1) if |λd(x) − θ0| = σ by (6.9) we have∣∣∇Rt
λ(x)

∣∣ � λN−1c′;

(2) if |x̂ − y0| = λ−β from (6.8) and (6.10) we deduce∣∣∇Rt
λ(x)

∣∣ � λN−3−βc′.

From (1) and (2), by degree theory Rλ = R1
λ has a critical point in the set Kλ, and hence it lies

at distance λ−β from y0. This completes the proof of the theorem. �
7. Critical points of Rλ when b is not a constant

As a consequence of (2.36) we have the following expansion:

Rλ(x) = λN−2hλ

(
λd(x), b(x̂)

) + O
(
λN−3)

uniformly for K−1 � λd(x) � K , where K > 1 and hλ(θ, b) is defined in (2.6).
We need similar estimates for the gradient of Rλ.

Lemma 7.1. Given K > 1, the following estimates

∇TRλ(x) = λN−2 ∂hλ

∂b

(
λd(x), b(x̂)

)∇b(x̂) + O
(
λN−3), (7.1)

〈∇Rλ, ν(x̂)
〉 = −λN−1 ∂hλ

∂θ

(
λd(x), b(x̂)

) + O
(
λN−2) (7.2)

hold uniformly for K−1 � λd(x) � K .

Proof. To prove (7.1) it will be sufficient to show that

∇Tuλ(x, x) = O
(
λN−3) (7.3)

uniformly for K−1 � λd(x) � K .
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As in the proof of Proposition 5.1 we will give the details only for dimension N = 2. We
consider the geometric set up as in Section 5. We have by (5.6) and (5.7)

∇Tuλ(x, x) = a0
∂ũλ

∂ξ1

(
(0, η), η,0

)
η + ∂y1 ũλ

(
(0, η), η,0

)
for a point x = (0, η/λ), with the estimate being uniform for K−1 � η � K . Observe that by
standard elliptic estimates, and since ũλ(ξ, η, y1) = O(λ−1) for |ξ | � δλ, K−1 � η � K , we
have

∂ũλ

∂ξ1

(
(0, η), η,0

) = O
(
λ−1)

for η in this region. Now we need to estimate ∂ũλ

∂y1
in the case of non-constant b.

Define b̃λ by

b̃λ(ξ, y1) = b

(
1

λ
R(y1)

−1ξ + (
y1, ϕ(y1)

))
or equivalently

b(x) = b̃
(
λR(y1)

(
x − (

y1, ϕ(y1)
))

, y1
)
. (7.4)

Differentiating with respect to y1, setting y1 = 0 yields

0 = a0
∂b̃λ

∂ξ2
ξ1 + a0

∂b̃λ

∂ξ1
ξ2 − λa0

∂b̃λ

∂ξ1
+ ∂b̃λ

∂y1
. (7.5)

On the other hand, differentiating (7.4) with respect to xj and setting y1 = 0 gives

∂b

∂xj

= λ
∂b̃λ

∂ξj

.

Since b is smooth

∂b̃λ

∂ξj

= O
(
λ−1)

and this combined with (7.5) implies

∂b̃λ

∂y1
(ξ,0) = O(1), ∀ξ ∈ ∂Ωλ, |ξ | � δλ. (7.6)

Let w = ∂ũλ

∂y1
at y1 = 0. Then w satisfies

�w = 0 in Ωλ ∩ Bδλ,

λ

(
∂w + b̃λw

)
= ∂g̃λ − ũλ

∂b̃λ − λ
∂ũλ ∂ν1 − λ

∂ũλ ∂ν2 on ∂Ωλ ∩ Bδλ.

∂ν ∂y1 ∂y1 ∂ξ1 ∂y1 ∂ξ2 ∂y1
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But observe that from (7.6) and since ũλ(ξ, η, y1) = O(λ−1)

ũλ

∂b̃λ

∂y1
= O

(
λ−1) on ∂Ωλ ∩ Bδλ.

Similarly, since ∇ξ ũλ = O(λ−1) for ξ ∈ Ωλ ∩ Bδλ and using (5.12), (5.13) we see that

λ
∂ũλ

∂ξ1

∂ν1

∂y1
+ λ

∂ũλ

∂ξ2

∂ν2

∂y1
= O(1) on ∂Ωλ ∩ Bδλ.

A calculation similar to the one in Lemma 5.6 gives, for the case of a non-constant b

∂g̃λ

∂y1
= O(1) on ∂Ωλ ∩ Bδλ.

Then Lemma 2.6 implies that w = O(1) in Ωλ ∩ Bδλ, which proves that

∂ũλ

∂y1
= O

(
λ−1) in Ωλ ∩ Bδλ.

Hence (7.3) follows.
The proof of (7.2) is analogous, using the formula

∇uλ(x, x) · ν(x̂) = −
[
∂uλ(x, x)

∂x2
+ ∂uλ(x, x)

∂y2

]
and that at a point x close to ∂Ω of the form x = (0, x2) with x2 = η/λ we have

∂uλ

∂x2
(x, x) = λ

∂ũλ

∂ξ2

(
(0, η), η,0

)
and

∂uλ

∂y1
(x, x) = λ∂ηũλ

(
(0, η), η,0

)
.

This time one may verify

∂uλ

∂x2
(x, x) = O(1) and

∂uλ

∂y1
(x, x) = O(1). �

Proof of Theorem 1.4. The proof is similar to the one of Theorem 1.2. The main difference is
that in this case the function hλ(x, x) is dominating over uλ(x, x). To set up the degree theory
argument we define

R0
λ(x) = λN−2hλ

(
λd(x), b(x̂)

)
and for 0 � t � 1

Rt
λ = tRλ + (1 − t)R0

λ.

Let x0 ∈ ∂Ω be a non-degenerate critical point of b. Notice that by Lemma 2.1 the function R0
λ(x)

has a critical point xλ such that its projection x̂λ is exactly x0 and d(xλ) = O(λ−1). Then using
degree theory in an appropriate set around xλ (as in the proof of Theorem 1.2) and Lemma 7.1
the theorem follows. �
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Appendix A

Proof of Lemma 4.2. We will denote

K(ζ ′;x, t) = et (x − t)

(|ζ ′|2 + (x − t)2)N/2
, ζ ′ ∈ R

N−1, x > 0.

To prove (4.4)–(4.6) we need first to estimate

J
(|ξ ′ − ζ ′|, ξN

) =
0∫

−∞

et (ξN − t)

(|ζ ′ − ξ ′|2 + (ξN − t)2)N/2
dt =

0∫
−∞

K(ζ ′ − ξ ′; ξN , t) dt.

We start with the case ξN � 1.

Claim 1. Assuming ξN � 1 we have

J
(|ξ ′ − ζ ′|, ξN

)
� C min

(
ξN/|ξ ′ − ζ ′|N, ξ1−N

N

)
. (A.1)

Proof of the claim. Assume N � 3 and write J = J1 + J2 where

J1 =
−1∫

−∞
K(ζ ′ − ξ ′; ξN , t) dt, J2 =

0∫
−1

K(ζ ′ − ξ ′; ξN , t) dt.

We estimate

J1 =
−1∫

−∞

et (ξN − t)

(|ζ ′ − ξ ′|2 + (ξN − t)2)N/2
dt �

−1∫
−∞

et

(ξN − t)N−1
dt � C

ξN−1
,

and also

J1 =
−1∫

−∞

et (ξN − t)

(|ζ ′ − ξ ′|2 + (ξN − t)2)N/2
dt �

−1∫
−∞

et (ξN − t)

|ζ ′ − ξ ′|N dt � C
ξN

|ξ ′ − ζ ′|N .

These two inequalities show that

J1 � C min
(
ξN/|ξ ′ − ζ ′|N, ξ1−N

)
.
N
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Now J2 is bounded by

J2 �
0∫

−1

(ξN − t)

(|ζ ′ − ξ ′|2 + (ξN − t)2)N/2
dt.

Changing variables we get

J2 � |ξ ′ − ζ ′|2−N

(ξN+1)/|ξ ′−ζ ′|∫
ξN/|ξ ′−ζ ′|

s

(1 + s2)N/2
ds.

Let us now assume that N > 2. If ξN/|ξ ′ − ζ ′| � 1 then

J2 � |ξ ′ − ζ ′|N−2

2 − N

[(
1 + ξ2

N

|ζ ′ − ξ ′|2
)−N/2+1

−
(

1 + (ξN + 1)2

|ζ ′ − ξ ′|2
)−N/2+1]

� C|ξ ′ − ζ ′|2−N

( |ξ ′ − ζ ′|N
ξN+1
N

)
� Cξ1−N

N .

If ξN/|ξ ′ − ζ ′| � 1 then

J2 � C|ξ ′ − ζ ′|2−N

(
ξN

|ξ ′ − ζ ′|2
)

= C
ξN

|ξ ′ − ζ ′|N .

Thus we deduce

J2 � C min
(
ξN/|ξ ′ − ζ ′|N, ξ1−N

N

)
.

Case N = 2 is similar. This ends the proof of the claim. �
Proof of (4.4)–(4.6) under the assumption ξN � 1ξN � 1ξN � 1. When ξN � 1 then of course

0∫
−∞

K(ζ ′ − ξ ′; ξN , t) dt = J (|ξ ′ − ζ ′|, ξN) � 1

ξN−1
N

,

and hence

∫
|ζ ′−ξ ′|�1

0∫
−∞

K(ζ ′ − ξ ′; ξN , t) dt dζ ′ � C

(1 + |ξ ′|μ)ξN−1
N

. (A.2)

Thus, in the sequel we do not need to consider integrals over |ζ ′ − ξ ′| � 1.
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Using (A.1) we see that we have to estimate∫
RN−1

min
(
ξN/|ξ ′ − ζ ′|N, ξ1−N

N

) 1

1 + |ζ ′|μ dζ ′ = A + B,

where

A = ξ1−N
N

∫
1�|ξ ′−ζ ′|�ξN

1

1 + |ζ ′|μ dζ ′,

B = ξN

∫
|ξ ′−ζ ′|�ξN

1

|ξ ′ − ζ ′|N(1 + |ζ ′|μ)
dζ ′.

Let us estimate first A changing variables ζ ′ = |ξ ′|z:

A = ξ1−N
N |ξ ′|N−1

∫
1/|ξ ′|�|z−e|�ξN/|ξ ′|

1

1 + |ξ ′|μ|z|μ dz,

where e = ξ ′/|ξ ′| is a unit vector.
Suppose first that ξN/|ξ ′| � 1/2. Then in the region of integration |z| � 1/2 and estimating A

by the volume of the ball times the maximum of the integrand we find

A � C

1 + |ξ ′|μ � C′

1 + |ξ |μ .

Now suppose that ξN/|ξ ′| � 1/2. Then

A � ξ1−N
N |ξ ′|N−1

∫
|z−e|�3ξN/|ξ ′|

1

1 + |ξ ′|μ|z|μ dz

= ξ1−N
N |ξ ′|N−1

3ξN/|ξ ′|∫
0

rN−2

1 + |ξ ′|μrμ
dr

= ξ1−N
N

3ξN∫
0

rN−2

1 + rμ
dr.

If μ < N − 1 then

A � Cξ
−μ
N � C

1 + |ξ |μ .

If μ = N − 1 then

A � Cξ
−μ
N max

(
1, log |ξN |) � C max(1, log |ξ |)

μ
.

1 + |ξ |
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If μ > N − 1 then

A � Cξ1−N
N � C

1 + |ξ |N−1
.

With the same change of variables as before:

B = ξN

|ξ ′|
∫

|z−e|�ξN /|ξ ′|

1

|z − e|N(1 + |ξ ′|μ|z|μ)
dz.

Suppose ξN/|ξ ′| � 2. Then |z − e| � |z|/2 and since 1 + μ > 1

B � C
ξN

|ξ ′|1+μ

∫
|z|�ξN/(3|ξ ′|)

1

|z|N+μ
dz = Cξ

−μ
N � C

1 + |ξ |μ .

Next assume that ξN/|ξ ′| � 2. We write

B = B1 + B2 + B3,

where

B1 = ξN

|ξ ′|
∫

ξN/|ξ ′|�|z−e|�1/2

1

|z − e|N(1 + |ξ ′|μ|z|μ)
dz,

B2 = ξN

|ξ ′|
∫

1/2�|z−e|�2

1

|z − e|N(1 + |ξ ′|μ|z|μ)
dz,

B3 = ξN

|ξ ′|
∫

2�|z−e|

1

|z − e|N(1 + |ξ ′|μ|z|μ)
dz.

Arguing as in the previous case,

B3 = ξN

|ξ ′|
∫

2�|z−e|

1

|z − e|N(1 + |ξ ′|μ|z|μ)
dz

� C
ξN

|ξ ′|1+μ

∫
|z|�1/3

1

|z|N+μ
dz

� C
ξN

|ξ ′|1+μ

� C|ξ ′|−μ � C

μ
.

1 + |ξ |
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In the region of integration for B1 we have, |z| � 1/2,

B1 � C
ξN

|ξ ′|1+μ

∫
ξN/|ξ ′|�|z−e|�1/2

1

|z − e|N dz = C

|ξ ′|μ � C

1 + |ξ |μ .

Finally, for B2:

B2 � C
ξN

|ξ ′|
∫

|z|�3

1

1 + |ξ ′|μ|z|μ dz = C
ξN

|ξ ′|N
∫

3|ξ ′|

rN−2

1 + rμ
dr.

We see that if μ < N − 1 then

B2 � C
ξN

|ξ ′|1+μ
� C

1 + |ξ |μ .

We see that if μ = N − 1 then

B2 � C
max(1, log |ξ |)

1 + |ξ |N−1

and if μ > N − 1 then

B2 � C

1 + |ξ |N−1
.

The proof in the case ξN � 1 is similar, using

Claim 2. Assume ξN � 1. Then, if N = 2

J
(|ξ1 − ζ1|, ξ2

)
� C

{
1 − log |ζ1 − ξ1| if |ζ1 − ξ1| � 1,

|ζ1 − ξ1|−2 if |ζ1 − ξ1| � 1

and if N � 3

J
(|ξ ′ − ζ ′|, ξN

)
� C

{ |ζ ′ − ξ ′|2−N if |ζ ′ − ξ ′| � 1,

|ζ ′ − ξ ′|−N if |ζ ′ − ξ ′| � 1.

Proof of the claim. If N = 2 then

J
(|ζ1 − ξ1|, ξ2

) =
0∫

−∞

et (ξ2 − t)

(ζ1 − ξ1)2 + (ξ2 − t)2
dt = J1 + J2, (A.3)

where

J1 =
−1∫

et (ξ2 − t)

(ζ1 − ξ1)2 + (ξ2 − t)2
dt, J2 =

0∫
et (ξ2 − t)

(ζ1 − ξ1)2 + (ξ2 − t)2
dt.
−∞ −1
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We have

J1 � 1

(ζ1 − ξ1)2 + 1

−1∫
−∞

et
(
1 + |t |)dt = C

(ζ1 − ξ1)2 + 1

and

J2 �
1∫

0

(ξ2 + t)

(ζ1 − ξ1)2 + (ξ2 + t)2
dt =

1+ξ2∫
ξ2

t

(ζ1 − ξ1)2 + t2
dt

�
2∫

0

t

(ζ1 − ξ1)2 + t2
dt

=
2/|ζ1−ξ1|∫

0

r

1 + r2
dr

� C

{
1 − log |ζ1 − ξ1| if |ζ1 − ξ1| � 1,

|ζ1 − ξ1|−2 if |ζ1 − ξ1| � 1.

The case N � 3 is similar. �
Appendix B

In this appendix we will verify formulas (6.2) and (6.3). Since the cases N = 2 and N > 2 are
similar we will consider the case N > 2. Integrating by parts (6.3) we have also the following
formula for Gλ:

Gλ(x, y) = |x − y|2−N +
( |y|

R

)2−N

|x − y∗|2−N

− λ

(
2 − N − 2

λR

)( |y|
R

)2−N
R∫

0

(
1 − s

R

)λR−1∣∣∣∣x(1 − s

R

)
− y∗

∣∣∣∣2−N

ds. (B.1)

To evaluate Gλ on ∂BR we use formula (6.3), which yields, for x ∈ ∂BR

Gλ(x, y) = N − 2

λR
|x − y|2−N − (N − 2)

(
2 − N − 2

λR

)( |y|
R

)2−N

×
R∫

0

[(
1 − s

R

)λR∣∣∣∣x(1 − s

R

)
− y∗

∣∣∣∣−N〈
x

(
1 − s

R

)
− y∗, x

R

〉]
ds.

To compute ∂Gλ on ∂BR we use formula (B.1):

∂ν
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∂Gλ

∂ν
(x, y) = 2 − N

R
|x − y|2−N + λ(N − 2)

(
2 − N − 2

λR

)( |y|
R

)2−N

×
R∫

0

[(
1 − s

R

)λR∣∣∣∣x(1 − s

R

)
− y∗

∣∣∣∣−N〈
x

(
1 − s

R

)
− y∗, x

R

〉]
ds.

Hence

∂Gλ

∂ν
+ λG = 0 on ∂BR.

Appendix C

Proof of Lemma 6.1. Define ṽ(t) as in (4.14) so that

v(θ) = (2θ)2−N(N − 2)ṽ(2θ)

and define also

h̃λ(t) = t2−N − 2

∞∫
0

e−s 1

(t + s)N−2
ds

so that

hλ(θ) = λN−2h̃λ(2θ).

Then to show that h′
λ and v have no common positive zeros is equivalent to showing the same

property for the functions h̃′
λ and ṽ.

Observe that

h̃′
λ(t) = (N − 2)

(
−t1−N + 2

∞∫
0

e−s 1

(t + s)N−1
ds

)

= (N − 2)
(−t1−N + 2t2−NI0,N−1(t)

)
, (C.1)

where I0,N−1 is defined in (6.6).
Now suppose that h̃′

λ(t0) = 0 for some t0 > 0. Then thanks to (C.1) we have

I0,N−1(t0) = 1

2t0
. (C.2)

Replacing this relation in (6.7) we then find that

N − 2 − 3t0 +
[
t2
0 − (N − 2)2

]
1 = 0
4 2 2t0
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which implies

t0 = N − 2.

But we claim that

(N − 2)I0,N−1(N − 2) <
1

2
. (C.3)

Indeed, notice that

tI0,N−1(t) = t1−N

∞∫
0

e−s 1

(t + s)N−1
ds =

∞∫
0

e−s

(
t

t + s

)N−1

ds

and therefore

(N − 2)I0,N−1(N − 2) =
∞∫

0

e−s

(
1

1 + s
N−2

)N−1

ds.

But it is a standard inequality that(
1 + s

N − 2

)N−2

< es ∀N � 3, ∀s > 0.

This implies

(N − 2)I0,N−1(N − 2) <

∞∫
0

(
1

1 + s
N−2

)2N−3

ds = 1

2
,

which proves our claim (C.3). But (C.3) contradicts (C.2). �
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