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Let B be the unit ball in R
N , N � 5 and n be the exterior unit

normal vector on the boundary. We consider radial solutions to

�2u = λeu in B, u = 0 and
∂u

∂n
= 0 on ∂ B,

where λ � 0. We show that there exists a unique λS > 0 such that
if λ = λS there is a radial singular solution. If 5 � N � 12 then for
λ = λS there exist infinitely many regular radial solutions and as
λ → λS the number of such solutions goes to infinity. If N � 13
we prove uniqueness of smooth radial solutions. We derive similar
results for the same equation with Navier boundary conditions.

© 2009 Elsevier Inc. All rights reserved.

1. Summary

In this paper we study radial solutions to the fourth order problem

⎧⎨
⎩

�2u = λeu in B,

u = ∂u

∂n
= 0 on ∂ B,

(1)

where B is the unit ball in R
N , N � 5, n is the exterior unit normal vector and λ � 0 is a parameter.
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Recently nonlinear higher order equations with a supercritical behavior have attracted much in-
terest. See Arioli, Gazzola and Grunau [1], Arioli, Gazzola, Grunau and Mitidieri [2], Dávila, Dupaigne,
Guerra and Montenegro [15] for the exponential nonlinearity, Berchio and Gazzola [7], Berchio, Gaz-
zola and Mitidieri [8] for some properties for general nonlinearities, Ferrero and Grunau [18], Ferrero,
Grunau and Karageorgis [19], Ferrero and Warnault [20] for power nonlinearities, Cassani, do O and
Ghoussoub [10], Cowan, Esposito, Ghoussoub and Moradifam [14], Guo and Wei [29,30] and also [20]
for singular nonlinearities. Some of these works treat the problem in a ball [2,10,14,15,18–20,29,30]
and others in entire space [1,19,30,33].

The central result in this work is the existence of infinitely many radial smooth solutions of (1) for
some λ > 0 if 5 � N � 12. This value of λ is precisely the one for which a singular solution exists, so
first we study singular solutions.

Theorem 1.1. Assume N � 5. Let λ > 0 and suppose u ∈ C4((0,1)), u � 0 satisfies

�2u = λeu in B \ {0}. (2)

Then either:

(a) u can be extended as a C∞(B) and (2) holds in B, or
(b) u is singular at r = 0 and satisfies

lim
r→0

u(r) + 4 log(r) = log
8(N − 2)(N − 4)

λ
, (3)

lim
r→0

ru′(r) exists. (4)

We prove this in Section 3. In [2] the authors call u a weakly singular solution to (2) if it sat-
isfies (4) and is singular. It turns out that this definition is natural for space phase analysis, after
transforming the problem to a suitable first order autonomous system. From the PDE point of view,
the following definition is also natural. We say that u is a weak solution of (1) if

⎧⎪⎨
⎪⎩

u ∈ H2
0(B), eu ∈ L1(B) and∫

B

�u�ϕ = λ

∫
B

euϕ ∀ϕ ∈ C∞
0 (B). (5)

It is possible to show that weakly singular solutions are also weak solutions. Since weak solutions in
the sense (5) are nonnegative (see [2]) as a consequence of Theorem 1.1 we are showing that both
notions coincide for radial functions.

Combining the results of [2] and [15], some of which are obtained by a computer assisted proof,
we know that for all N � 5, (1) has a singular solution for some λ > 0. We give a new proof of the
existence, which is not computer assisted, and show its uniqueness.

Theorem 1.2. Assume N � 5. There exists a unique λS > 0 such that (1) with λ = λS admits a radial singular
solution and this singular solution is unique in the class of radial solutions.

Let λ∗ denote the largest value of λ � 0 such that (1) has a radial classical solution. Then λ∗ > 0
and finite, see [2]. Many authors have studied what happens to solutions when λ = λ∗ (for this see
[2,15]). With respect to multiplicity of solutions we have the following:

Theorem 1.3. Assume 5 � N � 12. Then λS < λ∗ and (1) with λ = λS admits infinitely many regular radial
solutions. For λ �= λS then (1) has a finite number of regular radial solutions, and this number goes to infinity
as λ → λS .
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The fact that if 5 � N � 12 then λS < λ∗ is also a consequence of the results in [2] and [15].

Theorem 1.4. If N � 13 then λS = λ∗ and for all 0 < λ < λ∗ (1) has a unique radial solution, which is regular.
For λ = λ∗ there is a unique radial solution which is singular.

Let

C = {
(λ, u) ∈ (0,∞) × C4(B): u is radial and solves (1)

}
.

Following [30] we have:

Theorem 1.5. Assume N � 5. The set C is homeomorphic to (0,∞) and the identification can be done through
(λ, u) ∈ C 	→ u(0).

The inverse of the above identification can be extended continuously in a suitable topology to
[0,∞] as 0 	→ (0,0) and ∞ 	→ (λS , uS ) where uS is the unique singular solution of Theorem 1.2.

For the problem with Navier boundary conditions

{
�2u = λeu in B,

u = �u = 0 on ∂ B
(6)

we have similar results.

Theorem 1.6. Assume N � 5. There exists a unique λS > 0 such that (6) with λ = λS admits a radial singular
solution and this singular solution is unique in the class of radial solutions.

Theorem 1.7. Assume 5 � N � 12. Then (6) with λ = λS admits infinitely many regular radial solutions. For
λ �= λS then (6) has a finite number of regular radial solutions and the number of radial regular solutions goes
to infinity as λ → λS .

We prove the multiplicity results by phase space analysis, using ideas from the work of Bamón,
Flores, del Pino [3] and which were subsequently applied also in [17,21,22]. By a change of variables
we transform the ODE version of (1) into a reasonable first order 4-dimensional autonomous system,
which has 2 stationary points P1, P2. Some properties of this system, such as the local character of
P1, P2, were studied by Arioli, Gazzola, Grunau and Mitidieri [2]. We review this material in Section 2.
It is important in our argument to know that there exists a heteroclinic connection from P1 to P2.
This connection was found by Arioli, Gazzola and Grunau in [1], in the form of an entire solution of
�2u = eu with a special decay. We explain this in Section 4 and show that in dimensions 5 � N � 12
this connection near P2 is a spiral. In Section 5 we study some properties of the unstable manifold
at P2, which lead to the proof of Theorems 1.2 and 1.6. The proof of the multiplicity of solutions
asserted in Theorems 1.3 and 1.6 is in Section 6. Finally Section 7 is dedicated to the study of some
properties of the solution set C . In particular we prove there Theorems 1.4 and 1.5.

It is natural to ask whether the uniqueness result of Theorem 1.4 is true for problem (6). Using the
techniques in this work it is possible to show that if the extremal solution u∗ of (6) is singular, then
for all λ ∈ (0, λ∗) there is a unique radial solution. We conjecture that this is the case for all N � 13,
and the proof could be done using similar ideas as in [15].

The counterpart of the results in this paper for the classical problem

{−�u = λeu in B, (7)

u = 0 on ∂ B
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are well known. In dimension 1 this problem was first studied by Liouville [35], then by Bratu [9],
Chandrasekhar [11] and Frank-Kamenetskii [23]. Barenblatt [25] proved that in dimension 3 for λ = 2
there are infinitely many solutions, and Joseph and Lundgren [32] completed the description of the
classical solutions to (7) in all dimensions. The literature on second order problems like (7), including
other nonlinearities and general domains, is very extensive, see [4,34].

In a forthcoming work [16] we will address similar multiplicity results for the bilaplacian with
power-type nonlinearities.

2. Preliminaries

With the change of variables v(t) = u(r), r = et Eq. (1) is equivalent to

(∂t + N − 4)(∂t − 2)(∂t + N − 2)∂t v(t) = λev+4t for all t < 0 (8)

with the boundary conditions

v(0) = 0, v ′(0) = 0 (9)

and the behavior at −∞ given by

lim
t→−∞ v(t) ∈ R, lim

t→−∞ e−t v ′(t) = 0.

Let

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

v1(t) = λ

8(N − 2)(N − 4)
ev(t)+4t = λ

8(N − 2)(N − 4)
eu(et )+4t,

v2(t) = ∂t v(t) = et u′(et),
v3(t) = (∂t − 2 + N)v2(t) = e2t�u

(
et),

v4(t) = (∂t − 2)v3(t) = e3t(�u)′
(
et).

(10)

Then (8) becomes

⎧⎪⎪⎨
⎪⎪⎩

v ′
1 = v1(v2 + 4),

v ′
2 = −(N − 2)v2 + v3,

v ′
3 = 2v3 + v4,

v ′
4 = −(N − 4)v4 + 8(N − 2)(N − 4)v1

(11)

while (9) is equivalent to

v2(0) = 0, v1(0) = λ

8(N − 2)(N − 4)
. (12)

The only stationary points of the system (11) are

{
P1 = (0,0,0,0)

P2 = (
1,−4,−4(N − 2),8(N − 2)

)
.

(13)

Let V = (v1, . . . , v4). From Theorem 6 in [2] we learn that u is a regular solution of (1) if and only if
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lim
t→−∞ V (t) = P1

while u is a weakly singular solution if and only if

lim
t→−∞ V (t) = P2.

The linearization of (11) around the point P1 is given by Z ′ = M1 Z where

M1 =
⎡
⎢⎣

4 0 0 0
0 −(N − 2) 1 0
0 0 2 1
A 0 0 −(N − 4)

⎤
⎥⎦

and A = 8(N − 4)(N − 2). The eigenvalues of this matrix are 2, 4, −N + 4, −N + 2. Thus, if N � 5 then
P1 is a hyperbolic point with a 2-dimensional unstable manifold W u(P1) and a 2-dimensional stable
manifold W s(P1).

The linearization of (11) around P2 is given by Z ′ = M Z where

M =
⎡
⎢⎣

0 1 0 0
0 −(N − 2) 1 0
0 0 2 1
A 0 0 −(N − 4)

⎤
⎥⎦ (14)

and A = 8(N − 4)(N − 2). The eigenvalues of M are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν1 = 1

2

(
4 − N +√

M1(N) + M2(N)
)
,

ν2 = 1

2

(
4 − N −√

M1(N) + M2(N)
)
,

ν3 = 1

2

(
4 − N +√

M1(N) − M2(N)
)
,

ν4 = 1

2

(
4 − N −√

M1(N) − M2(N)
)

(15)

where

M1(N) = (N − 2)2 + 4, M2(N) = 4
√

(N − 2)2 + A.

Then

ν2 < 0 < ν1.

If 5 � N � 12 then M1(N)− M2(N) < 0 and ν3, ν4 are complex conjugate with nonzero imaginary part
and negative real part. If N � 13 all eigenvalues are real and ν3, ν4 are negative. For all N � 5, P2 is
a hyperbolic stationary point with a 1-dimensional unstable manifold W u(P2) and a 3-dimensional
stable manifold W s(P2).

Concerning the eigenvectors of M we have:
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Lemma 2.1. Let v(1), . . . , v(4) be the eigenvectors of M associated to ν1, . . . , ν4 . Then

v(k) = [
1, νk, νk(νk + N − 2), νk(νk + N − 2)(νk − 2)

]
. (16)

We have that v(1), v(2) are always real, and v(3), v(4) are complex conjugate if 5 � N � 12. Let us write
v(i) = (v(i)

1 , v(i)
2 , v(i)

3 , v(i)
4 ), i = 1, . . . ,4. If N � 3 then

v(1)
1 > 0, v(1)

2 > 0, v(1)
3 > 0, v(1)

4 > 0, (17)

and

v(2)
1 > 0, v(2)

2 < 0, v(2)
3 > 0, v(2)

4 < 0. (18)

Proof. That the vectors defined by (16) are eigenvector of M follows from a direct calculation. Let
v(1) = (t1, t2, t3, t4) an eigenvector for M with eigenvalue ν1. Then

t1 = 1 > 0, t2 = ν1 > 0,

t3 = (ν1 + N − 2)ν1 > 0, t4 = (ν1 − 2)(ν1 + N − 2)ν1 > 0.

In fact, since ν1 > 0, it is sufficient to prove that ν1 − 2 > 0. This holds if
√

M1(N) + M2(N) > N and
this is equivalent to A = 8(N − 2)(N − 4) > 0.

The proof of (18) is similar. �
It will be convenient to have the following result:

Lemma 2.2. The system (11) is C1-conjugate to its linearization around the point P2 .

Proof. We use a result of Belickiı̆ [5,6], see also the book [39, p. 25]. To apply it we need to verify
that no relation of the form Re(νi) = Re(ν j) + Re(νk) holds for different indices i, j,k in {1, . . . ,4}
such that Re(ν j) < 0 and Re(νk) > 0, where ν1, . . . , ν4 are the eigenvalues of M defined in (14). This
can be verified by calculation. �
3. Behavior of singular solutions

The purpose of this section is to prove Theorem 1.1. In what follows we assume that u ∈ C4(0,1),
u � 0 satisfies

�2u = 8(N − 2)(N − 4)eu in (0,1), (19)

where we have assumed, by using a scaling, that λ = 8(N − 2)(N − 4). That the interval is (0,1)

is not relevant for the next arguments. The arguments in this section are based on the work of
Ferrero and Grunau [18] where they show that radial singular solutions to a problem with power-
type nonlinearity are weakly singular for that problem.

Define v(t) = u(et), w(t) = v(t) + 4t for t � 0. We also let v1, . . . , v4 be defined by (10). We note
that w satisfies

w(4) + 2(N − 4)w ′′′ + (
N2 − 10N + 20

)
w ′′ − 2(N − 2)(N − 4)w ′

= 8(N − 2)(N − 4)
(
ew − 1

)
for all t < 0. (20)
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Lemma 3.1. If δ > 0 there exists a constant C depending only on δ such that if [a,b] ⊂ (−∞,0] is such that
w(t) � δ for all t ∈ [a,b] then b − a � C. A consequence is that

lim inf
t→−∞ w(t) � 0. (21)

Proof. We follow an idea of Mitidieri and Pokhozhaev [37], which has also been used in [1,18,24],
called the test-function method in these references.

We proceed by contradiction. We may suppose, by shifting time, that w(t) � δ for all t ∈ [−L,0]
for arbitrary large L > 0. Let φ ∈ C∞(R) be such that, 0 � φ � 1, φ(t) = 0 for t � −3, φ(t) > 0 for
t ∈ (−3,0), φ(t) = 0 for t � 0, φ(t) = 1 for t ∈ [−2,−1], and for i = 1,2,3,4

0∫
−3

(φ(i))2

φ
dt < +∞.

Let τ > 1 and φτ (t) = φ(t/τ ) and assume that 3τ � L. Let us rewrite Eq. (20) in the form

4∑
i=1

ai w(i)(t) = A
(
ew − 1

)
for t < 0 (22)

where A = 8(N − 2)(N − 4) and ai ∈ R. Multiplying Eq. (22) by φτ and integrating we find

4∑
i=1

ai(−1)i

0∫
−3τ

φ
(i)
τ w dt = A

0∫
−3τ

(
ew − 1

)
φτ dt. (23)

Let ε > 0 to be fixed later on. For all t > −3τ

∣∣wφ
(i)
τ

∣∣� εw2φτ + Cε
(φ

(i)
τ )2

φτ

so that from (23) we know that

A

0∫
−3τ

(
ew − 1

)
φτ dt � εK

0∫
−3τ

w2φτ dt + Cε K max
i=1,...,4

0∫
−3τ

(φ
(i)
τ )2

φτ
dt

where K = ∑4
i=1 |ai|. Since w(t) � δ, we can select ε > 0 sufficiently small so that A(ew − 1) −

εK w2 � δ/4 for all t ∈ [−3τ ,0]. It follows that

δ

4
τ � Cε K max

i=1,...,4

0∫
−3τ

(φ
(i)
τ )2

φτ
dt.

But

0∫
(φ

(i)
τ )2

φτ
dt = τ 1−2i

0∫
(φ(i))2

φ
dt � Ciτ

1−2i.
−3τ −3
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It follows that

δ

4
τ � Cε K max

i=1,...,4
Ciτ

1−2i for all τ > 1,

which is not possible. �
Lemma 3.2.

lim sup
t→−∞

w(t) < +∞.

Proof. We follow the idea of Lemma 1 in [18]. Assume by contradiction that lim supt→−∞ w(t) =
+∞. Since (21) also holds there is a sequence tk → −∞ such that w(tk) → +∞, and for all k � 1 we
have tk+1 + log 2 < tk , w(tk+1) � w(tk), w ′(tk) = 0, and w ′′(tk) � 0. It suffices to take as tk a sequence
of well separated local maxima of w along which it goes to +∞.

Let Mk = w(tk), rk = etk and ρk = rk+1
rk

. Note that 0 < ρk � 1/2. Define

uk(r) = u(rrk) − Mk + 4 log(rk),

where u is the original solution to (19). Then

�2uk = AeMk euk for r ∈ (0, r−1
k

)
,

uk(1) = 0,

uk(ρk) = w(tk+1) − Mk + 4(tk − tk+1) � 0. (24)

Moreover, since

�uk(r) = 1

r2

[
w ′′(log(rrk)

)+ (N − 2)w ′(log(rrk)
)− 4(N − 2)

]

and w ′(tk) = 0 and w ′′(tk) � 0 we have

�uk(1) = w ′′(tk) − 4(N − 2) � 0,

�uk(ρk) = 1

ρ2
k

[
w ′′(tk+1) − 4(N − 2)

]
� 0.

Let λk be the first eigenvalue for −� with Dirichlet boundary condition in the annulus B \ Bρk and
φk > 0 be an associated eigenfunction, that is

{−�φk = λkφk in B \ Bρk ,

φk = 0 on ∂(B \ Bρk ).

Then �2φk = λ2
kφk . Multiplying (24) by φk and integrating by parts we obtain
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AeMk

∫
B\Bρk

euk φk dx =
∫

B\Bρk

�2ukφk dx

=
∫

∂(B\Bρk )

[
∂�uk

∂n
φk − �uk

∂φk

∂n
+ ∂uk

∂n
�φk − uk

∂�φk

∂n

]

+
∫

B\Bρk

uk�
2φk dx.

But on ∂(B \ Bρk ), φk = �φk = 0, ∂φk
∂n � 0 and ∂�φk

∂n � 0. Hence

�uk
∂φk

∂n
� 0 and uk

∂�φk

∂n
� 0 on ∂(B \ Bρk ).

Using also the inequality eu � u it follows that

AeMk � λ2
k .

But since the annulus B \ Bρk has a width that does not converge to zero, λk remains uniformly
bounded, even if ρk → 0. It follows that Mk remains bounded as k → ∞, which is a contradiction. �
Lemma 3.3. For all i = 0,1,2,3,4

∣∣w(i)(t)
∣∣� C

(
1 + |t|) ∀t � 0,

and for i = 1,2,3,4

∣∣vi(t)
∣∣� C

(
1 + |t|) ∀t � 0. (25)

Proof. The fact that |w(t)| � C(1 + |t|) follows from u � 0 and that w is bounded above. We regard
(20) as an elliptic equation, or use interpolation inequalities such as in Chapter 6 of [26] to obtain the
following assertion. For any t � −1 and i = 1,2,3,4

∣∣w(i)(t)
∣∣� C sup

[t−1,t+1]
(|w| + A

∣∣ew − 1
∣∣).

Since w is bounded above the second term in the supremum is bounded and the conclusion follows
from the bound for w . �
Lemma 3.4. For i = 1,2,3,4

∣∣vi(t)
∣∣� C ∀t � 0,

and for i = 1,2,3

∣∣w(i)(t)
∣∣� C ∀t � 0.
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Proof. Integrating the equation

(
v4(t)e(N−4)t)′ = Ae(N−4)t v1(t)

in [t, t0] with t � t0 � 0 we find

v4(t) = e−(N−4)t

(
v4(t0)e(N−4)t0 − A

t0∫
t

e(N−4)s v1(s)ds

)
. (26)

Since v1(t) = λ
A ew(t) and w is bounded above we have that v1(t) is bounded as t → −∞. Hence the

integral
∫ t0
−∞ e(N−4)s v1(s)ds exists. If

A

t0∫
−∞

e(N−4)s v1(s)ds �= v4(t0)e(N−4)t0

we deduce from (26) that |v4(t)| grows exponentially as t → −∞, which contradicts (25). It follows
that

v4(t0) = Ae−(N−4)t0

t0∫
−∞

e(N−4)s v1(s)ds ∀t0 � 0. (27)

Since v1 is bounded we see from this formula that

∣∣v4(t)
∣∣� C for all t � 0.

This in turn implies that v3 is bounded as well. In fact from (11) we have

(
v3(t)e−2t)′ = e−2t v4(t)

and integrating on [t,0], t � 0 yields

v3(t) = e2t v3(0) −
0∫

t

e2(t−s)v4(s)ds. (28)

Using that v4 is bounded it follows that v3 is bounded as well as t → −∞.
Let us prove that v2 remains bounded as t → −∞. Arguing as for v4 we integrate the equation

(
v2(t)e(N−2)t)′ = e(N−2)t v3(t)

in [t, t0] with t � t0 � 0:

v2(t) = e−(N−2)t

(
v2(t0)e(N−2)t0 −

t0∫
e(N−2)s v3(s)ds

)
. (29)
t
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The integral
∫ t0

t e(N−2)s v3(s)ds converges because v3 is bounded. If

t0∫
−∞

e(N−4)s v3(s)ds �= v2(t0)e(N−2)t0

we deduce from (29) that |v2(t)| grows exponentially as t → −∞, which contradicts (25). It follows
that

v2(t0) = e−(N−2)t0

t0∫
−∞

e(N−4)s v3(s)ds ∀t0 � 0. (30)

Since v3 is bounded we see from this formula that v2 is also bounded.
The fact that w(i) are bounded as t → −∞ follows from the formulas

w ′ = v2 + 4, w ′′ = −(N − 2)v2 + v3,

w ′′′ = (N − 2)2 v2 − (N − 4)v3 + v4,

w(4) = Av1 + (N − 2)3 v2 − (
(N − 2)2 + 2(N − 4)

)
v3 − 2(N − 4)v4. �

As in [1] we consider the energy

E(t) = 1

2
w ′′(t)2 − 1

2

(
N2 − 10N + 20

)
w ′(t)2 + A

(
ew − w

)
.

A computation reveals that if t1 � t2 then

E(t2) − E(t1) = w ′w ′′′∣∣t2

t1
+ 2(N − 4)w ′w ′′∣∣t2

t1
− 2(N − 4)

t2∫
t1

w ′′(s)2 ds

− 2(N − 2)

t2∫
t1

w ′(s)2 ds. (31)

Lemma 3.5. If

lim inf
t→−∞ w(t) = −∞

then w(t) → −∞, vi(t) → 0 as t → −∞ for i = 1,2,3,4 and u is a regular solution.

Proof. We first show that w(t) → −∞ as t → −∞ by contradiction. Suppose that w(t) does not
approach −∞. Then one can find sequences tk, sk → −∞ such that sk > tk ,

w(tk) remains bounded, w ′(tk) = 0,

w(sk) → −∞, w ′(sk) = 0.

Then by (31) E(sk) � E(tk). But E(tk) remains bounded while E(sk) → ∞, which is a contradiction.
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Now that we know that w(t) → −∞ as t → −∞, we deduce immediately that v1(t) → 0 as
t → −∞. Then using formulas (27), (28) and (30) we also obtain vi(t) → 0 as t → −∞ for i = 2,3,4.
By Theorem 6 in [2] we deduce that u is a regular solution. �
Lemma 3.6. If

lim inf
t→−∞ w(t) > −∞

then w(t) → 0, (v1(t), . . . , v4(t)) → P2 as t → −∞ and u is a weakly singular solution.

Proof. In this case, since w is also bounded above by Lemma 3.2, we have that w is bounded. By
Lemma 3.4 the derivatives of w are bounded as well and we deduce that E(t) remains bounded as
t → −∞. The boundedness of E together with the boundedness of the derivatives of w and for-
mula (31) imply that

0∫
−∞

(w ′)2 dt < +∞,

0∫
−∞

(w ′′)2 dt < +∞. (32)

Then we can select a strictly decreasing sequence tk → −∞ such that

lim
k→∞

(tk − tk+1) = 0

and

w ′(tk) → 0 as k → ∞.

If t � s � 0 we have by (32)

∣∣w ′(t) − w ′(s)
∣∣� C |t − s|1/2.

Hence for t ∈ [tk, tk+1]

∣∣w ′(t)
∣∣� ∣∣w ′(tk)

∣∣+ C(tk+1 − tk)
1/2.

This shows that w ′(t) → 0 as t → ∞. Using then elliptic estimates we deduce

w(i)(t) → 0 as t → −∞

for i = 1,2,3,4. Using the equation we also deduce that w(t) → 0 as t → −∞. We hence obtain
that (v1(t), . . . , v4(t)) → P2 as t → −∞. Then by Theorem 6 in [2] we have u is a weakly singular
solution. �
Proof of Theorem 1.1. It is a consequence of Lemmas 3.5 and 3.6. �
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4. Heteroclinic connection from P1 to P2

Proposition 4.1. For N � 5, system (11) has an heteroclinic orbit from P1 to P2 .

Proof. We use one of the main results in [1] on the initial value problem

�2u = 8(N − 2)(N − 4)eu, r ∈ (0, R(β)
)
,

u(0) = 0, u′(0) = 0, �u(0) = β, (�u)′(0) = 0 (33)

where β ∈ R is a parameter and R(β) > 0 is the maximal time of existence of the solution. Here the
constant in front of eu is taken, without loss of generality, to be 8(N − 2)(N − 4). In Theorem 2 of [1]
the authors show that there exists a unique β such that R(β) = +∞ and

lim
r→∞ u(r) + 4 log(r) = 0. (34)

In what follows we fix β is such that (34) holds. Let v(t) = u(r) where r = et and V = (v1, . . . , v4) be
defined by (10). Then, since u is smooth at the origin

lim
t→−∞ V (t) = P1

and (34) tells us that

lim
t→∞ v1(t) = 1.

It remains only to show that

lim
t→∞ V (t) = P2. (35)

Set w(t) = v(t) + 4t . Then w satisfies the following equation

(∂t + N − 4)(∂t − 2)(∂t + N − 2)∂t w = 8(N − 2)(N − 4)
(
ew − 1

)
in R.

Note that (34) is equivalent to limt→∞ w(t) = 0. To prove (35) it suffices to show that

lim
t→∞ w(i)(t) = 0 for i = 1,2,3. (36)

This follows from the lemma below. �
Lemma 4.2. Assume that z : [T0,∞) → R exists for some T0 and solves

z(4)(t) + K3z′′′(t) + K2z′′(t) + K1z′(t) = f
(
z(t)

) ∀t > T0

where f ∈ C1(R) and Ki ∈ R. Let z0 be such that f (z0) = 0 and assume that limt→∞ z(t) = z0 . Then for
k = 1, . . . ,4

lim
t→∞ z(k)(t) = 0.
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For the proof see [18, Proposition 1].
The next lemma shows that a connection from P1 to P2 necessarily reaches P2 in an oscillatory

way if 5 � N � 12, but the statement below holds for all N � 5.

Lemma 4.3. Let N � 5. Assume V : (T ,∞) → R
4 , V = (v1, v2, v4, v4) is a solution to (11) such that

lim→∞ V (t) = P2 and either

V ′(t)
|V ′(t)| + v(2)

|v(2)| → 0 as t → +∞ (37)

or

V ′(t)
|V ′(t)| − v(2)

|v(2)| → 0 as t → +∞. (38)

Then V cannot be extended to a connection from P1 to P2 .

Proof. Assume first that (37) holds. Then by (18) we have

v ′
1(t) < 0, v ′

2(t) > 0, v ′
3(t) < 0, v ′

4(t) > 0

for all t near +∞ and

v1(t) > 1, v2(t) < −4, v3(t) > −4(N − 2), v4(t) < 8(N − 2) (39)

for all t near +∞. We claim that

v2(t) < −4 ∀t > T . (40)

Assume by contradiction that this fails. Then from (39) we can define t1 > T to be the last time such
that v2(t1) = −4. Then v ′

2(t1) � 0. Using Eqs. (11) we deduce that

v3(t1) � −4(N − 2).

Then thanks to (39) we can define t2 � t1 to be the last time such that v3(t2) = −4(N − 2). This
implies that v ′

3(t2) � 0 and by the system (11)

v4(t2) � −8(N − 4).

Let t3 � t2 be the last time such that v4(t3) = −8(N − 4). Then v ′
4(t3) � 0. We deduce from (11) that

v1(t3) � 1.

Let t4 � t3 be the last time such that v1(t4) = 1. Then v ′
1(t4) � 0 and by (11)

v2(t4) � −4.

But v2(t) < −4 for all t ∈ (t1,∞), which is a contradiction. This proves the claim (40) and shows that
the trajectory defined by V cannot come from P1.

Assume now that (38) holds. We claim that in this case

v3(t) < −4(N − 2) for all t > T . (41)
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The proof is similar as before. Note that under the assumption (38) we have the opposite inequalities
in (39). If the statement (41) fails we can define the last time t1 such that v3(t1) = −4(N − 2).
Then define successively t2 � t1 such that v4(t2) = 8(N − 2), v ′

4(t2) � 0, t3 � t2 such that v1(t3) = 1,
v ′

1(t3) � 0, t4 � t3 such that v2(t4) = −4 and v ′
2(t4) � 0, which leads to v3(t4) � −4(N − 2) which

yields a contradiction. This shows that the trajectory cannot come from P1. �
5. The unstable manifold at P2

In this section we study W u(P2) and as a consequence we obtain Theorems 1.2 and 1.6. Let v( j)

denote the eigenvectors of the linearization of (11) at P2 with corresponding eigenvalue ν j . Then
W u(P2) is 1-dimensional and tangent to v(1) at P2. Hence, if V = (v1, . . . , v4) : (−∞, T ) → R

4 is any
trajectory in W u(P2) there are 2 cases:

〈
V ′(t), v(1)

〉
< 0 for t near −∞,〈

V ′(t), v(1)
〉
> 0 for t near −∞.

The main results in this section are

Proposition 5.1. Suppose that V = (v1, . . . , v4) : (−∞, T ) → R
4 is the trajectory in W u(P2) such that

〈V ′(t), v(1)〉 < 0 for t near −∞. Then

(a) v2(t) < −4 for all t ∈ (−∞, T ), and
(b) v3(t) < −4(N − 2) for all t ∈ (−∞, T ).

Proposition 5.2. Let V = (v1, . . . , v4) : (−∞, T ) → R
4 be the trajectory in W u(P2) such that 〈V ′(t), v(1)〉

> 0 for t near −∞, where T is the maximal time of existence. Then

(a) v1(t) > 1 for all t < T .
(b) There exists a unique t0 such that v2(t0) = 0. Moreover v ′

2(t) > 0 for all t < T . In particular the trajectory
of V intersects the hyperplane {v2 = 0} transversally.

(c) There exists a unique t1 such that v3(t1) = 0. Moreover v ′
3(t) > 0 for all t < T . In particular the trajectory

of V intersects the hyperplane {v3 = 0} transversally.

Proof of Proposition 5.1. (a) The relations (17) and the hypothesis 〈V ′(t), v(1)〉 < 0 for t → −∞ imply
that for t near −∞ {

v1(t) < 1, v2(t) < −4,

v3(t) < −4(N − 2), v4(t) < 8(N − 2).
(42)

Assume by contradiction that v2(t) � −4 for some t < T . Thus we may define t0 < T the first time
such that v2(t) = −4. Then v ′

2(t0) � 0. Then by (11) 0 � v ′
2(t0) = v3(t0) + 4(N − 2), that is,

v3(t0) � −4(N − 2).

By (42) we can define t1 � t0 as the first time such that v3(t) = −4(N − 2). Then v ′
3(t1) � 0 and (11)

implies

v4(t1) � 8(N − 2). (43)

Again using (42), let t2 � t1 be the first time that v4(t) = 8(N − 2). Then v ′
4(t2) � 0 and by (11)

v1(t2) � 1.
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Thanks to (42) we must have a first time t3 � t2 such that v1(t) = 1. But then v ′
1(t3) � 0 which

by (11) implies

v2(t3) + 4 � 0.

Thus v2(t3) � −4. This cannot happen if t3 < t0 because v2(t) < −4 for all t < t0. If t3 = t2 = t1 = t0
then v ′

1(t0) = v ′
2(t0) = v ′

3(t0) = v ′
4(t0), which means V ≡ P2, a contradiction. This proves that v2(t) <

−4 for all t < T .
(b) Let us show now that v3(t) < −4(N − 2) for all t < T . If not, we can define t1 < T as the first

time such that v3(t) = −4(N − 2). Then v ′
3(t1) � 0 and we may repeat the same argument starting

at (43) to find t3 � t1 such that v2(t3) � −4. This is impossible and proves the result. �
Proof of Proposition 5.2. By (17) and the hypothesis 〈V ′(t), v(1)〉 > 0 for t → −∞ we have

v ′
1(t) > 0, v ′

2(t) > 0, v ′
3(t) > 0, v ′

4(t) > 0 (44)

for t near −∞.
Let us prove first that

v1(t) > 0 ∀t < T . (45)

This is valid for t near −∞ by (44). If v1(t) = 0 for some t then v1 would be constant by the equation,
which is not possible.

Before proving (b) and (c) we will claim that (44) is valid for all t < T .

First we establish that

v ′
3(t) > 0 ∀t < T . (46)

To prove (46) suppose it fails. Let s0 < T be the first time such that v ′
3(s0) = 0. Using (11) we see

that

0 = v ′
3(s0) = 2v3(s0) + v4(s0).

But v3(s0) > −4(N − 2) and we deduce v4(s0) < 8(N − 2). Let s1 � s0 be the first time such that
v4(t) = 8(N − 2). Then v ′

4(s1) � 0 and hence

v1(s1) � 1.

Let s2 � s1 be the first time such that v1(s2) = 1. Then v ′
1(s2) � 0 and we conclude

v2(s2) � −4. (47)

Let s3 � s2 be the first time such that v2(s3) = −4. Then v ′
2(s3) � 0 and we conclude

v3(s2) � −4(N − 2). (48)

Now since s2 < s0, we have v3(s2) > −4(N − 2), a contradiction. This establishes our claim (46).
Since (46) holds we have then v3(t) > −4(N − 2) for all t < T . From the second equation in (11),

we have

v ′′
2 = −(N − 2)v ′

2 + v ′
3.
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We claim that v ′
2 > 0. By contradiction, if s0 is the first time such that v ′

2(s0) = 0 then using (46), we
have that v ′′

2(s0) > 0 so v2 has a local minimum at s0 which is not possible, since v2 is increasing
near t = −∞. We conclude that

v ′
2(t) > 0 ∀t < T . (49)

Similarly differentiating the first equation in (11), and using (45), and (49), we obtain that

v ′
1(t) > 0 ∀t < T (50)

and again using now the fourth equation in (11), and (50), we have

v ′
4(t) > 0 ∀t < T , (51)

this proves that (44) is valid for all −∞ < t < T .

Now since v ′
1(t) > 0 for all t < T and limt→−∞ v1(t) = 1, part (a) of the proposition follows.

Let us prove now that

sup
t<T

vi(t) = +∞, for all i = 1 . . . 4.

First we prove the statement for v1. If we assume the contrary, i.e. that v1 remains bounded, then (11)
implies the estimate

∣∣(v1, . . . , v4)
′(t)

∣∣� C
∣∣(v1, . . . , v4)(t)

∣∣ ∀t < T ,

for some C > 0 and from Gronwall’s inequality we deduce that the solution is defined for all times,
that is T = +∞. Since v1 is increasing, v1 → L < +∞ as t → +∞ and v ′

1(tk) → 0 along some se-
quence tk → +∞. But v1, v2 are increasing and v2(t) > −4, v1(t) > 1 for all t ∈ R. Then from the
equation v ′

1 = v1(v2 + 4) we obtain a contradiction. This proves that

v1(t) → ∞ as t → T . (52)

We prove similarly that v4(t) → +∞ as t → T . Arguing by contradiction we have v4 → L < ∞ as
t → T . If T = +∞ the argument is the same as before: for some sequence tk → +∞, v ′

4(tk) → 0.
Using the equation for v ′

4 we have a contradiction. If T < +∞, the assumption that v4 is bounded
and the system (11) imply that v3, v2 and v1 are bounded up to T , which is not possible by (52).
Thus we have proved that

v4(t) → ∞ as t → T . (53)

Applying the same argument, now using (53) and the equation for v ′
3, we obtain

v3(t) → ∞ as t → T . (54)

For v2, we use the same procedure now with the equation for v ′
2 and (54), and deduce that

v2(t) → ∞ as t → T . (55)

Finally the property (b) clearly follows from (55) and v ′
2(t) > 0 for all t < T . Similarly, (c) is a

consequence of (54) and that v ′
3(t) > 0 for all t < T . �
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Proof of Theorems 1.2 and 1.6. Any weakly singular radial solution gives rise, through the changes
of variable v(t) = u(et), t � 0, and (10), to a solution V : (−∞,0] → R

4 of the system (11) such
that the final conditions (12) hold. Since the solution is weakly singular, limt→−∞ V (t) = P2. Hence
V ((−∞,0]) is contained in W u(P2) and therefore there are 2 possibilities: either 〈V ′(t), v(1)〉 < 0
for t near −∞ or 〈V ′(t), v(1)〉 > 0 for t near −∞. The first case is not possible, because Proposi-
tion 5.1 shows that V cannot satisfy the end condition v2(0) = 0. Thus we are in the second case
and we can apply Proposition 5.2(b). Therefore there exists a unique t0 > −∞ such that v2(t0) = 0
since the system is autonomous by shifting time we can assume that v2(0) = 0. This concludes the
proof of Theorem 1.2. The proof of Theorem 1.6 is similar, we look at the component v3 instead of
v2, since need to show that v3(0) = �u(1) = 0. Consequently, to conclude the proof we use Proposi-
tion 5.2(c). �
6. Multiplicity results: Proofs of Theorems 1.3 and 1.7

By Propositions 5.1 and 5.2 we know that W u(P2) ∩ {v2 = 0} is a single point, which we call
P∗ = (P∗

1, P∗
2, P∗

3, P∗
4), with P∗

1 = λS
8(N−2)(N−4)

and P∗
2 = 0.

Let E = W u(P1) ∩ {v2 = 0}. Each regular radial solution of (1) corresponds to exactly one point
v = (v1, . . . , v4) ∈ E with v1 > 0.

Throughout this section we assume that 5 � N � 12. Let P1, P2 be the stationary points of the
system (11) defined in (13). Then P1 has a 2-dimensional unstable manifold W u(P1) while P2 has a
1-dimensional unstable manifold W u(P2) and a 3-dimensional stable manifold W s(P2).

Let V 0 : R → R
4 be the heteroclinic connection from P1 to P2 of Proposition 4.1 and V̂ 0 =

V 0(−∞,∞). Then V̂ 0 is contained in both W u(P1) and W s(P2).

Lemma 6.1. W u(P1) and W s(P2) intersect transversally on points of V̂ 0 . More precisely for points Q ∈ V̂ 0
sufficiently close to P2 there are directions in the tangent plane to W u(P1) which are almost parallel to v(1) ,
the tangent vector to W u(P2) at P2 .

Proof. Let u(r, β) the solution to (33) defined in the maximal interval [0, R(β)). Let β0 denote the
unique value of β such that R(β0) = ∞ and

lim
r→∞ u(r, β0) + 4 log(r) exists,

see [1]. From the proof of Lemma 8 of this reference it follows that for β < β0 the following estimate
holds:

∂u

∂r
(r, β) � ∂u

∂r
(r, β0) − β0 − β

N
r ∀r � 0.

Then ∂u
∂β

(r, β0) satisfies the linearized equation at u(·, β0) and

∂

∂r

∂u

∂β
(r, β0) � r

N
∀r � 0. (56)

Let v(t) = u(et, β0), t ∈ R and V = (v1, . . . , v4) be defined by (10). Define Z = ∂V
∂β

. Then Z satisfies

Z ′ = (
M + R(t)

)
Z

where M is the matrix defined in (14) and
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R(t) =
⎡
⎢⎣

v2 + 4 v1 − 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎦ .

Recall that V (t) → P2 as t → ∞. Moreover the convergence is exponential, that is there are C, σ > 0
such that |V (t) − P2| � Ce−σ t for all t � 0. This follows from Lemma 2.2 which shows that the sys-
tem (11) is C1-conjugate to its linearization near P2 (it suffices here to show that (11) is C0-conjugate
to its linearization near P2, which follows from the Hartman–Grobman theorem, see Theorem 7.1 in
[31] or Theorem 1.1.3 in [28]). Recall that the eigenvalues of M are ν1 > 0 > ν2 and ν3, ν4 which have
negative real part and nonzero imaginary part. Let v(i) ∈ C

4 denote an eigenvector associated to νi .
By Theorem 8.1 in [13, Chapter 3] there are solutions ϕk to

ϕ′
k = (

M + R(t)
)
ϕk, t > 0

such that limt→∞ ϕk(t)e−νkt = v(k) . Then

Z =
4∑

i=1

ciϕi (57)

for some constants c1, . . . , c4 ∈ C. The condition (56) and the definitions in (10) imply that for some
c > 0 ∣∣∣∣∂v2

∂β
(t, β0)

∣∣∣∣� ce2t for all t � 0. (58)

If c1 = 0 in (57), since ν2, ν3, ν4 have negative real, we would obtain that Z(t) → 0 as t → ∞, con-
tradicting (58). Hence c1 �= 0 and therefore

Z = c1 v(1)eν1t + o
(
eν1t) as t → ∞.

Since v(1) is the tangent vector to W u(P2), we have that ∂V
∂β

is not tangent to W s(P2) for t large.

On the other hand ∂V
∂β

is tangent to W u(P1) by construction. This shows that W s(P2) and W u(P1)

intersect transversally on points of V̂ 0 close to P2. By the invertibility of the flow away from the
stationary points, W s(P2) and W u(P1) intersect transversally on all points of V̂ 0. �
Proof of Theorem 1.3. We will write generic points in the phase space R

4 as (v1, v2, v3, v4). Let
{e j: j = 1, . . . ,4} denote the canonical basis of R

4.
The multiplicity results asserted in Theorem 1.3 are consequences of the following claims:

(a) E contains a spiral S about the point P∗ ,
(b) S is contained in a 2-dimensional C1 surface Σ ⊆ {v2 = 0}, and
(c) the plane through P∗ parallel to e2, e3, e4 is transversal to the tangent plane to Σ at P∗ .

More precisely, after a C1 diffeomorphism of a neighborhood of P∗ to a neighborhood of the ori-
gin in R

4, which maps P∗ to the origin, the curve S can be parametrized by a C1 function of
the form (r(s) cos(s), r(s) sin(s),0,0), s ∈ [0,∞), such that r(s) > 0 for all s � 0 and r(s) → 0 as
s → ∞. Moreover one can choose this diffeomorphism such that Σ corresponds to part of the surface
{x = (x1, x2, x3, x4) ∈ R

4: x3 = x4 = 0}.
Assume (a), (b) and (c) have been proved and define hyperplane Hλ = {v1 = λ

8(N−2)(N−4)
} where

λ > 0. If λ = λS , the transversality condition (c) ensures that Hλ is transversal to Σ , and we will
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see that this implies that Hλ ∩ E contains infinitely many points, which means that (1) has infinitely
many radial regular solutions. Indeed, after the C1 diffeomorphism described above we can assume
that S = {(r(s) cos(s), r(s) sin(s),0,0): s � 0} and Σ = {x = (x1, x2, x3, x4) ∈ R

4: x3 = x4 = 0}. The
hyperplane Hλ is transformed into a C1 hypersurface containing the origin, which is transversal to Σ .
Then Hλ ∩Σ is a C1 curve through the origin. Using polar coordinates we then see that Hλ intersects
the spiral S infinitely many times. If λ �= λS but λ is close to λS , by the transversality (c) we have
that Hλ ∩ E contains a large number of points, which yields a large number of radial regular solutions
of (1).

In what follows we will prove (a), (b) and (c). Let Xt denote the flow generated by (11), that is,
Xt(ξ) is the solution to (11) at time t with initial condition X0(ξ) = ξ ∈ R

4. For fixed ξ , Xt(ξ) is
defined for t in a maximal open interval containing 0.

Let D be the 3-dimensional disk D = {v = (v1, . . . , v4): v2 = 0, |v − P∗| < 1}, which by Propo-
sition 5.2 is transversal to W u(P2). Let Bs ⊆ W s(P2) ∩ N P2 be an open neighborhood of P2 relative
to W s(P2) diffeomorphic to a 3-dimensional disk. By choosing smaller neighborhoods if necessary,
we may apply the λ-lemma of Palis [38]. Let Dt be the connected component of Xt(D) ∩ N P2 that
contains Xt(P∗). Then, given ε > 0 there exists some t0 < 0, |t0| large, such that Dt0 contains a 3-
dimensional C1 manifold M that is a ε C1-close to Bs , which means that there is a diffeomorphism
η : M → Bs such that ‖i − η‖C1(M) � ε where i : M → R

4 is the inclusion map.

Choose some point Q ∈ V̂ 0 such that Q ∈ N P2 . By Lemma 6.1 we may choose a C1 curve contained
in W u(P1), say Γ = {γ (s): |s| < δ} with γ : (−δ, δ) → R

4 a C1 function with γ (0) = Q , γ ′(0) not
tangent to W s(P2) at Q . We can assume also that this curve is contained in N P2 . Choosing ε small
we can assume that Γ intersects M.

We have the following properties, which we prove after we complete the proof of Theorem 1.3.

Lemma 6.2. For large t, Xt(Γ ) ∩ M is a single point that we call Pt and the following properties hold:

(1) The collection of the points Pt for large t forms a spiral.
(2) There exists a 2-dimensional C1 manifold Σ̃ that contains Pt for all t large.
(3) Let Q t0 be the intersection of M with W u(P2). Then the tangent plane to Σ̃ at Q t0 becomes parallel to

the one generated by v(3), v(4) (the eigenvectors corresponding to ν3 , ν4) as ε → 0.
(4) Moreover, for s > 0 suitably small the time t such that Xt(γ (s)) ∈ M satisfies

s = ce−ν1t + o
(
e−ν1t) (59)

where c > 0.

Let S̃ denote the collection {Pt : t � t1} where t1 is suitably large. Define S = X−t0(S̃) and
Σ = X−t0(Σ̃). Since X−t0 is a smooth diffeomorphism from M to a neighborhood of P∗ inside the
hyperplane {v2 = 0} we see that S is a spiral contained in a C1 surface Σ . The points of S belong to
W u(P1) because they were obtained though the flow from points in Xt(Γ ).

This ends the proof of part (b).
We now prove statement (c). It is sufficient to show that inside the space {v2 = 0} the plane

generated by e3, e4 is transversal to the tangent space to Σ at P∗ . Let V = (v1, . . . , v4) : (−∞,0] →
R

4 denote the trajectory corresponding to the weakly singular solution, that is, limt→−∞ V (t) = P2,
v2(0) = 0. To prove our claim we need to transport the plane generated by e3 and e4 back along
V and this is accomplished by solving the linearized equation around V . More precisely, let Z , Z̃ :
(−∞,0] → R

4 be solutions to the linearization of (11) around V , that is, Z = (z1, z2, z3, z4) satisfies
for t < 0

⎧⎪⎪⎨
⎪⎪⎩

z′
1 = z1(v2 + 4) + v1z2,

z′
2 = −(N − 2)z2 + z3,

z′
3 = 2z3 + z4,

z′ = −(N − 4)z + 8(N − 2)(N − 4)z

(60)
4 4 1
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and similarly for Z̃ = (z̃1, z̃2, z̃3, z̃4). As final conditions we take Z(0) = e3, Z̃(0) = e4.
By Theorem 8.1 in [13, Chapter 3] there are solutions ϕk : (−∞,0] → C

4 to (60) such that

lim
t→−∞ϕk(t)e−νkt = v(k) (61)

where v(1), . . . , v(4) are the eigenvectors of M . Recall that v(1), v(2) are real, and v(3), v(4) are complex
conjugate. Thus one can assume that ϕ1,ϕ2 are real, and ϕ3,ϕ4 are complex conjugate. Then

Z(t) =
4∑

i=1

ciϕi(t), and Z̃(t) =
4∑

i=1

c̃iϕi(t)

for some constants c1, . . . , c4, c̃1, . . . , c̃4 ∈ C. We note that c1, c2, c̃1, c̃2 are real and c3ϕ3(t)+c4ϕ4(t) ∈
R, c̃3ϕ3(t) + c̃4ϕ4(t) ∈ R for all t � 0.

We claim that

c2 �= 0 or c̃2 �= 0. (62)

Assume, by contradiction, that c2 = 0 and c̃2 = 0. Define

f (t) = e(N−4)t
(

z4(t)z̃1(t)

v1(t)
− z3(t)z̃2(t) + z2(t)z̃3(t) − z1(t)z̃4(t)

v1(t)

)
∀t � 0.

A calculation using (60) shows that f is constant. Using the final conditions for Z and Z̃ we see that
f (0) = 0 and hence

f (t) = 0 ∀t � 0.

Using (61), (16) and the assumption c2 = 0, c̃2 = 0 we can compute

lim
t→−∞ f (t) = (c3c̃4 − c̃3c4)B

where

B = ν3(ν3 + N − 2)(ν3 − 2) − ν3(ν3 + N − 2)ν4 + ν4(ν4 + N − 2)ν3

− ν4(ν4 + N − 2)(ν4 − 2)

= −1

2
M2(N)

√
M1(N) − M2(N).

Thus B ∈ iR, B �= 0 and we conclude that (c3c̃4 − c̃3c4) = 0. This means that there exists a λ ∈ C such
that c̃k = λck , k = 3,4. Since c3ϕ3(t) + c4ϕ4(t) ∈ R, c̃3ϕ3(t) + c̃4ϕ4(t) ∈ R for all t � 0, ν1 > 0 and we
assume that c2 = c̃2 = 0, we must have λ ∈ R. Using Z(0) = e3 and Z̃(0) = e4 we see that

(c̃1 − λc1)ϕ1(0) = e4 − λe3.

But ϕ1 = cV ′ , for some constant c ∈ R, since both solve (60) and both tend to 0 as t → −∞. We
know that v ′

2(0) > 0 by Proposition 5.2 and this implies c̃1 − λc1 = 0, a contradiction.
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Finally, the condition (62) implies the assertion (c). Indeed, let us recall that Σ = X−t0(Σ̃) where
Σ̃ is defined in Lemma 6.2 and t0 < 0, with |t0| large. Using property 3 of that lemma and the
condition (62) we see that for |t0| large at least one of the vectors Z(t0) or Z̃(t0) is transversal to the
tangent plane to Σ̃ at Q t0 .

To finish the proof of Theorem 1.3 we still need to verify one assertion: for λ �= λS (1) has a finite
number of solutions. We will do this in Proposition 7.6 of Section 7. �
Proof of Lemma 6.2. By Lemma 2.2 there is a C1 diffeomorphism R : N P2 → N0 from an open neigh-
borhood N P2 of P2 to an open neighborhood N0 of 0 with R(P2) = 0, det(R ′(P2)) > 0, such that
R Xt R−1 = Lt where Lt is the flow generated by M , and the formula holds in some neighborhood of
the origin. Note that Lt = eMt .

Thanks to the conjugation R , to prove the lemma we may assume that P2 is at the origin and
that near the origin the flow is given by Lt = eMt . Thus W s(P2) in a neighborhood of the origin is
{(y1, . . . , y4): y1 = 0} and Bs = {(y1, . . . , y4): y1 = 0, |y| < δ} for some δ > 0. We can also assume
that the heteroclinic orbit V 0 near the origin in the new variables is given by

V 0(t) = (
0, c2eν2t, c3 Re

(
eν3t), c4 Im

(
eν3t)), t � 0 (63)

for some constants c2, c3, c4. By Lemma 4.3 the curve V 0 cannot have a direction that becomes par-
allel to e2 = (0,1,0,0) as t → ∞. Since |ν2| > |Re(ν3)| by (15), c3 �= 0 or c4 �= 0. By choosing ε small,
we can assume that the normal vector to M near P∗ is almost parallel to e1 = (1,0,0,0) after the
change of variables. Thus by passing to a subset of M we may assume that M is a C1 graph over
the variables (y2, y3, y4), that is, there exists a C1 function ψ : {y′ = (y2, y3, y4) ∈ R

3, |y′| < δ} → R

with ψ(0) > 0 such that

M = {(
ψ(y′), y′): y′ ∈ R

3, |y′| < δ
}
.

By Lemma 6.1 the tangent plane to W u(P1) at points close to the origin contains vectors almost
parallel to e1 = (1,0,0,0) and hence γ ′

1(0) �= 0. Using the implicit function theorem we see that for
large t the intersection of M and Lt(Γ ) occurs at points of the form

Pt = (
γ1(s)eν1t, γ2(s)eν2t, γ3(s)Re

(
eν3t), γ4(s) Im

(
eν3t))

where s = ce−ν1t + o(e−ν1t) as t → ∞ for some c > 0. Since c3 �= 0 or c4 �= 0 in (63) we can define a
surface

Σ̃ = {
y = (y1, y2, y3, y4): |y| < δ, y1 = ψ(y2, y3, y4), y2 = g(y3, y4)

}
(64)

that contains the points Pt , where g is smooth away from the origin and has the property

g(y3, y4) = O
(∣∣(y3, y4)

∣∣β)
with β = ν2/Re(ν3). Thanks to (15) we see that β > 1. Therefore g is C1 and Σ̃ is a C1 surface. �
Proof of Theorem 1.7. By Propositions 5.1 and 5.2 we know that W u(P2) ∩ {v3 = 0} is a single point,
which we call P̄∗ = ( P̄∗

1, P̄∗
2, P̄∗

3, P̄∗
4), with P̄∗

1 = λS
8(N−2)(N−4)

and P̄∗
3 = 0.

As in Theorem 1.3, the multiplicity results asserted in Theorem 1.7 are consequences of the follow-
ing claims:

(a) E := W u(P1) ∩ {v3 = 0} contains a spiral S about the point P̄∗ ,
(b) S is contained in a 2-dimensional C1 surface Σ ⊆ {v3 = 0}, and
(c) the plane through P̄∗ parallel to e2, e3, e4 is transversal to the tangent plane to Σ at P̄∗ .
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The proofs are similar to the Dirichlet case, now changing v2 = 0 for v3 = 0. So to prove (c) it will
be sufficient now to show that inside the space {v3 = 0} the plane generated by e2, e4 is transversal to
the tangent space to Σ at P̄∗ . We define now Z satisfying (60) with the final condition Z(0) = e2, and
Z̃ remains unchanged. In the same form we claim that (62) holds. Indeed using the same argument
as before with Z(0) = e2 and Z̃(0) = e4, we find

(c̃1 − λc1)ϕ1(0) = e4 − λe2.

But we know by Proposition 5.2 that v ′
3(0) > 0 and this implies c̃1 −λc1 = 0, a contradiction. The rest

of the proof is the same. �
7. Structure of the solution set

In this section we study the properties of the solution set

C = {
(λ, u) ∈ (0,∞) × C4(B): u is radial and solves (1)

}
.

We assume here that N � 5. We will see that all regular radial solutions u of (1) are characterized
by u(0) and that this value ranges from 0 to +∞. To prove the first assertion we follow the strategy
of Guo and Wei [30]. For this we recall a comparison result established by McKenna and Reichel [36,
Lemma 3.2].

Lemma 7.1. Assume that f : R → R is differentiable and increasing. Let u, v ∈ C4([0, R)), R > 0 be such that

∀r ∈ [0, R) �2u(r) − f
(
u(r)

)
� �2 v(r) − f

(
v(r)

)
,

u(0) � v(0), u′(0) � v ′(0), �u(0) � �v(0), (�u)′(0) � (�v)′(0).

Then for all r ∈ [0, R)

u(r) � v(r), u′(r) � v ′(r), �u(r) � �v(r), (�u)′(r) � (�v)′(r). (65)

Moreover

(i) the initial point 0 can be replaced by any initial point ρ > 0 if all four initial data are weakly ordered,
(ii) a strict inequality in one of the initial data at ρ � 0 or in the differential inequality on (ρ, R) implies a

strict ordering of u, u′ , �u, (�u)′ and v, v ′ , �v, (�v)′ in (65).

Analogously to [30, Lemma 5.1] we have:

Lemma 7.2. Suppose that u1 , u2 are smooth radial solutions of (1) associated to parameters λ1 > 0, λ2 > 0
such that u1(0) = u2(0). Then λ1 = λ2 and u1 ≡ u2 .

Proof. Suppose we have smooth radial solutions u1, u2 of (1) associated to parameters λ1 > λ2 such
that u1(0) = u2(0).

For j = 1,2

v j(r) = u(λ
−1/4
j r)

u1(0)
for r ∈ [0, λ

1/4
j

]
.

Then v j satisfies
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�2 v j = f (v j) for r ∈ [0, λ
1/4
j

]
where f (t) = 1

u1(0)
eu1(0)t .

Assume that �v1(0) < �v2(0). Then by Lemma 7.1 v1(r) < v2(r) for all r ∈ [0, λ
1/4
2 ]. In particular

v1(λ
1/4
2 ) < v2(λ

1/4
2 ) = 0 which is impossible because v1(r) > 0 for all r ∈ [0, λ

1/4
1 ).

Assume now that �v1(0) > �v2(0). Then by Lemma 7.1 v1(r) > v2(r), v ′
1(r) > v ′

2(r), �v1(r) >

�v ′
2(r), (�v1)

′(r) > (�v2)
′(r) for all r ∈ [0, λ

1/4
2 ]. Since v1 is defined up to λ

1/4
1 , v2 can be extended

to [0, λ
1/4
1 ] and the previous inequalities are valid in this interval. Evaluating at λ

1/4
1 we deduce that

0 = v ′
1

(
λ

1/4
1

)
> v ′

2

(
λ

1/4
1

)
. (66)

Since w = �v2 satisfies �w = f (v2) > 0 it is subharmonic and hence w(r1) � w(r2) for all 0 �
r1 � r2 � λ

1/4
1 . But the Green function for the bilaplacian in the ball of radius R > 0 with Dirichlet

boundary conditions G(x, y) satisfies G(x, y) � c(R − |x|)2(R − |y|)2 for some c > 0, see [27]. This
implies that �v2(λ

1/4
2 ) > 0 and therefore w(r) > 0 for all r ∈ [λ1/4

2 , λ
1/4
1 ]. Thus

rN−1 v ′
2(r) =

r∫
λ

1/4
2

tN−1�v2(t)dt > 0 for all r ∈ (λ1/4
2 , λ

1/4
1

]
.

In particular v ′
2(λ

1/4
1 ) > 0 which contradicts (66).

It follows that �v1(0) = �v2(0) and hence v1 ≡ v2. This implies that λ1 = λ2 and that u1 ≡
u2. �
Proof of Theorem 1.4. By [2, Theorem 3] there exists λ∗ such that if 0 � λ < λ∗ then (8) has a
minimal smooth solution uλ and if λ > λ∗ then (8) has no weak solution. The limit u∗ = limλ↗λ∗ uλ

exists pointwise, belongs to H2(B) and is a weak solution to (8) in the sense (5). The functions uλ ,
0 � λ < λ∗ and u∗ are radially symmetric and radially decreasing. Now, by [15, Theorem 1.4] we know
that u∗ is unbounded if N � 13.

Fix λ̄ ∈ (0, λ∗) and let v be a smooth radial solution to (1) with parameter λ̄. Since λ ∈ (0, λ∗) →
uλ(0) depends continuously on λ, and since limλ→λ∗ uλ(0) → ∞ we see that there exists some λ ∈
(0, λ∗) such that v(0) = uλ(0). By Lemma 7.2 we conclude that λ̄ = λ and v = uλ .

By [15, Proposition 1.8] we also know that u∗ is a weakly singular solution. By Theorem 1.2 there
is no weakly singular solution for any other value different than λ∗ . Moreover, for λ = λ∗ by [15,
Theorem 1.2], u∗ is the unique weak solution of (1). �

As in Section 6, we let E = W u(P1) ∩ {v2 = 0} and recall that each regular radial solution of (1)
corresponds to exactly one point v = (v1, . . . , v4) ∈ E with v1 > 0. It is therefore natural to define
E0 = W u(P1) ∩ {v2 = 0, v1 > 0}.

The curve of solutions C can also be parametrized by the shooting problem (33). Let uβ be the
solution of (33) defined in the maximal interval of existence [0, R(β)). In Theorem 2 of [1], it is shown
that for problem (33), given β ∈ (β0,0) there exists a unique R0 ∈ (0, R(β)) such that u′

β(R0) = 0.
Moreover, u′

β(r) < 0 in (0, R0) and u′
β(r) > 0 in (R0, R(β)). It is not difficult to verify that R0(β)

defines a C1 function of β ∈ (β0,0).
For β ∈ (β0,0) we let Vβ = (v1,β , . . . , v4,β ) : (−∞, T (β)) → R

4 be the function obtained from
vβ(t) = uβ(et) through the transformations (10), where T (β) = log(R(β)). Define also T0(β) =
log(R0(β)) for β ∈ (β0,0). Then Vβ satisfies (11) and v2,β (T0(β)) = 0. Since Vβ(−∞, T (β)) lies in
W u(P1) we have Vβ(T0(β)) ∈ E . Let us define φ : (β0,0) → R

4 by
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φ(β) = Vβ

(
T0(β)

)
for all β ∈ (β0,0).

It will also be convenient to introduce, for β ∈ (β0,0) the function

Uβ(r) = uβ

(
rR0(β)

)− uβ

(
R0(β)

)
, 0 � r � 1. (67)

Then Uβ is a solution of (1) for the value of λ = 8(N − 2)(N − 4)R0(β)4euβ (R0(β)) .

Lemma 7.3. We have

lim
β→β0

φ(β) = P∗, lim
β→β0

T0(β) = +∞ and lim
β→β0

Uβ(0) = +∞.

Proof. Let M, Q and Γ = {γ (s): |s| < δ} with γ : (−δ, δ) → R
4 be as in the proof of Theorem 1.3. We

choose γ ′(0) close to the direction v(1) . Let Γ0 = {γ (s): 0 < s < δ}. Then, taking δ sufficiently small,
we can define the function τ : Γ0 → R+ where τ (p) is such that Xτ (p)(p) ∈ M. Then τ is continuous,
and by (59) τ (γ (s)) = 1

ν1
log(1/s) + o(log(1/s)) as s → 0, which shows that τ (p) → +∞ as p → Q .

We note that for β ∈ (β0,0) and β close to β0 there is some time t1(β) such that Vβ(t1(β)) ∈ Γ0. As
β → β0, Vβ(t1(β)) → Q and then T0(β) → ∞.

As in the proof of Lemma 6.2 one can also show that as p → Q , p ∈ Γ0 the point Xτ (p)(p) ap-
proaches the intersection of M with W u(P2). This shows that φ(β) → P∗ as β → β0.

Finally, since T0(β) → ∞ as β → β0 we see from formula (67) that Uβ(0) → ∞ as β → β0. �
Lemma 7.4. We have

lim
β→0

φ(β) = 0 and lim
β→0

Uβ(0) = 0.

Proof. Using the implicit function theorem there is δ > 0 such that for λ > 0 small there is a unique
small solution uλ of (1). The map λ 	→ uλ is C1 into C4(B). Set ũλ(r) = uλ(Aλr) − uλ(0) where Aλ =
(

8(N−2)(N−4)

λeuλ(0) )1/4. Then ũλ is the solution of (33) with β = β(λ) = A2
λ�uλ(0) by uniqueness of that

initial value problem. In particular Uβ = uλ if β = A2
λ�uλ(0).

Using Theorem 4 of [2] we know that uλ/λ → 1
8N(N+2)

(1−r2)2 uniformly in B as λ → 0. By elliptic

estimates the convergence is also in C4(B). It follows that β(λ) = O (λ1/2) as λ → 0. Thus for small
β < 0 the solution of the shooting problem (33) is ũλ with λ > 0 such that A2

λ�uλ(0) = β , and this
λ > 0 is uniquely determined. Then as β → 0, λ → 0 and Uβ(0) = uλ(0) → 0. Also R0(β) = 1/Aλ → 0
and φ(β) → 0 as β → 0 (since φ(β) is expressed in terms of derivatives of uλ). �
Lemma 7.5. We have that

E0 = {
φ(β): β ∈ (β0,0)

}
is a real analytic curve.

By E0 being real analytic we mean that each point of this set as a neighborhood in E0 which can
be parametrized by a real analytic function.

Proof. By construction φ(β) ∈ E0 for each β ∈ (β0,0). To prove E0 ⊆ {φ(β): β ∈ (β0,0)} we need to
show that given any radial regular solution u of (1) there exists β ∈ (β0,0) such that u = Uβ . Using
Lemma 7.2 it is sufficient to find β such that u(0) = Uβ(0). We have by Lemma 7.3 that Uβ(0) → +∞
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as β → β0, while by Lemma 7.4 that Uβ(0) → 0 as β → 0. Since Uβ(0) varies continuously with β

there is β ∈ (β0,0) such that u(0) = Uβ(0).
The unstable manifold of P1 is a real analytic surface, since the vector field is real analytic, in

fact a polynomial, see for instance [12, p. 104]. By the implicit function theorem, each point in
W u(P1) ∩ {v2 = 0} where the intersection is transversal has a neighborhood in this set which can
be parametrized by a real analytic function. At points in the intersection of the sets W u(P1) and
{v2 = 0, v1 > 0} the transversality condition holds. Indeed, the points in this set are given bu
φ(β) with β ∈ (β0,0). Let Uβ be defined by (67) and recall that it is a positive solution of (1).
We recall also that Green function in the ball with Dirichlet boundary conditions G(x, y) satisfies
G(x, y) � c(1 − |x|)2(1 − |y|)2 for some c > 0, see [27]. So we actually have U ′′

β(1) > 0. This implies

that at t = T0(β) we have v ′
2(t) = e2t�Uβ(1) > 0 which shows that the intersection is transversal. It

follows that the intersection of the sets W u(P1) and {v2 = 0, v1 > 0} is a real analytic curve. �
Proof of Theorem 1.5. It is a consequence of Lemmas 7.2 and 7.5. �
Proposition 7.6. Assume 5 � N � 12. If λ �= λS , then there exists a finite number of regular radial solutions
of (1).

Proof. By Lemmas 7.3 and 7.4 we can consider P1 and P∗ as the endpoints of E0. If λ = 0 then u = 0
is the only solution of (1). Let λ �= 0, λ �= λ∗ . By analyticity E0 ∩ {v1 = λ} can only accumulate at
either P1 or P∗ . Since P∗ is not included in {v1 = λ} accumulation in P∗ is not possible. Similarly,
since P1 /∈ {v1 = λ} the set E0 ∩ {v1 = λ} cannot accumulate at P1. Thus E0 ∩ {v1 = λ} consists of a
finite number of points, which correspond to regular radial solutions of (1). �
Acknowledgments

J.D. was partially supported by Fondecyt 1090167, Fondap and Basal-CMM grants, I.F. was partially
supported by Fondecyt 1090518 and I.G. was partially supported by Fondecyt 1090470.

References

[1] G. Arioli, F. Gazzola, H.-C. Grunau, Entire solutions for a semilinear fourth order elliptic problem with exponential nonlin-
earity, J. Differential Equations 230 (2) (2006) 743–770.

[2] G. Arioli, F. Gazzola, H.-C. Grunau, E. Mitidieri, A semilinear fourth order elliptic problem with exponential nonlinearity,
SIAM J. Math. Anal. 36 (4) (2005) 1226–1258.

[3] R. Bamón, I. Flores, M. del Pino, Ground states of semilinear elliptic equations: A geometric approach, Ann. Inst. H. Poincaré
Anal. Non Linéaire 17 (5) (2000) 551–581.

[4] J. Bebernes, D. Eberly, Mathematical Problems from Combustion Theory, Applied Mathematical Sciences, vol. 83, Springer-
Verlag, New York, 1989.

[5] G.R. Belickiı̆, Equivalence and normal forms of germs of smooth mappings, Uspekhi Mat. Nauk 33 (1 (199)) (1978) 95–155,
263.

[6] G.R. Belickiı̆, Normal’nye Formy, Invarianty i Lokal’nye Otobrazheniya (Normal Forms, Invariant and Local Mappings),
Naukova Dumka, Kiev, 1979, 173 pp. (in Russian).

[7] E. Berchio, F. Gazzola, Some remarks on biharmonic elliptic problems with positive, increasing and convex nonlinearities,
Electron. J. Differential Equations (2005), No. 34, 20 pp.

[8] E. Berchio, F. Gazzola, E. Mitidieri, Positivity preserving property for a class of biharmonic elliptic problems, J. Differential
Equations 229 (1) (2006) 1–23.

[9] G. Bratu, Sur les équations intégrales non linéaires, Bull. Soc. Math. France 42 (1914) 113–142.
[10] D. Cassani, J.M. do O, N. Ghoussoub, On a fourth order elliptic problem with a singular nonlinearity, J. Adv. Nonlinear

Stud. 9 (2009) 177–197.
[11] S. Chandrasekhar, An Introduction to the Study of Stellar Structures, Dover, New York, 1957.
[12] S.N. Chow, J.K. Hale, Methods of Bifurcation Theory, Grundlehren der Mathematischen Wissenschaften, vol. 251, Springer-

Verlag, New York–Berlin, 1982.
[13] E.A. Coddington, N. Levinson, Theory of Ordinary Differential Equations, McGraw–Hill Book Company, Inc., New York–

Toronto–London, 1955.
[14] C. Cowan, P. Esposito, N. Ghoussoub, A. Moradifam, The critical dimension for a fourth order elliptic problem with singular

nonlinearity, Arch. Ration. Mech. Anal., in press.



3162 J. Dávila et al. / J. Differential Equations 247 (2009) 3136–3162
[15] J. Dávila, L. Dupaigne, I. Guerra, M. Montenegro, Stable solutions for the bilaplacian with exponential nonlinearity, SIAM J.
Math. Anal. 39 (2) (2007) 565–592.

[16] J. Dávila, I. Flores, I. Guerra, Multiplicity of solutions for a fourth order equation with power-type nonlinearity, preprint.
[17] J. Dolbeault, I. Flores, Geometry of phase space and solutions of semilinear elliptic equations in a ball, Trans. Amer. Math.

Soc. 359 (9) (2007) 4073–4087.
[18] A. Ferrero, H.-C. Grunau, The Dirichlet problem for supercritical biharmonic equations with power-type nonlinearity, J.

Differential Equations 234 (2) (2007) 582–606.
[19] A. Ferrero, H.-C. Grunau, P. Karageorgis, Supercritical biharmonic equations with power-type nonlinearity, Ann. Mat. Pura

Appl. 188 (2009) 171–185.
[20] A. Ferrero, G. Warnault, On solutions of second and fourth order elliptic equations with power-type nonlinearities, Nonlin-

ear Anal. 70 (8) (2009) 2889–2902.
[21] I. Flores, A resonance phenomenon for ground states of an elliptic equation of Emden–Fowler type, J. Differential Equa-

tions 198 (1) (2004) 1–15.
[22] I. Flores, Singular solutions of the Brezis–Nirenberg problem in a ball, Comm. Pure Appl. Anal. 8 (2) (2009) 673–682.
[23] D.A. Frank-Kamenetskii, Diffusion and Heat Exchange in Chemical Kinetics, Princeton Univ. Press, Princeton, NJ, 1955.
[24] F. Gazzola, H. Grunau, Radial entire solutions for supercritical biharmonic equations, Math. Ann. 334 (4) (2006) 905–936.
[25] I.M. Gelfand, Some problems in the theory of quasilinear equations, Section 15, due to G.I. Barenblatt, Amer. Math. Soc.

Transl. Ser. 2 29 (1963) 295–381.
[26] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag,

Berlin, 2001.
[27] H. Grunau, G. Sweers, Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions, Math.

Ann. 307 (4) (1997) 589–626.
[28] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathe-

matical Sciences, vol. 42, Springer-Verlag, New York, 1990. Revised and corrected reprint of the 1983 original.
[29] Z. Guo, J. Wei, On a fourth order nonlinear elliptic equation with negative exponent, SIAM J. Math. Anal. 40 (5) (2009)

2034–2054.
[30] Z. Guo, J. Wei, Entire solutions and global bifurcations for a biharmonic equation with singular non-linearity in R

3, Adv.
Differential Equations 13 (7–8) (2008) 753–780.

[31] P. Hartman, Ordinary Differential Equations, Classics in Applied Mathematics, vol. 38, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 2002.

[32] D.D. Joseph, T.S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Ration. Mech. Anal. 49 (1972)
241–269.

[33] P. Karageorgis, Stability and intersection properties of solutions to the nonlinear biharmonic equation, preprint.
[34] P.-L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev. 24 (4) (1982) 441–467.

[35] J. Liouville, Sur l’equation aux différences partielles d2 log λ
du dv ± λ

2a2 = 0, J. Math. Pure Appl. 36 (1853) 71–72.
[36] P.J. McKenna, W. Reichel, Radial solutions of singular nonlinear biharmonic equations and applications to conformal geom-

etry, Electron. J. Differential Equations (2003), No. 37, 13 pp.
[37] È. Mitidieri, S.I. Pokhozhaev, A priori estimates and the absence of solutions of nonlinear partial differential equations and

inequalities, Proc. Steklov Inst. Math. 234 (3) (2001) 1–362.
[38] J. Palis, On Morse–Smale dynamical systems, Topology 8 (1968) 385–404.
[39] D. Ruelle, Elements of Differentiable Dynamics and Bifurcation Theory, Academic Press, Inc., Boston, MA, 1989.


	Multiplicity of solutions for a fourth order problem with exponential nonlinearity
	Summary
	Preliminaries
	Behavior of singular solutions
	Heteroclinic connection from P1 to P2
	The unstable manifold at P2
	Multiplicity results: Proofs of Theorems 1.3 and 1.7
	Structure of the solution set
	Acknowledgments
	References


