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Abstract

We are concerned in this survey with singular solutions to semi-linear elliptic prob­
lems. An example of the type of equations we are interested in is the Gelfand-Liouville
problem -/'"u = 'Ae" on a smooth bounded domain Q of ffi.N with zero Dirichlet
boundary condition. We explore up to what degree known results for this problem are
valid in other situations with a similar structure, with emphasis on the extremal solu­
tion and its properties. Of interest is the question of identifying conditions such that
the extremal solution is singular. We find that in the problems studied, there is a strong
link between these conditions and Hardy-type inequalities.
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1. Introduction

Singular solutions ofsemi-linear elliptic problems 85

In this survey we are interested in singular solutions to semi-linear partial differential
equations of the form

(
-/11./ = Ag(U) in Q

(1.1)
u = 0 on aQ,

where Q is a bounded smooth domain of JRN, A > 0 and g : [0, 00) ---+ JR satisfies

g is smooth increasing, convex, g(O) > 0

and superlinear at +00 in the sense

1
. g(u)
1m -- = +00.

11---++00 U

Some typical examples are g(u) = e" and g(u) = (1 + u)P with p > 1.
We are also interested in some variants of (1.1) such as

(1.2)

(1.3)

ru~o
in Q

au (1.4)- = Ag(U) on fl
av
u=o on f2,

where A > 0 and Q C JRN is a smooth, bounded domain and fl, f2 is a partition of aQ
into surfaces separated by a smooth interface, and v is the exterior unit normal vector.

We shall consider as well the fourth-order equation

{

/121./ = Ag(U) in B

u=O onaB (1.5)
au
- = 0 on aB,
av

where B is the unit ball in JRN.
Equations of the form (1.1) have been studied in various contexts and applications.

Liouville [85] considered this equation with g(u) = e" in connection to surfaces
with constant Gauss curvature. The exponential nonlinearity in dimension 3 appears in
connection with the equilibrium of gas spheres and the structure of stars, see Emden [53],
Fowler [60] and Chandrasekhar [29]. Later Frank-Kamenetskii [61] obtained a model
like (1.1) with g(u) = (1 - SU)me"/(l+c") in combustion theory. Also in connection
with combustion theory, Barenblatt, in a volume edited by Gelfand [69], studied the case
g(u) = e" in a ball in dimensions 2 and 3. Since then, this problem has attracted the
attention of many researchers [10,19,20,24,34,35,62--64,76,79,83,93,94].

Boundary value problems of the form (1.4) with exponential nonlinearity arise in
conformal geometry when prescribing Gaussian curvature of a 2-dimensional domain and
curvature of the boundary, see for instance Li, Zhu [84] and the references therein. The
study of conformal transformations in manifolds with boundary in higher dimensions also
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gives rise to nonlinear boundary conditions, see Cherrier [31] and Escobar [54--56]. A
related motivation is the study of Sobolev spaces and inequalities, specially the Sobolev
trace theorem, see Aubin [6] and the surveys of Rossi [105] and Druet, Hebey [52].
In connection with physical models (1.4), exponential nonlinearity appears in corrosion
modelling where there is an exponential relationship between boundary voltages and
boundary normal currents. See [21,78,92,107] and [46] for the derivation of this and related
corrosion models and references to the applied literature. Nonlinear boundary conditions
appear also in some models of heat propagation, where u is the temperature and the normal
derivative ~~ in (1.4) is the heat flux. In [86] the authors derive a similar model in a
combustion problem where the reaction happens only at the boundary of the container.

Higher-order equations have attracted the attention of many researchers in the last few
years. In particular fourth-order equations with an exponential nonlinearity have been
studied in 4 dimensions, in a setting analogous to Liouville's equation by Wei [108], Djadli
and Malchiodi [48] and Baraket et at. [7]. In higher dimensions Arioli et at. [4] considered
the bilaplacian together with the exponential nonlinearity in the whole of JRN and Arioli et
at. [5] studied (1.5) for g(u) = e" in ball, which is the natural fourth-order analogue of the
classical Gelfand problem (1.1) with g(u) = e".

A general objective concerning equations (1.1), (1.4) and (1.5) is to study the structure
of all solutions (A, u) and the existence and qualitative properties of singular solutions.
These problems share the same basic result:

THEOREM 1.1. For problems (1.1), (1.4) and (1.5) there exists a finite parameter A* > 0
such that:

(1) if0 < A < A* then there exists a minimal bounded solution uA,

(2) ifA > A* then there is no bounded solution.

We call A* the extremal parameter. The branch uAwith 0 < A < A* is increasing in
A and the linearization of the nonlinear equation around the minimal solution is stable.
As A ---+ A* the increasing limit u* = limA t A' U Aexists pointwise and is a solution with
parameter A* in a weak sense to be given later on (the exact definition depends on the
problem). Depending on the situation, u* maybe bounded or singular.

Some questions that we are interested in are:
- Can one determine in each situation whether u* is singular or not?
- Are there singular solutions for A > A*?
- What are the singular solutions for A < A*?
- What happens to the singular solutions under perturbations of the equation?

In what follows we shall review in more detail some of the literature related with the
previous questions. Then we shall consider in more detail recent works of the author and
some collaborators: Dupaigne, Montenegro and Guerra, [43--45].

1.1. Basic properties

Theorem 1.1 and the properties mentioned after its statement can be obtained by the
method of sub and supersolutions. Indeed, the three problems (1.1), (1.4) and (1.5) have a
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maximum principle. Partly due to this reason we restrict the analysis of (1.5) to the ball,
since the maximum principle for ~2 in this domain with Dirichlet boundary conditions
u = ~~ = 0 holds [15].

To be more concrete we sketch the argument for equation (1.1). We remark that for A
positive, 0 is a subsolution which is not a solution and for small positive A one can take as
a supersolution the solution to

(
-~C; = 1 in Q

C; = 0 on iJQ.

Defining A* as the supremum of the values such that a classical solution exists, we see that
A* > 0 and for any 0 < A < A* there is a bounded solution UA, which is minimal among
all classical solutions.

To show that A* is finite let ip1 be a positive eigenfunction of - ~ with Dirichlet boundary
condition and eigenvalue AI> O. Suppose that U is a classical solution to (1.1) and
multiply this equation by ip1. Integrating and using (1.2), (1.3), which implies g(ul ~ eu
for some e > 0, we find

(1.6)

which shows than ::S Al / e. Since there is a constant C such that g(u 1 ~ 4A III / A* - C for
all u > 0, if A*/2 < A < A* we have

(1.7)

for some constant C'. This shows that 1Q UAipl ::S C and implies that u* = limA---+ A, UA

exists a.e.
An important property of the minimal branch of solutions is its stability, that is,

III (- ~ - Ag' (II A)) > O. V 0 ::S A < A*. (1.8)

where III (- ~ - Ag' (u 11 denotes the first eigenvalue of the operator - ~ - Ag' (uA1 with
Dirichlet boundary conditions. We recall that

(1.9)

and that there exists a first positive eigenfunction of -~ - Ag' (u l, that is,

{

-~VII - Ag'(l/ A1VII = 11 1VII in Q

VII > 0 in Q

VII = 0 on iJQ,

where we may normalize II VII II L 2(Q) = 1 (see [70]).
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Fix 0 ::S A < A* and let us show that f-ll > O. Since A < A* we may fix A < X< A* and
write if = uJ.., that is, the minimal solution with parameter X. Then by the positivity and
convexity of g we have

Multiplying this inequality by VII and integrating by parts we find

But the integral above is positive because VII > 0 and if > U;;. by the strong maximum
principle, and we conclude that f-ll > O.

Actually the stability characterizes the minimal solution, that is, if (A, u) is a classical
solution to (1.1) such that f-ll ( - f... - Ag' (u)) > 0 then necessarily u = U;;.. Indeed, since
U;;. is the minimal solution we have immediately U;;. ::s u. Now, by convexity of g

-f...(u;;. - u) = A(g(U;;.) - g(u)) ~ Ag'(U)(U;;. - u).

Since f-ll (- f... - Ag' (u)) > 0 the operator - f... - Ag' (u) satisfies the maximum principle
and we deduce that U;;. ~ u.

The implicit function theorem can also be applied to problems (1.1), (1.4) and (1.5). It
implies that starting from the trivial solution (0, 0) there exists a maximal interval [0, AD)

and a C1 curve of solutions u (A) defined in this interval. Then it is possible to prove that
this curve is exactly the branch of minimal solutions U;;. as constructed above and that
A* = AD. For the results here we refer to [69,34,79,35].

1.2. A second-order semi-linear equation

In this section we recall some facts related to (1.1), in particular reviewing a few cases
where the solution structure is completely known, sufficient conditions for u* E L 00 in
general domains, examples where u* ~ L 00, and then some properties of the extremal
solution such as its stability and uniqueness.

Let us start recalling some of the results for the case g(u) = e" in the unit ball. In
dimension 1 this problem was first studied by Liouville [85]. Bratu [17] found an explicit
solution when N = 2. Later Chandrasekhar [29] and Frank-Kamenetskii [61] considered
N = 3 and Barenblatt [69] proved that in dimension 3 for A = 2 there are infinitely
many solutions. Joseph and Lundgren [76], using phase-plane analysis, gave a complete
description of the classical solutions to (1.1) when Q is the unit ball and g(u) = e" or
g(u) = (1 + u)P, P > 1.

THEOREM 1.2 (Joseph and Lundgren [76]). Let Q be the unit ball in JRN, N ~ 1 and
g(u) = e". Then

- If N = 1, 2 for any 0 < A < A* there are exactly 2 solutions, while for A = A* there
is a unique solution, which is classical.
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- If3 ::s N ::s 9 we have that u* is bounded and A* > AD, where AD = 2(N - 2). For
A = AD there are infinitely many solutions that convelge to U(x) = -2log lxi, which
is a singular solution with parameter AD. For IA - AD I -=I- 0 but small there are a lmge
number ofsolutions.

- IfN ~ IOthenA* =2(N -2)andu* = -2Ioglxl. MoreoverforanyO < A < A*
there is only one solution.

When Q is the u~lit ball in JRN, N ~ 3 and g(u) = (1 + u)P, P > 1 then:
- When 1 < P ::s ~~~ there are exactly two solutions for any 0 < A < A*, while for

A = A* there is a unique solution, which is classical.

- When p > ~~~ and N < 2+ p4!.1 + 4) p~l we have that u* is bounded and

A* > Ap, where Ap = p~l (N - p~l)' For A = Ap there are infinitely many solutions
o

that convelge to Up = Ixl- p:j - 1, which is a singular solution with parameter Ap.
For IA - Api -=I- 0 but small there are a lmge number ofsolutions.

- If P > ~~~ and N ~ 2 + p4!.1 +4) p~l then A* = Ap and u* = Up. Moreoverfor

any 0 < A < A* there is only one solution.

For general domains Crandall and Rabinowitz [35] showed that if u* is a classical
solution then the branch of minimal solutions (A, u).) can be continued as curve s E

(-8,8) ---+ (A(S), us) that "bends back", that is, Us coincides with the minimal branch
for -8 < S ::s 0, A(O) = A*, Uo = u* and for 0 < S < 8 we have A(S) < A* while
Us is a second solution associated to A(S). These authors and also Mignot and Puel [93,
94] gave sufficient conditions for u* to be a classical solution in general domains for some
nonlinearities.

THEOREM 1.3 (Crandall-Rabinowitz [35], Mignot-Puel [93]). Let Q S; JRN be a bounded
smooth domain.

(1) If g(u) = e" then u* is classical provided N ::S 9.
(2) When g(u) = (1 + u)P with p > 1, u* is classical when

4p ~N<2+--+4 --.
p-l p-l

The conditions on p and N in Theorem 1.3 are optimal if Q is the unit ball by the
results of Joseph and Lundgren. A basic fact about the branch of minimal solutions that is
important in the proof of this result is that u). is stable, in the sense that the first Dirichlet
eigenvalue of the linearized operator - ~ - Ag' (u).) is positive, that is, f-ll > 0, where f-ll
is given by (1.9). In particular

Al g'(zt).)ep2 ::S l iVepl 2 Vep E Co(Q)· (1.10)

Let us sketch briefty the proof of Theorem 1.3 in the case of the exponential nonlinearity
g(u) = e". The aim is to obtain estimates for the minimal solution u). for 0 < A < A* that
are independent of A. Let j > 0 and take ep = ejllA - 1. Then from (1.10) we have

i l e2jllAIVu).12 ~ Al e"A(e jllA _1)2. (1.11)
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(1.12)

(1.13)

Multiplying equation (1.1) by e2ju ). - 1 and integrating yields

2j l e2ju).IVuAl2 = Al eU ).(e2ju ). - 1).

Combining (1.11) and (1.12) we see that if j < 2 then there is some C independent of A
such that

Thus IluAllu ::s C with Cq independent of A for any q < 5 . Hence, if N ::S 9 by the
Sobolev and Morrey embedding theorems we have that II uAII LCD ::S C, and this shows that
u* is bounded, and consequently smooth.

Brezis and Vazquez [20] posed the question of finding whether u* is bounded for general
g(u). The result in this direction that holds for the most general nonlinearity and domain
is:

THEOREM 1.4 (Cabre [22]). Let Q be a smooth, bounded, strictly convex domain in JRN
with N ::S 4. Ifg satisfies (1.2), (1.3) then the extremal solution u* to (1.1) is bounded.

Before this result, Nedev [96] had proved that u* is bounded if N ::S 3, without any
restriction on the domain. It is not known if the extremal solution u* is singular for some
domains and nonlinearities in dimension 5 ::S N ::S 9. Cabre and Capella [24] settled this
question in the radial case (see [23] for a related result in the entire space):

THEOREM 1.5 (Cabre-Capella [24]). Suppose g satisfies (1.2), (1.3) and let Q = Bl be
the unit ball in JRN, N ::S 9. Then u* is bounded.

The proof of [24] is based on a rewriting of the stability inequality (1.10) in a form that
makes it independent of g. Indeed, let uA denote the minimal solution in Q = B 1, which
is radial, and let us write u~ for the radial derivative dd~).. Let I] E CO(Bl) and consider
cp = I]U~ in (1.10). Then

( Vu~V(U~1]2) + (u~)2IVI]12 ~ A { g'(z{A)(U~)21]2.
lBI lBI

But u~ satisfies

I N -1 I I I
-f...uA + --2-uA = Ag (UA)U A•

r

Multiplying this equation by u~ 1]2 and integrating by parts we find

1"',, 12 1N-l 122 '1 ' 122v UA v (UAI] ) + -.-2-(uA ) I] = /I. g (UA)(U A ) I] •
BI BI I BI

Combining (1.13) and (1.14) we obtain

L
1

(U~)2 (IV1]12 - Nr~ 11]2) ~ 0 VI] E CO(Bl).

(1.14)

(1.15)
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(1.16)

This form of the stability can be used to deduce from it weighted integrability for u~.

Indeed, by density we can argue that it holds for I] = r-a for a < Ni 2, but it is only
useful to choose a such that IV'I]1 2 - ~..;-11]2 ~ O. Now, if I] = r-a then

IV'I]12 _ N - 11]2 = (a 2 _ N _ 1) r-2a - 2 .
r2

Then for any 0 < a < .j"F[=1, from (1.15) we deduce

11
(u~)2rN-2a-3 dr ::s c.

We note that C depends on a but not on A. From (1.16) we can deduce now that if N < 10
then Ilu)JLoo ::s C with a constant independent of A. Indeed, let fJ > 0 to be fixed later on
and 0 < r < 1. Since uA(1) = 0

Observe that N - 2.j"F[=1- 3 < 1 whenever N < 10. Thus for N < 10, we may choose
N - 2.j"F[=1 - 3 < fJ < 1 and it follows that

,,,Cd s (f ,,;(.,)2.,' d.,) '/2 (f .,-' d.,) '/2 S C

with C independent of r and A. This shows that u* is bounded and hence a classical
solution.

The argument of [22] for a general strictly convex domain in JRN, N ::S 4 follows the
same idea as for the radial case, but this time the role u~ is taken by 1 V'U AI. The proof is
more involved because the equation satisfied by IV'uAI is more complicated.

To continue the discussion of the properties of u* we shall define precisely the notion
of weak solution we will use when dealing with (1.1), and we adopt the one introduced by
Brezis et al. [19]:

DEFINITION 1.6. A function u E L 1(Q) is a weak solution to (1.1) if g(U)D(X) E L 1(Q)

and

-l ullt; = Al g(u)t; for alIt; E C2 (Q), t; = 0 on iJQ,

where

D(X) = dist(x, iJQ).

It is not difficult to show that u* = limA---+ A, UA is a weak solution in the above sense.
Moreover Nedev [96] proved that in any dimension u* E LP(Q) for any p < N~4 if
N > 4, for any p < +00 if N = 4 and u* E L 00 for N ::S 3.

A question of interest is whether weak solutions may exist for A > A*. Brezis et at. [19]
showed that this is not the case for (1.1):
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THEOREM 1.7 (Brezis-Cazenave-Martel-Ramiandrisoa [19]). If A > A* then (1.1) has
no weak solution.

This result can be restated as follows: if (1.1) has a weak solution for some A > 0 then
for any 0 < A' < A, equation (1.1) has a classical solution. The proof of this assertion in
[19] is based on a truncation method specially adapted to the nonlinearity. Suppose u is a
weak supersolution of (1.1) with parameter A. In [19] they consider a C2 concave function
¢ : [0, 00) ---+ [0, 00) and set

u = ¢(u).

Assuming for a moment that u is smooth we can compute

If ¢' is bounded, the inequality

~v ::S ¢'(U)~u

can be proved in the sense of distributions when u, ~u ELI (Q). Then, given 0 < A' < A
we seek a concave, bounded ¢ such that v becomes a supersolution to (1.1) with parameter
A'. If u is a weak solution, then

-~v ~ _¢'(U)~u = A¢'(U)g(U)

and we would like to have

A¢'(U)g(U) ~ A'g(¢(U)).

In particular it is sufficient to achieve equality and directly integrating the ODE yields

(1.17)

where

11 ds
H(t)= -.

o g(s)

It can be checked that ¢ defined by (1.17) is concave, increasing with a bounded derivative.
Moreover it is bounded if 1000

g1~) < +00 and this leads to a proof of the statement in this

case. If on the contrary, 1000
g1~) = +00, then still v has better regularity that u, and

repeating this construction a finite number of times shows that for AI! < A' a bounded
supersolution exists, see the details in [19].

Using the same truncation method and a delicate argument Martel [87] was able to prove
the uniqueness of u*.

THEOREM 1.8 (Martel [87]). If A = A* then (1.1) has a unique weak solution.
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Going back to the discussion of whether u* is bounded or not, we have seen some ideas
to prove that under certain conditions u* is bounded. But there are few situations where
it is known that u* is singular. One of these examples is the case when Q is the unit
ball in JRN, N ~ 10 and g(u) = e". In [76] it is shown through phase-plane analysis
that u* = -2 log Ixl. Brezis-Vazquez [20] found a new proof of this fact, showing a
connection with Hardy's inequality which we recall:

This connection is a characterization of singular energy solutions.

(N ~ 3). (1.18)

THEOREM 1.9 (Brezis-Vazquez [20]). Let Q S; JRN be a bounded smooth domain.
Suppose u E HJ (Q) is a singular weak solution to (1.1) for some A > 0 such that

(1.19)

Then u = u* and A = A*.

When Q = Bl (0) in JRN with N ~ 10 and g(u) = e" the explicit solution U =

-210g Ixl with parameter AD = 2(N - 2) satisfies condition (1.19) thanks to Hardy's
inequality (1.18). Thus the previous result immediately yields u* = U and A* = AD.
The same idea applies when g(u) = (1 + u)P, P > 1 in the unit ball: the solution

u = Ixl- p:j - 1 satisfies (1.19) when N ~ 2 + p
4
!1 +4) p~l'

The idea of the proof of Theorem 1.9 is as follows. First we remark that A ::S A* by
Theorem 1.7. If A = A* then the uniqueness result Theorem 1.8 implies that u = u*. So
we have to rule out the case A < A*, which we do by contradiction. By density we see
that (1.19) holds for cp E HJ(Q). Since by hypothesis u E HJ(Q) we are allowed to take
cp = u - U;;., where U;;. denotes the minimal solution. We obtain, after integration by parts
and using the equations for u and U;;.,

l (g(zt;;.) - (g(u) + g'(u)(u;;. - u)))(u - u;;') ::S O.

But the integrand is nonnegative since u > U;;. a.e. and g is convex. This implies

g(zt;;.) = g(u) + g'(u)(u;;. - u) a.e. in Q.

It follows that g is linear in intervals of the form [u;;.(x), u(x)] for a.e. x E Q. The union
of such intervals is an interval and coincides with [0.00) because U;;. = 0 on iJQ and u is
unbounded, contradicting (1.3).
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1.3. Perturbation ofsingular solutions

J. Davila

In the search for nonradial examples where the extremal solution is singular, a natural
approach is to consider perturbations of the radial case. Let us consider the Gelfand
problem in dimension N ~ 3, that is

(
- !11./ = Ae"

u=O

in Q C JRN

on iJQ.
(1.20)

In dimension N = 3 and when Q = B is the unit ball, there are infinitely many singular
solutions, with a unique singular point which can be prescribed near the origin. This result
was announced by H. Matano and proved by Rebai: [101]. Similar results hold when the
nonlinearity is g(u) = (1 + u)p.

THEOREM 1.10 (Rebai: [101]). Let B be the unit ball in JR3. Then there exists s > 0 such
thatfor any ~ E Be there is a solution (A, u) of

(
!11./ = Ae"

u=o

in B \ {~}

on iJB
(1.21)

which has a nonremovable singularity at~.

The solution in the above result has the behavior u (x) ~ - 210g Ix - ~ I and it can be
seen that (1.21) holds in the sense of distributions.

Pacard [98] proved that for N > 10, there exist a dumbbell shaped domain Q and a
positive solution u of -!1u = e" in Q having prescribed singularities at finitely many
points, but u = 0 may not hold on iJQ. Rebai: [102] extended this result to the case
N = 3. When the exponential nonlinearity is replaced by g(u) = urY

, Mazzeo and Pacard
[90] proved that for any exponent a lying in a certain range and for any bounded domain
Q, there exist solutions of -!1u = urY in Q with u = 0 on iJQ, with a nonremovable
singularity on a finite union of smooth manifolds without boundary. Further results in this
direction can be found in [103,99] and their references.

We are interested in the existence of singular solutions to (1.21) in domains in JRN,
N ~ 4 which are perturbations of the unit ball. Given a C2 map 'IjJ : Bl ---+ JRN and t E JR
define

Q t = {x + t'IjJ(x) : x E Bd.

We work with It I sufficiently small in order that Q t is a smooth bounded domain
diffeomorphic to Bl and we consider the Gelfand problem in Qt:

(
- !11./ = Ae"

u=O

Our main result is:

(1.22)
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THEOREM 1.11. Let N ~ 4. Then there exists 8 > 0 (depending on Nand 1jJ) and
a curve t E (-8,8) f-+ (A(t), u(t)) such that (A(t), u(t)) is a solution to (1.22) and
A(O) = 2(N - 2), u(O) = log 1}12 ' Moreover there exists ~(t) E Bl such that

II
U(X, t) -log 1 211 + IA(t) - 2(N - 2)1 ---+ 0 as t ---+ o.

Ix - ~(t)1 L:0(Qtl

(1.23)

The behavior of the singular solution at the origin is characterized as follows:

1 (A(O))u(x, t) = In Ix _ ~(t)12 + log A(t) + 8(lx - ~(t)I),

where lims---+o 8(S) = 0 (see [43, Corollary lA]).
Once Theorem 1.11 is established it implies that for small t the extremal solution is

singular in dimension N ~ 11.

COROLLARY 1.12. Let N ~ 11 and (A(t), u(t)) be the singular solution ofTheorem 1.11.
Then u (t) is the extremal solution in Q t and A(t) the extremal parametel:

Indeed, let u = u (t) denote the solution of (1.22) obtained in Theorem 1.11. Since
N ~ 11 we have 2(N - 2) < (N - 2)2/4 and it follows from (1.23) that if It I is chosen
small enough,

Hence for cp E Co(Qt),

1 (N - 2)2 ~ cp2 ~A(t) ell cp2 ::S --- -----;0 < IVcpl2,
Q, 4 JR:N Ix - ~(t)12 - JR:N

by Hardy's inequality (1.18) and thanks to Theorem 1.9, u(t) is the extremal solution of
(1.22).

The proof of Theorem 1.11 is by linearization around the singular solution - 2log Ix I.
First we change variables to replace (1.22) with a problem in the unit ball. The map id+t1jJ
is invertible for t small and we write the inverse of y = x + t1jJ(x) as x = y + t{f(t, y).
Define v by

u(y) = v(y + t1jJ(t, y)).

Then

where L t is a second-order operator given by



96

We look for a solution of the form

J. Davila

1
u(x) = log 2 + ¢' ),. = c* + {l,

Ix - ~I

where c* = 2(N - 2). Then (1.22) is equivalent to

(1.24)

(1.25)

Here the unknowns are ¢, ~ and {l. From Hardy's inequality (1.18) we see that whenever

c* < (N:;:2)2, which holds if N ~ 11, if the right-hand side of (1.25) belongs to L 2(B)

then there is a unique solution in H6 (B). But typically solutions are singular at the origin,
with a behavior Ix - ~I-a for some a > 0 (see Baras and Goldstein [9], Dupaigne [50]).
Thus, although the linear operator -~ - IX~'~12 may be coercive in H6(B), this functional
setting is not useful since the nonlinear term that appears on the right-hand side of (1.25),
namely IX~'~12 (e¢ - 1 - ¢), is too strong. Our approach is to consider other functional
spaces, more precisely, weighted HOlder spaces specially adapted to the singularity. It
turns out that the singular linear operator has a right inverse in these spaces if the data
satisfies some orthogonality conditions. More precisely, if one wants solutions such that
1¢(x)1 ::S C1x - ~Iv, the number and type of orthogonality conditions that appear depend
on v and the value c*. In our case we would like v = 0 and c* is given, and as we will
see, this requires N + 1 orthogonality conditions (if N ~ 4). Fortunately we have N + 1
free parameters: {l and ~ in (1.24), and this is the reason not to force the position of the
singularity of v. If N = 3 then only one orthogonality condition is required. This explains
that in Theorem 1.10 the position of the singularity can be prescribed arbitrarily near the
origin, while {l or equivalently),. has to be adjusted.

The proof of Theorem 1.11, which is presented in Section 2 is divided into the following
steps. First, in Section 2.1 we study the Laplacian with a potential which is the inverse
square to a point ~. The main result is the solvability of the associated linear equation
in weighted HOlder spaces. The analysis in this section is related to the work of Mazzeo
and Pacard [90], see also [28,89]. We also study the differentiability properties of the
solution with respect to ~ and we show that the previous results hold for perturbations of
the Laplacian with the same singular potential. Then the proof itself of Theorem 1.11 is in
Section 2.2.

A similar result can be obtained for power-type nonlinearities: given p > 1, consider
the problem

(

-~l.{ =),.(1 + u)p

u=o
(1.26)
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When t = 0, i.e. when the domain is the unit ball, it is known (see Theorem 1.2 or [76,20])
that the extremal solution is unbounded and given by u* = Ixl-2/(p-l) - 1 if and only if
N ~ 11 and

4{?;N>6+--+4 --.
- p-l p-l

THEOREM 1.13. Let N ~ 11 and p > 1 such that N > 6+ p~l +4) p~l' Given t small,

let u*(t) denote the extremal solution to (1.26). Then there exists to = to(N. 0/. p) > 0
such that if It I < to, u* (t) is singulm:

Going back to (1.20) naturally the question arises whether if N ~ 10 for any convex
smooth, bounded domain Q S; JRN the extremal solution u* is singular. The restriction of
convexity is reasonable since if Q is an annulus it is easily seen that with no restriction on
N the extremal solution u* is smooth. This question, which appears in [20], was considered
by Dancer [36, p. 54-56] who showed that in any dimension there are thin convex domains
such that the extremal solution is bounded. Let Q C JRN be a bounded open set with
smooth boundary. We assume furthermore that Q is convex and iJQ is uniformly convex,
i.e. its principal curvatures are bounded away from zero. Write JRN = JRNI X JRN

2 and
x = (Xl. X2) E JRN with Xl E JRNl, X2 E JRN

2. For 8 > 0 set

and consider the Gelfand problem in QI':

(1.27)

(

- !11./ = 'Ae"

u=O
(1.28)

THEOREM 1.14. Given 8 > 0, let u; be the extremal solution to (1.28). If N2 ::S 9 then
there exists 80 = 80(N. Q) > 0 such that if8 < 80, u; is smooth.

The idea of the proof is to fix the domain by setting

Then VI' is defined in Q and satisfies

(

-(82!1Yl + !1Y2)VI' = 8]'Ae v
,

VI' = 0

in Q

on iJQ,
(1.29)

where !1Yi denotes the Laplacian with respect to the variables Yi, i = 1. 2. After taking
8 ---+ 0 one obtains an equation in each "slice" Q a = {Y2 : (0'. Y2) E Q} which lives in
JRN

2 with N2 ::S 9. For all these equations there is an a priori bound for stable solutions as
seen, for instance, from the proof of Theorem 1.3. We get a contradiction with this a priori
bound, and at the same time manage to prove the convergence as 8 ---+ 0 by selecting for
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each s > 0 small a value AI' such that the minimal solution Ul' of (1.28) with parameter AI'
satisfies

maxul' = M,
Q,

(1.30)

where M is a suitably large fixed number. This is possible, if we argue by contradiction,
that is, assuming there is a sequence of s ---+ 0 such that u; ~ L 00 (QI')' For the purpose of
proving convergence of VI' it is important to establish: for some constant Co we have

CoA* < - (1.31)I' - s2

and for some constant C independent of s

(1.32)

For the last property we use the uniform convexity of Q, which allows us to find R > 0
large enough so that for any YO E aQ there exists.::o E JRN such that the ball BR('::O)

satisfies Q c BR ('::0) and Yo E aBR ('::0). For convenience write for s > 0

LI' = s2LlY1 + Lly2 '

Define s(y) = R2 - Iy - '::01 2 so that s ~ 0 in Q and -Ll's = 2sNl + 2N2. From (1.31)
we have the uniform bound s2AI' ::s C. It follows from (1.29) and the maximum principle
that VI' ::S Cs with C independent of s and YO. Since VI'(Yo) = s(Yo) = 0, this in tum
implies that

(1.33)

Then, since the linearization of (1.29) around VI' has a positive first eigenvalue, we deduce
(1.32). A complete proof can be found in [43], see also [36].

1.4. Reaction on the boundary

We consider the problem 0.4), that is,

{

Llu = 0
au
-. = Ag(U)av

u=O

in Q

(1.34)

where A > 0 is a parameter, Q C JRN is a smooth, bounded domain and r l, r 2 is a partition
of aQ into surfaces separated by a smooth interface. We will assume that

g is smooth, nondecreasing, convex, g(O) > 0,

I (t)t
1· . f g 1Imm -- > .
1---++00 g(t)

(1.35)

(1.36)
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(1.37)

(1.38)

We recall that the branch of minimal solutions is stable in the sense that for 0 ::S A < A*:

. IQ IVipl2dx - Aifl j'(u;.)ip2ds
mf ;; 2 > O.

IOECl(Q).IO=Oon f2 fl ip ds

Assumption (1.36) is not essential, but it simplifies some of the arguments and holds for
the examples g(u) = e", g(u) = (1 + u)P, P > 1. It allows us to say immediately that u*
is an energy solution in the following sense.

DEFINITION 1.15. We say that u is an energy solution to (1.34) if u E H1(Q), g(u) E

L1Wl) and

{ VuVip = A ( g(u)ip Vip E C1(Q).
iQ ifl

Indeed, from the stability of the minimal solutions U;.

A { g'(z{;.)u~::s { IVu;.1 2 = A { g(u;.)u;..
ifl iQ ifl

By the hypothesis (1.36) for some (J > 0 and C > 0

(1 + (J)g(u)u ::S g'(u)u2 + C Vu ~ O.

It follows that there exists C independent of A such that

A ( g(u;.)u;.::SC
ifl

and hence

llvu;.1 2 ::s C.

This shows that u* E H1(Q). Moreover g(u*) ELI (fl). Indeed, let ip be the solution to

{

!lip = 0 in Q

dip
- = 1 on fl
dV

ip = 0 on f2.

Then

From (1.38) we deduce Ilg(u;.)IIL1(fIl ::S C with C independent of A and the assertion
follows.

We are interested in determining whether the extremal solution u* is bounded or singular
in the cases g(u) = e" and g(u) = (1 + u)P, P > 1. For this purpose we remark that, as
for (1.1) (cf. Theorem 1.9), the stability of a singular energy solution implies that it is the
extremal one.
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(l.40)

LEMMA 1.16. Suppose g satisfies (1.35), (1.36). Assume that v E H1(Q) is an unbounded
solution of(1.34)for some A > 0 such that

A { g'(V)ep2 :s (IV'epI 2 Vep E C1(Q), ep = 0 on f2. (1.39)
Jrl JQ

Then A = A* andv = u*.

We shall give in Section 3.1 a proof of this fact under hypothesis (1.36). We note here,
though, that the argument is simpler than for Theorem 1.9 because we know immediately
that u* E H I (Q) and we do not need to rely on a uniqueness result for u* similar to
Theorem 1.8. The advantage of this approach is that Lemma 1.16 holds also under more
general conditions, which include the case that Q has a comer at the interface fl n f2.

For smooth domains the uniqueness of u* holds only assuming that g satisfies (1.2) and
(1.3) and in a more general class of weak solutions. We will discuss this in Section 3.2.
In fact, in that section we will develop some tools and results in the context of problem
(1.34), that are now classical for (1.1). These are basically the notion of weak solution
and the nonexistence of weak solutions for A > A* as in Brezis et at. [19], the regularity
results for u* in low dimensions of Nedev [96] and the uniqueness of u* in the class of
weak solutions, see Martel [87]. Throughout that section we will assume that g satisfies
only (1.2) and (1.3).

We would like to construct singular solutions for some nonlinearities, and as a model
case we consider first g(u) = e". Probably the simplest singular solution one may
construct is

uo(x) = ( K(x, y) log~ dy for x E JR~,
Ja'OC~ Iyl

where

2XN
K(x, y) = --Ix - yl-N (1.41)

NOJN

is the Green's function for the Dirichlet problem in JR~ on the half space JR~ =

{(x', XN) / XN > OJ. Then Uo is harmonic in JR~ and

1
uo(x) = log - for x E dJRN+, X -=I- O.

Ixl
A calculation, see [45], shows the following:

LEMMA 1.17.

dUo 11 N
- = AONe a on dJR+,
dV .

where

ifN ~ 4,

ifN = 3.
(1.42)
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Qo = {x E JR~ : UO(X) > O} fl = iJQ n iJJR~ f2 = iJQ \ iJJR~.
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The boundary iJQo is not smooth itself but fl, f2 are, and it can be checked that
Theorem 1.1 still holds in this case.

Since the singular solution has the form uo(x) = -log Ixl for x E iJJR~ its linearized
stability is equivalent, by scaling, to

Let us recall here Kato's inequality: for N ~ 3

(1.43)

where the best constant

is given by

(1.44)

VN ~ 3. (l.45)

and f is the Gamma function. A proof of it was given by Herbst [73] and we will give later
on in Section 3.3 a self-contained proof of (1.43). Actually we are able to improve this
inequality in a similar fashion as was done by Brezis and Vazquez [20] or Vazquez and
Zuazua [106] for (1.18) (see also [11,20,42,68,106] for other improved versions of Hardy's
inequality).

It is not difficult to verify that AO,N ::S HN if and only if N ~ 10 (a proof can be found
in [45]). Thus we have:

THEOREM 1.18. Let j(u) = e". In any dimension N ~ 10 there exists a domain Q C JRN
and a partition in smooth sets fl. f2 ojiJQ such that u* ~ Loo(Q).

Naturally the question becomes whether for all N ::S 9 and all domains Q S; JRN one
has u* E Loo(Q). A first attempt using the ideas of Crandall-Rabinowitz [35] does not
yield the optimal condition on the dimension. For convenience, let u = uA be the minimal
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solution of (1.34). Working as in [35] we take cp = ejll - 1, j > 0 in (1.37) and multiply
(1.34) by 1/J = e2jll - 1. We obtain

It follows that

where A = [(1/j - 1/2)e(2j+1)1l < je(j+l)ll]and B = [(1/j - 1/2)e(2j+1)1l ~ je(j+l)ll].

Given j E (0,2), we see that u remains uniformly bounded on A, while

We conclude that e" is bounded in L 2j+I(iJQ) independently of A. If 2j + 1 > N - 1 we
obtain by elliptic estimates a bound for u in CO!(Q), for some a E (0,1). Thus if N < 6
we can choose j E (0,2) such that N -1 < 2j + 1 < 5 and obtain a bound for u in CO! (Q)

independent of A.
The above argument proves

PROPOSITION 1.19. Let g(u) = e" and assume Q C JRN is a smooth bounded domain
such that iJQ = rl U r2, where rl C iJJR~ and r2 C JR~. Assume further that N < 6.
Then the extremal solution u* of(1.34) belongs to Loo(Q).

We are able to overcome this difficulty under some assumptions on the domain, showing
that the method used to prove Proposition 1.19 is not suitable for problem (1.34). In
Section 3.4 we will give a proof of:

THEOREM 1.20. Let g(u) = e", N ::S 9 and suppose Q C JR~ is an open, bounded set

such that iJQ = rl U r2, where rl C iJJR~ and r2 C JR~, Q is symmetric with respect
to the hyperplanes Xl = 0, ... , XN-I = 0, and Q is convex with respect to all directions
Xl, ... , XN-I. Then the extremal solution u* of(1.34) belongs to Loo(Q).

Our proof is based on a lower bound of the form:

u*(x)
liminf ~ 1.

x---+O.xEfj 10g(1/lxl)
(1.46)

Then we show that this behavior is too singular in low dimensions N ::S 9 for the extremal
solution to be weakly stable. Our proof of (1.46) is a simple blow-up argument, but is
limited to the exponential nonlinearity.
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Next we look at (1.34) in the case g(u) = (1 + u)P, P > 1. Given 0 < a < N - 1
define

(1.47)

where K is defined by (1.41). Clearly, W a > 0 in JR~. Moreover W a is harmonic in JR~

and W a extends to a function belonging to COO(JR~ \ {O}) with

Wa(x) = lxi-a for all x E aJR~ \ {OJ.

It is not difficult to verify that for some constant C(N, a) we have

(l.48)

aWa 1-(x) = C(N, a)lxl-a -av
In Section 3.5 we shall prove

Vx E aJR~ \ {OJ.

LEMMA 1.21. For 0 < a < N - 1 we have:

(1.49)

An heuristic calculation shows that for (1.34) with nonlinearity g(u) = (1 + u)P, the
1

expected behavior of a solution u which is singular at 0 E aQ should be u(x) ~ Ix Ip-l •

The boundedness of u* is then related to the value of C(N, p~l)' Observe that C(N, p~l)

is defined for p > N~l' In the sequel, when writing C(N, p~l ) we will implicitly assume
that this condition holds.

Let us write x = (x', XN) with x' E JRN-l. For the next result we will assume that Q
is convex with respect to x', that is, (tx' , XN) + ((1 - ny', XN) E Q whenever t E [0,1],
x = (x', XN) E Q and y = (y', XN) E Q. We shall also denote by IlN the projection on
aJR~, namely IlN(X' , XN) = x' for all x = (x', XN) E JR~.

THEOREM 1.22. Consider (1.34) with g(u) = (1 + u)P. Assume Q c JR~ is a bounded

domain such that aQ = fl U f2, where fl C aJR~ and f2 C JR~, Q is convex with respect

to x' and IlN(Q) = fl. IfP C(N, p~l) > HN or 1 < P < N~2 then u* is bounded.

The same result holds if Q is convex with respect to all directions Xl, ... , XN-l and Q
is symmetric with respect to the hyperplanes Xl = 0, ... , XN-l = O. The proof (see [45])
of this result is also through a blOW-Up argument, but this time we do not prove a lower
bound such as (1.46).

As a converse to the previous result we have:

THEOREM 1.23. Consider (1.34) with g(u) = (1 + u)P. If P C(N, p~l) < HN and

p ~ N~2 there exists a domain Q such that u* is singulm:
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We shall not give the details here but just mention that u = W_l_ - 1 considered in
p-l

Q = {x EJR~ Iu(x) > O}, with rl = iJQ n iJJR~, r2 = iJQ \ iJJR~ is a singular solution
to (1.34). It satisfies the stability condition (1.39) by Kato's inequality (1.43).

The condition p C(N, p~l ) ::S HN is not enough to guarantee that the extremal solution
is singular for some domain. Actually this condition can hold for some values of p in the
range N~l < P < N~2' In this case a singular solution exists in some domains, but it
does not correspond to the extremal one. This is similar to what happens to (1.1) with
g(u) = (1 + u)P and p in the range N~2 < P < ~~~. For that problem in the unit ball Bl

o

there exists a weak solution u = Ix 1- p:1 - 1 which is not the extremal solution (since it

is not in HI), but for p in the smaller range N~2 < P ::S N~~1~ it satisfies condition
(1.19), see Theorem 6.2 in [20].

1.5. A fourth-order variant of the Gelfand problem

In this section we tum our attention to (1.5) with exponential nonlinearity, that is,

in B

on iJB

on iJB,

(1.50)

(1.51)

where a, b E R One of the reasons to consider this equation in the unit ball B = Bl(0)

is that the maximum principle for ~2 with Dirichlet boundary condition (u = ~~ = 0)
holds in this domain, see [15], a situation that is not true for general domains [5]. But also
most our arguments require the radial symmetry of the solutions. As a consequence uA,

o ::S A < A* and u* are radially symmetric.
Equation (1.50) with a = b = 0 was considered recently by Arioli et at. [5]. They give

a proof of Theorem 1.1 for this problem and show that the minimal solutions of (1.50) are
stable in the sense that

l (~ep)2 ~ Al ell!.ep2, Vep E C't(B),

see [5, Proposition 37]. These authors work with the following class of weak solutions,
which we will adopt here: u E H 2(B) is a weak solution to (1.50) if ell E L1(B), u = a
on iJ B 0i = b on iJB and, 3v

l ~u~ep = Al ellep, for all ep E C't(B).

They also show that if A > A* then (1.50) has no weak solution, but it does not seem to
be possible to adapt their proof for problems like (1.5) with a general nonlinearity. The
problem stems from the fact that the truncation method, as described after Theorem 1.7
seems not well suited for the fourth-order equation.
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Regarding the regularity of u*, the authors in [5] find a radial singular solution Va to
(1.50) with a = b = 0 associated to a parameter Aa > 8(N - 2)(N - 4) for dimensions
N = 5, ... , 16. Their construction is computer assisted. They show that Aa < A* if
N ::S 10 and claim to have numerical evidence that this holds for N ::S 12.

We start here by establishing the fact that the extremal solution u* is the unique solution
to (1.50) in the class of weak solutions. Actually the statement is stronger:

THEOREM 1.24. If

(1.52)

and

(1.53)

(1.54)

then v = u*. In particularfor A = A* problem (1.50) has a unique weak solution.

The proof of this result can be found in Section 4.2, while in Section 4.1 we describe
the comparison principles that are useful for the arguments. It is analogous to Theorem 1.8
of Martel [87] for (1.1) but our proof does not seem useful for the general version of this
problem (1.5). Again, the reason for this limitation is that truncation method developed in
[19] is not well adapted to this fourth-order equation.

The results of [5] are an indication that u* maybe bounded up to dimension N < 12.
We have

THEOREM 1.25. For any a and b, ifN < 12 then the extremal solution u* of (1.50) is
smooth.

Our method of proof is different to the one leading to Theorem 1.3 and is similar to the
scheme we used for the problem with reaction on the boundary. Indeed, using the same
blow-up argument as for the proof of Theorem 1.20 in Section 3.4 it is possible to show
that if u* is singular then

u*(r)
liminf ~ 1

r---+O log(1jr4 )

(a complete proof can be found in [44]). Now, if N ::S 4 the problem is subcritical, and the
boundedness of u* can be proved by other means: no singular solutions exist for positive
A (see [5]) but in dimension N = 4 they can blow up as A ---+ 0, see [108].

So assume 5 ::S N ::S 12 and that u* is unbounded. Fix (J > O. By (1.54), multiplication
of (1.50) by cp = IxI4- N+ 2c and integration by parts gives

A ( e"lxI4-N+2c ~ 4(N - 2)(N - 4)OJN(1 - (J)~ + 0(1),lB S
(1.55)

where OJN is the surface area of the unit N - I-dimensional sphere SN-l and 0(1)
represents boundary terms, which are bounded as s ---+ O. Using the weak stability of
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+ 0(1),

4-N +u* (1.60) with 1jJ = Ix I~ £ multiplied by an appropriate cut-off function yields

Al ell lxI4 -
N+2

£

(

N2(N _ 4)2 ) ( N2(~6-4)2
::S 16 + 0(8) JB Ixl-N+2

£ = OJN 28 (1.56)

(1.57)

since (f...1jJ)2 = (N2(N - 4)2/16 + 0(8lllxl-N +2
£. From (1.55) and (1.56), and letting

8 ---+ 0 and then (J ---+ 0, we find

N 2 (N - 4)2
8(N - 2)(N - 4) ::S --1-6--

This is valid only if N ~ 13, a contradiction.
The constant N 2 (N - 4)2/16 appears in Rellich's inequality [104], which states that if

N ~ 5 then

~
N2(N _ 4)2 ~ cp2

(f...cp)2> _
JR:N - 16 JR:N Ixl4

The constant N 2 (N - 4)2/16 is known to be optimal as seen from functions such that
4-N

1jJ = Ix I~+£. This inequality will play an important role in proving that u* is singular if
N ~ 13 and b = O.

Going back to Theorem 1.24 we mention that it can be used to deduce properties of the
extremal solution in case it is singular. In [5] the authors say that a radial weak solution
u to (1.50) is weakly singular if limr---+o ru' (r) exists. For example, the singular solutions
Va of [5] verify this condition. As a corollary of Theorem 1.24 we show

COROLLARY 1.26. The extremal solution u* to (1.50) with b ~ -4 is always weakly
singulm:

We prove this corollary in Section 4.2. A weakly singular solution either is smooth or
exhibits a log-type singularity at the origin. More precisely, if u is a non-smooth weakly
singular solution of (1.50) with parameter A then (see [5]) the following refinement of
(1.54) holds:

8(N - 2)(N - 4)
lim u (r) + 4 log r = log ------
r---+O A

lim ru' (r) = -4.
r---+O

In view of Theorem 1.25, it is natural to ask whether u* is singular in dimension N ~ 13.
We show that this is true in the case a = b = O.

THEOREM 1.27. Let N ~ 13 and a = b = O. Then the extremal solution u* to (1.50) is
unbounded.

The proof of Theorem 1.27 is related to Theorem 1.9 and a similar result holds for (1.50):
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PROPOSITION 1.28. Assume that u E H 2(B) is an unbounded weak solution of (1.50)
satisfying the stability condition

(1.58)

Then A = A* and u = u*.

See the proof in Section 4.2. When a = 0 and b = -4 we have an explicit solution

I/(X) = -4log Ixi

associated to X = 8(N - 2)(N - 4). Thanks to Rellich's inequality (1.57) the solution
II satisfies condition (1.58) when N ~ 13. Therefore, by Theorem 1.25 and a direct
application of Proposition 1.28 we obtain Theorem 1.27 in the case b = -4.

For general values of b we do not know any explicit singular solution to the equation
(1.50) and Proposition 1.28 is not useful. We instead find a suitable variant of it (see a
proof in Section 4.1):

LEMMA 1.29. (a) Let Iq, U2 E H 2(BR) with elll , e1l2 E LI(BR). Assume that

L~.2zq ::S Aelll in BR

in the sense

and ~2U2 ~ Ae1l2 in BR in the similar weak sense. Suppose also

alq aU2
and -laBR = -laBwan an

Assume furthermore that u1 is stable in the sense that

A { elll ep2 ::s {(~ep)2. Vep E CO(BR).
lBR lBR

Then

(1.59)

(1.60)

Iq ::S U2 in BR.

(b) Let Iq, U2 E H 2(BR) be radial with elll , e1l2 E LI(BR). Assume ~21q ::S Aelll

in BR in the sense of (1.59) and ~2U2 ~ Ae1l2 in BR. Suppose uilaBR ::S u21aBR and
a;:i laBR ~ a;:; laBR and that the stability condition (1.60) holds. Then Iq ::S U2 in BR.

The idea of the proof of Theorem 1.27 consists in estimating accurately from above the
function A*ell', and to deduce that the operator ~2 - A*ell' has a strictly positive first
eigenvalue (in the H(;(B) sense). Then, necessarily, u* is singular. Upper bounds for both
A* and u* are obtained by finding suitable sub and supersolutions. For example, if for
some A1 there exists a supersolution then A* ~ A1. If for some A2 one can exhibit a stable
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singular subsolution u, then A* ::S A2. Otherwise A2 < A* and one can then prove that the
minimal solution U;;'2 is above u, which is impossible. The bound for u* also requires a
stable singular subsolution.

It turns out that in dimension N ~ 32 we can construct the necessary subsolutions and
verify their stability by hand. Indeed, assume a = b = 0, N ~ 13 and let us show

u* ::S if = -4 log Ixl in BI.

For this define If(X) = -4 log Ixi. Then If satisfies

{

/12[./ = 8(N - 2)(N - 4)i in JRN

U = 0 on aBI

alf
- = -4 on aBI.an

(1.61)

Observe that since If is a supersolution to (1.50) with a = b = 0 we deduce immediately
that A* ~ 8(N - 2)(N - 4).

In the case A* = 8(N - 2)(N - 4) we have U;;. ::S If for all 0 ::S A < A* because If is a
supersolution, and therefore u* ::S If holds.

SupposenowthatA* > 8(N-2)(N-4). We prove that U;;. ::S IfforalI8(N-2)(N-4) <

A < A*. Fix such A and assume by contradiction that U;;. ::S If is not true. Note that for r < 1
and sufficiently close to 1 we have u;;.(r) < If(r) because u~ (1) = 0 while If'(1) = -4.
Let

RI = inf{O ::S R ::S 1 I U;;. < If in (R, 1)}.

Then 0 < RI < 1, U;;.(RI) = U(RI) and u~(RI) < If'(RI). SO U;;. is a solution to the
problem

while If is a stable subsolution to the same problem, because of (1.57) and 8(N - 2)(N ­
4) ::S N 2 (N - 4)2/16 for N ~ 13. By Lemma 1.29 part (b) we deduce If ::S U;;. in BRI

which is impossible.
An upper bound for A* is obtained by considering again a stable, singular subsolution to

the problem but with another parameter:

LEMMA 1.30. For N ~ 32 we have

(1.62)
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PROOF. Consider w = 2(1 - r2 ) and define

u = u - w,
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where if(x) = -4 log Ix I. Then

t".2zt = 8(N - 2)(N - 4) 1
4

= 8(N - 2)(N - 4)e'l = 8(N - 2)(N - 4)e"+w
r

Also u(1) = u' (1) = 0, so u is a subsolution to (1.50) with parameter AD = 8(N - 2)(N ­
4)e2 .

For N ~ 32 we have AD ::S N 2 (N - 4)2/16. Then by (1.57) u is a stable subsolution of
(1.50) with A = AD. If A* > AD = 8(N - 2)(N - 4)e2 the minimal solution uAo to (1.50)
with parameter AD exists and is smooth. From Lemma 1.29 part (a) we find u ::S uAo which
is impossible because u is singular and uAo is bounded. Thus we have proved (1.62) for
N ~ 32. D

With the above remarks we can now prove Theorem 1.27 in the case N ~ 32.
Combining (1.61) and (1.62) we have that if N ~ 32 then A*e'" ::S r-4 8(N - 2)(N ­
4)e2 ::S r-4 N 2 (N - 4)2/16. This and (1.57) show that

IB(1'J.cp)2 - A* IB e'" cp2
inf :..=-------;;--~"'------> 0

'fJECif(B) IB cp2

which is not possible if u* is bounded.
For dimensions 13 ::S N ::S 31 it seems difficult to find subsolutions as before explicitly.

We adopt then an approach that involves a computer-assisted construction and verification
of the desired inequalities. More precisely, first we solve numerically (1.50) by following
a branch of singular solutions to

{

1'J.2Z.t = Ae"
u=o

au
-=tav

in B

on aB

on aBo

(1.63)

We start with t = -4, where an explicit solution is known, and follow this branch to
t = 0, transforming first (1.63) with an Emden-Fowler-type change of variables, which
allows us to work with smooth solutions. This numerical solution, which is represented as
a piecewise polynomial function with coefficients in Q that are kept explicitly, serves as
the desired subsolution. The verification of the conditions mentioned before is done with a
program in Maple, and in such a way that it guarantees a rigorous proof of the inequalities.
This and the proof of Theorem 1.27 for 13 ::S N ::S 31 is described in Section 4.3.

For general constant boundary values, it seems more difficult to determine the
dimensions for which the extremal solution is singular. Observe that u* is the extremal
solution of (1.50) if and only if u* - a is the extremal solution of the same equation
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with boundary condition u = 0 on aB and so we may assume a = O. But one may ask if
Theorem 1.27 still holds for any N ~ 13 and any b. Here the situation becomes interesting,
because the critical dimension for the boundedness of u* depends on b and is not always
equal to 13.

THEOREM 1.31. (a) Let N ~ 13 and b ~ -4. There exists a critical parameter
brnax > 0 such that the extremal solution u* is singular ifand only ifb ::S brnax.

(b) Let b ~ -4. There exists a critical dimension N rnin > 13 such that the extremal
solution u* to (1.50) is singular ifN ~ N rnin.

The proof of this result can be found in [44]. Let us remark that it follows from
Theorem 1.31, part (a), that for b E [-4, 0], the extremal solution is singular if and only if
N ~ 13. We also deduce from this result that there exist values of b for which N rnin > 13.
We do not know whether u* remains bounded for 13 ::S N < N rnin.

Finally let us mention that it remains open to describe fully the bifurcation diagram of
(1.50), in the spirit if the work of Joseph and Lundgren (Theorem 1.2) for the second-order
problem with exponential nonlinearity.

1.6. Other directions

The literature on the kind of problems we have mentioned is extensive. Nevertheless we
would like mention other related directions which have been the matter of recent studies.

In general domains there are few results on the structure of solutions to (1.1). Let
us mention here the results of Dancer [37-39]. For analytic nonlinearities g such that
z(u) ~ uqe" as u ---+ +00 in a bounded smooth domain Q in JR3 he shows that there is an
c ~

unbounded connected curve of solutions T = ((A(S), u(s)) : s ~ O} starting from (0,0)
such that Ilu(s)11 + IA(S)I ---+ +00 as s ---+ +00 and -~ - A(S)g'(u(s)) is invertible except
at isolated singularities. This curve has infinitely many bifurcation points outside any
compact subset, which include the possibility that the curve "bends back" at some of these
points. In [37] Dancer also shows that a sequence of solutions to (1.1) with g(u) = e" in a
bounded smooth domain in three dimensions, remains bounded if and only if their Morse
indices are uniformly bounded. This is a consequence of a related result that asserts that
any solution to

-~u = e", u < 0 inJR3

has infinite Morse index. The proof of [37] uses a result of Bidaut-Ver6n and Ver6n [14],
that characterizes solutions to

(1.64)

such that

(1.65)



Singular solutions ofsemi-linear elliptic problems

In [14] it is proved that any solution to (1.64), (1.65) satisfies

lim (u(r, 8) -log 1
2

). = 20)(8) + log 3. in C k of S2
r----+oo r A

for any k ~ 1, where r, 8 are spherical coordinates and 0) is a smooth solution to

11 S2 0) + e2w
- 1 = 0 on S2.
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(1.66)

Here I1 s2 is the Laplace-Beltrami operator on S2 with the standard metric. It is known
that all continuous solutions to (1.66) arise from a single solution and the conformal
transformations of S2, see Chang and Yang [30].

We would like to mention some results for problems similar to (1.1) but where the
Laplacian is replaced by a nonlinear operator. For example Clement et at. [33] considered
the p-Laplacian and k-Hessian operators Sk(D2 u) defined as the sum of all principal k x k
minors of D 2 u. Their results were extended by Jacobsen and Schmitt [74,75] and we shall
describe them next. Consider

{

r-Y (rCYlu'ltlz/)' + Ae" = 0

u>O O<r<1

U' (0) = u(1) = 0,

where a, fJ, y satisfy

{

a ~ 0

y+l>a
fJ + 1 > O.

0< r < 1
(1.67)

(1.68)

This includes the case of the Laplacian (a = N - 1, fJ = 0, y = N - 1), the p-Laplacian
with p > 1 (a = N -1, fJ = P -2, y = N -1) and the k-Hessian operator (a = N -k,
fJ = k - 1, y = N - 1). The main result in [74] characterizes in terms of a, fJ and y the
multiplicity of solutions as a function of A.

THEOREM 1.32. Suppose a, fJ, y satisfy (1.68) and define

~=y+l-a

o_y+fJ-a + 2
u----~--.

Case 1. If a - fJ - 1 ::S 0 there exists a unique A* > 0 such that (1.67) has a unique
solution for A = A*, and exactly 2 solutions for 0 < A < A*.

Case 2. If 0 < a - fJ - 1 < :~1 then (1.67) has continuum of solutions (A, u) with

u(O) ---+ +00 and A oscillating around (a - fJ - 1)(8~)tl+l.

Case 3. If :~1 ::S a - fJ - 1 then the equation has a unique solution for 0 < A <

(a - fJ - 1)(8~)tl+l and no solution for A ~ (a - fJ - 1)(8~)tl+l. Moreover
u(O) ---+ +00 as A ---+ (a - fJ - 1)(8~)tl+l.
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The problem (1.1) for the p-Laplacian operator in general smooth, bounded domains,
that is,

(

-f...pl.{ = Ag(U)

u=o
in Q

on iJQ

has also been the subject of study. We mention the case g(u) = e" considered by
Garcia-Azorero and Peral [65] and Garcia-Azorero et at. [66] who showed that the
extremal solution is bounded if N < p + 4P/ (p - 1) and that this condition is optimal.
Recently Cabre and Sanch6n [27] (see also [25]) also considered this problem for general
g, extending the ideas of [19,20] to this setting.

Another direction of interest is the parabolic counterpart of (1.1). Consider

{

Ut - f...l.{ = Ag(z{)

u=o
u(O) = UQ

in (0, T) x Q

on iJQ

in Q,

(1.69)

(1.70)

where g is a nonlinear function, A> 0 and UQ ~ 0, UQ E Loo(Q).

It is well known that if UQ E L 00 (Q) and g is Lipschitz, then (1.69) has a classical
solution defined on a maximal time interval.

Problem (1.69) with exponential nonlinearity was considered by Fujita [62,63]. Lacey
[80] and also Bellout [12] proved, under certain extra conditions, that the solution of (1.69)
blows up in finite time for A > A*, see also [81]. In this direction we would like to mention
the following results due to Brezis et at. [19]. Roughly speaking they imply that with
initial condition UQ = 0, the solution to the parabolic problem (1.69) is global if and only
A ::S A*, that is, if and only if the stationary problem has a weak solution.

THEOREM 1.33 (Brezis et at. [19]). Assume g : [0,00) ---+ 00 is a C1 convex
nondecreasing function such that there exists XQ ~ 0 with g(xQ) > 0 and

100 du
-- < +00.

xo g(u)

Then if(1.69) has a global solution for some UQ E LOO(Q), UQ ~ 0 then there is a weak
solution to the elliptic problem (1.1).

This result has also a converse.

THEOREM 1.34 (Brezis et at. [19]). Assume g : [0,00) ---+ 00 is a C1 convex
nondecreasing function. If (1.1) has a weak solution w then for any initial condition
UQ E Loo(Q), 0 ::S UQ ::S w the solution to (1.69) is global in time.

Peral and Vazquez [100] considered also the parabolic problem (1.69) with the
exponential nonlinearity in Q = Bl and with A = 2(N - 2), since for this parameter
U(x) = -21og Ixi is a weak solution of the stationary problem. They are interested
in singular initial conditions and hence they work with the following notion of weak
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solution: u E C((O, 00): W~,2(B1)) such that Ut, f...u, e" E L 1([T, T] x B1) for all
°< T < T < +00, equation (1.69) holds a.e. and u(t,') ---+ Uo in L2(B1) as t ---+ 0.
First they take an initial condition Uo satisfying °::s uo(x) ::S U(x). They show that (1.69)
possesses a minimal and a maximal solution u satisfying °::S u (t, x) ::S U (x). Moreover
it becomes classical for t > 0. They show that if 3 ::S N ::S 9 then any solution satisfying
the previous conditions converges to the minimal solution UA as t ---+ +00. If N ~ 10 then
u(t, .) ---+ U as t ---+ +00. These authors also study the possibility of having solutions of
the parabolic problem above the singular solution U and establish the following

THEOREM 1.35. Consider(1.69) with g(u) = e", A = 2(N - 2) and Q = B1. Then there
is no weak solutiondefinedon (0, T) x B1 such that u(t, x) ~ U(x), and Uo =1= u.

The solutions in the above result are shown to blow up completely (such as in Brezis
and Cabre [18]) and instantaneously. Dold et at. [49] studied the blow-up rate of (1.69)
with Q = B1 and g(u) = eP or g(u) = uP, P > ~~~. Martel [88] showed that if the

initial condition Uo satisfies Uo E Loo(Q) n W~,l(Q), Uo ~ °and f...uo + Ag(UO) ~ 0,
then the solution u to (1.69), which is defined on a maximal time interval [0, T,n), blows
up completely after T,n if T,n < +00. This means that for any sequence gn of bounded
approximations of g such that

gn E C([O, 00), [0, n)) for all x ~ 0, gn(x) t g(x), as n ---+ +00

the sequence of solutions Un of (1.69) with g replaced by gn satisfies

un(x, tl
---,------ ---+ +00 as n ---+ +00 uniformly for t E [T,n + S, 00)
dist(x, aQ)

for any S > 0. The hypothesis on the initial condition says, roughly speaking, that
Ut (0) ~ °and hence u is monotone nondecreasing in time, which is seen to be necessary
(see below and [59]).

An interesting result of Fila and PoI::icik [59] is the following. Consider (1.69) with
g(u) = e" in the unit ball Q = B1 and with a radial initial condition Uo E C(B1). If
N ::S 9 and the solution u to (1.69) is global, i.e. is a classical solution defined for all
times, then u is uniformly bounded, that is,

sup lu(r, tll < +00.
t>O,rE[O,l]

In dimensions N = 1, 2 this holds for general domains and initial conditions, see [57].
In [59] the authors also show that for g(u) = e" and also in the radial setting in

dimension 3 ::S N ::S 9, certain stationary solutions can be connected by solutions that
blow up in finite time but can be continued in an L 1 sense. An L 1 solution of the parabolic
equation (1.69) is a function u E C([O, T]: L 1(Q)) such that g(u) E L 1( (0, T) x Q) and

l uq{ dx -Itl UCPt dx ds = It l (uf...cp + Ag(U)cp)dx ds

for all °::S T < t < T and cP E C2([0, T] x Q) with cp = °on [0, T] x aQ. To describe
the result [59] we use the notation, following [58]. The solutions to (1.1) with g(u) = e"
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in the unit ball Bl with 3 ::s N ::s 9 can be written as a smooth curve

(A(S), u(s)), S > 0

such that

maxu(s) = u(s)(O) = s.
73)

This curve satisfies
(a) limS---+o A(S) = 0, limS---++oo A(S) = 2(N - 2)
(b) the critical points of A(s) form a sequence 0 < S1 < S2 < ... and the critical values

A(Sj) = Aj satisfy

Al > A3 ... > A2j+l .} 2(N - 2),

A2 < A4 < ... t 2(N - 2).

For 0 < A < A* let So (A) < SI (A) < ... denote the sequence of points S such thaU (s) = A.
This sequence is finite if A -=I- 2(N - 2) and infinite if A = 2(N - 2). Write u{ = u(Sj).

The minimal solution corresponds to uA = U ~ •

Fila and Poacik [59] showed that if A E (A2, A3) there exists a smooth initial condition
Uo such that the solution u to (1.69) satisfies:

(1) u(', t) blows up in finite time T,n,
(2) u(', t) can be extended to an L 1 global solution (i.e. define on (0, T) for all T > 0),
(3) u(', t) ---+ UA as t ---+ +00, where UA = u~ is the minimal solution (the convergence

is Cl~c((O, 1]))

(4) U (', t) is defined and smooth for all t E (-00, T,n) and U (', t) ---+ u~.

This solution is called an L 1 connection between the equilibria u~ and u~.

Later Fila and Matano [58] extended the results of [59] showing that for any k ~ 2 there
is an L 1 connection from u~ to u8. They also show that if an L 1 connection from u~ to uj
exists then k ~ j + 2. See also previous work by Ni et at. [97], Lacey and Tzanetis [82].

Nonlinear elliptic and parabolic equations such as (1.1) and (1.69) but with explicit
singular terms in them have also been a matter of recent studies. Let us mention Brezis and
Cabre [18], who showed that if U ~ 0 and

U2
-~u > - inQ

- Ixl 2

in the sense of distributions (assuming u, u2/lxl 2 E Lfoc(Q)), in a domain Q containing
the origin, then U == O. Dupaigne [50], Dupaigne and Nedev [51] have studied elliptic
equations with a singular potential of the form:

(

-~U - a(x)/..{ = j(u) + Ab(x) in Q

u = 0 on iJQ,

where a, b, j, A ~ O. They characterize, under some assumptions, in terms of the linear
operator -~ - a(x) and the nonlinearity j(u) the cases where there are solutions for
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some A > 0 or not. For instance if a(x) = c/lxl 2 , f(u) = uP, P > 1, then there is a
solution for some A > 0 if and only if c ::S (N - 2)214 and P < PO = 1 + 21a, where

N-2-V(N-2)"-4c
a = 2 . See also Kalton and Verbitsky [77].

We have mentioned already that the analysis of singular operators such as the Laplacian
with a potential given by the inverse square distance to a point has been used to construct
singular solutions to a variety of nonlinear problems, [28,89-91,98,99,101-103]. But in
fact the same techniques can be applied to construct solutions in exterior domains which
in some sense are singular at infinity, or in other words, that decay slowly at infinity. A
model equation is

f...u + uP = 0, U > 0 in JRN \ D,

u=O on aD, lim u(x)=O
Ix 1---++00

(1.71)

(1.72)

with supercritical p, namely p > ~~~.

THEOREM 1.36 ([40,41]). Let D be a bounded domain with smooth boundary such that
JRN \ D is connected. For any p > ~~~ there is a continuum of solutions u;,: A > 0, to
(1.71), (1.72) such that

1 2
u;,(x) = fJp-1Ixl- p- 1(1 + 0(1)) as Ixl---+ 00

and u;,(x) ---+ 0 as A ---+ 0, uniformly in JRN \ D, where

fJ = _2_ (N _2 __2_)· .
p-l p-l

(1.73)

The idea of the proof is by linearization around w(x), the unique positive radial solution

w(O) = 1. (1.74)

Note that all radial solutions of f...u + uP = 0 defined in all JRN have the form
o

w;,(x) = Ap-l w(Alxl), A > O. (1.75)

We look for a solution u;, in the form of a small perturbation of W;,. This naturally leads
us to study the linearized operator f... + pwf-l in JRN \ D under Dirichlet boundary
conditions. Since W;, is small on bounded sets for small A, an inverse can be found as
a small perturbation of an inverse of this operator in the whole JRN and then, by scaling,
it suffices to analyze the case A = 1. Thus we need to study f... + pw p - 1 in JRN. Note

1 2
that at main order one has w (r) = fJ p-l r - p-l (1 + 0 (1)) as r ---+ +00 [72], and hence the
singular potential has the form pfJ1r2 (1 + 0 (1)). We construct an inverse in weighted L 00

norms for p ~ ~~~, however if ~~~ < P < ~~~ the linearized operator is not smjective,
having a range orthogonal to the generators of translations. We overcome this difficulty
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by adjusting the location of the origin. The invertibility analysis for p ~ ~~~ is strongly
related to one of Mazzeo and Pacard [90] in the construction of singular solutions with
prescribed singularities for N~2 < P < ~~~ in bounded domains. At the radial level,
supercritical and subcritical in this range are completely dual.

Problems (1.71 )-( 1.72) has also a fast decay solution, that is a solution u such that
limsuPlxl---++oo IxI 2

-
N u(x) < +00, provided ~~~ < p and p - ~~~ is small, see [41].

A related result for supercritical problems in bounded domains is the following.
Consider

[.,.u+uP=O, u>O inD\Bd(Q),

u = 0 on aD u aBd(Q),

(1.76)

(1.77)

where D is a bounded domain with smooth boundary, Bd ( Q) c D and 8 > 0 is to be taken
small.

THEOREM 1.37 (del Pino and Wei [47]). There exists a sequence

N+2
N _ 2 < PI < P2 < P3 < ... , with lim Pk = +00

k---++oo
(1.78)

such that ifP > ~~~ and p -=I- Pj for all j, then there is a 80 > 0 such that for any 8 < 80,
Problems (1.76), (1.77) possess at least one solution.

2. Perturbation of singular solutions

2.1. The Laplacian with the inverse square potential

We consider the linear problem

in B
(2.1 )

on aB,

where B = BI (0), ~ E Band c is any real number. The main results are Propositions 2.1
and 2.3 below, which assert the solvability of (2.1) in weighted HOlder spaces assuming
that the right-hand side verifies certain orthogonality conditions, provided ~ is close to the
origin. We use the weighted HOlder spaces that appear in [101,8,28], which are defined as
follows. Given Q a smooth domain, ~ E Q, k ~ 0,0 < a < 1,0< r ::s dist(x, aQ)j2 and

ka -
U E CI~c (B \ {~}) we define:
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Let d = dist(~, aQ) and for any v E JR let

Ilullk,a,v,~;Q = Ilullck.<'(Q\Bd/2(~)) + sup r-vlulk,a,r,~.
O<r=S ~

Define the Banach space

ka ka -
Cv:~ (Q) = {u E CI~c (Q \ {~}) : Ilullk,a,v,~;Q < oo}.

It embeds continuously in the space of bounded functions if v ~ O.
For the analysis of (2.1) when ~ = 0 it is convenient to decompose all functions in

Fourier series. So we recall that the eigenvalues of the Laplace-Beltrami operator - ~ on
SN-I are given by (see [13])

Ak = k(N + k - 2), k ~ O.

(2.3)

(2.2)

1

Let mk denote the multiplicity of Ak and CPk,!, I = 1, ... , mk the eigenfunctions associated
to Ak. We normalize these eigenfunctions so that {cpk,l : k ~ 0, I = 1, ... , md is an
orthonormal system in L 2 (SN -I). We choose the first functions to be

~ (N .)I~
CPl,l= f .21/2= ISN-II Xl, 1=1, ... ,N.

( SN-l Xl )

Let r = Ix I and e = X fixI denote polar coordinates in JRN.

First we study the kernel of the operator ~ + cflxl2 . Thus we look for solutions to
C . N

-~w - -w = 0 mJR \ {OJ
Ixl 2

of the form w(x) = f(r)cpk,l(8)which yields the ODE:

N - 1 C - Ak
f"+ --1' +--f = 0, forr > O.

r r 2

±
Equation (2.3) is of Euler-type and it admits a basis of solutions of the form f (r) = r-ak ,

where at are the roots of the associated characteristic equation, i.e.

± N-2 I(N -2)2
a k = -2-±Y -2- -C+Ak·

Note that at may have a nonzero imaginary part only for finitely many k's.
first integer k such that at E JR then

_ _ N-2 + +
... < a ka+1 < aka ::S -2- ::s aka < a ka+1 < ... ,

whereas, if k < ko, we denote the imaginary part of at by

(2.4)

If ko is the

For k ~ 0, I = 1, ... , mk, we have a family of real-valued solutions of (2.2), denoted by
wi = wL, W2 = wt,! and defined on JRN \ {OJ by:
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'f N-2)2 '01 (-2- - C + II.k =

(2.5)

(2.6)
I N-2 2 _ N-2

W =r-~logripk.l(8), w =r 2 ipk.l(8),

if N:;2)2 - C + Ak < 0

wI = r-
N

:;2 sin(bk log r)ipkJ(8), w2(x) = r-
N

:;2 cos(bklogr)ipkJ(8). (2.7)

Wk.l(x) = wl(x) - w2 (x),

Wk.l(x) = wl(x),

Then the functions Wk.l defined by

(

if (N:;2)2 - C + Ak > 0:

if (N:;2)2 - C + Ak :s 0:

solve (2.2) and satisfy

Wk.llaB = O.

The main result in this section for the case ~ = 0 is

PROPOSITION 2.1. Let c, v E JR and assume

(2.8)

::JkIsuch that O'k; E JR and (2.9)

Vk = 0, ... , kl, VI = 1. ... , mk.

Let g E C~~2,o(B) and h E C 2,cy(aB) and consider

{

-/1¢ - ~¢ = g in B
Ixl 2

¢ = h on aBo

Then (2.10) has a solution in C~:~ (B) ifand only if

{ gWk.l = ( h aWk.l,
JB JaB an

Under this condition the solution ¢ E C~:~(B) to (2.10) is unique and it satisfies

11¢112,cy,v,O;B :s C(llgllo,cy,v-2,O;B + Il h ll c2."(aB)),

where C is independent ofg and h.

Note that with the hypotheses of Lemma 2.1 we have

N-2
v > -O'~ > ---.

kj - 2

This implies that the integrals on the left-hand side of (2.11) exist.

(2.10)

(2.11 )

(2.12)

(2.13)
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PROOF OF PROPOSITION 2.1. Write cP as

00 rUk

cP(x) = L L cPk,l(r)ipk,l(8), x = re, 0 < r < I, e E SN-l.

k=OI=l

Then cP solves -/1cP - ~cP = g in B \ {OJ if and only if cPk,l satisfies the ODE

1/ N - 1 I C - Ak
cPk 1+ --cPk1+ --2-cPk,l = -gk,l 0 < r < I,, r ' r
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(2.14)

for all k ~ 0 and t = I, ... , I7lk, where

gk,l(r) = ( g(re)ipk,l(8)de, 0 < r < I, e E SN-l.
JSN-l

Note that if cP E L;:C(B) then there exists a constant C > 0 independent of r such that

IcPk,l(r)I :s Crv
.

Furthermore, cP = h on aB if and only if cPk,l(1) = hk,l for all k, t, where

hk,l = ( h(8)ipk,l(8)de.
JSN-l

(2.15)

Step 1. Clearly, SUPOg::;l t 2- V lgk,l(t)1 < 00 and observe that (2.11) still holds when g is
replaced by gk,lipk,land h by hk,lipk,l. We claim that there is a unique cPk,l that satisfies
(2.14), (2.15) and

cPk,l(1) = hk,l.

We also have

IcPk,l(r)I :s Cu
v

( sup t
2

-
V

lgk,l(t)1+ Ihk,ll), 0 < r < 1.
Og::;l

Case k = 0, ... , kl. A solution to (2.14) is given by:
eifCl't,1 ~JR

1 r s ~ s
cPk,l(r) = b Jo s(~) - sin (bdog~ )gk,l(S)ds,

'f + - N-2.e 1 Cl'k,l = Cl'k,l = -2-'

cPk,l(r) = lrs(f)YIOg(f)gk,l(S)dS,

'f ± 111> ± --I- N-2.e 1 Cl'k,l Em., Cl'k,l / -2-'

1 lr ((s)a+ (s)a-)cPk,l(r) = + _ _ s --:- k _ --:- k gk,l(s)ds.
Cl'k Cl'k 0 I I

In each case, (2.17) holds and (2.16) follows from (2.11).

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
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Concerning uniqueness, suppose that cPU satisfies (2.14) with gk.! = 0 and (2.16) with
hk.! = O. Then cPU is a linear combination of the functions wI, w 2 defined in (2.5)-(2.7).
By (2.9), (2.13) and (2.17), cPU has to be zero.

Case k ~ kl + 1. Observe that (2.14) is equivalent to

- Ak - C -
-/1cPU + ~cPk.! = hi in B \ {O},

where ¢k.!(X) = cPu(lxl) and gU(x) = gu(lxl). Since at E JR we must have
Ak - C ~ _(N:;2)2 and hence the equation

{

- Ak - C - _

-/1cPU + ~~k.! = gk.!

cPU = hk.!

in B

on dB,

(2.21)

has a unique solution ¢U E H, where H is the completion of Cgo(B) with the norm

2 ( 2 Ak - C 2
11<pIIH = lB IV<p1 +~<p ,

see [106].
To show (2.17), observe that for some constant C depending only on N, Ak and v,

AU(r) = rVC ( sup t 2
-

Vlgu(t)1 + IhUI)
0<1::;1

is a supersolution to (2.21) and -AU is a subsolution. To see this, we emphasize that the
condition -ai: > v > -(N - 2)/2 implies v2 + (N - 2)v + C - Ak < O. It follows that
l¢u(x)1 :s Au(lxl) forO < Ixl :s 1.

We note that ¢u is uniquely determined. Indeed, any solution w of (2.21) such that
Iw (x) :s C Ix Iv satisfies, by a scaling argument, IVw (x) I :s C1x Iv-I and this together with
(2.13) implies w E H 1(B), which is contained in H. Uniqueness for (2.21) in H 1(B) can
then be proved by an improved Hardy inequality (see [20]).

The computations above also yield the necessity of condition (2.11). Indeed, assuming
a solution cP E L;:C(B) exists, since cPU satisfies the ODE (2.14) we see that for
k = 0, ... , kl the difference between cPU and one of the particular solutions (2.18), (2.19)

+ -
or (2.20) can be written in the form Ck.j1·-ak + dUr-ak. Since IcPU (r) I :s Cr v and
v > -ak-:- we have Ck I = dk I = 0 and this implies (2.11).

1 ••

Step 2. Define for m ~ 1

and
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Let gm E gm, h m E H m be such that (2.11) holds. Write

121

m

gm(x) = LLgk,l(r)ipk,l(8),
k=O I

m

h m (8) = L h k,lipk,l(8).

k=O

Let ¢k,l be the unique solution to (2.14), (2.15) and (2.16) associated to gk,l, hk,l and define
¢m (x) = L%'=o Ll ¢k,l (r )ipk,l (8). We claim that there exists C independent of msuch that

l¢m(x)1 :s C1xl v (sup IYI 2- Vlgm(Y)1 + sup Ihml )·. 0 < Ixl < 1.
B 3B

(2.22)

By the previous step, (2.22) holds for some constant C which may depend on m. In
particular, choosing m = kl, we obtain a bound on the first components ¢k,l, k = 0 ... kl.
Hence, it suffices to prove (2.22) in the case gk,l == 0 and hk,l = 0, k = O..... kl. Working
as in [101], we argue by contradiction assuming that

where Cm ---+ 00 as m ---+ 00 (this argument also appears in [28]). Replacing ¢m by
¢m/ll¢mlxl-v IIL:D(B) if necessary, we may assume

II¢mlxl-VIIL:D(B) = 1.

IlgmlxI2-vIIL:D(B) + IlhmIIL:D(3B) ---+ 0 as m ---+ 00.
(2.23)

Let Xm E B \ {OJ be such that I¢m (xm ) Ilxml-v E [i. 1]. Let us show that Xm ---+ 0 as
m ---+ 00. Otherwise, up to a subsequence Xm ---+ Xo of- O. By standard elliptic regularity,
up to another subsequence, ¢m ---+ ¢ uniformly on compact sets of B \ {OJ and hence

{

C.
-1l¢ - -2¢ = 0 III B \ {OJ

Ixl
¢=O onaB.

Moreover¢ satisfies 1¢(xo)llxol-v E [i. 1] and 1¢(x)1 :s Ixl v in B. Writing

¢(x) = L L ¢k,l (r)ipk,l (8).
k?:h+l I

we see that ¢k,l solves (2.3). The growth restriction I¢k,l (r) I :s 0' v and the explicit
functions wI. w2 given by (2.5)-(2.7) rule out the cases at ~ JR, ai: = at and force

¢k,l = ak,[I·-ak • But ¢k,l (1) = 0 so we deduce ¢k,l == 0 and hence ¢ == 0, contradicting
1¢(xo)llxol-v of- o.
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The above argument shows that Xm ---+ O. Define rm = IXm I and

-~Vm(X) - ~2Vm(X) = r,;,-vg(rmx) in Bllrm \ {OJ.
Ixi

But

by (2.23). Passing to a subsequence, we have that ',Xm ---+ Xo with Ixo I = 1, Vm ---+ v
m

uniformly on compact sets of JRN \ {OJ and v satisfies

-~V - ~v = 0 inJRN \ {OJ.
Ixl2

Furthermore, Iv(x)1 :s Ixl v in JRN \ {OJ and Iv(xo)1 -=I- O. Write

00

u(x) = L L vk,l(r)CPk,l(8).
k=O I

Then Ivk,!(r) I :s Cuv for r > O. But Vk,l has to be a linear combination of the functions
wI, w2 given in (2.5)-(2.7), and none of these is bounded by 0' v for all r > O. Thus
u == 0 yielding a contradiction. This establishes (2.22).

Step 3. Finally, a density argument shows that if h, g satisfy (2.11) then there exists a
solution cP to (2.10) and satisfies (2.22). From (2.22) if we assume that g E C~~2 0 (B) and

h E c2,a (a B), using Schauder estimates and a scaling argument it is possible to ~how that
the solution cP found above satisfies (2.12). D

COROLLARY 2.2. Assume (2.9), (2.10), (2.11) and that v ~ o. If Ixl 2g is continuous at
the origin, then so is cP.

PROOF. Let (O'n) denote an arbitrary sequence ofreal numbers converging to zero, g(x) =

IxI2g(x) and cPn(x) = cP(O'nx) for x E Bl/an (0). Then cPn solves

c g(O'nx).
-~cPn - -2cPn = --2- III Bl/an(O)'

Ixl Ixl
Also, (cPn) is uniformly bounded so that up to a subsequence, it converges in the topology
of cl,a (JRN \ {O}) to a bounded solution <P of

-~<P - ~<P = g(O) in JRN \ {OJ.
Ixl 2 Ixl2

Now <P + g(O)/c is bounded and solves (2.2), so it must be identically zero. It follows
that the whole sequence (cPn) converges to -g(O)/c. Let now (xn) denote an arbitrary
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sequence of points in JRN converging to 0 and Cin = Ixnl. Then, cP (xn) = cPn (-IXn I) and
X n

up to a subsequence, cP (xn ) ---+ - g(O) / c. Again, since the limit of such a subsequence is
unique, the whole sequence converges. D

Now we would like to consider a potential which is the inverse square to a point
~ E B1/2, that is, we consider the problem

in B

on dB,
(2.24)

where

(2.25)for k ~ 1, I = I, ... , mk,
(

X - ~ )
Vk,l,~(x) = 1)(lx - ~1)Wk,l 1 _ 2so

I) E Coo(JR) such thatO ::S I) ::S 1, I) =1= 0 and supp(l)) C [t, iJ and So > 0 is fixed (suitably
small).

We have:

PROPOSITION 2.3. Assume

:Jk1 such that Ci~ E JR and (2.26)

Then there exists So > 0such that if I~ I < So and gO E C~:f (B) satisfies

Ilgo - IIIL:D(B) < So,

then given any g E C~:f(B) and h E C2'(Y(dB), there exist unique cP E C~:f(B) and
/-la, /-lk,l E JR (k = 1, ... , k1, I = 1, ... , mkJ solution to (2.24). Moreover we have for
some constant C > 0 independent ofg and h

kj mk

IlcPI12,(Y,v,~;B+ l/-lol + LL l/-lk,ll ::S C(llgllo,(Y,v,~;B + Il h ll c2,"(3B))'
k=l 1=1

(2.27)

PROOF. We work with 0 < I~ I < So, where So E (0, 1/2) is going to be fixed later on,
small enough. Let R = 1 - 2so. This implies in particular that BR(~) C B.

We define an operator T1 : C2'(Y(dBR(~)) ---+ C1'(Y(dBR(~)) X JR as follows: given
cPo E C2,(Y (d BR(~)), find cP E C~:f (BR (~)) and YO, Yk,l the unique solution to

(2.28)
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and set T1 (¢O) = (aa~i, YO). This can be done (see Step 1 below) by adjusting the constants
YO and Yk,l in such a way that the orthogonality relations (2.11) in Lenuna 2.1 are satisfied.
Similarly, there is a unique ¢1 E C~:f(BR(~)) and YO, Yk,l such that

kj /11k

+ L L Yk,l Vk,l,~
k=l 1=1

¢1 = 0

Given ¢1, YO as in (2.29), we define ¢2 by

1
-1l¢2-IX~~12~2= IX_!~12 +YOIX~0~12

a¢2 a¢l
---
an an
¢2 = h on aBo

(2.29)

(2.30)

where ¢2 is the solution to

on aBo

(2.31 )

As we shall see later (see Step 2), equations (2.30) and (2.31) possess indeed a unique
solution if ~ is sufficiently small, because the domain B \ BR (~) is small.

We construct a solution ¢ of (2.24) as follows: choose ¢o E c2,a (aBR (~)), let ¢1 be the
solution to (2.28) and let ¢2 be the solution to (2.31) with \II = aa~i and Yo from problem
(2.28). Then set

(
¢1+¢1 inBR(~)

¢ = ¢2 + ¢2 in B \ BR (~),

and {l0 = YO + YO, {lk,l = Yk,l + Yk,l. If we have in addition

(2.32)

then ¢, {l0 and {lk,l form a solution to (2.24).



Singular solutions ofsemi-linear elliptic problems 125

With this notation, solving equation (2.24) thus reduces to finding cPo E C2'(Y(dBR(~))

such that (2.32) holds i.e.

The fact that this equation is uniquely solvable (when ~ is small) will follow once we show
that II T211 ---+ 0 as 80 ---+ 0, while II TIll remains bounded.

Step 1. Given cPo E c2'(Y(dBR(~)) there exist Yo and Yk,l such that (2.28) has a unique

solution cPl in C~:f(dBR(~))'
In this step we change variables y = x - ~ and work in B R (0). Solving for YO in the

orthogonality relations (2.11) yields

1 r A.. awo a v
R JaBR 'l'O~(R)

YO = ---;;------"''---------''------'-'-'-;,--'-'---------c;-;-
fBR gO(y + ~)IYI-2WO,0(-i)

and a computation, using Ilgo - lIIL:D(BR) < 80 shows that

( go(y + ~)IYI-2WO,0 (~) = R v+N
-

2C(N, c) + 0(80),
lBR

(2.33)

(2.34)

where C (N, c) -=I- O. In particular this integral remains bounded away from zero as R ---+ 1
(R = 1 - 280 and 80 ---+ 0) and hence Yo stays bounded.

Regarding Yk,l we have

1 r A.. aWk,l v f 1: I 1-2 vR JaBR(O) '1'0 ifi1 (R) - Yo BR go(y +,,) y Wk,l( R)
Yk,l =

fBR 1)(lyl)Wk,l(-i)2

and we observe that fBR 1)(lyl)Wk,l(-i)2 is a positive constant depending on k, I and R
(which stays bounded away from zero as R ---+ 1). Using Lemma 2.1, it follows that IITll1
remains bounded as R ---+ 1 i.e. when 80 ---+ O.

Step 2. For ~ small enough equation (2.31) is uniquely solvable and II T211 :s C1H Let
'::0 = l-lxI2. Then .::o(IYol sUPB\BR(~) Ixl~~112 + sUPaBR(~) IWI)) is a positive supersolution
of (2.31). This shows that this equation is solvable and that for its solution cP2 we
have the estimate IcP21 :s CI~I(IYol + sUPaBR(~) IWI). This and Schauder estimates yield
IlcP21Ic2,"(aBR (~)) :s C I~ I(I Yo I + II W Il c 2,"(aBR (~))), which is the desired estimate.

Finally, estimate (2.27) follows from (2.12) and formulas (2.33), (2.34). D

Consider each ~ E Beo functions go(" ~), g(.,~) E C~:f(B) and h(·,~) E C2'(Y(dB).

By Proposition 2.3 there is a unique cP(·,~) E C~:f(B) solution to (2.24). We want to
investigate the differentiability properties of the map ~ f-+ cP (., ~).

PROPOSITION 2.4. Assume the following conditions:

:Jkl such that O'~ E JR and
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and

N
v> -- + 2

2

v-I -=I- -O'k;.

J. Davila

(2.35)

Let So > 0 andfor~ E BeG' let go(', ~), g(.,~) be such that

Ao == sup (1Igo(" ~)111,a,v,~;B + IID~go(" ~)llo,a,v-1,~;B) < 00 (2.36)
~EB'G

and

A == sup (1Ig(·, ~)111,a,v,~;B + IID~g(., ~)llo,a,v-1,~;B) < 00.
~EB'G

Let h(·,~) E c3,a(dB) with

sup (1Ih(·, ~)llc3(aB) + IID~h(·, ~)llc2."(aB)) < 00.
~EB'G

Let ¢(,,~) denote the solution to (2.24). Then there exists So > 0 and a constant C such
that ifso < So and ifllgo("~) - IIILXO(B) < So, It I < So and ~1, ~2 E BeG then

(2.37)

Moreover the map ~ E BeG f-+ ¢(.;~) is differentiable in the sense that

1
D~¢(x, ~)I] = lim -(¢(x, ~ + TI]) - ¢(x,~)) exists for all x E B \ {~}

[---+0 T

(2.38)

and I] E JRN. Furthermore D~¢(.,~) E C~~l,~(B), the maps ~ E BeG f-+ /-la, /-lk,l E JR are
differentiable and

kj /11k

IID~¢(., ~)112,a,v-1,~;B + ID~/-lOI + L L ID~/-lk,ll
k=l 1=1

:s C(llg(·, ~)IIO,a,v,~;B + IID~g(., ~)IIO,a,v-1,~;B

+ Ilh(·, ~)llc2."(aB) + IID~h(·, ~)llc2."(aB))' (2.39)

The proof of this result can be found in [43] and we omit it. For simplicity we have
stated Proposition 2.4 under the assumption v-I -=I- -0'k;. A similar result also holds if

v-I = -O'k;, but estimate (2.37) has to be replaced by;
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where v - I) < l' < v for some I) > 0 and with the constant C now depending on 1'.
Similarly, (2.39) is replaced by

kj /Ilk

IID~¢(., ~)112,cy,v-1,~;B+ IDu1 01 + L L ID~flk,l1
k=l 1=1

:s C(llg(·, ~)llo,cy,v,~;B + IID~g(., ~)llo,cy,v-1,~;B

+ Ilh(·, ~)llc2'''(3B) + IID~h(·, ~)llc2'''(3B))'

(2.40)

Next we extend Proposition 2.3 to an operator of the form -~ - Lt - IX~~12' where Lt

is a suitably small second-order differential operator. We will take Lt of the form

Ltw = aij(x, tlDijW + bi(x, tlDiw + c(x, tlw. (2.41 )

LEMMA 2.5. Suppose that the coefficients of Lt satisfY: aij(" tl, bi(·, tl, Ci(', tl are
CCY (E) andfor some C it holds

Assume

Then there exists So > 0 such that if I~I < So, It I < So and go E C~:f(B) satisfies

Ilgo - IIIL:D(B) < So, then given any g E C~:f(B) and h E C2'CY(dB), there exist unique

¢ E C~:f(B) and flo, flk,! E JR (k = I, ... , k1, I = I, ... , mkJ solution to

I
-~¢.- Lt¢ - Ix ~ ~12¢ = IX! ~12 + flo Ix ~0~12

kj /Ilk

+ L L flk,! Vk,l,~ in B
k=l 1=1

¢ = h on dB.

Moreover

kj /Ilk

11¢112,cy,v,~;B+ IflOI + LL Iflk,ll :s C(llgllo,cy,v,~;B + Il h II C2,"(3B))'
k=l 1=1

(2.42)

(2.43)

PROOF. Fix h E C2'CY(dB) and I~I < So, where So is the constant appearing in
Proposition 2.3. For g E C~:f(B) let ¢ = T(g/Ix - ~12) be the solution to (2.24) as
defined in Proposition 2.3. Then (2.42) is equivalent to ¢ = T(g/Ix - ~12 + Lt¢). Define

T(¢) = T(g/Ix - ~12 + Lt¢).

We apply the fixed point theorem to the operator t in a ball BR of the Banach space
C~:f(B) equipped with the norm II . 112,cy,v,~;B.
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Note that by Proposition 2.3 we have IIT(g/lx - ~12)112.a.v.~;B :s C(llgllo.a.v.~;B +
Ilh Il c2."(aB))' Using this inequality, for II¢ 112.a.v.~;B :s R we have

IIT(¢)112.a.v.~;B :s C(llgllo.a.v.~;B + IILt¢llo.a.v-2.~;B + Il h ll c2."(aB))

:s C(llgllo.a.v.~ + ItlR + Ilhllc2."(aB)) :s R,

if we first take t so small that Cltl :s 1, and then choose R so large that C(llgllo.a.v.~;B +
Il h ll c2."(aB)) :s ~.

For 11¢1112.a.v.~;B :s R, 11¢2112.a.v.~;B :s R we have
~ ~

IIT(¢l) - T(¢2)112.a.v.~;B :s CIIL t(¢l - ¢2)llo.a.v-2.~;B

:s Cltlll¢l - ¢2112.a.v.~;B,

and we see that T is a contraction on the ball B R of C~..f (B) if t is chosen small
enough. D

The previous results on differentiability also hold for perturbed operators of the form
-~ - Lt - IX~~12'

PROPOSITION 2.6. Assume the following conditions:

:Jk1 such that O'~ E JR and

N
v> -- + 22 '

and

v - I -=I- -O'~.

Let So > 0 andfor~ E Beo let go(" ~), g(.,~) E C~:f(B) be such that

Ao == sup (1Igo(" ~)111.a.v.~;B + IID~go(" ~)llo.a.v-1.~;B) < 00
~EB,o

and

A == sup (1Ig(·, ~)111.a.v.~;B + IID~g(., ~)llo.a.v-1.~;B) < 00.
~EB,o

On the operator Lt we assume

Ilaij(" tlIICl."(B) + Ilbi(" tlIICl."(B) + Ilc(·, tlIICl."(B) :s Cltl·

Let h(·,~) E C3•a(dB) with

(2.44)
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and let ¢ ('. ~) denote the solution to (2.42). Then there exist So > O. C > 0 such that if
So < So. Ilgo("~) - lIIL:D(B) < So. It I < So and ~1. ~2 E Beo• we have

(2.45)

FurthernlOre.

1
D~¢(x; ~)I] = lim -(¢(x; ~ + tl]) - ¢(x;~)) exists Vx E B \ {~}. VI] E JRN.

t---+O t

the maps ~ E Beo (0) f-+ /-lo. /-lk,l E JR are differentiable and

The argument uses again the fixed point theorem. Details can be found in [43].

2.2. Perturbation ofsingular solutions

Recall that c* = 2(N - 2). Hence, if N ~ 4 then N - 1 < c* < 2N and therefore ct1 > 0,
ct:; < 0 (cf. (2.4)). As mentioned before we choose v = O. We see that (2.26) holds now
with k1 = 1. We may thus apply Proposition 2.3 and Lemma 2.5. In dimension N ~ 5,
since (2.35) and (2.44) hold, we may also apply Propositions 2.4 and 2.6.

Write

Ve,~ := V1,e,~ e= 1..... N.

where V1,e,~ is defined in (2.25), and set

j(x. t) = Lt (lOg 1 2)·
Ix - ~I

and note that

(2.47)

Concerning (1.25) we prove;

LEMMA 2.7. Write c = c* = 2(N - 2). Then there exists So > 0 such that if I~ I < So,
Itl < So, there exist ¢ E C5:r (B) and /-l0 . .... /-IN E JR such that

c c ¢ 1 ¢
-!1¢-Lt¢-lx_~12¢= IX_~12(e -1-¢)+/-l°lx_~12e

N

+ j(x. t) + L /-li Vi,~ in B (2.48)
i=l

1
¢ = -log Ix _ ~12 on dB.
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If N ~ 5, we have in addition that:
• the map ~ E Beo f-+ ¢("~) is differentiable in the sense that

1
D~¢(x, ~)I] = lim -(¢(x, ~ + TI]) - ¢(x,~)) exists for all x E B \ {~}

[---+0 T

and I] E JRN.

• for l' < 0 small, D~¢(.,~) E C~~l,~(B), the maps ~ E Beo f-+ {l0, {li E JR are
differentiable and there exists a constant C independent of~ such that

kj /11k

IID~¢(., ~)112,a,v-1,~;B + ID~{lOI + L L ID~{lk,l1 :s C.
k=l 1=1

(2.49)

PROOF. Case N ~ 5.
Let So be as in Lemma 2.5. Consider the Banach space X of functions ¢ (x, ~) defined

for x E B, ~ E Beo ' which are twice continuously differentiable with respect to x and once
with respect to ~ for x -=I- ~ for which the following norm is finite

11¢llx = sup II¢(·, ~)112,a,O,~;B + AIID~¢(., ~)112,a,v-1,~;B'
~EB,o

where A > 0 is a parameter to be fixed later on and l' < 0 is close to zero.
Let BR = {¢ E X 111¢llx :s R}. Using Lemma 2.5 we may define a nonlinear map

F : BR ---+ X by F(1jJ) = ¢, where ¢("~) is the solution to (2.42) with

1
h = -log 2'

Ix - ~I

(2.50)

We shall choose later on R > 0 small. Observe that in Lemma 2.5 the constants C in (2.43)
and So associated to gO = eVr , stay bounded and bounded away from zero respectively as
we make R smaller, since e-R :s eVr :s eR for 1jJ E BR.

Let us show that if t is small then one can choose R small and A > 0 small so that
F : BR ---+ BR. Indeed, let 1jJ E BR and ¢ = F(1jJ). Then by (2.43), (2.47) we have

11¢112,a,O,~;B :s C(llc(eVr - 1 -1jJ) + Ix - ~12 j(x, t)llo,a,O,~;B+ IW
R (2.51)

:s C(R
2 + It I+ IW < 2'

provided R is first taken small enough and then It Iand I~ I < So are chosen small. Similarly,
recalling (2.40),

IID~¢ 112,a, v-1,~;B
:s C(llc(eVr - 1 -1jJ) + Ix - ~12 j(x, t)llo,a,O,~;B

+ IlcD~(eVr - 1 -1jJ) + D~(lx - ~12 j(x, t))llo,a,v-1,~;B+ 1)

< C(R 2 + t + R2

+ 1) < ~- A - 2A'

if we choose now Asmall enough.
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Next we show that F is a contraction on HR. Let VII, 0/2 E HR and ¢e = F(o/e),
e = 1, 2. Let M;e), i = O..... N be the constants in (2.42) associated with o/e. By (2.43)
and repeating the calculation in (2.51)

N

L IM;e)1 sR.
;=0

(2.52)

¢=O

N
+ "(1/(1) _ 1/(2)jv;L r-, r-, "~

;=1

on aBo

in B

(2.53)

Apply (2.43) with gO = Ixe~;12' h = 0 and

(
eVr1 - 1 -0/1 eVr2 - 1 -0/2)· .(2) eVr1 - eVr2

Z·= c - + M
c· Ix-~12 Ix-~12 0 Ix-~12'

to conclude that
N

11¢112,a,0,~ + L IM;l) - M;2)1 s CIIgI10,a,0,~.
;=0

(2.54)

(2.55)

Using (2.52), we have in particular that IM62)I s R and it follows from (2.54) and (2.55)
that

(2.56)

Thanks to (2.46) we also have the bound

IID~(¢l - ¢2)111,a,v-1,~;B S C(lleVr1 -0/1 - (e Vr1 -0/2)llo,a,0,~;B

+ IID~(eVrl -0/1 - (e Vr1 -0/2))llo,a,v-1,~;B)

s CRIIo/l -0/2112,a,0,v;B

+ CRIID~(o/l -0/2)110,a,v-1,~;B' (2.57)

Combining (2.56), (2.57) we obtain

This shows that F is a contraction if R is taken small enough.
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Case N = 4. In this case (2.35) fails for v = 0 and estimates like (2.45) or (2.46) may
not hold. So we work with the Banach space X of functions ¢ (x, ~) which are twice
continuously differentiable with respect to x and continuous with respect to ~ for x -=I- ~,

for which the norm

11¢llx = sup II¢(·, ~)112.a.O.~;B
~EB,o

is finite. Working as in the previous case, we easily obtain that F is a contraction on some
ball BR of X. D

PROOF OF THEOREM 1.11. We define the map (~, t) f-+ ¢(~, t) as the small solution to
(2.48) constructed in Lemma 2.7 for t, ~ small. We need to show that for t small enough
there is a choice of ~ such that f-li = 0 for i = 1, ... , N. Let

Vj(x;~) = Wl,j(x - ~)l)l(lx - W, j = 0, ... , N,

where 1)1 E Coo(lR,) is a cut-off function such thatO S 1)1 S 1,

(

l)l(r)=o forrs§-,

1)1(r) = 1 forr~i·

Multiplication of (2.48) by Vj (x; ~) and integration in B gives

When ~ = 0 the matrix A = A (~) defined by

Ai.j(~) = l Vi.~ Vj(X;~) for i, j = 1... N

(2.58)

(2.59)

is diagonal and invertible and by continuity it is still invertible for small ~. Thus, we see
that f-li = 0 for i = 1, ... , N if and only if

Hj(~,t)=O, Vj=I, ... ,N, (2.60)
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where, given j = 1, ... , N,

Hj(~, t) = Llx~ ~12 (e¢ - 1 - ¢)V;(X;~) + {lO Llx~¢~12 V;(X;~)

f - ~ 1 1 av(x;~)+ !(x, tlYj(X;~) - log I' ~12 )aB aB x - n

+ ( a¢V;(X;~)- ((-~V;(X;~)-LtV;(X;~)
JaB an JB

- Ix ~ ~12 Vj(X; ~)) ¢.

If this holds, then {ll (~, t) = ... = {IN (~, t) = 0 and ¢ (~, t) is the desired solution to
(1.25) (with {l in (1.25) equal to {lo(~, t)).

Observe that

_a_ [ { log __1-----,,- aVj (x; ~)]
a~k JaB Ix - ~ 1

2 an ~=O
~ ~

1 av(x;0) 1 1 a av(x;~) I
= 2 Xk) + log -----')'------

aB an aB Ix - ~12 a~k an ~=o

1 .aVj(X; 0)
= 2 Xk .

aB an
(2.61 )

+ -
For j = 1, ... , N we have Wl,j(x) = (lxi-a) - lxi-a) )cpj( I:~I) for x E aB, and hence

- +aWl' _ + a, -a,
~(X) = (0'), - 0')' )cpj(X) = (j J 1)1/2 Xj .

SN-l x)

Case N ~ 5. By Lenuna 2.7, ¢(.,~) is differentiable with respect to~. We may then
compute the derivatives of the other terms of Hj. For instance

because the expression above is quadratic in ¢ and the computation can be justified using
estimate (2.49).

Similarly

a [ { e¢ ~ ]
a~k {lO JB Ix _ ~12 Vj(x;~) ~=o = O.

Finally, using that ¢I~=o == 0 and integration by parts, we find

a [1 a¢ ~ f(~ ~ c ~) ]- -v- -~V-LtV--V ¢
a~k aBl an) B ) ) Ix 1

2 ) ~=O,t=O

{ aVj a¢ {( a¢ c a¢) ~
= JaB a; a~k - JB -~ a~k - IxI 2 a~k Vj'

(2.62)
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But when ~ = 0, %t satisfies

(2.63)

on aB

in B

[

a¢ c a¢ aflO 1 N afli
-~ a~k - Ixl 2 a~k = a~k Ixl 2 +~ a~k Vi.O

a¢
-=2Xk
a~k

since at ~ = 0, ¢ = 0 and fli = 0 for 0 ::S i ::s N. By the conditions (2.11) we find
~/~~ = 0 and

(2.64)1 ::s i ::s N.
r . awl.i

afli = 2JaB Xk----av
a~k IB Vi.O Wu '

The integral above is zero whenever i -=I- k and thus, using (2.63), (2.64) in (2.62) we obtain

~[{ a¢y_ ((-~Y-LtY-~Y)¢]
a~k JaBI an) JB ) ) Ixl 2 ) ~=o.t=o

~ r. awl.k

1 .aVj JaB Xk----av 1 ~
= 2 Xk - - 2 Vk 0Vj = 0

aB av IB Vk.O WI.k B .

thanks to (2.59). This and (2.61) imply that the matrix ( aa~: (0, 0)) ij is invertible.

We may then apply the Implicit Function Theorem, to conclude that there exists a
differentiable curve t ---+ ~(t) defined for It I small, such that (2.60) holds for ~ = ~(t).

Letting v(x) = log Ix-fU)12 + ¢(x, ~(t)) for x E Band u(y) = v(y + t{f(y)) for y E Qt,

we conclude that u is the desired solution of (1.22).

Case N = 4. We use the Brouwer Fixed Point Theorem as follows. Define H =

(HI, ... , HN) and

. (I aWj.~
B(~) = (BI,···, BN) WIth Bj(~) = JaB log Ix _ ~12 an .

By (2.61), B is differentiable and DB(O) is invertible. (2.60) is then equivalent to

where

G(~) = DB(O)-I (DB(O)~ - H(~, t)).

To apply the Brouwer Fixed Point Theorem it suffices to prove that for t, P small, G is a
continuous function of ~ and G : Bp ---+ Bp. The following two lemmas are proved in
[43].

LEMMA 2.8. Gis continuous for t, ~ small.

LEMMA 2.9. Ifp > 0 and It I are small enough then G : Bp ---+ Bp •
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3. Reaction on the boundary

3.1. Characterizationand uniquenessofthe extremalsolution

135

(3.1)

In this section we are interested in the characterization of the extremal solution presented
in Lemma 1.16. As mentioned in Section 1.4 we shall prove this characterization under
the assumptions that g satisfies (1.35) aud (1.36), since the argument is simpler and works
in the case that fl and f2 form au angle. Later on in Section 3.2 we shall prove the
uniqueness of the extremal solution for the problem with reaction on the boundary, which
is the analog of Theorem 1.8 for g satisfying (1.2) and (1.3), assuming that dQ is smooth.

LEMMA 3.1. Suppose that U E HI(Q) is a weak solution to (1.34). Then for any

o < A < A* (1.34) has a boundedsolution.

PROOF. Let u be an energy solution to (1.34). We basically use the truncation method of
[19]. For this the first step is to show that if <p : [0, 00) ---+ [0, 00) is a concave C2 function
such that <p' E L 00 then <p (u) is a supersolution, in the sense that

{ V'<P(u)V'ip ~ A ( <P'(u)g(u)ip Vip E CI(Q), ip ~ O.
iQ ir!

Indeed, let h = Ag(U) and for m > 0 let

{

hm = h

hm = hm =-m

hm =m

iflhl:sm
if h < -m
if h > m.

Let U m denote the HI solution of

{

f...um = 0 in Q

dUm _I
-s- - 1m on fl
uV

U m = 0 on f2.

Note that Um ---+ u in HI (Q) and in L 1WI). Let ip E C I (Q), ip ~ O. Using <p' (um)ip as a
test function we find that

{V'Um(<pI!(Um)V'Umip+<pI(Um)V'ip)dx-{ <p'(um)hmip=O.
iQ ir!

Using that <pI! :s 0 aud ip ~ 0 we have

{ V'(<P(um))V'ipdx~ { hm<pl(um)ipdx.
iQ ir!

Now we let m ---+ 00. Since <p' E L 00 it is not difficult to verify that

l V'(<P(um))V'ipdx ---+ l V'(<p(u))V'ipdx
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(3.2)

{ hll1 ep'(UIl1 )epdx ---+ ( hep'(U)epdx
Jr! Jr!

since we have convergence a.e. for a subsequence and

Ihll1 ep'(UIl1 )epl:s Ilepllloo IlepllLoolhl E L 1
(1)

since h = Ag(U) ELI (n.
Now note that under (1.36) we have g(t) ~ cta for some a > 1 and c > 0 and hence

100 ds
-- < +00.

o g(s)

Let 0 < A' < A and define

(3.3)

where

H(u) = f"~. (3.4)
Jo g(s)

Then it is possible to verify that ep is a C2 concave function with bounded derivative. Since
Aepl(u )g(u) = A'g( ep (u)) it follows from (3.1) that v = ep (u) satisfies

{ VvVep ~ A' ( g(v)ep Vep E C 1(Q), ep ~ 0JQ Jr!
and is thus a supersolution to (1.34) with parameter A'. Now, condition (3.2) implies that
u = ep(u) is bounded. By the method of sub and supersolutions (1.34) with parameter A'
has a bounded solution. D

PROOF OF LEMMA 1.16. Under hypothesis (1.36) the argument to prove Lemma 1.16
is similar to that of Theorem 1.9 but simpler because we can immediately say that u* E

H 1(Q) and we do not need to rely on a uniqueness result for u* similar to Theorem 1.8.
By Lemma 3.1 A :s A*. Now, if A < A* then exactly the same argument as in Theorem 1.9
leads to a contradiction. Thus A = A*. We wish to show that v = u*. Since v is a
supersolution to (1.34) we see that uA :s v for all 0 < A < A* and taking A ---+ A* we
conclude u* :s v. For the opposite inequality observe that by density (1.39) holds for
ep E H 1(Q) such that ep = 0 on f2. By hypothesis v E H 1(Q) and since g satisfies (1.36)
we have u* E H 1(Q). Thus we may choose ep = v - u*. We obtain

( (g(u*) - (g(v) + g'(V)(U* - v)))(v - u*) :s o.
Jr!

But the integrand is nonnegative since v ~ u* a.e. and g is convex. This implies

g(u*) = g(v) + g'(V)(U* - v) a.e. on fl.

It follows that g is linear in intervals of the form [u*(x), v(x)] for a.e. x E fl. The union
of such intervals is an interval of the form [a, 00) for some a ~ O. Assuming this property
for a moment we reach a contradiction with (1.36).
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To prove the claim above we follow the argument of Dupaigne and Nedev [51]. First we
show that u* (f1) is dense in [ess infrj u*, ess SUPrj u*]. Indeed, if not, then there exists
a nontrivial interval (a, b) such that {x E r1 : u*(x) ::s a} and {x E r1 : u*(x) ~ b}
both have positive measure in r 1. Hence there is a smooth function I] : JR ---+ JR with
o ::S I] ::S 1 such that I](u*), is either 0 or 1, but such that {x E r1 : I](u*(x)) = O} and
{x E r1 : I](u*(x)) = I} have positive measure. Since u* E H 1(Q) we have I](u*) E

HI (Q) and therefore I] (u*) E H 1/2 (f1) and has values 0 and 1. But it is known, see for
instance Bourgain et at. [16], that a function in W S ,P(f1: Z) with sp ~ 1 is constant.
This contradiction shows that indeed U*(f1) is dense in [essinfrj u*, eSSSUPrj u*]. Let
S C r1 by a compact set with dist(S, l) > O. By the strong maximum principle
essinfs(v - u*) > O. It follows that UXEs[u*(x), v(x)] ;2 UXEs[u*(x), u*(x) + s] and
hence is an interval [a, 00), because ess SUPrj u* = +00 as u* is unbounded. D

3.2. Weak solutionsand uniquenessofthe extremalsolution

Throughout this section we will assume that g satisfies (1.2) and (1.3).
An important tool in the proofs in [19,87] is Hopf's lemma, so before adapting their

arguments we need to find a suitable statement that replaces this lemma for problems with
mixed boundary condition. Let us recall a form of Hopf' s lemma combined with the strong
maximum principle which will be our model. Let Q C JRN be a bounded smooth domain.
If u satisfies

(

-!11./ = h

u=O

in Q

on iJQ
(3.5)

with h E L 00 (Q), h ~ 0, h =1= 0 then there exists C1 > 0 such that

C18 ::S u in Q,

where

8(x) = dist(x, iJQ).

(3.6)

The bound is sharp in the sense that u ::S C28 for some C2 > 0 by Schauder's estimates. The
constant C1 in the lower bound of (3.6) above can be made more precise in its dependence
onh

C8(X)( l8h) ::S u(x) Vx E Q,

where C > 0 depends only on Q. This estimate was proved by Morel and Oswald
(unpublished) and can also be found in [18].
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Let us consider the following linear problem with mixed boundary condition

r~hl
in Q

au
(3.7)- =h2 on fl

av
u=O on f2,

where hI, h2 are smooth functions defined on Q and fl respectively. Here fl, f2 is a
partition of aQ into surfaces separated by a smooth interface. More precisely fl, f2 c aQ
are smooth N - I-dimensional manifolds with a common boundary fl n f2 = I which is
a smooth N - 2-dimensional manifold.

We shall define next a function which will play the role of I) for (3.5). The definition is
motivated by the fact that the function

z = x + iy

is harmonic in the upper half of the complex plane {z E ce I Re(z) > A}, and satisfies the
mixed boundary condition

U(x,O)=o x>o,
au
-(x, 0) = ° x < 0.ay

For x in a small fixed neighborhood of aQ we write xfor the projection of x on aQ, that
is, x is the point in Q closest to x. We let v(x) denote the outer unit normal vector to aQ at
x. Given x E aQ in a fixed small neighborhood of I we write I (x) for the point in I with
smallest geodesic distance on aQ to x. Then there exists a neighborhood U of I in Q and
r > °such that

X E U ---+ (l(x), d/(x), I) (x)) E I x (-r, r) x (0, r) (3.8)

is a diffeomorphism, where d/ (x) denotes the signed geodesic distance on aQ from x to
I (x) with the sign such that

We define l; (x) for x E U as:

l;(x) = J,js2 + t2 - s, where t = I) (x), S = d/(x),

and we extend l; to Q \ U as a smooth function such that

inf l; > ° and l; = ° on f2 \ U.
fj\U

The next result is the analog of (3.6) for (3.5).
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PROPOSITION 3.2. Let hI E Loo(Q), hI ~ 0 and h2 E L oo (r1), h2 ~ 0 and assume

hI =1= 0 orh2 =1= O. Let u be the solutionto (3.7). Then there existconstantsC1, C2 > 0 such

that

(3.9)

(3.10)

(3.11 )

PROOF. For convenience we write Ur as the neighborhood of I in Q introduced in (3.8).
We will show, using suitable barriers, that (3.9) holds in Ur for some r > 0 small. Using
then the strong maximum principle and the usual Hopf's lemma we will establish the
desired inequality in Q.

Recall that t = 8(x) and s = d/(.x) are well-defined smooth functions on Ur . For a
function v(s, t) its Laplacian can be expressed as

a2 v a2v
~v = -2 + -2 + OU + Isl)ID2vl + O(1)IDvl,

as at

where 0 (t + IsI) denotes a function bounded by t + IsI in Ur , 0 (1) a bounded function,
ID2vl and IDvl are the norms of the Hessian and gradient of v respectively. Indeed, let
us consider a smooth change of variables of a neighborhood of XQ in I onto an open set in
JRN - 2, that is ¢ : Br(xQ) n I ---+ V C JRN-2. Define the map

ljJ(x) = (¢(l(x)), d/(x), 8(x)) = (z, s, t) E V x (-r, r) x (0, r) C JRN.

We shall write y = (z, s, t), that is z = (Y1, ... , YN-2), s = YN-1, t = YN. Then
Y1, ... , YN are local coordinates of a neighborhood of XQ, and

1 (r;;kl )~v = ,;gaYk vgg ay1u ,

where gij = (atv~l, atv~l) is the Euclidean metric tensor in the coordinates Y1, ... , YN,
• I • J

g = det(gi,j) and gkl is the inverse matrix of gij' By construction of 1jJ, when t = s = 0
(which corresponds to the interface l) the coefficients gij are 0 whenever i = N - 1, N

or j = N - 1, N, since at I DljJ maps the normal vector v = it to the vector eN, the
vector ts perpendicular to I and tangent to aQ to eN-1 and vectors in the tangent space
to I to vectors ofJRN with the last two components equal to O. Hence if k = N - 1, N or
1= N - 1, N we have II = OU + lsi) and formula (3.10) follows from (3.11).

Let us introduce polar coordinates for s, t:

s = r cos(8), t = r sin(8).

As a first term for the subsolution we take

111 = r 1/ 2 sin(8/2).

Then according to (3.10) and since ID2u11 = 0(1,-3/2), IDu11 = 0(1,-1/2) we have

~111 = 0(1,-1/2). (3.12)
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Let 1/2 < y < a < 1, b > 0 and define

U2 = ra(sin(ye)+be2).

Using (3.10) again we find

f...u2 = r a- 2 ((a 2 - y2) sin(ye)+a2be2 + 2b) + 0(ra- 1)

~ cra- 2 + 0(ra- 1),

for some positive constant c. Set

fi = U1 + U2·

(3.13)

By (3.12) and (3.13) there exists ro > 0 but small such that

f...fi ~ cr2- a in the region r < ro

for some c > O. Let us compute the normal derivative:

au au I 1 au I 1 1--= = ---= = ---=. = r a- (y cos(yn)+ 2bn) ::s -cra- ,
av at 1=0 r ae 11=][

where c > 0, if b is taken sufficiently small.
We use the maximum principle in the region D contained in Uro ' which in terms of the

polar coordinates is given by

D = {r < ro, 0 < e < n}.

The boundary of D consists of

aD = Mo U M1 U M2,

where

M1 = {O ::s r ::S ro, e = n} = aD n r1
M2 = {O ::S r ::S ro, e = O} = aD n r2
M3 = {r = rO, 0 < e < n} = aD n Q.

We have

f...u ::S 0, f...u > 0 inD

au au
- >0 --= < 0 OnMlav - , av

u = 0, u=O onM2

and

for some c > O. This follows from the standard strong maximum principle and Hopf's
lemma applied to u, since the distance from M3 to the interface I is strictly positive. It
follows that

u ~ Cfi in D.

This yields the lower bound for u.
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To obtain the upper bound for u in (3.9) choose

u = U1 - U2.

where ct, y, b are as before, that is 1/2 < y < ct < 1, b > O. By (3.12) and (3.13)

for small r for some positive fixed c. Similarly

au au I 1 au I 1 1- = -- = --. = _r a - (y cos(yn)+ 2bn) ~ cra - •
av at 1=0 r ae 11=][
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(3.14)

(3.15)

where c > 0, if b is taken sufficiently small. Applying the maximum principle in the same
region D as before we find u ::s Cu in D. D

One consequence of (3.9) is that even if hI, h2 are smooth the solution u to (3.7) is
in general not smooth, having at worst a behavior of the form u(x) ~ dist(x. I)1/2 and
IVu(x)1 ~ dist(x. I)-1/2.

We need to define the notion of weak solution to (1.4), and before this, we need to define
what we understand as weak solution to a linear problem. Define the space Lf(f1) as the
space of measurable functions h : f1 ---+ JR such that Irl Ih Is < +00. We define the class

of test functions T as the collection of (j! E C 2 (Q) n C(Q) such that (j! = 0 on f2, f:J.(j!
can be extended to a continuous function in Q, for any x E aQ \ I there is r > 0 such
that V(j! admits a continuous extension to Q n Br (x) and %~, which is now well defined in
f1 \ I and can be extended as a continuous function on fl. In particular, given 1]1 E C(Q),

1]2 E C(f1) the solution (j! to

[

-~: : ~~ ~:~1
av

(j! = 0 on f2.

is in T. Moreover by Proposition 3.2 we see that (j! satisfies

1(j!1 ::s Cs in Q.

(3.16)

(3.17)

LEMMA 3.3. Given h E Lf(f1) there is a unique Iq E L 1(Q), U2 E L 1(f1) such that

( Iq(-f:J.(j!) + { (h(j! - U2 a(j!)· = 0 V(j! E T.iQ irl av

Moreover

andifh ~Othenu1.u2 ~O.

(3.18)

(3.19)
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PROOF. We deal with uniqueness first. Suppose 1/1 E L 1(Q), U2 E L 1(1) satisfy (3.18)
with h = O. Given 1] E COWl) let ip be the solution to (3.16) with 1]1 = 0, 1]2 = 1]. Then
ip E T and by (3.18)

Hence U2 == O. Then given 1] E Co (Q), setting ip as the solution to

(

-!lip = 1] in Q

ip = 0 on aQ
(3.20)

we deduce 1Q U 11] = O. It follows that U 1 = O.
We prove (3.19) in the case 1/1 ~ 0, U2 ~ O. For this we may take 1]1 = 1 and 1]2 = 1 in

(3.16). Then from (3.18) and (3.17) we see that (3.19) holds.
For the existence part we take h E Lf WI), h ~ 0and let hm = min(m, h). Then

[

!lum = 0 in Q

aUm _I
---1m Onf1aV

U m = 0 on f2

has a solution Um E H I (Q) and we have the bound

(Um(-!lip)+ { um
aip

-hmip=O.iQ irl av
Passing to the limit shows that 1/1, U2 satisfies condition (3.18). We see also that 1/1 ~ 0,
U2 ~ O. For general h we may rewrite it as the difference of two nonnegative functions. D

If h is smooth then we may find a solution U E T to

[

flu = 0 in Q

au
- = h on f1av

U = 0 on f2

(3.21 )

and 1/1, U2 in Lemma 3.3 correspond to U restricted to Q and f1 respectively.

DEFINITION 3.4. We say that 1/1 ELI (Q), U2 ELI WI) is a weak solution to (3.21) if they
satisfy (3.18). In the sequel, when referring to a weak solution 1/1 ELI (Q), U2 ELI (f) to
(3.21) we will identify uland U 2 as just u, and according to the context we write U ELI (Q)

or U E L 1(1).
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Weak supersolutions are defined as:

DEFINITION 3.5. We say that u ELI (fl) is a weak supersolution to (3.21) if

(lq(-~ip)+ ( (hip-U2aip )· ~O VipET.ip~O.iQ ir! av

We consider the problem (1.4), that is,
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(3.22)

r~o
in Q

au
(3.23)- = Ag(U) on fl

av

u=O on f2.

DEFINITION 3.6. We say that u E L 1(fl) is a weak solution to (3.23) if g(u) E Lf(fl)
and (3.23) holds in the sense of Definition 3.4 with h = Ag(zt).

Let us remark that only with hypotheses (1.2) and (1.3) the extremal solution u* is a
weak solution in the sense of Definition 3.6. Indeed, the same calculations as in (1.6) and
(1.7) with ip1 > 0 the first eigenfunction for

[
~:: : ~lipl ~:~1
av

ipl = 0 on f2

show that

{ g(U).)ipl:S C
ir!

with C independent of A. Note that by Proposition 3.2 we have l; :s Cipl and it follows
that

( g(u).)l;:S C. (3.24)
ir!

To show that u* E L 1(Q) let X solver"FI in Q

aX
on fl-=0

av

X = 0 on f2.

By Proposition 3.2 we have X :s Cl; and hence, after multiplying (3.23) by X and
integrating by parts we have

( u). = A { u).X:S C ( g(zt).)l;:S C
iQ ir! ir!

by (3.24). Hence u* E L 1(Q), g(u*) E Lf(fl) and it is not difficult to verify that it
satisfies Definition 3.6.
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Our next result is an adaptation of a result of Nedev [96] for (1.1), that shows that u*
is bounded in dimensions N ::S 3 for that problem. It also provides some estimates of the
form g(u*) in LP for some p > 1 in any dimension. The argument is the same as in [96]
except that some of the exponents change slightly.

THEOREM 3.7. Assumeg satisfies(1.2) and (1.3). Then ifN ::S 2 we have u* E Loo(Q).

IfN ~ 3 then g(u*) E LP(f1)forl::s p < 2f!v-=-12) andu* E LP(f1)forl::s p < ~::::§.

PROOF. We estimate the minimal solution UA for 0 < A < A*. Let

'IjJ(t) = 11

g'(s)2ds

and multiply (3.23) by 'IjJ(uA) to obtain

{ g'(zt A)2 IV'u AI2 = A ( g(UA)'IjJ(ztA).iQ ir! (3.25)

We shall use the notation g(u) = g(u) - g(O). Using the weak stability of UA with g(zt A)

we have

Hence, by (3.25) we have

{ g'(zt A )g(zt A)2 = ( g(UA)'IjJ(UA) = ( g(ztA)'IjJ(UA) +g(O) ( 'IjJ(zt A ).

ir! ir! ir! ir!
(3.26)

As in [96] let

h(t) = 11

g'(s)(g'(t) - g'(s)) ds.

Then from (3.26) we have

( g(ztA)h(uA)::sg(O) ( 'IjJ(zt A).

ir! ir!
But

1
. h(t)
1m -- = +00.

1---++00 g'(t)

Indeed, for any M > 0, by the convexity of g we have

h(t) ~1M

g'(s)(g'(t) - g'(s))ds ~1M

g'(s)(g'(t)- g'(M))ds

= (g(M) - g(O))(g'(t) - g'(M)).

(3.27)

(3.28)
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Dividing by g' (t) we have

h(t)
liminf-- ~ (g(M) - g(O))
1---++00 g'(t)

(by (1.3) limt---++oo g' (t) = +00). Since M is arbitrary we deduce (3.28).
On the other hand

1/J(t) = 11

g'(s)2ds:sg'(t)8o(t).

Thus, by (3.27), (3.28) and (3.29) we find
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(3.29)

with C independent of A and also

( 8o(u;;.)g'(u;;J:SC.
ifl

The convexity of g implies g' (t) ~ 80 (t) / t , and hence

(3.30)

It follows that g(zt;;.) E Ll(fl) since, one needs to control f g(u;;.) in the region where

U;;. ~ M, and there, g(:;~)2 ~ U;;. if M is large enough. By regularity theory

Ilu;;.IIU(fj) :s C for 1 :s p < ~::::~ (any p < 00 if N = 2).

Let 0 < a < 1 and

A = {x E fl : 8o(u;;.) < u~/a}.

Then A, B cover all fl. By (3.30)

l 8o(u;;.)2-a :s C

and

Of / N-2 Ch ° 2(N-2) th
1 P a < N-l' oosmg a = 2N-3 we see at

Ilg(u;;.)IIU(fj) :s C for 1 :s p < 2i~::::~).

Repeating this process yields the desired conclusion. D
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Next we show, following the argument of Brezis, Cazenave, Martel and Ramiandrisoa,
that there are no weak solutions for A > A*.

THEOREM 3.8. Assume g satisfies (1.2) and (1.3). Then,for A > A*, problem (3.23) has
no weak solutions.

For the proof we need the following:

LEMMA 3.9. Let h ELf (r1) and U ELI (f1) be weak solutions of(3.21). Let cP : JR ---+ JR
be a C2 concave function with cP' E L 00 and cP (0) = O. Then cP (u) is a weak supersolution
to (3.21) with h replaced by cP' (u )h.

PROOF. For m > 0 let hm = h if Ih I ::s m, hm = -m if h < -m and hm = m if h > m,
and let Um denote the H I solution of (3.21) with h replaced by hm. Note that Um ---+ u in
L 1(Q) and in L 1(f1) by (3.19). Let cP E T, cP ~ O. Using CP'(um)cp as a test function we
find that

{ 'Vum(cpll (u m)'Vumcp + cP' (u m)'Vcp) dx - { cP' (u m)hmcp = O.
iQ ir!

Using that cpll ::s 0 and cP ~ 0 we have

{ 'V(CP(um))'Vcpdx - ( hmCP'(um)cpdx ~ 0
iQ ir!

and integrating by parts

1 1 acp ,
CP(Um)(-~CP) + CP(um)- - hmCP (um)cp ~ O.

Q r! av
Now we let m ---+ 00. We have

lICP(Um) - CP(u)ll~cpl dx ::s II~cplloollCP'lloo llum - ul dx ---+ 0

{ICP(Um)-cp(U)lla~ldX::slla~IIIICP'lloo {Ium-uldx---+Oir! at at 00 ir!
and

{ hmCP'(um)cpdx ---+ { hCP'(u)cpdx
ir! ir!

(3.31)

since we have convergence a.e. (at least for a subsequence) and

IhmCP'(um)cpl::s IICP'IIoolhis E L 1
(r1)

by the assumption h E Lf(r1).

LEMMA 3.10. /f(3.23) has a weak supersolution w ~ 0 then it has a weak solution.

D
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(3.32)

PROOF. The proof is by the standard iteration method: set Uo = 0 and Uk+l as the solution
to

[

~Uk+l = 0 in Q

aUk+l
-- = Ag(ukl on rl

av

Uk+l = 0 on r2.

The Uk is an increasing sequence bounded above by w which belongs to L 1(Q) and L 1(rl),
and g(ukl is increasing, bounded above by g(w) E Lf(rl). The limit u = limk---++oo Uk
thus exists and is a weak solution. D

PROOF OF THEOREM 3.8. Assume that (A, u) is a weak supersolution to (3.23). Let
o < A' < A and <P be defined as in (3.3), (3.4). By Lemma 3.9 we see that <P(u) is a
supersolution to (3.23) with parameter A'. Suppose first that g satisfies 1000

ds/g(s) <

+00. Then <P(u) is also bounded and hence (3.23) with parameter A' has a bounded
solution.

Next we consider the case 1000
ds/g(s) = +00. As in [19] let E > 0 be small and let

A' = (1- E)A. Let VI = <P(u). Then 0 ::S VI ::S w. But H is concave, so

, u - VI
H(u) ::S H(Vl) + (u - vl)H (Ul) = H(Vl) +--.

g(Vl)

Recall that by definition of <P and H (3.3), (3.4) we have H(Vl) = (1- E)H(u). Hence

u - VI
EH(u) <-­

- g(Vl)

and therefore

U 1
Z(Vl) < C-- < C(1 + u) E L (rl).
e - H(u)-

Then by Lemma 3.10 there exists a weak solution Iq to (3.23) with parameter (1 - E)A
such that Iq ::S VI and by (3.32) we have g(lq) E Ll(rl). Thus Iq E LP(rl) for any
p < ~::::~ (p < 00 if N = 2). Repeating this process, we define V2 = <P (Iq) and as before

obtain g(V2) ::S C(1 + Iq) E U(rl) for any p < ~::::~ (p < 00 if N = 2). Then there
is a solution U2 ::S V2 to (3.23) with parameter (1 - E)2 A and it satisfies g(U2) E LP(rl)

for p < ~::::~. By induction there is a solution Uk to (3.23) with parameter (1 - E)kA and

satisfying g(ukl E LP (rl) for any -f;- > 1 - ~-=-\ provided 1 - ~-=-ll > O. For k > N we
findukELoo(rl). D

Finally this is the uniqueness result of [87] in the context of problem (3.23).

THEOREM 3.11. Supposethat g satisfies(1.2) and (1.3). ThenforA = A*, problem(3.23)
has a uniqueweak solution.

PROOF. Let Iq, U2 be different solutions to (3.23), and without loss of generality we may
assume that 111 = u* is the minimal one, so that U2 > 111 in Q.
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First we show that (3.23) has a strict supersolution v. For this we note that any convex
combination Vt = tltI + (1 - tlu2, t E (0, 1) is a supersolution, by the convexity of g.

Suppose Vt is still a solution for all 0 < t < 1. Then

g (tlq(X) + (1- tlu2(X)) = tg(lq(X))+ (1- tlg(U2(X)) a.e. on f1

and for all t E (0, 1). Then there is a set E of full measure in f1 such that
g (tlq(X) + (1- tlu2(X)) = tg(lq(X)) + (1 - tlg(U2(X)) holds for t E (0,1) n Q and
x E E. This means g is linear in [lq(X), U2(X)] for a.e. x E fl. The union of the
intervals [u 1(x), U 2 (x)] with x in a set of full measure in f 1 is an interval. The argument
is the same as in the end of the proof of Lemma 1.16, with the only difference that in
this case, we do not have the information that lq = u* is in H 1(Q). But now, thanks
to Theorem 3.7 we know that g(u*) E LP(f1) for some p > 1. Then by LP theory
[2,3] we also have Vu* E LP(f1) for some p > 1 and therefore u* E W 1,p (f).

As in the proof of Lemma 1.16, this is sufficient to guarantee that U*(f1) is dense in
[ess infr! u*, ess sUPr! u*]. The conclusion from the previous argument is that u 1, U2 solve
a problem with a linear g, say g(t) = a +bt. By a bootstrap argument, lq, U2 are bounded
solutions. Recall that by the implicit function theorem the first eigenvalue of the linearized
operator at u* is zero. Let !PI > 0 denote the first eigenfunction of the linearized operator,
that is,

[ ~:::~*b!P1 ~:~1
av
!PI = 0 on f2.

Since u* solves (3.23) with g(t) = a + bt, multiplying that equation by !PI and integrating
by parts yields

{ A*(a+bu)!p1= { A*bu!P1.
ir! ir!

Then a = 0 and we reach a contradiction.
We claim that there is some s > 0 such that

[

f...u = 0
au
-. =A*g(U)+sav
u=o

in Q

(3.33)

has a weak supersolution. Indeed, there is a strict supersolution v to (3.23). Let V be the
solution of
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and let X solve

{
~: : ~ ~:~1
aV

X = 0 on f2·
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(3.34)

By Proposition 3.2 there is a constant 8 > 0 so that v - V ~ 8 X. Hence w = V + 8 X ::S v
and

aw
--;;- = A*g(V) +8 ~ A*g(W) +8
uV

and thus w is the desired supersolution.
Let 0 < 81 < 8. Then there exists a bounded supersolution to

{

f...u = 0

au *
-. =Ag(U)+81av

u=o

in Q

(3.35)

To see this, define <P : [0. 00) ---+ [0. 00) so that

1<P(1) ds 11 ds
for all U ~ O.

o A*g(S)+81 - 0 A*g(S)+8

A calculation as in [19] shows that <P satisfies the hypothesis of Lemma 3.9. If
1000 ds/g(s) < +00 then <P is bounded. Let w be a supersolution of (3.33). Then
by Lemma 3.9 <P(w) is a bounded supersolution for (3.35). By the method of sub and
supersolutions there is a bounded solution to (3.35).

If 1000 ds / g(s) = +00 then an iteration with <P as in the proof of Theorem 3.8 still yields
a bounded solution to (3.35). In fact, let

11 ds
HeU) =

o A*g(S)+8

and let 0 < 81 < 8. Then we may restate the definition of <P as <P = He~l 0 He or

He) (<PU)) = HeU) for all t ~ O.

Denoting by w the supersolution to (3.33) and v = <P(w) we thus have

The function He is concave and v ::s w, so

He(w) - He(v) 1
------ < He (v) = ----

w-v -) A*g(V)+8

(3.36)

(3.37)
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But, thanks to (3.36)

J. Davila

(3.38)

Hc(w) - Hc(u) = H c) (v) - Hc(u) = rv ( 1 _ 1 ) ds10 A*g(S)+SI A*g(S)+S

l
v 1

>(S-SI) ds.
- 0 (A*g(s))2

From (3.37) and (3.38) we see that

C(1 + w)
g(v):s---­

S - SI

The rest of the argument proceeds as in the proof of Theorem 3.8.
Since (3.35) has a bounded supersolution it also has a bounded solution w. Let A' > A*

to be chosen later, and set

A'
W= -w -SIX

A* '

where X is the solution of (3.34). Then observe that

aw, A' ,
- = A Z(w) + -SI - SI > A Z(w).av C A* - C

We now choose A' fA * close to 1, so that

(~~ -1) w :s SIX,

and therefore

w~ W.

(3.39)

(3.40)

This is possible because w E L 00 and therefore w :s C X for some constant C > 0,
by Proposition 3.2. Then (3.39) combined with (3.40) implies that W is a supersolution of
(3.23) with A* replaced by A'. This is in contradiction with A* being the maximal parameter
for (3.23). D

3.3. Kato's inequality

In this section we will prove

THEOREM 3.12. Let B = Bl(0) be the unit ball in JRN, N ~ 3. Then for any 1 :s q < 2
there exists c = c(N, q) > 0 such that
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REMARK 3.13. (a) The singular weight I.~I on the right-haud side of (1.43) is optimal,

in the sense that it may not be replaced by I}I" with a > 1. This cau be easily seen by
N-2 0'-1

choosing cp E H1(JR~) such that cp(x) = Ixl-~+~ in a neighborhood of the origin.
Moreover, the infimum in (1.44) is not achieved.
(b) In dimension N = 2 the infimum (1.44) is zero.
(c) Using Stirling's formula it is possible to verify that

N-3 (1)HN=-2-+ 0 N as N ---+ 00. (3.41)

Let us tum our attention to the proof of Theorem 3.12. Following an idea of Brezis
and Vazquez (equation (4.6) on page 453 of [20]) it turns out to be useful to replace cp in
(1.43) by v = cp jw, where w = W a with a = N :;2 as defined in (1.47). Observe that

C (N. N:; 2 ) = HN by (3.57) aud hence W is harmonic in the half space JR~ and satisfies

aw w
- = HN- on aJR~.
av Ixl

PROOF OF THEOREM 3.12. When N ~ 3, Co(JR~ \ {OJ) is dense in H1(JR~). So it
suffices to prove (1.43) for cp E Co (JR~ \ {O}). Fix such a cp =1= 0 aud let w be the function
defined by (1.47). Notice that, on supp cp, w is smooth aud bounded from above and from

below by some positive constants. Hence v := -'!f; E Co (JR~) is well defined. Now,
cp = vw, Vcp = vVw + wVv aud

IVcpl2 = v21Vwl2 + w21Vvl2+ 2vwVvVw.

Integrating

{ IVcpl2 = { v21Vwl2+ { w21Vvl2+ 2 { vwVvVw
J~~ J~~ J~~ J~~

and by Green's formula

{ v21Vwl2 = { v2w aw _ ( wV(v2Vw)
J~~ Ja~~ av J~~

since w is harmonic in JR~. Thus,

(3.42)
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(3.43)

(3.44)

But by (3.57) ~'(~")) = ~I for x E aJR~ and hence,

{ lV'ipl 2 ~ HN { ip2 + { w2 1V'v1 2 Vip E HI(JR~l.
1~~ la~~ Ixl 1~~

The second term on the right-hand side of the above inequality yields the improvement of
Kato's inequality when ip has support in the unit ball.

Now we assume ip E Co(JR~ \ {OJ n Bl and, as before, set v = -'!f;. Our aim is to prove
that given 1 ::S q < 2 there exists C > 0 such that

~
2 2 1

1:= w lV'vl ~ -llipllwl.q.
~~ C

In spherical coordinates

I = {I r N - I { w2 (r8llV'v(r8lI2d8 dr,
10 lsi

where st = SI n JR~ and SI = {x E JRN / Ixl = I} is the sphere of radius 1. From (3.56)

we have w(xl ~ tlxl-N22 for some C > oand all x E B nJR~. Hence

I ~ ~ {I r { lV'v(r8lI2d8 dr.
C 10 lsi

Let us compute the Sobolev norm of ip:

Ilipllq l.q = { lV'iplqdx= {I rN - I { lV'ip(r8llqd8 dr
w l~NnB 10 ls++ 1

= {I rN - I { lV'v(r8l w(r8l+ V'w(r8l v(r8llQd8 dr
10 lsi

::S Cq {I r N - I { lV'v(r8llqIw(r8llq + lV'w(r8llqIv(r8llqd8 dr.
10 lsi

Define

N-2
Since w(xl ::S Clxl-~ we have by HOlder's inequality

II ::S C {I rN - I -
1N

;2)q { lV'v(r8lIQd8 dr
10 lsi

<; c [f' lsi IV*AlI'dOd,r[f r-l-~'+11"'d'] ';' ~ C/1,

(3.45)

since q < 2.



Singular solutions ofsemi-linear elliptic problems

N
Using IVw(xll ::s Clxl- c we estimate h

111 Nq

h ::S C rN- I- T Iv(rell q dr de.
st 0

From the classical Hardy inequality

{I rYIf(rW dr ::S (_P_)· P {I rY+Plf'(rW dr
10 Y + 1 10

(p ~ 1, Y > -1, f E CoW. 1)) we deduce

{I N {I N10 rN- I- y Iv(rell q dr ::S C 10 rN- I- y +qIVv(rell q dr

and therefore

h ::S C { {I rN-I-¥+q IVv(rell q dr de.
1st 10

HOlder's inequality yields

153

I, <; c [lsif '·I""('Oll' d,dAr[lsif ,rN-'-,\,+!',",d,dAJ-1

= C /±. (3.46)

where we have used q < 2. Gathering (3.45) and (3.46) we conclude that (3.44) holds. D

3.4. Boundedness of the extremal solution in the exponential case

In this section we shall give a proof of Theorem 1.20. We proceed by contradiction,
assuming that u* is unbounded. A central point in the argument is to obtain some
information of the singularity that u* should have at the origin. More precisely, we claim
that for any 0 < (J < 1 there exists r > 0 such that

1
u*(xl ~ (1 - (Jl log - Vx E fl. Ixl ::S r.

Ixl
(3.47)

Observe first that for all 0 < A < A* the minimal solution u;. is symmetric in the variables
Xl •...• XN-I by uniqueness of the minimal solution and the symmetry of Q. Moreover,
using the symmetry and convexity assumptions on Q combined with the moving-plane
method (see Proposition 5.2 in [32]) we deduce that u;. achieves its maximum at the
origin.



154 J. Davila

Assume by contradiction that (3.47) is false. Then there exists eJ > 0 and a sequence
Xk E r1 with Xk ---+ 0 such that

1
u*(xkl < (l-eJ)log-.

IXkl

Let Sk = IXk I and choose 0 < Ak < A* such that

1
mJlXuAk = UAk(O) = log-.

Q Sk

Note that Ak ---+ A*, otherwise UAk would remain bounded. Let

(3.48)

(3.49)

1
x E Qk == -Q.

Sk

Then 0 ::S Vk ::S 1, Vk(O) = 1, flVk = 0 in Qk and

by (3.49). By elliptic regularity Vk ---+ v uniformly on compact sets of JR~ to a function v

satisfying 0 ::S v ::S 1, v(O) = 1, flv = 0 in JR~, ~~ = 0 on dJR~. Extending v evenly to
JRN we deduce that v == 1. Since IXk I = Sk we deduce that

which contradicts (3.48).
Now we use (3.47) to obtain a contradiction with the stability property of u*. Let

¢(x) = f3ritN K(x, y)lyI2-N+cdy and 'IjJ(x) = f3ritN K(x, Y)ly(~+'dy.Then,
+ +

(3.50)

where the constants K¢, Kljr are given by

Indeed, since Uo and ¢ are harmonic in Q,

1 d¢ 1 dUOuo- = ¢-.
3Q dV 3Q dV
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Clearly, Ire I¢ 3~~o I ::s C, for some constant C independent of 8. So

11 (1)1 111
K log - _,.2-N+c,.N-2d,. = AO,N _,.2-N+c,.N-2d,. + 0(1)

¢ 0 ,.,. 0 ,.

= AO,N + 0(1).
8

Now r110g I,.-l+cd,. = 1- so we end up with, JO r £2

K¢ = Ao,N8 + 0(8
2

).

Similarly, since 0/ and w (defined in (1.47)) are harmonic in Q, we have

l ao/ 1 aww- - 0/-
3Q av - 3Q av'

As before the boundary terms on f2 are bounded independently of 8 so

Kljr 11
,.-l+cd,. = HN11

,.-l+cd,. + 0(1).

Hence,

Kljr = HN + 0(8).

Multiplying (1.34) by ¢ and integrating by parts twice yields

{ UAa¢ = A { ¢ aU A = A { ¢e llA + A { ¢ aU A ::S A ( ¢e llA •

i3Q av i3Q av irl ire av irl
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(3.51)

Let TJ E Coo (JRN) be such that TJ == 1 in BR (0), where R > 0 is small and fixed, and TJ = 0
on f2. Using the stability condition (1.37) with TJo/ yields

where the constant C does not depend on 8and A. Since 0/2 = ¢ on aR~ combining (3.51)
and (3.52) we obtain

and letting A ? A* we find
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Using (3.50) we arrive at

K¢ { u*lxI1- N +c :s Kljr ( IxI 1- N +c + C
JrlnBR(O) JrlnBR(O)

and thus

where OJN -1 is the area of the N - I-dimensional sphere. We rewrite this inequality as

l
R

- 1 HN (1)r l+cu*(r)dr:s--- + 0 - .
o 82 AO.N 8

(3.53)

Let CJ > 0 and r(CJ) > 0 be such that (3.47) holds for Ixl :s r(CJ). Then using (3.47) and
(3.53) we find

l
r

((J) 1.1'-1. IKljr IHN (1)
(1- CJ) log -I d,:s -- + C = --- + 0 - .

o r 8 K¢ 8 2 AO.N 8

Integrating

(
Ie 1 c 1) 1 HN (1)(1 - CJ) -r(CJ) + -r(CJ) log -- :s --- + 0 - .

8 2 8 r(CJ) 8 2 AO.N 8

Letting 8 ---+ 0 yields

HN
(1- CJ) < --.

- AO.N

As CJ is arbitrarily small we deduce HN ~ AO.N. But

HN ~ AO.N if and only if N ~ 10

(see [45]). This proves the theorem.

3.5. Auxiliarycomputations

(3.54)

(3.55)

D

PROOF OF LEMMA 1.21. We write x = (x'. XN) E JR~ with x' E JRN-1, XN > O. It
follows from (1.47) and a simple change of variables that

Wa(x' • XN) = wa(e(x' ). XN) for all rotations e E O(N - 1),

and similarly

(3.56)
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Differentiating with respect to XN yields

aUla 1 aUla--(Rx' Rx ) = R-a - __ (X' X ).
C\ ' N c\' N
uXN uXN

Let X E aJR~, x = (x', 0) and plug R = I.~I = 1.;11 in the previous formula to find

aUla aUla 1 ( aUla (Xl ))-(x) = __(x', 0) = Ixl-a - -- -,0 .
av aXN aXN Ix'l

Define

aUla (Xl )C(N,a) = -- -,0
aXN Ix'l
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(3.57)

and observe that it is independent of x' E JRN -1.

Using (3.56) and the radial symmetry of Ul in the variables x', there exists a function
u : [0, 00) ---+ JR such that

(3.58)

W 't' . 1.11 t XN hn mg I = X , = T?T' we ave

r-av(t) = Ula(X' , rt), Vx' E JRN-l, Ix'l = r.

The equation ~Ul = 0 is equivalent to

(1 + t2 )v"(t)+ (2a + 4 - N)tv'(t)+ a(a - N + 3)v(t) = 0, t > 0, (3.59)

while (l.48) implies

u(O) = 1.

The initial condition for Vi is related to (3.57)

u'(O) = -C(N, a).

In addition to these initial conditions we remark that Ula is a smooth function in JR~ and
this together with (3.58) implies that

lim v (t )ta exists.
1--->00

(3.60)

Using the change of variables z = it with i the imaginary unit and defining the new
unknown h(z) := v(-iz) equation (3.59) becomes

(1 - z2)h"(z) - (2a + 4 - N)zh'(z) - a(a - N + 3)h(z) = 0, (3.61)
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with initial conditions

lim h(it) = 1,
1>0,1---+0

On the other hand (3.60) implies

lim h (i t)tCY exists.
IElR:,1---+00

The substitution
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lim h'(it) = iC(N, a).
1>0,1---+0

(3.62)

(3.63)

transforms equation (3.61) into

(1 - .:hg"(z)- 2zg'(z) + (V(V + 1) - 1 ~2z2 ) g(z) = 0,

with

(3.64)

(3.65)

2-N
/-l=a+-

2
-,

N-4
v--­- 2 . (3.66)

(3.67)

The general solution to (3.65) is well known. Indeed, equation (3.65) belongs to the
class of Legendre's equations. Two linearly independent solutions of (3.65) are given by
the Legendre functions pi;'(z), Q~(z) (see [1]), which are defined in ce \ {-I, I} and
analytic in ce \ (-00, 1] (see [1, Formulas 8.1.2 - 8.1.6]). Moreover the limits of pi;'(z),
Q~ (z) on both sides of (-1, 1) exist and we shall use the notation

P[,'(x + iO) = lim P["(z), -1 < x < 1,
;:---+x,Irn(;:)>0

P[,'(x - iO) = lim P["(z), -1 < x < 1,
;:---+x,Irn(;:)<O

and a similar notation for Q~ .
The solution g of (3.65) is therefore given by

g(z) = CIP[,'(Z) + C2Q~(Z),

for appropriate constants Cl, C2. These constants are determined by the initial conditions
(3.62), which imply:

Cl P[,' (0 + iO) + C2 Q~ (0 + iO) = 1, (3.68)

d d
Cl dz P[,' (0 + iO) + C2 dz Q~ (0 + iO) = iC(N, a). (3.69)

In order to evaluate C(N, a), we also use condition (3.63), which is equivalent to

lim (CIP[,'(it)+ c2Q~(it))tlf-l exists. (3.70)
l---+oo,IElR:
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But according to [1, Formulas 8.1.3, 8.1.5]

Pi;'(z) ~ Zv as Izl ---+ 00

Q~ (z) ~ z-v-1 as Izl ---+ 00.

This and (3.64), (3.70) imply that C1 = 0 and we obtain from (3.68), (3.69)

.;e Q~ (0 + iO)
C(N. a) = -I 'I' .

Qv (0 + iO)

From the properties and formulas in [1] the following values can be deduced:

1· . Jr r(-"'+l:!.+.!)
QI' (0 + iO) = -i2/l-1n2 eZllJr-ZV2 2 2 2

v r(-'" _ l:!. + 1)
2 2

d 1 . Jr r( -"'2 + L2' + 1)
-QI'(O+iO)=2/'n2eZllJr-ZV2 .
dz v r(-"'-l:!.+.!)

2 2 2

The relations (3.71), (3.72), (3.73) and the values (3.66) yield formula (1.49).

4. A fourth-order variant of the Gelfand problem

4.1. Comparison principles

LEMMA 4.1 (Boggio's principle, [15]). Ifu E C4(B R) satisfies
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(3.71)

(3.72)

(3.73)

D

{

t'J.2z.t ~ 0
au

U= -=0an

~ O. Since s E CoUJ),
D

then u ~ 0 in BR.

LEMMA 4.2. Let u ELI (BR) and suppose that

( u/12cp ~ 0
lBR

for all cp E C4(jjR) such that cp ~ 0 in BR, cplaBR = 0 = %;, laBw Then u ~ 0 in BR.

PROOF. Let s E Co UJ), s ~ 0 and solve

{

/12cp=S inBR

acp
cp = - = 0 on aBR.an

By Boggio's principle cp ~ 0 in BR and we deduce that fBR Us
s ~ 0 is arbitrary we deduce u ~ O.
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(4.1)

LEMMA 4.3. Ifu E H 2(BR) is radial, i3.2u ~ 0 in BR in the weak sense, that is

( i3.ui3.ep ~ 0 Yep E Co(BR), ep ~ 0
lBR

PROOF. We only deal with the case R = I for simplicity. Solve

{

i3. 21./1 = i3.2u

dIll
Ul = - =0

dn

in the sense III E H5(Bl) and fBI i3.llli3.ep = fBI i3.ui3.ep for all ep E CO (Bl). Then III ~ 0
in Bl by Lemma 4.2.

Let U2 = U - III so that i3. 2U2 = 0 in Bl. Define j = i3.u2. Then i3.j = 0 in Bl
and since j is radial we find that j is constant. It follows that U2 = ar2 + b. Using the
boundary conditions we deduce a + b ~ 0 and a ::s 0, which imply U2 ~ O. D

Similarly we have

LEMMA 4.4. Ifu E H 2(BR) and i3.2u ~ 0 in BR in the weak sense, that is

( i3.ui3.ep ~ 0 Yep E CO(BR), ep ~ 0
lBR

and ulaBR = 0, ~:: laBR ::s 0 then u ~ 0 in BR.

The next lemma is a consequence of a decomposition lemma of Moreau [95]. For a
proof see [67] or [68].

LEMMA 4.5. Let u E H5(BR). Then there exist unique w, v E H5(BR) such that
u = W + v, W ~ 0, i3. 2v ::s 0 in BR and fBR i3.wi3.v = O.

PROOF OF LEMMA 1.29. (a) Let u = III - U2. By Lemma 4.5 there exist w, v E H5(BR)

such that u = W + v, W ~ 0 and i3.2v ::S O. Observe that v ::S 0 so W ~ III - U2. By
hypothesis we have

{ i3.(zll - U2)i3.ep::S A { (ell! - e1l2 )ep Yep E CO(BR), ep ~ 0,
lBR lBR

and by density this holds also for w:

{ (i3.w)2 = { i3.(lll - U2)i3.w ::S A { (ell! - e1l2 )w,
lBR lBR lBR

where the equality holds because fBR i3.wi3.v = O. By density we deduce from (1.39)

A { ell !w2 ::s { (i3.w)2.
lBR lBR

(4.2)
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Combining (4.1) and (4.2) we obtain

Since u1 - U2 ::s w the previous inequality implies

O::s ( (ell) - e1l2 - ell) (Iq - U2))W.
lBR
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(4.3)

But by convexity of the exponential function ell) - e1l2 - ell) (Iq - U2) ::s 0and we deduce
from (4.3) that (ell) - e1l2 - ell) (Iq - U2))W = O. Recalling that Iq - U2 ::S w we deduce
that u1 ::S U2.

(b) We solve for ii E H(;(BR) such that

{ !1ii!1ep = ( !1(lq - U2)!1ep Vep E C'O(BR).
lBR lBR

By Lemma 4.3 it follows that ii ~ Iq - U2. Next we apply the decomposition of Lemma 4.5
to ii, that is ii = w + v with w, v E H(;(BR), w ~ 0, !12v ::S 0 in BR and fBR !1w!1v = O.
Then the argument follows that of Lemma 1.29. D

4.2. Uniquenessofthe extremalsolution

PROOF OF THEOREM 1.24. Suppose that v E H 2 (B) satisfies (1.52), (1.53) and v =1= u*.
Notice that we do not need v to be radial.

The idea of the proof is as follows:

Step 1. The function

1 *Uo = "2(U + v)

is a supersolution to the following problem

in B

on aB

on aB
(4.4)

for some {l = {lO > 0, where I] E C'O(B), 0 ::S I] ::S 1 is a fixed radial cut-off function
such that

I](X) = 1 for Ixl < .1- 2' I](x) = 0 for Ixl ~ t·

Step 2. Using a solution to (4.4) we construct, for some A > A*, a supersolution to (1.50).
This provides a solution uA for some A > A*, which is a contradiction.
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Proof of Step 1. Observe that given 0 < R < 1 we must have for some Co = co(R) > 0

u(x) ~ u*(x) + Co Ixl::s R. (4.5)

To prove this we recall the Green's function for ~2 with Dirichlet boundary conditions

{

~;G(X, y) = 8y x E B

G (x, y) = 0 X E aB

aG
- (x, v) = 0 X E aB,an .

where 8y is the Dirac mass at y E B. Boggio gave an explicit formula for G (x, y) which
was used in [71] to prove that in dimension N ~ 5 (the case 1 ::s N ::s 4 can be treated
similarly)

(4.6)

where

d(x) = dist(x,aB) = 1 - lxi,

and a ~ b means that for some constant C > 0 we have C- 1a ::s b ::s Ca (uniformly for
x, y E B). Formula (4.6) yields

G(x, y) ~ cd(x)2d(y)2 (4.7)

for some c > 0 and this in tum implies that for smooth functions uand il such that
u - il E H5(B) and ~2(u - il) ~ 0,

u(y) - ii(y) = { (a~xG (x, y)(u _ il) _ ~xG(x, y) a(u - ill) dx
JaB an x an

+LG(x, y)~2(u - il) dx

~ Cd(y)2L(~2u - ~2ii)d(x)2 dx.

Using a standard approximation procedure, we conclude that

u(y) - u*(y) ~ cd(y)2;,.*L(e v - e"')d(x)2 dx.

Since v ~ u*, v =1= u* we deduce (4.5).
Let Uo = (u* + v)j2. Then by Taylor's theorem

1 2 1 , 1 4"
eV = e"O + (v - uo)e"O+ -(v - uo) e"O + -(v - uote"O+ -(v - uo) es2

2 6 24
(4.8)



Singular solutions ofsemi-linear elliptic problems

for some Uo ::S ~2 ::S v and
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(4.9)

(4.10)

, 1 2
e" = e"O + (u* - uo)e"O+ -(u* - uo) e"O

2

+ ~(u* - UO)3 e"O+ ~(u* - uo)4e~1
6 24

for some u* ::S ~1 ::S uo. Adding (4.8) and (4.9) yields

1 , 1 2
_(ev + e" ) > e"O + -(v - u*) e"O.2 - 8

From (4.5) with R = 3/4 and (4.10) we see that Uo = (u* + v)/2 is a supersolution of
(4.4) with f-lo := co/8.

Proof of Step 2. Let us now show how to obtain a weak supersolution of (1.50) for some
'A > 'A *. Given f-l > 0, let u denote the minimal solution to (4.4). Define !PI as the solution
to

{

~2!pl = f-lTJe"

!PI = 0

a!pl = 0
an

and !P2 be the solution of

in B

on aB

on aB,

in B

on aB

on aBo
{
~2!P2=0

!P2 = a

a!p2 = b
an

If N ~ 5 (the case 1 ::S N ::S 4 can be treated similarly), relation (4.7) yields

(4.11)

for some Cl > O. But u is a radial solution of (4.4) and therefore it is smooth in B \ B1/4.
Thus

u(x) ::S M!Pl +!P2 for all x E B1/2, (4.12)

for some M > O. Therefore, from (4.11) and (4.12), for 'A > 'A * with 'A - 'A * sufficiently
small we have

(~ - 1)· U::S!Pl + (~ - 1)· !P2 in B.
'A* 'A*

Let w = j:, u -!P1- (j:, -1 )!P2. The inequality just stated guarantees that w ::S U. Moreover

~2W = 'Ae" + 'Af-lne" - IIne" > 'Ae" > 'Aew in B'A*'/ ~'/ - -
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aw
w=a -=b onaB.

an

Therefore w is a supersolution to (1.50) for A. By the method of sub and supersolutions a
solution to (1.50) exists for some A > A*, which is a contradiction. D

PROOF OF COROLLARY 1.26. Let u denote the extremal solution of (1.50) with b ~ -4.
We may also assume that a = O. If u is smooth, then the result is trivial. So we restrict
to the case where u is singular. By Theorem 1.25 we have in particular that N ~ 13. If
b = -4 by Theorem 1.24 we know that if N ~ 13 then u = -4 log Ix I so that the desired
conclusion holds. Hence we assume b > -4 in this section.

For p > 0 define

up(r) = u(pr)+ 4 log p,

so that

Then

dUpl =u'(1)+4>0.
dp p=l.r=l

Hence, there is I) > 0 such that

up(r) < u(r) for alII - I) < r ::s 1. 1 - I) < p ::s 1.

This implies

up(r) < u(r) for all 0 < r ::s 1,1 - I) < p ::s 1.

Otherwise set

(4.13)

(4.14)

ro = sup{O < r < llup(r) ~ u(r)}.

This definition yields

up(ro) = u(ro) and u~(ro)::S u'(ro).

Write a = u(ro), fJ = u'(ro). Then u satisfies

{

/12u = Ae" on Bro

u(ro) = a

u' (ro) = fJ

while up is a supersolution to this problem, since u~(ro) ::S fJ by (4.14). But this problem
does not have a strict supersolution, and we conclude that

u(r) = up(r) for all 0 < r ::S ro,

which in tum implies by standard ODE theory that

u(r) = up(r) for all 0 < r ::S 1,

a contradiction. This proves estimate (4.13).
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From (4.13) we see that

dUpl- (r) ~ 0 for all 0 < r ::S 1.
dp p=l

But

dUpl-- (r) = u'(r)r + 4 for all 0 < r ::S 1
dp p=l

and this together with (4.15) implies

du 1 1
-p(r) = -(u'(pr)pr+4) ~ 0 for all 0 < r::S -,0 < p::S 1.
~ p p
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(4.15)

(4.16)

which means that up(r) is nondecreasing in p. We wish to show that limp---+o up(r) exists
for all 0 < r ::S 1. For this we shall show

Set

(
8(N -2)(N -4))

up(r) ~ -4Iog(r) + log A*

(
8(N - 2)(N - 4))

uo(r) = -4Iog(r) + log
A*

1
for all 0 < r ::S -, 0 < p ::S 1.

p
(4.17)

and suppose that (4.17) is not true for some 0 < p < 1. Let

1'1 = sup{O < r < IIplup(r) < uo(r)}.

Observe that A* > 8(N - 2)(N - 4). Otherwise w = -4 log r would be a strict
supersolution of the equation satisfied by u, which is not possible by Theorem 1.24. In
particular, 1'1 < 1I p and

and

It follows that Uo is a supersolution of

{

t'J.2z.{ = A*e"
u=A

au
-=Ban on aBI")'

(4.18)

with A = up (1'1) and B = u~ (1'1). Since up is a singular stable solution of (4.18), it is the
extremal solution of the problem by Proposition 1.28. By Theorem 1.24, there is no strict
supersolution of (4.18) and we conclude that up == Uo first for 0 < r < 1'1 and then for
0< r::S lip. This is impossible for p > Obecauseup(1lp) = oand uo(1lp) < O. This
proves (4.17).
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By (4.16) and (4.17) we see that
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u(r) = lim up(r) exists for all 0 < r < +00,
p---+o

where the convergence is uniform (even in C k for any k) on compact sets of JRN \ {OJ.
Moreover v satisfies

(4.19)

Then for any r > 0

u(r) = lim up(r) = lim u(pr) + 4Iog(pr) - 4Iog(r) = v(1) - 4Iog(r).
p---+o p---+o

Hence, using equation (4.19) we obtain

(
8(N - 2)(N - 4))

u(r) = -4logr + log = uo(r).
A*

But then

u~(r) = u'(pr)p ---+ -4, as p ---+ 0,

and therefore, with r = 1

pu'(p) ---+ -4 as p ---+ O. D (4.20)

PROOF OF PROPOSITION 1.28. Let u E H 2 (B), A > 0 be a weak unbounded solution of
(1.50). If A < A* from Lemma 1.29 we find that u ::s u)., where u). is the minimal solution.
This is impossible because u). is smooth and u unbounded. If A = A* then necessarily
u = u* by Theorem 1.24. D

4.3. A computer-assistedprooffordimensions13 ::s N ::s 31

Throughout this section we assume a = b = O. As was mentioned before, the proof of
Theorem 1.27 relies on precise estimates for u* and A*. We first present some conditions
under which it is possible to find these estimates. Later we show how to meet such
conditions with a computer-assisted verification.

The first lemma is analogous to Lemma 1.30.

LEMMA 4.6. Suppose there exist s > 0, A > 0 and a radialfunctionu E H 2 (B) n
Wl~~oo (B \ {O}) such that

lu(1)1 ::s s,

forall 0 < r < 1

I
au I-(1) ::s san
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u ~ Loo(B)

'Ae c l ell
cp

2 :s l (!1cp)2 for all cp E Co(B).

Then

PROOF. Let

so that
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(4.21 )

(4.22)

and

1/J(1) = -8, 1/J'(1) = 28

-28 :s 1/J(r) :s -8 for all 0 :s r :s 1.

It follows that

On the boundary we have u(l) + 1/J(I) :s 0, u'(I) + 1/J'(I) ~ O. Thus u + 1/J is a
singular subsolution to the equation with parameter 'Ae2c . Moreover, since 1/J :s -8 we
have 'Ae2c ell+1Jr :s 'Aec ell and hence, from (4.21) we see that u + 1/J is stable for the problem
with parameter 'Ae 2c . If 'Ae2c < 'A* then the minimal solution associated with the parameter
'Ae2c would be above u + 1/J, which is impossible because u is singular. D

LEMMA 4.7. Suppose we can find 8 > 0, 'A > 0 and u E H 2 (B) n Wl~'coo(B \ {OJ) such
that

Then

lu(1)1 :s 8,

for all 0 < r < 1

I
au I-(1) :s 8.an

PROOF. Let 1/J be given by (4.22). Then u - 1/J is a supersolution to the problem with
parameter 'Ae-2c . D

The next result is the main tool to guarantee that u* is singular. The proof, as in (1.61),
is based on an upper estimate of u* by a stable singular subsolution.
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LEMMA 4.8. Suppose there exist so, s > 0, Aa > 0 and a radial function u E H 2(B) n
W1~~oo (B \ {O}) such that

/12 U ::S (Aa +so)e" for all 0 < r < 1

/12 u ~ (Aa -so)e" for all 0 < r < 1

lu(1)1 ::S s, 1~(1)I::s san
u ~ Loo(B)

fJo l e"rp2 ::S l (/1rp)2 for all rp E C[f(Bl,

where

fJ
(Aa + sO)3 91'

0= e
(Aa - sO)2

Then u* is singular and

(Aa - so)e-2c ::S A* ::S (Aa + so)e2c
.

PROOF. By Lemmas 4.6 and 4.7 we have (4.29). Let

(
Aa + so)8 = log + 3s,
Aa - So

and define

8
rp(r) = __1.4 + 28.

4

We claim that

u*::su+rp inBl.

To prove this, we shall show that for A < A*

Indeed, we have

/12rp = -82N(N + 2)

rp(r) ~ 8 for all 0 ::S r::S 1

rp(1) ~ 8 ~ s, rp'(1) = -8 ::S -s

and therefore

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

/12(U + rp) ::S (A a + so)e" + /12rp ::S (A a + so)e" = (Aa + so)e-lfJe"+1fJ

::S (A a + so)e-3 e"+IfJ. (4.32)
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By (4.29) and the choice of I)
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(4.33)

To prove (4.31) it suffices to consider Ain the interval (Aa - So )e-3c < A < A*. Fix such
A and assume that (4.31) is not true. Write

and let

R1 = sup{O :s R :s 11 u).(R) = I/(R)}.

Then 0 < R1 < landu).(R1) = I/(R1). Sinceu~(1) = oand if'(1) < Owemusthave
u~ (R1) :s II' (R1). Then u). is a solution to the problem

{

/12u = Ae"

U=u).(R1)

au ,
- = U).(R1) on aBRjan

while, thanks to (4.32) and (4.33), II is a subsolution to the same problem. Moreover if is
stable thanks to (4.27) since, by Lemma 4.6,

(4.34)

and hence

We deduce if :s u). in BRj which is impossible, since II is singular while u). is smooth.
This establishes (4.30).

From (4.30) and (4.34) we have
,

A*e" :s fJoe- c e"

and therefore

This is not possible if u* is a smooth solution. D

For each dimension 13 :s N :s 31 we construct u satisfying (4.23) to (4.27) of the form

(

-4 log r + log (8(N-2)(N-4))
u(r) = ).

I/(r)

for 0 < r < ro

for ro :s r :s I,
(4.35)

where II is explicitly given. Thus u satisfies (4.26) automatically.
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Numerically it is better to work with the change of variables

w(s) = u(es
) + 4s, -00 < S < 0

which transforms the equation ~ 2u = Ae" into

Lw + 8(N -2)(N -4) = Aew
, -00 < S < 0,

where

~w ~w ~w
Lw = - +2(N -4)- + (N2 -ION +20)-

ds4 ds 3 ds 2

dw
- 2(N - 2)(N - 4)-.

ds

The boundary conditions u(I) = 0, u' (I) = 0 then yield

w(O) = 0, Wi (0) = 4.

Regarding the behavior of w as s ---+ -00 observe that

(
8(N - 2)(N - 4))

u(r) = -4logr + log A

if and only if

for r < ro

8(N - 2)(N - 4)
w(s) = log for all s < logro.

A

The steps we perform are the following:

(I) We fix Xo < 0 and using numerical software we follow a branch of solutions to

[

LuI + 8(N - 2)(N - 4) = Aeu"
UI(O) = 0, u,' (0) = t

A 18(N-2)(N-4)
w(xo) = og ,

A

Xo < S < 0

as t increases from 0 to 4. The numerical solution (Ul,).) we are interested in corresponds
to the case t = 4. The five boundary conditions are due to the fact that we are solving a
fourth-order equation with an unknown parameter A.

(2) Based on Ul, ). we construct a C3 function w which is constant for s ::S Xo and
piecewise polynomial for Xo ::S s ::S O. More precisely, we first divide the interval
[xo, 0] into smaller intervals of length h. Then we generate a cubic spline approximation

d4 A

gfl with floating point coefficients of ds~'. From gfl we generate a piecewise cubic
polynomial gra which uses rational coefficients and we integrate it four times to obtain
w, where the constants of integration are such that ~s~' (xo) = 0, I ::S j ::S 3 and
w(xo) is a rational approximation of log(8(N - 2)(N - 4)/A). Thus w is a piecewise
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polynomial function that in each interval is of degree 7 with rational coefficients, and
which is globally C3• We also let A be a rational approximation of i. With these choices
note that Lw+8(N - 2)(N -4) - Aew is a small constant (not necessarily zero) for s ::S xo.

(3) The conditions (4.23) and (4.24) we need to check for u are equivalent to the
following inequalities for w

Lw + 8(N - 2)(N - 4) - (A + .so)ew ::S O. -00 < S < 0

Lw + 8(N - 2)(N - 4) - (A - .so)ew
~ O. -00 < S < O.

(4.36)

(4.37)

Using a program in Maple we verify that w satisfies (4.36) and (4.37). This is done
evaluating a second-order Taylor approximation of Lw + 8(N - 2)(N - 4) - (A + .so)eW

at sufficiently close mesh points. All arithmetic computations are done with rational
numbers, thus obtaining exact results. The exponential function is approximated by a
Taylor polynomial of degree 14 and the difference with the real value is controlled.

(4) We show that the operator ~2 - fJell
, where u(r) = w(1ogr) - 4logr, satisfies

condition (4.27) for some fJ ~ fJo, where fJo is given by (4.28).
We refer the interested reader to [44], but we shall justify here that, although fJeli is

singular, the operator ~2 - fJeli has indeed a positive eigenfunction in H5(B) with finite
eigenvalue if fJ is not too large, if N ~ 13. The reason is that near the origin

11 C
fJe = Ix14 '

where c is a number close to 8(N - 2)(N - 4) fJ/ A. If fJ is not too large compared to Athen
c < N 2 (N - 4)2/16 and hence, using (1.57), ~2 - fJeli is coercive in H5(Bro ).

The full information on the Maple files and data used can be found at:
http://www.lamfa.u-picardieJr/dupaigne/
http://www.ime.unicamp.brrmsm/bilaplace-computations/bilaplace-computations.html
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