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Abstract

We are concerned in this survey with singular solutions to semi-linear elliptic prob-
lems. An example of the type of equations we are interested in is the Gelfand-Liouville
problem —Au = Xxe" on a smooth bounded domain € of RY with zero Dirichlet
boundary condition. We explore up to what degree known results for this problem are
valid in other situations with a similar structure, with emphasis on the extremal solu-
tion and its properties. Of interest is the question of identifying conditions such that
the extremal solution is singular. We find that. in the problems studied. there is a strong
link between these conditions and Hardy-type inequalities.
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Singular solutions of semi-linear elliptic problems 85
1. Introduction

In this survey we are interested in singular solutions to semi-linear partial differential
equations of the form

—Au =Aig() £

1.1
u=~0 on 20§2, (d.h

where €2 is a bounded smooth domain of RY, A > 0 and g : [0, 00) — R satisfies
g is smooth increasing, convex, g(0) > 0 (1.2)
and superlinear at +co in the sense

. gu)
lim =
u—+oo |

+00. (1.3)

Some typical examples are g(u) = ¢* and g(u) = (1 + u)? with p > 1.
We are also interested in some variants of (1.1) such as

Au=10 in

a

a_u =ig(u) only (1.4
v

u=20 on I,

where A > 0and © ¢ R¥ is a smooth, bounded domain and 'y, ['; is a partition of 32
into surfaces separated by a smooth interface, and v is the exterior unit normal vector.
We shall consider as well the fourth-order equation

A%y = Agu) InB
u=90 on dB

au 0 9B
v onae,
where B is the unit ball in RY

Equations of the form (1.1) have been studied in various contexts and applications.
Liouville [85] considered this equation with g(#) = " in connection to surfaces
with constant Gauss curvature. The exponential nonlinearity in dimension 3 appears in
connection with the equilibrium of gas spheres and the structure of stars, see Emden [53],
Fowler [60] and Chandrasekhar [29]. Later Frank-Kamenetskii [61] obtained a model
like (1.1) with g(x) = (1 — gu)"e*/+2%) in combustion theory. Also in connection
with combustion theory, Barenblatt, in a volume edited by Gelfand [69], studied the case
g(u) = ¢" in a ball in dimensions 2 and 3. Since then, this problem has attracted the
attention of many researchers [10,19,20,24,34,35,62-64,76,79,83,93,94].

Boundary value problems of the form (1.4) with exponential nonlinearity arise in
conformal geometry when prescribing Gaussian curvature of a 2-dimensional domain and
curvature of the boundary, see for instance Li, Zhu [84] and the references therein. The
study of conformal transformations in manifolds with boundary in higher dimensions also

(1.5)



86 J. Davila

gives rise to nonlinear boundary conditions, see Cherrier [31] and Escobar [54-56]. A
related motivation is the study of Sobolev spaces and inequalities, specially the Sobolev
trace theorem, see Aubin [6] and the surveys of Rossi [105] and Druet, Hebey [52].
In connection with physical models (1.4), exponential nonlinearity appears in corrosion
modelling where there is an exponential relationship between boundary voltages and
boundary normal currents. See [21,78,92,107] and [46] for the derivation of this and related
corrosion models and references to the applied literature. Nonlinear boundary conditions
appear also in some models of heat propagation, where # is the temperature and the normal
derivative % in (1.4) is the heat flux. In [86] the authors derive a similar model in a
combustion problem where the reaction happens only at the boundary of the container.

Higher-order equations have attracted the attention of many researchers in the last few
years. In particular fourth-order equations with an exponential nonlinearity have been
studied in 4 dimensions, in a setting analogous to Liouville’s equation by Wei [108], Djadli
and Malchiodi [48] and Baraket et al. [7]. In higher dimensions Arioli et al. [4] considered
the bilaplacian together with the exponential nonlinearity in the whole of RY and Arioli et
al. [5] studied (1.5) for g(u) = ¢ in ball, which is the natural fourth-order analogue of the
classical Gelfand problem (1.1) with g(u) = e*.

A general objective concerning equations (1.1), (1.4) and (1.5) is to study the structure
of all solutions (. ) and the existence and qualitative properties of singular solutions.
These problems share the same basic result:

THEOREM 1.1. For problems (1.1), (1.4) and (1.5) there exists a finite parameter 1* > 0
such that:
(1) if 0 < & < A* then there exists a minimal bounded solution u;,

(2) if & > A* then there is no bounded solution.

We call 1* the extremal parameter. The branch u, with 0 < A < A* is increasing in
A and the linearization of the nonlinear equation around the minimal solution is stable.
As A — A" the increasing limit #* = lim; .+ 1, exists pointwise and is a solution with
parameter A* in a weak sense to be given later on (the exact definition depends on the
problem). Depending on the situation, «* maybe bounded or singular.

Some questions that we are interested in are:

— Can one determine in each situation whether «* is singular or not?

— Are there singular solutions for A > A*?

— What are the singular solutions for 1 < A*?

— What happens to the singular solutions under perturbations of the equation?
In what follows we shall review in more detail some of the literature related with the
previous questions. Then we shall consider in more detail recent works of the author and
some collaborators: Dupaigne, Montenegro and Guerra, [43-45].

1.1. Basic properties

Theorem 1.1 and the propertics mentioned after its statement can be obtained by the
method of sub and supersolutions. Indeed, the three problems (1.1), (1.4) and (1.5) have a
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maximum principle. Partly due to this reason we restrict the analysis of (1.5) to the ball,
since the maximum principle for A? in this domain with Dirichlet boundary conditions
u = 2% = 0 holds [15].

To be more concrete we sketch the argument for equation (1.1). We remark that for A
positive, O is a subsolution which is not a solution and for small positive A one can take as
a supersolution the solution to

—AZ=1 inQ
¢ =0 onof.

Defining A* as the supremum of the values such that a classical solution exists, we see that
A* > 0 and for any 0 < A < A* there is a bounded solution i, which is minimal among
all classical solutions.

To show that A* is finite let ¢ be a positive eigenfunction of — A with Dirichlet boundary
condition and eigenvalue A; > 0. Suppose that « is a classical solution to (1.1) and
multiply this equation by ¢;. Integrating and using (1.2), (1.3), which implies g(u) > cu
for some ¢ > 0, we find

)»1/ ue1 :)»/ gy Z)»c/ upl (1.6)
Q Q Q

which shows that & < A1 /c. Since there is a constant C such that g(ut) > 4iju/2* — C for
all u > 0,if A*/2 < A < A* we have

M/ U Q1 :)»/ g(u)e1 22)»1/ w1 — C’ (1.7
Q Q Q

for some constant C’. This shows that fQ 1 < C and implies that 1* = limy_, )+ iy,
exists a.e.
An important property of the minimal branch of solutions is its stability, that is,

Hi(—A —2g' (1)) >0, VO <A< A¥, (1.8)

where 111(—A — Ag'(u)) denotes the first eigenvalue of the operator —A — Lg'(u;) with
Dirichlet boundary conditions. We recall that

I Jo IVol? — g u)p?

(1.9)
peCs (Q) Jo ©?

and that there exists a first positive eigenfunction of —A — Ag’'(u), that is,

—AY —Ag )Y = p1y inQ
Uy >0 inQ
Y1 =0 on 0£2,

where we may normalize ||y (2o = 1 (see [70]).
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Fix 0 < A < A* and let us show that zz; > 0. Since A < A* we may fix A < A < A* and
write &z = u;, that is, the minimal solution with parameter A. Then by the positivity and
convexity of ¢ we have

— At — 13) = Agit) — hg(uz) > h(glit) — g(uy)) = rg ()it — uz).

Multiplying this inequality by | and integrating by parts we find

/11/(17—1&)1//1 > 0.
Q

But the integral above is positive because 1 > 0 and & > u;, by the strong maximum
principle, and we conclude that p; > O.

Actually the stability characterizes the minimal solution, that is, if (A, u) is a classical
solution to (1.1) such that zt; (—A — Ag’(u)) > O then necessarily # = u;. Indeed, since
1, is the minimal solution we have immediately i, < 1. Now, by convexity of g

Ay, —u) = AMgus) — gu)) = rg' () (uy, — u).

Since p1(—A — Ag'(u)) > 0 the operator —A — Ag'(u) satisfies the maximum principle
and we deduce that i, > u.

The implicit function theorem can also be applied to problems (1.1), (1.4) and (1.5). It
implies that starting from the trivial solution (0, 0) there exists a maximal interval [0, Ag)
and a C! curve of solutions u()) defined in this interval. Then it is possible to prove that
this curve is exactly the branch of minimal solutions #, as constructed above and that
A* = Ag. For the results here we refer to [69,34,79,35].

1.2. A second-order semi-linear equation

In this section we recall some facts related to (1.1), in particular reviewing a few cases
where the solution structure is completely known, sufficient conditions for * € L* in
general domains, examples where 1* ¢ L™, and then some properties of the extremal
solution such as its stability and uniqueness.

Let us start recalling some of the results for the case g(u) = ¢ in the unit ball. In
dimension 1 this problem was first studied by Liouville [85]. Bratu [17] found an explicit
solution when N = 2. Later Chandrasekhar [29] and Frank-Kamenetskii [61] considered
N = 3 and Barenblatt [69] proved that in dimension 3 for A = 2 there are infinitely
many solutions. Joseph and Lundgren [76], using phase-plane analysis, gave a complete
description of the classical solutions to (1.1) when €2 is the unit ball and g(u) = ¢" or
guy=(1+w)?, p>1.

THEOREM 1.2 (Joseph and Lundgren [76]). Let 2 be the unit ball in RY, N > 1 and
g(u) = e". Then
— IfN = 1,2 forany 0 < A < A* there are exactly 2 solutions, while for . = L* there
is a unique solution, which is classical.
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— If3 < N < 9 we have that u* is bounded and )\* > kg, where Lo = 2(N — 2). For
A = Ag there are infinitely many solutions that converge to U(x) = —2log |x|, which
is a singular solution with parameter Lo. For |, — ho| 5 O but small there are a large
number of solutions.

— If N > 10 then A* = 2(N — 2) and u* = —2log|x|. Moreover for any 0 < . < A*
there is only one solution.

When 2 is the unit ball in RN, N > 3 and g(u) = (1 + u)?, p > 1 then:

— Whenl < p < %—Jj% there are exactly two solutions for any 0 < A < A*, while for

A = A* there is a unique solution, which is classical.

— When p > %—f% and N < 2+ % + 4 % we have that u* is bounded and

A > hp, where hp = %(N - %). For ). = Ap theve are infinitely many solutions

that converge to U, = |x|”7 1 — 1, which is a singular solution with parameter ) P
For |h — Ap| # O but small there are a large number of solutions.

- Ifp > %—f% and N > 2+ % +4 /% then A* = A, and u* = U,. Moreover for
any 0 < A < A* there is only one solution.

For general domains Crandall and Rabinowitz [35] showed that if «* is a classical
solution then the branch of minimal solutions (A, x;) can be continued as curve s €
(—8,8) — (A(s), uy) that “bends back”, that is, 1, coincides with the minimal branch
for -6 <5 <0, 20) = A%, uyg = u* and for 0 < s < 8 we have A(s) < A* while
s is a second solution associated to A(s). These authors and also Mignot and Puel [93,
94] gave sufficient conditions for u* to be a classical solution in general domains for some
nonlinearities.

THEOREM 1.3 (Crandall-Rabinowitz [35], Mignot-Puel [93]). Let 2 < RY be a bounded
smooth domain.

(1) If g(u) = e" then u™ is classical provided N < 9.

(2) When g(u) = (1 + )P with p > 1, u* is classical when

4
N<24 2 44/ P
p—1 p—

The conditions on p and N in Theorem 1.3 are optimal if €2 is the unit ball by the
results of Joseph and Lundgren. A basic fact about the branch of minimal solutions that is
important in the proof of this result is that «; is stable, in the sense that the first Dirichlet
eigenvalue of the linearized operator —A — Lg’(u;) is positive, that is, p; > 0, where p1
is given by (1.9). In particular

x/ g (u)g? 5/ Vo> Vo e C(Q). (1.10)
Q Q

Let us sketch briefly the proof of Theorem 1.3 in the case of the exponential nonlinearity
g(u) = ¢". The aim is to obtain estimates for the minimal solution u;, for 0 < A < A* that
are independent of 1. Let j > 0 and take ¢ = ¢/"* — 1. Then from (1.10) we have

jZ/ 2V, 2 > x/ e (el — 1)2, (1.11)
Q Q
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Multiplying equation (1.1) by 2/%* — 1 and integrating yields
Zj/ XV, |2 :A/ e (o2 — 1. (1.12)
Q Q

Combining (1.11) and (1.12) we see that if j < 2 then there is some C independent of A
such that

/ o(Zi+1u, <C.
Q

Thus [lullze < C with C; independent of A for any ¢ < 5. Hence, if N < 9 by the
Sobolev and Morrey embedding theorems we have that ||u; ||z < C, and this shows that
u* is bounded, and consequently smooth.

Brezis and Vizquez [20] posed the question of finding whether * is bounded for general
g(u). The result in this direction that holds for the most general nonlinearity and domain
is:

THEOREM 1.4 (Cabré [22]). Let 2 be a smooth, bounded, strictly convex domain in R¥Y
with N < 4. If g satisfies (1.2), (1.3) then the extremal solution u* to (1.1) is bounded.

Before this result, Nedev [96] had proved that «* is bounded if N < 3, without any
restriction on the domain. It is not known if the extremal solution #* is singular for some
domains and nonlinearities in dimension 5 < N < 9. Cabré and Capella [24] settled this
question in the radial case (see [23] for a related result in the entire space):

THEOREM 1.5 (Cabré—Capella [24]). Suppose g satisfies (1.2), (1.3) and let 2 = By be
the unit ball in RY, N < 9. Then u* is bounded.

The proof of [24] is based on a rewriting of the stability inequality (1.10) in a form that
makes it independent of g. Indeed, let u; denote the minimal solution in 2 = B, which
is radial, and let us write u’A for the radial derivative dﬂ Lety € C8°(B1) and consider

dr ®
@ = nuy_in (1.10). Then
/ Vi, Vs n?) + h)?| Va2 = )»/ & ) ) . (1.13)
B B

But «/,_satisfies

—Aul, + r—zl‘/k = Ag (up)ul.

Multiplying this equation by u’mz and integrating by parts we find

N-1
/ Vu;V(u;nz)—i—/ — ()’ :A/ g )l . (1.14)
B B 7 B
Combining (1.13) and (1.14) we obtain

N—1,
/ ()2 <|vn|2 - —2;72) >0 VyeCl(By). (1.15)
B r
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This form of the stability can be used to deduce from it weighted integrability for u/.
Indeed, by density we can argue that it holds for n = r=7 fora < NT_Z but it is only

useful to choose a such that |Vy|* — Nr—zlnz > 0. Now, if = r~¢ then
N-—-1
2 2_ (2 A _1),—2a2
V] o (a N 1); .
Then for any 0 < a < VN — 1, from (1.15) we deduce
1
/ W) 2N =23 g < . (1.16)
0

We note that C depends on g butnot on A. From (1.16) we can deduce now thatif N < 10
then ||, ||z < C with a constant independent of A. Indeed, let 8 > O to be fixed later on
and 0 < r < 1. Since 1, (1) =0

. . 2, 12
u(r) = —/ wi(s)ds < (/ u’k(s)zs’s) (/ 5P ds) .

Observe that N —2+/N — 1 —3 < 1 whenever N < 10. Thus for N < 10, we may choose
N —2JN —1-3 < B < 1and it follows that

. V2 172
u(r) < (/ i) (5)%sP ds) (/ 5P ds) <C
0 0

with C independent of r and A. This shows that z* is bounded and hence a classical
solution.

The argument of [22] for a general strictly convex domain in RY, N < 4 follows the
same idea as for the radial case, but this time the role u/_is taken by |Vu;|. The proof is
more involved because the equation satisfied by | Vi, | is more complicated.

To continue the discussion of the properties of u* we shall define precisely the notion
of weak solution we will use when dealing with (1.1), and we adopt the one introduced by
Brezis et al. [19]:

DEFINITION 1.6. A function u € L'(£2) is a weak solution to (1.1) if g(x)8(x) € L1 ()
and

—/ uA¢ = A/ gyt forallg € C%(). ¢ =00n o,
Q Q

where

S§(x) =dist(x, 082).

It is not difficult to show that #* = lim,_.;+ 1, is a weak solution in the above sense.
Moreover Nedev [96] proved that in any dimension u* € LP(Q) for any p < % if
N >4, forany p < +ooif N=4andu* € L™ for N < 3.

A question of interest is whether weak solutions may exist for 4 > A*. Brezis et al. [19]
showed that this is not the case for (1.1):
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THEOREM 1.7 (Brezis—Cazenave-Martel-Ramiandrisoa [19]). If & > A* then (1.1) has
no weak solution.

This result can be restated as follows: if (1.1) has a weak solution for some A > 0 then
for any 0 < A’ < A, equation (1.1) has a classical solution. The proof of this assertion in
[19] is based on a truncation method specially adapted to the nonlinearity. Suppose i is a
weak supersolution of (1.1) with parameter %. In [19] they consider a C? concave function
¢ : [0, 00) — [0, o0) and set

v=¢u).
Assuming for a moment that « is smooth we can compute
Av=Adw) = ¢ W)Au+ ¢" w)|Vu|? < ¢'(u)Au.
If ¢’ is bounded, the inequality

Av < ¢'(u)Au

can be proved in the sense of distributions when 1, Au € L'($2). Then, given 0 < 1/ < A
we seek a concave, bounded ¢ such that v becomes a supersolution to (1.1) with parameter
). If u is a weak solution, then

—Av > —¢' () Au = 2 () g (1)
and we would like to have
M ) glu) > Mgl u)).

In particular it is sufficient to achieve equality and directly integrating the ODE yields

N .
duw)=H™! <pH(lt)), (1.17)

Hi = / " ds
0 &)
It can be checked that ¢ defined by (1.17) is concave, increasing with a bounded derivative.

Moreover it is bounded if f0°° % < +00 and this leads to a proof of the statement in this

case. If on the contrary, f0°° % = 400, then still v has better regularity that «, and

repeating this construction a finite number of times shows that for A” < A’ a bounded
supersolution exists, see the details in [19].

Using the same truncation method and a delicate argument Martel [87] was able to prove
the uniqueness of u*.

where

THEOREM 1.8 (Martel [87]). If A = A* then (1.1) has a unique weak solution.
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Going back to the discussion of whether #* is bounded or not, we have seen some ideas
to prove that under certain conditions «* is bounded. But there are few situations where
it is known that ©* is singular. One of these examples is the case when €2 is the unit
ball in RY, N > 10 and g(u) = ¢*. In [76] it is shown through phase-plane analysis
that u* = —2log|x|. Brezis—Vazquez [20] found a new proof of this fact, showing a
connection with Hardy’s inequality which we recall:

(N —2)2

2
/ A 5/ IVg? forallg € CPRY), (N =3). (LIS
4 R BN

e
This connection is a characterization of singular energy solutions.

THEOREM 1.9 (Brezis—Vazquez [20]). Let Q2 < RY be a bounded smooth domain.

Suppose u € HOI(SZ) is a singular weak solution to (1.1) for some & > O such that

x/ ¢ w)e? 5/ |Vo|?  forallp e C (). (1.19)
Q Q

Then u = u™ and » = \*.

When @ = Bj(0) in RY with N > 10 and g(u) = ¢* the explicit solution U =
—2log|x| with parameter Ay = 2(N — 2) satisfies condition (1.19) thanks to Hardy’s
inequality (1.18). Thus the previous result immediately yields #* = U and A* = Ag.

The same 1dea applies when g(#) = (1 + u)?, p > 1 in the unit ball: the solution
= |x|"7 T — 1 satisfies (1.19) when N > 2 + 41’1 +4,/-

The idea of the proof of Theorem 1.9 is as follows. Flrst we remark that 2 < A* by
Theorem 1.7. If A = A* then the uniqueness result Theorem 1.8 implies that « = u™*. So
we have to rule out the case » < A*, which we do by contradiction. By density we see
that (1.19) holds for ¢ € HOI(SZ). Since by hypothesis « € HOI(SZ) we are allowed to take
@ = u — u,, where i, denotes the minimal solution. We obtain, after integration by parts
and using the equations for « and u;,

/ () — (gw) + ')y — N — uy) < 0.
Q

But the integrand is nonnegative since u > i, a.e. and g is convex. This implies
gl = glu) + ¢ )iy —u) ae. in Q.

It follows that g is linear in intervals of the form [u; (x). u(x)] for a.e. x € £2. The union
of such intervals is an interval and coincides with [0, c0) because «; = 0 on 32 and « is
unbounded, contradicting (1.3).
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1.3. Perturbation of singular solutions

In the search for nonradial examples where the extremal solution is singular, a natural
approach is to consider perturbations of the radial case. Let us consider the Gelfand
problem in dimension N > 3, that is

—Au=2re" inQcRY

(1.20)
u=0 on 9£2.
In dimension N = 3 and when 2 = B is the unit ball, there are infinitely many singular
solutions, with a unique singular point which can be prescribed near the origin. This result
was announced by H. Matano and proved by Rébai [101]. Similar results hold when the
nonlinearity is g(u) = (1 + u)?.

THEOREM 1.10 (Rébai [101]). Let B be the unit ball in R3. Then there exists ¢ > 0 such
that for anv & € B, there is a solution (,, u) of

Au = re" in B\ &)

1.21
u=20 on oB ( )

which has a nonremovable singularity at &.

The solution in the above result has the behavior u(x) ~ —2log|x — &| and it can be
seen that (1.21) holds in the sense of distributions.

Pacard [98] proved that for N > 10, there exist a dumbbell shaped domain €2 and a
positive solution u of —Au = " in £ having prescribed singularities at finitely many
points, but ¥ = 0 may not hold on 3€2. Rébai [102] extended this result to the case
N = 3. When the exponential nonlinearity is replaced by g(u) = u*, Mazzeo and Pacard
[90] proved that for any exponent « lying in a certain range and for any bounded domain
€2, there exist solutions of —Ax = u® in Q with ¥ = 0 on 2£2, with a nonremovable
singularity on a finite union of smooth manifolds without boundary. Further results in this
direction can be found in [103,99] and their references.

We are interested in the existence of singular solutions to (1.21) in domains in R,
N > 4 which are perturbations of the unit ball. Given a C*map ¢ : By — R¥ andr € R
define

Qr={x+ryx):x € By}

We work with |¢| sufficiently small in order that €2, is a smooth bounded domain
diffeomorphic to B; and we consider the Gelfand problem in £2;:

—Au =re" in &

(1.22)
u=~0 on 082,

Our main result is:
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THEOREM L1.11. Let N > 4. Then there exists 5 > 0 (depending on N and ) and
a curve t € (—8,8) > (M), u(t)) such that (0(t), u(t)) is a solution to (1.22) and

2(0) = 2(N —2), u(0) = log |x1|3‘

u(x.t) —log + A —2(N =-2)] =0 ast— 0.

L(y)

1
Ix — E(0)]?
(1.23)

The behavior of the singular solution at the origin is characterized as follows:

1 A0)
,t)=In——— +1o — &t
u(x,t) n|x_§(t)|2+ <MI))+8(|)¢ &),

where lim;_, ¢ £(s) = 0 (see [43, Corollary 1.4]).
Once Theorem 1.11 is established it implies that for small ¢ the extremal solution is
singular in dimension N > 11.

COROLLARY 1.12. Let N = 11 and (A (t), u(t)) be the singular solution of Theorem 1.11.
Then u(t) is the extremal solution in 2y and ).(t) the extremal parameter.

Indeed, let ¥ = u(¢) denote the solution of (1.22) obtained in Theorem 1.11. Since
N > 11 we have 2(N —2) < (N — 2)2/4 and it follows from (1.23) that if |¢| is chosen
small enough,

u—log

(N —2)2
i

Tz
=5 L@

Ait)e

Hence for ¢ € Cgo(L2),

N -2 2 2
iy [ etg? < ) / v 5 5/ V|,
o 4 RN [x —&(0)] RN

by Hardy’s inequality (1.18) and thanks to Theorem 1.9, u(¢) is the extremal solution of
(1.22).

The proof of Theorem 1.11 is by linearization around the singular solution —2log |x]|.
First we change variables to replace (1.22) with a problem in the unit ball. The map id +1+r
is invertible for ¢ small and we write the inverse of v = x + i (x) as x = v + ty (£, v).
Define v by

w(y) = vy 4 1 (£, v)).
Then
Ayu = Ayv+ Lyv,

where L, is a second-order operator given by

3% 31/} IV

3v; Sy avg




96 J. Davila

‘We look for a solution of the form

v(x) =log———=+¢, rA=c"+pu. (1.24)

|x S 2
where ¢* = 2(N — 2). Then (1.22) is equivalent to

* *

c c u
—A¢ — Lig - ¢ = (¢! —1—¢)+ ?
T =g p—g? x — &2
1 .
+L,<log X §|2> in B (1.25)
= —log— onaB.
¢ g|x—s|2

Here the unknowns are ¢, & and p. From Hardy’s inequality (1.18) we see that whenever
¢t < (N 27 , which holds if N > 11, if the right-hand side of (1.25) belongs to L?(B)
then there is a unique solution in H (B). But typically solutions are singular at the origin,
with a behavior |x — &|7* for some « > 0 ( see Baras and Goldstein [9] Dupaigne [50]).

Thus, although the linear operator —A — él" may be coercive in H (B), this functional

setting is not useful s1nce the nonlinear tenn that appears on the right-hand side of (1.25),
namely [ (e¢ — ¢), is too strong. Our approach is to consider other functional

spaces, more pre01sely, weighted Holder spaces specially adapted to the singularity. It
turns out that the singular linear operator has a right inverse in these spaces if the data
satisfies some orthogonality conditions. More precisely, if one wants solutions such that
| (x)] < Clx — &]|¥, the number and type of orthogonality conditions that appear depend
on v and the value ¢*. In our case we would like v = 0 and ¢* is given, and as we will
see, this requires N + 1 orthogonality conditions (if N > 4). Fortunately we have N + 1
free parameters: p and £ in (1.24), and this is the reason not to force the position of the
singularity of v. If N = 3 then only one orthogonality condition is required. This explains
that in Theorem 1.10 the position of the singularity can be prescribed arbitrarily near the
origin, while & or equivalently A has to be adjusted.

The proof of Theorem 1.11, which is presented in Section 2 is divided into the following
steps. First, in Section 2.1 we study the Laplacian with a potential which is the inverse
square to a point £&. The main result is the solvability of the associated linear equation
in weighted Holder spaces. The analysis in this section is related to the work of Mazzeo
and Pacard [90], see also [28,89]. We also study the differentiability properties of the
solution with respect to & and we show that the previous results hold for perturbations of
the Laplacian with the same singular potential. Then the proof itself of Theorem 1.11 is in
Section 2.2,

A similar result can be obtained for power-type nonlinearities: given p > 1, consider
the problem

—Au=Ar14+w)? in &

(1.26)
u=~0 on 9£2;.
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When ¢ = 0, i.e. when the domain is the unit ball, it is known (see Theorem 1.2 or [76,20])
that the extremal solution is unbounded and given by u* = |x|=%/?=1 — I if and only if
N > 11and

4 Iz
N =6+ +4 .
p—1 p—

THEOREM 1.13. Let N > 11 and p > 1 such that N > 6+ ﬁ +4,/ 57 Given t small,

let u*(t) denote the extremal solution to (1.26). Then there exists tg = to(N, ¥, p) > 0
such that if |t| < to, u*(t) is singular.

Going back to (1.20) naturally the question arises whether if N > 10 for any convex
smooth, bounded domain €2 € RY the extremal solution «* is singular. The restriction of
convexity is reasonable since if €2 is an annulus it is easily seen that with no restriction on
N the extremal solution «* is smooth. This question, which appears in [20], was considered
by Dancer [36, p. 54-56] who showed that in any dimension there are thin convex domains
such that the extremal solution is bounded. Let 2 < RY be a bounded open set with
smooth boundary. We assume furthermore that €2 is convex and 9<2 is uniformly convex,
i.e. its principal curvatures are bounded away from zero. Write RY = R™ x R and
X = (x1.x) € RY with x; e RM, x» ¢ RM, Fore > 0 set

Qe = {x = (1. ey2) : (y1. »2) € &2} (1.27)
and consider the Gelfand problem in £2,:

—Ay =re" in Q.

1.28
u=0 on 382,. ( )

THEOREM 1.14. Given € > 0, let u} be the extremal solution to (1.28). If Ny < 9 then
there exists eg = 9(N, ) > 0 such that if e < sg, u} is smooth.

The idea of the proof is to fix the domain by setting
Ve (¥1, ¥2) = u(y1, &¥2).
Then v, is defined in €2 and satisfies

—(ssz1 + Ay e = 8]2-)\,6’1)5 in
v, =0 on 0§2,

(129

where A, denotes the Laplacian with respect to the variables v;, i = 1, 2. After taking
& — 0 one obtains an equation in each “slice” €2, = {v» : (¢, v2) € 2} which lives in
R with N, < 9. For all these equations there is an a priori bound for stable solutions as
seen, for instance, from the proof of Theorem 1.3. We get a contradiction with this a priori
bound, and at the same time manage to prove the convergence as ¢ — 0 by selecting for
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each ¢ > 0 small a value %, such that the minimal solution #, of (1.28) with parameter A,
satisfies

maxu, = M, (1.30)
Q.

where M is a suitably large fixed number. This is possible, if we argue by contradiction,
that is, assuming there is a sequence of ¢ — 0 such that u¥ ¢ L°(£2,). For the purpose of
proving convergence of v, it is important to establish: for some constant Cy we have

A< = (1.31)

and for some constant C independent of ¢
[VoelL=@) < C. (1.32)

For the last property we use the uniform convexity of €2, which allows us to find R > 0
large enough so that for any vop € 92 there exists zo € RY such that the ball Bg(zo)
satisfies 2 C Bg(zo) and v € d Bg(zp). For convenience write for ¢ > 0

Lo = £*A,, + Ay,

Define ¢(v) = R?2 — |y —zo|*so that¢ > 0in Q and —L.¢ = 2N + 2N>. From (1.31)
we have the uniform bound £2i, < C. It follows from (1.29) and the maximum principle
that v, < C¢ with C independent of ¢ and vg. Since v.(vg) = ¢(vp) = 0, this in turn
implies that

[Vus(vg)| < C Vyy € 99. (1.33)

Then, since the linearization of (1.29) around v, has a positive first eigenvalue, we deduce
(1.32). A complete proof can be found in [43], see also [30].

1.4. Reaction on the boundary

We consider the problem (1.4), that is,

Au=0 in
a
ou =ig(u) onl (1.34)
av
u=20 on I,

where A > 0is a parameter, 2 C R¥ is a smooth, bounded domain and I';, [y isa partition
of 3€2 into surfaces separated by a smooth interface. We will assume that

g is smooth, nondecreasing, convex, g(0) > 0, (1.35)

Lo (1.36)
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We recall that the branch of minimal solutions is stable in the sense that for 0 < A < A*:

inf Ja Vol dx =1 [y, flun)p?ds (1.37)
in > 0. )
peCl(Q),p=00nT> frl (/72 ds

Assumption (1.36) is not essential, but it simplifies some of the arguments and holds for
the examples g (i) = ¢, g(u) = (1 +u)?, p > 1. Ttallows us to say immediately that «*
is an energy solution in the following sense.

DEFINITION 1.15. We say that u is an energy solution to (1.34) if u € HY(2), g(u) €
LYT') and

/ Vz:V(p:A/ gug Yo e CLQ).
Q I

Indeed, from the stability of the minimal solutions #;,

)»/ g )l 5/ |Vuk|2:)»/ glu)uy.
I Q I

By the hypothesis (1.36) for some o > 0 and C > 0
(1+o)gwu < g+ C Yu > 0.

It follows that there exists C independent of A such that

A/ gluuy < C
I

and hence
/ Vi) < C. (1.38)
Q
This shows that «* € H1(£2). Moreover gu*y e LY(I'1). Indeed, let ¢ be the solution to
Ap=0 inQ
a
@ _ 1 only
av
=0 onl>

Then

/ Vu;LV(p:)»/ gluy).
Q I

From (1.38) we deduce [|g(u) |1,y < € with C independent of 2 and the assertion
follows.

We are interested in determining whether the extremal solution #* is bounded or singular
in the cases g(u) = " and g(u) = (1 + u)?, p > 1. For this purpose we remark that, as
for (1.1) (ct. Theorem 1.9), the stability of a singular energy solution implies that it is the
extremal one.
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LEMMA 1.16. Suppose g satisfies (1.35), (1.36). Assume that v € H'(2) is an unbounded
solution of (1.34) for some , > O such that

x/ g wg? < / Vo> Vo e CYRQ).9 =00nT. (1.39)
I Q

Then » = A* and v = u*.

We shall give in Section 3.1 a proof of this fact under hypothesis (1.36). We note here,
though, that the argument is simpler than for Theorem 1.9 because we know immediately
that «* € H'(L2) and we do not need to rely on a uniqueness result for #* similar to
Theorem 1.8. The advantage of this approach is that Lemma 1.16 holds also under more
general conditions, which include the case that 2 has a corner at the interface I'y N [,

For smooth domains the uniqueness of #* holds only assuming that ¢ satisfies (1.2) and
(1.3) and in a more general class of weak solutions. We will discuss this in Section 3.2.
In fact, in that section we will develop some tools and results in the context of problem
(1.34), that are now classical for (1.1). These are basically the notion of weak solution
and the nonexistence of weak solutions for . > A* as in Brezis et al. [19], the regularity
results for * in low dimensions of Nedev [96] and the uniqueness of ©* in the class of
weak solutions, see Martel [87]. Throughout that section we will assume that g satisfies
only (1.2) and (1.3).

We would like to construct singular solutions for some nonlinearities, and as a model
case we consider first g(x) = ¢“. Probably the simplest singular solution one may
construct is

1
uo(x) = / K(x,v)log—dy forx e RN, (1.40)
oRY |v]
where
ZxN -N
Kx,y)= |x — v| (1.41)
Noy

is the Green’s function for the Dirichlet problem in Rﬁ on the half space Rﬁ =
{(x’, x5) /xn > O}. Then ug is harmonic in RY and

1
uo(x) = log m forx € E)Rf, x #0.

A calculation, see [45], shows the following:

LEMMA 1.17.

dug

— = aone"" on oRY,

Qv 0N +
where

Jrrg-3) .
N - 3)t—~—= N >4,
roN = ( ) Tr @y yN = (1.42)

1 ifN =3.
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Let
Q={xeRY tuox) >0} I =03dQnaRY Tr=2Q\RY.
The boundary 9€2¢ is not smooth itself but I'y, I'; are, and it can be checked that
Theorem 1.1 still holds in this case.

Since the singular solution has the form ug(x) = —log |x| for x € E)Rf its linearized
stability is equivalent, by scaling, to

2 —
/ Vol zxo,N/ . Vpecr®h).
RY aRY |X]

Let us recall here Kato’s inequality: for N > 3

2
/ Vol* > HN/ Y e C R, (1.43)
RY oY x|
+ +

where the best constant

Jen Vol
Hy := inf fi“’ Cpe H'RY) ¢ v %0 (1.44)
aRY ¥ *
is given by
rH?
Hy=2—5b— VN=z=3 (1.45)
INE

and I is the Gamma function. A proof of it was given by Herbst [73] and we will give later
on in Section 3.3 a self-contained proof of (1.43). Actually we are able to improve this
inequality in a similar fashion as was done by Brezis and Vazquez [20] or Vdzquez and
Zuazua [106] for (1.18) (see also [11,20,42,68,106] for other improved versions of Hardy’s
inequality).

It is not difficult to verify that o y < Hy if and only if N > 10 (a proof can be found
in [45]). Thus we have:

THEOREM 1.18. Let f(u) = e". In any dimension N > 10 there exists a domain 2 c RY
and a partition in smooth sets I'1, I'y of 982 such that u* ¢ L™ (2).

Naturally the question becomes whether for all N < 9 and all domains 2 € R one
has u* € L*(L2). A first attempt using the ideas of Crandall-Rabinowitz [35] does not
yield the optimal condition on the dimension. For convenience, let # = u; be the minimal
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solution of (1.34). Working as in [35] we take ¢ = el — 1, j > 0in (1.37) and multiply
(1.34) by ¢y = ¢%* — 1. We obtain

;—2 . e (ej" - 1)2 ds < %/1"1 e (ezj" - 1) ds.

It follows that

<l _ l)/ €(2j+l)u ds < E/ 6,(]'-H)u ds
J 2 I J JI

%/ el ds—i—%/ et g,
J JTiNA J JTinB

where A = [(1/j — 1/2)e@+D < eli+U and B = [(1/j — 1/2)e!2+D1 > 4eli+1i,
Given j € (0. 2), we see that «# remains uniformly bounded on A, while

%/ Ut gy < l <l — l)/ QU g,
7 Jring 2\ 2)Jn

We conclude that ¢ is bounded in L.2/+1(3<2) independently of 1. If 2j +1 > N — 1 we
obtain by elliptic estimates a bound for « in C%(2), for some ¢ € (0, 1). Thus if N < 6
we can choose j € (0, 2) such that N —1 < 2j +1 < 5 and obtain a bound for u in C%(£2)
independent of A.

The above argument proves

IA

PROPOSITION 1.19. Let g(u) = e* and assume 2 C RY is a smooth bounded domain
such that 02 = I'j} U 'y, where I'y C 8]Rﬁ and I'y C Rﬁ. Assume further that N < 6.
Then the extremal solution u* of (1.34) belongs to L™ (L2).

We are able to overcome this difficulty under some assumptions on the domain, showing
that the method used to prove Proposition 1.19 is not suitable for problem (1.34). In
Section 3.4 we will give a proof of:

THEOREM 1.20. Lef g(u) = €, N < 9 and suppose 2 C Rﬁ is an open, bounded set
such that 02 = 'y U Ty, where I'} C 8]Rﬁ and I'y C Rﬁ, 2 is symmetric with respect
to the hyperplanes x1 = 0, . . ., xy—1 = 0, and 2 is convex with respect to all directions
Xloovrs xn—1. Then the extremal solution u* of (1.34) belongs to L™ (£2).

Our proof is based on a lower bound of the form:

u*(x)

; 146
s—0rer, log(1/x]) — (140

Then we show that this behavior is too singular in low dimensions N < 9 for the extremal
solution to be weakly stable. Our proof of (1.46) is a simple blow-up argument, but is
limited to the exponential nonlinearity.



Singular solutions of semi-linear elliptic problems 103

Next we look at (1.34) in the case g(u) = (1 +u)?, p > 1. Given0 < o < N — 1
define

We (X) = / K, vy %y forx e Rﬁ, (1.47)
IRy
where K is defined by (1.41). Clearly, w, > 0 in RY. Moreover wq, is harmonic in RY
and w,, extends to a function belonging to C%(Rﬁ \ {0}) with
we (x) = [x|7* forall x € 9RY \ {0} (1.48)
It is not difficult to verify that for some constant C (N, «) we have

aua

“x) = C(N, a)lx] ™~ U wx e RV {0}

In Section 3.5 we shall prove

LEMMA 1.21. For 0 < o < N — 1 we have:

r(s+3)r(%-

rer (¥ -5)

IR

CN,ay=2 ) (1.49)

An heuristic calculation shows that for (1.34) with nonlinearity g(x) = (1 + u)?, the
1

expected behavior of a solution # which is singular at O € 852 should be u(x) ~ |x |ﬁ
The boundedness of 1™ is then related to the value of C(N ——7). Observe that C (N =)

is defined for p > 5 —. In the sequel, when writing C(N, _1 ) we will implicitly assume
that this condition holds

Let us write x = (x’, xy) with x' € R¥~L. For the next result we will assume that €2
is convex with respect to x’, that is, (rx’, xy) + ((1 — 1)¥', xy) € & whenever ¢ € [0, 1],
x =" xy)eQandy = (¥, xy) € Q. We shall also denote by I1y the projection on
B]Rf,namely Ny, xy)=x"forallx = (x', xy) € Rﬁ.

THEOREM 1.22. Consider (1.34) with g(u) = (1 + w)?. Assume Q C RY is a bounded
domain such that 02 = I'{UT, where I'1 C 8]Rf and 'y C R_IX, 2 is convex with respect
fox' and Tin(Q) =Ty If p C(N, ﬁ) >Hyorl<p< % then u* is bounded.

The same result holds if €2 is convex with respect to all directions xi., . . ., xy—1 and 2
is symmetric with respect to the hyperplanes x; = 0. . . ., xny—1 = 0. The proof (see [45])
of this result is also through a blow-up argument, but this time we do not prove a lower
bound such as (1.46).

As a converse to the previous result we have:

THEOREM 1.23. Consider (1.34) with g(u) = (1 +u)?. If p C(N, ﬁ) < Hy and

p= 2 there exists a domain 2 such that u* is singular.
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We shall not give the details here but just mention that 1 = w LT 1 considered in

= {x e RY Ju(x) > O}, with T'; = 32 N dRY, Ty = 92 \ IRY is a singular solution
to (1.34). It satisfies the stability condition (1.39) by Kato’s inequality (1.43).

The condition p C(N, %1) < Hpy is not enough to guarantee that the extremal solution
is singular for some domain. Actually this condition can hold for some values of p in the
range % < p< % In this case a singular solution exists in some domains, but it
does not correspond to the extremal one This is similar to what happens to (1.1) with

g(u) = (1+u)? and p in the range 2 <p< N—+2 . For that problem in the unit ball By

there exists a weak solution 1 = |x|~ T 1 which is not the extremal solution (since it
_ N42JN-T_

<P =54 ﬁ it satisfies condition

isnotin A1), but for p in the smaller range y—
(1.19), see Theorem 6.2 in [20].
1.5. A fourth-order variant of the Gelfand problem

In this section we turn our attention to (1.5) with exponential nonlinearity, that is,

A%u=e" inB

u=a ondB (1.50)
9
u_ b on 0B,
Qv
where a, b € R. One of the reasons to consider this equation in the unit ball B = B (0)
is that the maximum principle for A? with Dirichlet boundary condition (¢ = % = 0)

holds in this domain, see [15], a situation that is not true for general domains [5]. But also
most our arguments require the radial symmetry of the solutions. As a consequence i,
0 < A < A* and «* are radially symmetric.

Equation (1.50) with ¢ = b = 0 was considered recently by Arioli et al. [5]. They give
a proof of Theorem 1.1 for this problem and show that the minimal solutions of (1.50) are
stable in the sense that

/(Aw)z > A/ e g?. Vg e C(B), (1.51)
B

see [5, Proposition 37]. These authors work with the following class of weak solutions,
which we will adopt here: © € HZ(B) is a weak solution to (1.50) if ¢* € LY(B),u = a
ondB, 5% = pondB and

/ AulAgp = A/ e"p, forallp € Cg°(B).
B B

They also show that if » > A* then (1.50) has no weak solution, but it does not seem to
be possible to adapt their proof for problems like (1.5) with a general nonlinearity. The
problem stems from the fact that the truncation method, as described after Theorem 1.7
seems not well suited for the fourth-order equation.
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Regarding the regularity of «*, the authors in [5] find a radial singular solution U, to
(1.50) with ¢ = b = 0 associated to a parameter A, > 8(N — 2)(N — 4) for dimensions
N =5...., 16. Their construction is computer assisted. They show that A, < A* if
N < 10 and claim to have numerical evidence that this holds for N < 12.

We start here by establishing the fact that the extremal solution «* is the unique solution
to (1.50) in the class of weak solutions. Actually the statement is stronger:

THEOREM 1.24. If

ve HX(B), ¢’ € LY(B), vlop =a, $%]ap < b (1.52)
and

/AUA(/JZ)\,*/EU(/J Yo eCi¥(B),¢ >0, (1.53)

B B

then v = u*. In particular for » = ,* problem (1.50) has a unique weak solution.

The proof of this result can be found in Section 4.2, while in Section 4.1 we describe
the comparison principles that are useful for the arguments. It is analogous to Theorem 1.8
of Martel [87] for (1.1) but our proof does not seem useful for the general version of this
problem (1.5). Again, the reason for this limitation is that truncation method developed in
[19] is not well adapted to this fourth-order equation.

The results of [5] are an indication that «* maybe bounded up to dimension N < 12.
We have

THEOREM 1.25. For any a and b, if N < 12 then the extremal solution u* of (1.50) is
smooth.

Our method of proof is different to the one leading to Theorem 1.3 and is similar to the
scheme we used for the problem with reaction on the boundary. Indeed, using the same
blow-up argument as for the proof of Theorem 1.20 in Section 3.4 it is possible to show
that if «* is singular then

K (g
liminf ——"_ > | (1.54)
r—0 log(1/r%)
(a complete proof can be found in [44]). Now, if N < 4 the problem is subcritical, and the
boundedness of 1* can be proved by other means: no singular solutions exist for positive
A (see [5]) but in dimension N = 4 they can blow up as & — 0, see [108].

So assume 5 < N < 12 and that »* is unbounded. Fix o > 0. By (1.54), multiplication

of (1.50) by ¢ = |x|*~V*% and integration by parts gives

1
A/ e x[FNFE > 4N - 2)(N — Doyl — o) = + 0(1), (1.55)
B £

where wy is the surface area of the unit N — I-dimensional sphere S¥~! and O(1)
represents boundary terms, which are bounded as ¢ — 0. Using the weak stability of
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1* (1.60) with v = |x|*2" ¢ multiplied by an appropriate cut-off function yields

)\, / €Zl|x|4—N+2é‘
B
N> (N—4)*

N*(N —4) B T
(NN =D o / V2 — oy I o). (1.56)
16 B 2e

since (AY)2 = (NY(N —4)2/16 + O(e))|x|~V*%. From (1.55) and (1.56), and letting
& — 0 and then o0 — 0, we find

NN —4)2
16 '

This is valid only if N > 13, a contradiction.
The constant N2(N — 4)2/16 appears in Rellich’s inequality [104], which states that if
N > 5 then

NA (N —4)? 2
/ (Ap)? > (7)/ L e CFRY). (1.57)
BN 16 rY |x[4

(N —=2)(N—-4) <

The constant N2(N — 4)2/16 is known to be optimal as seen from functions such that
= x| 5+ This inequality will play an important role in proving that «* is singular if
N >13and b =0.

Going back to Theorem 1.24 we mention that it can be used to deduce properties of the
extremal solution in case it is singular. In [5] the authors say that a radial weak solution
u 0 (1.50) is weakly singular if lim,_, o ru’(r) exists. For example, the singular solutions
U, of [5] verify this condition. As a corollary of Theorem 1.24 we show

COROLLARY 1.26. The extremal solution u* to (1.50) with b > —4 is always weakly
singular.

We prove this corollary in Section 4.2. A weakly singular solution either is smooth or
exhibits a log-type singularity at the origin. More precisely, if « is a non-smooth weakly
singular solution of (1.50) with parameter A then (see [5]) the following refinement of
(1.54) holds:

8(N —2)(N —4
lin})u(r) + 4logr = log %
r—

lim ru/(r) = —4.

r—

In view of Theorem 1.25, it is natural to ask whether * is singular in dimension N > 13.
We show that this is true in the casea = b = 0.

THEOREM 1.27. Let N > 13 and a = b = 0. Then the extremal solution u* fo (1.50) is
unbounded.

The proof of Theorem 1.27 is related to Theorem 1.9 and a similar result holds for (1.50):
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PROPOSITION 1.28. Assume that u € H2(B) is an unbounded weak solution of (1.50)
satisfving the stability condition

A/ e"p? Sf(Aso)z, Yo € Cg°(B). (1.58)
B B

Then » = A* and u = u™.
See the proof in Section 4.2. When a = 0 and b = —4 we have an explicit solution
i(x) = —4log|x|

associated to . = 8(N — 2)(N — 4). Thanks to Rellich’s inequality (1.57) the solution
it satisfies condition (1.58) when N > 13. Therefore, by Theorem 1.25 and a direct
application of Proposition 1.28 we obtain Theorem 1.27 in the case b = —4.

For general values of b we do not know any explicit singular solution to the equation
(1.50) and Proposition 1.28 is not useful. We instead find a suitable variant of it (see a
proof in Section 4.1):

LEMMA 1.29. (a) Let iy, uy € H*(Bg) with "1, e*> € LY(Bg). Assume that
A%uy < re"'  in By

in the sense

/ AulA(pg)»/ el Vo € C(Br). ¢ =0, (1.59)
Bgr Bgr

and A%uy > A in Bg in the similar weak sense. Suppose also

at duy

t
uilapg = u2laBy and 8—n|aBR = a—n|aBR~

Assume furthermore that u is stable in the sense that

x/ g’ < | (Ap)?, VYo e CP(BR). (1.60)
Bgr Bgr

Then
u1 <uy in Bg.

(b) Let w1, up € H?(Bg) be radial with ¢"!, ¢*> € LY(Bg). Assume AZu; < Le'
in Bg in the sense of (1.59) and A%y > re"™ in Bg. Suppose uilapy < u2lopy and
%DBR > %MBR and that the stability condition (1.60) holds. Then u1 < uy in Bg.

The idea of the proof of Theorem 1.27 consists in estimating accurately from above the
function A*¢*’, and to deduce that the operator A2 — A*¢*" has a strictly positive first
eigenvalue (in the HOZ(B) sense). Then, necessarily, «* is singular. Upper bounds for both
A* and u* are obtained by finding suitable sub and supersolutions. For example, if for
some A there exists a supersolution then A* > A;. If for some A, one can exhibit a stable
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singular subsolution 1, then A* < Ap. Otherwise o < A* and one can then prove that the
minimal solution u,, is above u«, which is impossible. The bound for »* also requires a
stable singular subsolution.

It turns out that in dimension N > 32 we can construct the necessary subsolutions and
verify their stability by hand. Indeed, assume @ = b = 0, N > 13 and let us show

*

u <iu=-—4log|x| in Bj. (1.61)
For this define i1(x) = —4log |x|. Then i satisfies

A% = 8(N —2)(N —4)e" inRY

u=20 on dB;
.-
u_ -4 on dBj.
an

Observe that since i is a supersolution to (1.50) with ¢ = b = 0 we deduce immediately
that A* > §(N — 2)(N — 4).

In the case A* = §(N — 2} (N —4)wehave u;, < i forall0 < i < A* because ir is a
supersolution, and therefore 1* < i holds.

Suppose now that * > 8(N —2)(N —4). We prove that i;;, < u forall (N —2)(N —4) <
A < A*. Fix such X and assume by contradiction that ; < i is not true. Note that forr < 1
and sufficiently close to 1 we have u; (r) < u(r) because u’k(l) = O while #/(1) = —4.
Let

Ri=infl0 <R <1 | u, <iin(R. 1)}

Then 0 < Ry < 1, u3(Ry) = u(Ry) and u} (Ry) < i'(Ry). So u, is a solution to the
problem

A2y = )e" in Bg,
u=u;(R1) ondBg,
du

Pl ) (R;) ondBg,
while « is a stable subsolution to the same problem, because of (1.57) and 8(N — 2)(N —
4) < N3N —4)%/16 for N > 13. By Lemma 1.29 part (b) we deduce iz < u; in Bg,
which is impossible.

An upper bound for A* is obtained by considering again a stable, singular subsolution to
the problem but with another parameter:

LEMMA 1.30. For N > 32 we have

2* < (N — 2)(N — 4)e?. (1.62)
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PROOF. Consider w = 2(1 — r2) and define
U=u—w,

where it(x) = —4log |x|. Then

1 -
A’ =8(N —2)(N —4)— = 8(N — 2)(N — 4)e" = 8(N — 2)(N — 4)e"*"
;
< 8(N = 2)(N — 4)ee".

Also (1) = u’(1) = 0, so u is a subsolution to (1.50) with parameter Ag = S(N — 2)(N —
4ye?.

For N > 32 we have Ag < N2(N — 4)2/16. Then by (1.57) u is a stable subsolution of
(1.50) with & = %g. If A* > Lo = 8(N — 2)(N — 4)¢? the minimal solution u, to (1.50)
with parameter ¢ exists and is smooth. From Lemma 1.29 part (a) we find # < u;,, which
is impossible because u is singular and u;,, is bounded. Thus we have proved (1.62) for
N > 32. O

With the above remarks we can now prove Theorem 1.27 in the case N > 32.
Combining (1.61) and (1.62) we have that if N > 32 then et < pT48(N — 2)(N —
4)e? < r~*N2(N — 4)2/16. This and (1.57) show that

inf fB(A@”)2 —1* [y N

-0
veCi (B) [ #?

which is not possible if «* is bounded.

For dimensions 13 < N < 31 it seems difficult to find subsolutions as before explicitly.
We adopt then an approach that involves a computer-assisted construction and verification
of the desired inequalities. More precisely, first we solve numerically (1.50) by following
a branch of singular solutions to

A%y =)e" inB
u=20 on dB

(1.63)
ou =1 on dB
av ’
We start with t = —4, where an explicit solution is known, and follow this branch to

t = 0, transforming first (1.63) with an Emden—Fowler-type change of variables, which
allows us to work with smooth solutions. This numerical solution, which is represented as
a piecewise polynomial function with coefficients in Q) that are kept explicitly, serves as
the desired subsolution. The verification of the conditions mentioned before is done with a
program in Maple, and in such a way that it guarantees a rigorous proof of the inequalities.
This and the proof of Theorem 1.27 for 13 < N < 31 is described in Section 4.3.

For general constant boundary values, it secems more difficult to determine the
dimensions for which the extremal solution is singular. Observe that x* is the extremal
solution of (1.50) if and only if «* — @ is the extremal solution of the same equation
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with boundary condition # = 0 on 9 B and so we may assume ¢ = 0. But one may ask if
Theorem 1.27 still holds for any N > 13 and any . Here the situation becomes interesting,
because the critical dimension for the boundedness of »* depends on b and is not always
equal to 13.

THEOREM 1.31. (a) Let N > 13 and b > —4. There exists a critical parameter
b™* = 0 such that the extremal solution u* is singular if and only if b < b™¥X,
(b) Let b > —4. There exists a critical dimension N min > 13 such that the extremal
solution u™ to (1.50) is singular if N > N™,

The proof of this result can be found in [44]. Tet us remark that it follows from
Theorem 1.31, part (a), that for b € [—4. 0], the extremal solution is singular if and only if
N > 13. We also deduce from this result that there exist values of b for which N™ > 13.
We do not know whether «* remains bounded for 13 < N < N™,

Finally let us mention that it remains open to describe fully the bifurcation diagram of
(1.50), in the spirit if the work of Joseph and Lundgren (Theorem 1.2) for the second-order
problem with exponential nonlinearity.

1.6. Other directions

The literature on the kind of problems we have mentioned is extensive. Nevertheless we
would like mention other related directions which have been the matter of recent studies.

In general domains there are few results on the structure of solutions to (1.1). Let
us mention here the results of Dancer [37-39]. For analytic nonlinearities ¢ such that
gu) ~ ule" as u — +00 in a bounded smooth domain €2 in R? he shows that there is an
unbounded connected curve of solutions 7 = {(A(s), #(s)) : s > O} starting from (0, 0)
such that || (s)|| + |A(s)| — +00as s — +oo and —A — A(s)g'(u(s)) is invertible except
at isolated singularities. This curve has infinitely many bifurcation points outside any
compact subset, which include the possibility that the curve “bends back™ at some of these
points. In [37] Dancer also shows that a sequence of solutions to (1.1) with g(x) = ¢ ina
bounded smooth domain in three dimensions, remains bounded if and only if their Morse
indices are uniformly bounded. This is a consequence of a related result that asserts that
any solution to

—Au=¢", u<0 inR?

has infinite Morse index. The proof of [37] uses a result of Bidaut-Verén and Verdn [14],
that characterizes solutions to

—Au=2re" R\ B (1.64)

such that

C
et < P inR3\ B. (1.65)
X
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In [14] it is proved that any solution to (1.64), (1.65) satisfies

1 2
1m1<Mn9y—mg7)=2ww)+mgX in C* of §?
p

r——+00
for any k£ > 1, where r, 6 are spherical coordinates and  is a smooth solution to
Agpo+e* —1=0 onS2 (1.66)

Here A g is the Laplace—Beltrami operator on S? with the standard metric. It is known
that all continuous solutions to (1.66) arise from a single solution and the conformal
transformations of $2, see Chang and Yang [30].

We would like to mention some results for problems similar to (1.1) but where the
Laplacian is replaced by a nonlinear operator. For example Clément et al. [33] considered
the p-Laplacian and k-Hessian operators S (D%u) defined as the sum of all principal k x k
minors of D?y. Their results were extended by Jacobsen and Schmitt [74,75] and we shall
describe them next. Consider
Yl P Y e =0 0<r <1
u>0 0<r<l1 (1.67)
u'(0) = u(l) =0,

where «, B, y satisty

a >0
y+1>a (1.68)
B+1>0.

This includes the case of the Laplacian (¢« = N — 1, 8 =0, y = N — 1), the p-Laplacian
withp > 1(e=N—-1,8=p—2,y = N —1)and the k-Hessian operator (« = N —k,
B =k —1,y = N — 1. The main result in [74] characterizes in terms of «, 8 and y the
multiplicity of solutions as a function of A.

THEOREM 1.32. Suppose «, B, y satisfv (1.68) and define

f=y+1l-q
v+ B—-a+2
-—

Case l. If « — B — 1 < 0 there exists a unique 1* > 0 such that (1.67) has a unique
solution for » = L*, and exactly 2 solutions for O < . < A*.

Case2. If0 < a — B —1 < % then (1.67) has continuum of solutions (A, u) with

1(0) — 400 and X oscillating around (« — B — 1)(8&)8+1,

Case 3. If e <y - B — 1 then the equation has a unique solution for 0 < A <
(@ — B — 18P and no solution fork = (¢ — B — (8T Moreover
1(0) > +ooas b — (a — B — 1)(8&)PHL

5
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The problem (1.1) for the p-Laplacian operator in general smooth, bounded domains,
that is,

—Apu =Aig(u) in&
u=0 on 082

has also been the subject of study. We mention the case g(u) = e" considered by
Garcia-Azorero and Peral [65] and Garcia-Azorero et al. [66] who showed that the
extremal solution is bounded if N < p +4p/(p — 1) and that this condition is optimal.
Recently Cabré and Sanchén [27] (see also [25]) also considered this problem for general
g, extending the ideas of [19,20] to this setting.

Another direction of interest is the parabolic counterpart of (1.1). Consider

ur — A =rg(u) m(0,7)x
u=20 on o2 (1.69)
1(0) = uo in €2,

where g is a nonlinear function, » > 0 and ug > 0, ug € L™ (£2).

It is well known that if g € L°(Q) and g is Lipschitz, then (1.69) has a classical
solution defined on a maximal time interval.

Problem (1.69) with exponential nonlinearity was considered by Fujita [62,63]. Lacey
[80] and also Bellout [12] proved, under certain extra conditions, that the solution of (1.69)
blows up in finite time for . > A*, see also [81]. In this direction we would like to mention
the following results due to Brezis ef al. [19]. Roughly speaking they imply that with
initial condition u#y = 0, the solution to the parabolic problem (1.69) is global if and only
A < A*, that is, if and only if the stationary problem has a weak solution.

THEOREM 1.33 (Brezis et al. [19]). Assume ¢ : [0,00) — o0 is a Cl convex

S

nondecreasing function such that there exists xo > 0 with g(xg) > 0 and

>0
/ e | (1.70)
xo &)

Then if (1.69) has a global solution for some ug € L (), ug > 0 then there is a weak
solution to the elliptic problem (1.1).

This result has also a converse.

THEOREM 1.34 (Brezis et al. [19]). Assume ¢ : [0,00) — o0 is a Cl convex

nondecreasing function. If (1.1) has a weak solution w then for anv initial condition
ug € L>™(2), 0 < ug < w the solution to (1.69) is global in time.

Peral and Viazquez [100] considered also the parabolic problem (1.69) with the
exponential nonlinearity in €2 = Bj and with L = 2(N — 2), since for this parameter
U(x) = —2log|x| is a weak solution of the stationary problem. They are interested
in singular initial conditions and hence they work with the following notion of weak
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solution: 1 € C((0, co); Wol’z(Bl)) such that u;, Au, ¢* € LY([r.T] x B;) for all
0 <1 < T < 400, equation (1.69) holds a.e. and u(f,-) — wup in L2(By) ast — 0.
First they take an initial condition ¢ satisfying O < ug(x) < U(x). They show that (1.69)
possesses a minimal and a maximal solution # satisfying 0 < u(z, x) < U(x). Moreover
it becomes classical for ¢ > 0. They show that if 3 < N < 9 then any solution satisfying
the previous conditions converges to the minimal solution u«, as t — +oo. If N > 10 then
u(t,-) - U ast — +oo. These authors also study the possibility of having solutions of
the parabolic problem above the singular solution U and establish the following

THEOREM 1.35. Consider (1.69) with g(u) = e, L = 2(N —2) and 2 = By. Then there
is no weak solution defined on (0. T) x By such that u(t,x) > U(x), and ug # U.

The solutions in the above result are shown to blow up completely (such as in Brezis
and Cabré [18]) and instantaneously. Dold et al. [49] studied the blow-up rate of (1.69)

with Q = By and g(u) = e? or g(u) = u?, p > %—J_r% Martel [88] showed that if the

initial condition g satisfies ug € L>(2) N WOI’I(SZ), wo > 0 and Aug + Aglug) = 0,
then the solution # to (1.69), which is defined on a maximal time interval [0, T;,,), blows
up completely after 7,, if 7,, < +oo. This means that for any sequence g, of bounded
approximations of g such that

gy € C([0,00).[0,n)) forallx >0, g,(x) 1 gx),asn — +00

the sequence of solutions u, of (1.69) with g replaced by g, satisfies

(X, 1)
dist(x, 082)

for any ¢ > 0. The hypothesis on the initial condition says, roughly speaking, that
1;(0) > 0 and hence « is monotone nondecreasing in time, which is seen to be necessary
(see below and [59]).

An interesting result of Fila and PoldCik [59] is the following. Consider (1.69) with
g(u) = e* in the unit ball = Bj and with a radial initial condition 1y € C(By). If
N < 9 and the solution « to (1.69) is global, i.e. is a classical solution defined for all
times, then # is uniformly bounded, that is,

— 400 as n — +oco uniformly for ¢ € [T, + ¢, 00)

sup  |u(r, t)| < 4o0.
1>0,r€[0,1]
In dimensions N = 1. 2 this holds for general domains and initial conditions, see [57].

In [59] the authors also show that for g(i) = ¢* and also in the radial setting in
dimension 3 < N < 9, certain stationary solutions can be connected by solutions that
blow up in finite time but can be continued in an L' sense. An L' solution of the parabolic
equation (1.69) is a function u € C([0, T]; LY()) such that g(u) € LY(0, T) x ) and

¢ t t
/u(p dx—/ /u(p,dxds:/ /(uA(p—i—)»g(u)(p)dxds
Q T T JQ T JQ

forall0 <t << Tandg e CX[0, T] x Q) with ¢ = 0 on [0, T] x 3. To describe
the result [59] we use the notation, following [58]. The solutions to (1.1) with g(u) = ¥
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in the unit ball B; with 3 < N < 9 can be written as a smooth curve
(A(s), u(s)), s>0
such that

max u(s) = u(s)(0) =s.
By
This curve satisfies
(a) limy—oA(s) = 0, limg— o A(S) = 2(N — 2)
(b) the critical points of A(s) form a sequence 0 < s; < 57 < ... and the critical values
A(s;) = A satisfy

Al > 230> A1 4 2(N = 2),
A< dhg < ... 2(N=2).

ForO < & < A*let5o(1) < 51(1) < ... denote the sequence of points s such that A(s) = A.
This sequence is finite if 2 % 2(N — 2) and infinite if A = 2(N — 2). Write u] = u(3).
The minimal solution corresponds to u; = u?.

Fila and Poacik [59] showed that if & € (Ap, A3) there exists a smooth initial condition
1g such that the solution « to (1.69) satisfies:

(1) u(-, t) blows up in finite time 7;,,,

(2) u(-, 1) can be extended to an L! global solution (i.e. define on (0, T') for all 7 > 0),

3) u(-, t) — u; ast — +oo, where u; = ug is the minimal solution (the convergence

is CL.((0, 1))

(4) wu(-,t)1is defined and smooth for all r € (—c0, Tp,) and u(-, t) — u?

e
This solution is called an L' connection between the equilibria «2 and «?.

Later Fila and Matano [58] extended the results of [59] showing that for any & > 2 there
is-an L' connection from u} to uf. They also show that if an ' connection from uj to u’
exists then k > j + 2. See also previous work by Ni ez al. [97], Lacey and Tzanetis [82].

Nonlinear elliptic and parabolic equations such as (1.1) and (1.69) but with explicit
singular terms in them have also been a matter of recent studies. Let us mention Brezis and
Cabré [18], who showed that if # > 0 and

2

u .
—Au > —> in Q
x|

in the sense of distributions (assuming i, u?/|x)? € LIIOC(SZ)), in a domain £2 containing
the origin, then ¥ = 0. Dupaigne [50], Dupaigne and Nedev [51] have studied elliptic
equations with a singular potential of the form:

—Au —ax)u= f(u)+ rb(x) inQ
u=20 on 382,

where a, b, f, 2 > 0. They characterize, under some assumptions, in terms of the linear
operator —A — a(x) and the nonlinearity f(u«) the cases where there are solutions for
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some A > 0 or not. For instance if a(x) = ¢/|x|%, f(u) = u?, p > 1, then there is a
solution for some % > Oif and only if ¢ < (N — 2)2/4and p < po = 1 + 2/a, where

q = N2V (V=2 —de W. See also Kalton and Verbitsky [77].

We have mentioned already that the analysis of singular operators such as the Laplacian
with a potential given by the inverse square distance to a point has been used to construct
singular solutions to a variety of nonlinear problems, [28,89-91,98,99,101-103]. But in
fact the same techniques can be applied to construct solutions in exterior domains which
in some sense are singular at infinity, or in other words, that decay slowly at infinity. A
model equation is

Au+u? =0, u>0 inRY\D, (1.71)
=0 ondD, Iim ux)=0 (1.72)
Jx|—+00
N42

with supercritical p, namely p > +755.

THEOREM 1.36 ([40,41]). Let D be a bounded domain with smooth boundary such that
RN \ D is connected. For any p > N+2 there is a continuum of solutions u,, A > 0, to
(1.71), (1.72) such that

1 2
up(x) =Bl x| 7 I(1+o0(1)) aslx|— o0 (1.73)

and u;(x) — 0 as » — 0, uniformly in RN \ D, where

__2 N-2 2
=5 ()

The idea of the proof is by linearization around w(x ), the unique positive radial solution
Aw+w? =0 nRY,  wO =1 (1.74)

Note that all radial solutions of Au + u? = 0 defined in all R" have the form
wy(x) = A%w(km), A > 0. (1.75)

We look for a solution «, in the form of a small perturbation of w;. This naturally leads
us to study the linearized operator A + pwy ~!in R¥ \ D under Dirichlet boundary
conditions. Since w; is small on bounded sets for small A, an inverse can be found as
a small perturbation of an inverse of this operator in the whole RY and then, by scaling,
it suffices to analyze the case A = 1. Thus we need to study A + pw?~! in RY. Note

1 2
that at main order one has w(r) = 87-1r 7-1(1 4+ o(1)) as r — 400 [72], and hence the

singular potentlal has the form pﬁ / r 2(1 + 0(1)) We construct an inverse in weighted L

+
norms for p > ==, however if & e 2 <p< N 2 L the linearized operator is not surjective,

having a range orthogonal to the generators of translations. We overcome this difficulty
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by adjusting the location of the origin. The invertibility analysis for p > N +1 is strongly
related to one of Mazzeo and Pacard [90] in the construction of s1ngular solutlons with
prescribed singularities for % < p < %Jr% in bounded domains. At the radial level,
supercritical and subcritical in this range are completely dual.

Problems (1.71)—(1.72) has also a fast decay solution, that is a solution # such that
Hm sup,, ., 1o [x[>"Vu(x) < +oo, provided 43 < p and p — {53 is small, see [41].

A related result for supercritical problems 1n bounded domalns is the following.
Consider

Au+u? =0, u>0 inD\ Bs(Q), (1.76)
=0 ondDUaIBs(Q), (1.77

where D is a bounded domain with smooth boundary, Bs(Q) C D and § > 0 1is to be taken
small.

THEOREM 1.37 (del Pino and Wei [47]). There exists a sequence

N+2
N-=-2

<pr<pr<pi<..., with lim pr=+0c0 (1.78)
k——+00

such thatif p > N+2 5 and p # p;j forall j, then there is a 8 > O such that for any § < 8,
Problems (1.76), (1 77) possess at least one solution.

2. Perturbation of singular solutions

2.1. The Laplacian with the inverse square potential

We consider the linear problem

—A¢ — ¢=g¢g inB

lx — &2 2.1
¢=h ondB,

where B = B1(0), & € B and c is any real number. The main results are Propositions 2.1
and 2.3 below, which assert the solvability of (2.1) in weighted Holder spaces assuming
that the right-hand side verifies certain orthogonality conditions, provided & is close to the
origin. We use the weighted Holder spaces that appear in [101,8,28], which are defined as
follows. Given €2 a smooth domain, &§ € 2,k > 0,0 <« < 1,0 < r < dist(x, 082)/2 and
ue Cll‘of (B \ {£)) we define :

k

Ulkwre = sup Y 1 |[Viu))|
rsle—£l=2r 720

4 ke |: |VEu(x) — Vklt(y)|:| .

sup
. o
r<lx—&|, ly—&|<2r Ix — vl
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Letd = dist(&, 3€2) and for any v € R let

luleange = Il cro@paen T S0P 1 ltlkare-

O<r=3
Define the Banach space
ChE) = {u e CEEQNED © lulkamea < o0}

It embeds continuously in the space of bounded functions if v > 0.

For the analysis of (2.1) when & = 0 it is convenient to decompose all functions in
Fourier series. So we recall that the eigenvalues of the Laplace—Beltrami operator —A on
SN¥=1 are given by (see [13])

M=k(N+k-=2), k=0

Let my denote the multiplicity of Ar and ¢ 1, [ =1, ..., my. the eigenfunctions associated
to Ax. We normalize these eigenfunctions so that {¢z; : k > 0,1 = 1,..., Mg} is an
orthonormal system in L%(SV=1). We choose the first functions to be

_ 1 oo (NN
(/70,1 - |SN_1|1/2ﬂ (/71,[ - (fSN71 x[z)l/z - |SN_1| X7, = 1,..., .

Letr = |x| and 6 = x/|x| denote polar coordinates in RY .
First we study the kernel of the operator A + ¢/|x|%. Thus we look for solutions to

—Aw——w=0 mRY\ (0} (2.2)
|x|?
of the form w(x) = f(r)¢x ;(0) which yields the ODE:
N-1 Sy
i F+55H =0 forr>o. (2.3)
. .

+
Equation (2.3) is of Euler-type and it admits a basis of solutions of the form f(r) = =%,
where a,:—L are the roots of the associated characteristic equation, i.c.

N -2 N —2,\2
+ s
ap = —2 :|:\/< 3 ) C+ Af. 2.4)

Note that a,:—L may have a nonzero imaginary part only for finitely many k’s. If kg is the
first integer k& such that a,:—L € R then

- - + +
.<a’k0+1<a'k0§ §ak0<ak0+1<...,

whereas, if k < kg, we denote the imaginary part of a,:." by

N —2\?

Fork >0,l=1,..., my, we have a family of real-valued solutions of (2.2), denoted by
w! = w,}_’,, wy = w,%J and defined on RY \ {0} by:
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if (X52)2 —c 4 >0
wh =~ g 0), w? =% g 6), 2.5)
if (Y522 —c+a =0
1 N2 . 2 _ b=
w =71 2 logreri(0), w =r" "2 @ 1(0), (2.6)
if Y222 — e ap <0
1 _N=2 2 _N=2
w =r" 2 sin(brlogrigr(0), w(x)=r""2 cos(hrlogrigr;(0). (2.7
Then the functions Wy ; defined by
if (X522 — e he > 00 W) = w'(x) — w?(x), 2.8
if (MF22 —ca <00 Wilo) = w'(x), '
solve (2.2) and satisty
Wiilop = 0.
The main result in this section for the case & = 0 is
PROPOSITION 2.1. Let ¢, v € R and assume
dkysuch that a,:l ceR and _“k_l < V< _ak_1+1’ 2.9)
Let g € Cgféz,o(B) and h € C>*(3B) and consider
¢ .
—A¢——2¢:g in B
|x| (2.10)
¢=h ondB.
Then (2.10) has a solution in CSJS‘(B) if and only if
(2.11)

Wi
/ eWr = h ]"l, Vik=0
B 9B 9n
Under this condition the solution ¢ € Cvzﬁ’g(B) to (2.10) is unique and it satisfies

.....

||¢||2,oz,v,0;B = C(”g”O,a,v—Z,O;B + ||h||C3-&(aB))q (2.12)
where C is independent of ¢ and h.
Note that with the hypotheses of Lemma 2.1 we have
N -2
V> o > —— (2.13)

This implies that the integrals on the left-hand side of (2.11) exist.
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PROOF OF PROPOSITION 2.1. Write ¢ as

0o My

P =D prige®). x=r0.0<r<1.60es

Then ¢ solves —

= g in B\ {0} if and only if ¢y ; satisfies the ODE

N-—-1 c— )»1\
$rat — b+ —g b= g O<r <L (2.14)

forallk >0andil=1,..., my, where
g (r) :/ grO)pr1(0)do, 0<r<1,0 €SV L
N-1

Note that if ¢ € L;°(B) then there exists a constant C > 0 independent of r such that
|ri(r)] < Cr”. (2.15)
Furthermore, ¢ = h on d B if and only if ¢y ;(1) = hy; for all k, [, where

hip1 = / h(0)pr1(0)do.
N-1

Step 1. Clearly, supy<,<; 7| gk1(t)| < oo and observe that (2.11) still holds when g is
replaced by gk j¢r; and h by hy ¢k ;. We claim that there is a unique ¢ ; that satisfies
(2.14), (2.15) and

Gy = hy. (2.16)
We also have
|Pri ()] < Cir’ ( sup 12 |g1\-’1(t)| + |hk,1|) , O<r<1. 2.17)
O=<t<l1
Casek=0,..., k1. A solution to (2.14) is given by:
oifoi, ¢R
Pri(r) = b / B sin <bk log - )ek,z(s)ds, (2.18)
'lf“u—“u—T'
rsy MR S
Gr(r) = / s —) © log (—)gk,;(s)ds, (2.19)
o - -

e+ + , N-2.
eifo;; €R, o, # 5=

Prrtr) = ——— /rs((f)%“+ = <£>a;>gk,l(S)ds. (2.20)
a,\ —ap Jo r r

In each case, (2.17) holds and (2.16) follows from (2.11).
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Concerning uniqueness, suppose that ¢y ; satisfies (2.14) with gx; = 0 and (2.16) with
hr,; = 0. Then ¢ ; is a linear combination of the functions wl, w? defined in (2.5)—(2.7).
By (2.9), (2.13) and (2.17), ¢x; has to be zero.

Case k > kj + 1. Observe that (2.14) is equivalent to

—A¢Lz+ | |2 M S =g in B\{0),

where ¢ (x) = ¢r(x]) and g s(x) = g(jx]). Since «f € R we must have
M —C > —(N 2)2 and hence the equation

_A¢Ll+ | |2 ¢Ll in B

$ri=hig ondB,

(2.21)

has a unique solution qSkJ € H, where H is the completion of Cgo (B) with the norm

k—C o

xz

2
el =

see [106].
To show (2.17), observe that for some constant C depending only on N, A and v,

O<t=<1

Apr)y=r"C ( sup 1277\ 1(0)] + Ihk,zl)

is a supersolution to (2.21) and —Ay; is a subsolution. To see this, we emphasize that the
condition —«; > v > —(N — 2)/2 implies v? + (N — 2)v + ¢ — Ax < O. It follows that
i) < Agg([x]) for 0 < x| < L.

We note that ¢y ; is uniquely determined. Indeed, any solution w of (2.21) such that
lw(x) < C|x|" satisfies, by a scaling argument, |Vw(x)| < C|x|"~! and this together with
(2.13) implies w € H'(B), which is contained in H. Uniqueness for (2.21) in H'(B) can
then be proved by an improved Hardy inequality (see [20]).

The computations above also yield the necessity of condition (2.11). Indeed, assuming
a solution ¢ € LO°(B) exists, since ¢p; satisfies the ODE (2.14) we see that for
k=0, ..., k1 the difference between ¢y ; and one of the particular solutions (2.18), (2.19)
or (2.20) can be written in the form ck,;r_o‘k+ + dk,;r_“l:. Since |¢r(r)| < CrY and
Vo> —a,:l we have ¢ ; = di; = 0 and this implies (2.11).

Step 2. Define form > 1

Gon = {g =YD aieei0) s IxPTgx) € L°°(B>}
k=0 1

and

Hm = {h = th,,w,\.,,(e) s hig € ]R} .
k=0 1
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Let g € G, hy € H,, be such that (2.11) holds. Write

m m

gnX) =Y i@ 10), hw(0) = hi1gx10).
k=0 1 k=0

Let ¢x ; be the unique solution to (2.14), (2.15) and (2.16) associated to gx 7, hx ; and define
G (x) = Y 1o > Dk1(F)pr,1(0). We claim that there exists C independent of m such that

| (x)] < C|)‘|v <SUP |,V|2_v|gm(,V)| + sup |hm|) , O< x| < L. (2.22)
B IB

By the previous step, (2.22) holds for some constant C which may depend on m. In
particular, choosing m = k|, we obtain a bound on the first components ¢ ;, k = 0...kj.
Hence, it suffices to prove (2.22) in the case gr; =0and h; =0,k =0, ..., k1. Working
as in [101], we argue by contradiction assuming that

= 12—
| | x| v”LDO(B) > Culllgmlx| v”LDO(B) + ||hm||L\>0(é)B))q

where C,;, — o0 as m — oo (this argument also appears in [28]). Replacing ¢,, by
®m /b x| || L) if necessary, we may assume

X1~ N8y = 1.

2—v 2.23)
lgm X" 2By + |AmllL=aB) — O asm — oo.

Let x,, € B\ {0} be such that |¢,, (xp)||xm| " € [%, 1]. Let us show that x,, — 0 as
m — 00. Otherwise, up to a subsequence x,, — xo # 0. By standard elliptic regularity,
up to another subsequence, ¢,, — ¢ uniformly on compact sets of B \ {0} and hence

—A¢—#¢=0 in B\ {0}

¢$=0 onoB.

Moreover ¢ satisfies |¢ (xo)||xo| ™" € [%, 1] and |¢p(x)| < |x|” in B. Writing

)= Y D PrirIgri6),

k=ki+1 1

we see that ¢r; solves (2.3). The growth restriction |¢x ;(r)| < Cr" and the explicit
functions w', w? given by (2.5)~(2.7) rule out the cases ¢if ¢ R, o = o and force

Gk = arr- k. But ¢r.1(1) = 0 so we deduce ¢ ; = 0 and hence ¢ = 0, contradicting
| (xo)|xo| ™" #O.

o
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The above argument shows that x,,, — 0. Define r,,, = |x,,| and
Uy (X) = r,;v(ﬁm (rmx), x¢€ Bl/rm .

Then |Um(x)| = |)‘|v in Bl/rm’ |Um(%)| € [%w 1] and

C _ .
—Avy(x) — —svp(X) = 7‘3, vg("mx) mn Bl/rm \ {0}

|x|?
But
ra 18w < Ngm IV Ipsp) X2 — 0, asm — oo
by (2.23). Passing to a subsequence, we have that 22 — xg with |[xo| = 1, v, — v

m

uniformly on compact sets of RY \ {0} and v satisfies

—Av——"_yv=0 nRY\ {0}
|x|2

Furthermore, |v(x)| < |x|” in RY \ {0} and |v(xg)| # 0. Write

o0
V) =Y ) vki)gri(0).
k=0 1

Then |vg ;(r)] < CgrY for r > 0. But v ; has to be a linear combination of the functions
w!, w? given in (2.5)~(2.7), and none of these is bounded by CrV for all r > 0. Thus
v = 0 yielding a contradiction. This establishes (2.22).

Step 3. Finally, a density argument shows that if A, g satisfy (2.11) then there exists a
solution ¢ to (2.10) and satisfies (2.22). From (2.22) if we assume that g € Cgftz,o(B) and

h € C%%(3B), using Schauder estimates and a scaling argument it is possible to show that
the solution ¢ found above satisfies (2.12). O

COROLLARY 2.2. Assume (2.9), (2.10), (2.11) and that v > 0. If |x|%g is continuous at
the origin, then so is ¢.

PROOF. Let («,) denote an arbitrary sequence of real numbers converging to zero, g(x) =
Ix|2g(x) and ¢, (x) = ¢ (apx) forx € Bl /a, (0). Then ¢, solves

c gloyx) .
—AQ, — —=¢, == in B 0).
¢n |)L|2 ¢n |)L|2 l/an(

Also, (¢, ) is uniformly bounded so that up to a subsequence, it converges in the topology
of CL*@®RN \ {0}) to a bounded solution ® of

Ap- =80

|x|2 x|

Now @ + g(0)/c is bounded and solves (2.2), so it must be identically zero. It follows

that the whole sequence (¢,) converges to —g(0)/c. Let now (x,) denote an arbitrary

in RY \ {0}.
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sequence of points in RY converging to 0 and «, = |x,|. Then, ¢ (x,) = ¢n(%) and
up to a subsequence, ¢ (x,) — —2(0)/c. Again, since the limit of such a subsequence is
unique, the whole sequence converges. O

Now we would like to consider a potential which is the inverse square to a point
& € By, that is, we consider the problem

my

c g .
—Ap — p=—"-—+n + Mi1 Vg B
=P =8P g ZZ R
¢ =nh on dB,
(2.24)

where

§ ) fork>1,I1=1,..., m, (2.25)
280

X
Vine(x) =n(lx —&ENWi, <1 —
ne CPR)ysuchthat0 < n < 1, n = 0and supp(n) C [%, %] and gy > 0 is fixed (suitably
small).
We have:

PROPOSITION 2.3. Assume

k1 such that a,:l ceR and - a,:l <V < _“k_l+1’ (2.26)

Then there exists g > 0 such that if |E] < g9 and go € CS’?(B) satisfies
llgo — Ulz=(B) < &0

then given any g € CS”?(B) and h € C>%(3B), there exist unique ¢ € Cvzﬁ’g(B) and
po, pkg € Rk =1,..., k,l =1 ..., my) solution to (2.24). Moreover we have for
some constant C > 0 independent of g and h

ki omy

Ipll2.cve:s + ol + YD luwil < Cliglowve:s + Ihlc2app).  (2:27)
k=11=1

PROOF. We work with 0 < |&]| < gy, where g9 € (0. 1/2) is going to be fixed later on,
small enough. Let R = 1 — 2¢q. This implies in particular that Bg (&) C B.

We define an operator 7 : CZD‘(E)BR(é)) — CL*(@BR(£)) x R as follows: given
do € c* "*(dBR(&)), find ¢ € Cv £ (Br(&)) and yy, yx; the unique solution to

my

C
—A¢1—.7|2¢1= §|2+ZZV1\IVI\I§ in Bg(§)

lx — & (2.28)

$1=¢o on dBg(&),
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and set 71 (o) = (20 an . ¥0). This can be done (see Step 1 below) by adjusting the constants
yo and y; in such a way that the orthogonality relations (2.11) in Lemma 2.1 are satisfied.

Similarly, there is a unique ¢; € Cvzjg (Br(&)) and yo, .1 such that

g0
|x SIZ | — &2

my

+ZZVMVL1§ in Bg(&) (2.29)

$1=0 on dBr(&).

—Ad
¢1 — X s|2<751

Given qsl, 1o asin (2.29), we define qu by

¥ c ~ g ~ L0 .
—Ad — hr=——">+n— in B\ Br(§)
lx — &2 lx — &2 lx — &2
g A
92 _ 31 on 8B (€) (2.30)
an an
qu:h on dB.

We also define an operator 7> : Cl’“(aBR(s)) xR — CZ’“(E)BR(é)) by

T (W, y0) = ¢2lage).

where ¢, is the solution to

L0 .
—A¢y — ————¢2 = yo——-— in B\ Br(£)
x s|2 M —ep K
3
%2 _ on 9Bx(E) (2.31)
an
¢ =0 onadB.

As we shall see later (see Step 2), equations (2.30) and (2.31) possess indeed a unique
solution if £ is sufficiently small, because the domain B \ Bg(&) is small.

We construct a solution ¢ of (2.24) as follows: choose ¢ € C2% (3B (£)), let ¢1 be the
solution to (2.28) and let ¢ be the solution to (2.31) with W = ¢ and yp from problem
(2.28). Then set

¢1+¢1 in BR(&)
¢2+¢o in B\ Br(&),

and po = yo + Yo, k1 = vk + ve1. If we have in addition
P1+d1 =2+ on dBgr (&), (2.32)

then ¢, 1o and pix ; form a solution to (2.24).
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With this notation, solving equation (2.24) thus reduces to finding ¢g € C>% (3 BR(£))
such that (2.32) holds i.e.

Tyo Ti(do) + o = o  in dBRE).

The fact that this equation is uniquely solvable (when & is small) will follow once we show
that || 72|| — 0 as &g — 0, while || 71| remains bounded.

Step 1. Given ¢y € C2%(3Bg(£)) there exist yp and vk such that (2.28) has a unique
solution ¢ in C¢ (9B (&)).

In this step we change variables v = x — & and work in Bg(0). Solving for y; in the
orthogonality relations (2.11) yields

1 aWo0
R faBR b0, (R)

(2.33)
S, 8OV Y2 Woo(g)

Yo =
and a computation, using ||go — 1|z Bg) < €0 shows that
_ y _
/ 2oty + )1y Woo () = RN 2. o)+ Oeo).
Br

where C (N, ¢) # 0. In particular this integral remains bounded away from zero as R — 1
(R =1 —2gp and g9 — 0) and hence yy stays bounded.
Regarding yx ; we have

IW,
7 Jonp) 20T F) — v0 [, Q0 + E)y| T2 Wi, z(R)

(2.34)
JBs Ny Wi (%)?

Yk =

and we observe that || Bx n(| _\)|)W1\-,;(%)2 is a positive constant depending on k,/ and R
(which stays bounded away from zero as R — 1). Using L.emma 2.1, it follows that || 77 ||
remains bounded as R — 1 i.e. when gg — 0.

Step 2. For & small enough equation (2.31) is uniquely solvable and || 75| < C|&|. Let
z0 = 1 — |x|2. Then zo(|y0] SUP B\ B (&) % +8upy g (&) 1)) is a positive supersolution
of (2.31). This shows that this equation is solvable and that for its solution ¢, we
have the estimate |¢2| < C[&[(|yol + supypg (¢, [W]). This and Schauder estimates yield

21l c2eappery < CIENVOl + Wl c2er g gy (e))> Which is the desired estimate.
Finally, estimate (2.27) follows from (2.12) and formulas (2.33), (2.34). O

Consider each & € B, functions go(-, &), g(-, 5) € CS’?(B) and h(-, &) € CL%(3B).

By Proposition 2.3 there is a unique ¢ (-, &) € C (B) solution to (2.24). We want to
investigate the differentiability properties of the map 5 = @ &)

PROPOSITION 2.4. Assume the following conditions:

k1 such that ay, € R and —dp <V < =
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N
Ve -2 42 (2.35)

and
v—1:£ —a];.
Let sy > O and for & € B, let go(-, &), g(-, &) De such that

Ag = sup (”gO(w s)Hl,a,v,é;B + “DégO(’w 5)”0,&,1}—1,5;8) < 20 (2.36)

£€By
and

A= sup (IgC. EMltave B+ D& EMlow,v—1.6:8) < 0.
56350

Let h(-, &) € C3%(3B) with

sup (|A ¢, E)lesopy + 1Deh (- E) |l c2e o)) < 0.
£€By,

Let @ (-, &) denote the solution to (2.24). Then there exists £g > 0 and a constant C such
that if eo < &0 and if || go(-, &) — 1|z=o(B) < &0, |t| < &0 and &1. &2 € Bg, then

o +&2.862) —d + &1, ED2,av—1,0B,, < Clé2 — &1l (2.37)

Moreover the map & € By, — ¢(-; &) is differentiable in the sense that

1
Dedp(x, &) = lilrb ?(qﬁ(x, E4+1n) —P(x, &) existsforall x € B\ {&}
(2.38)

and € RN, Furthermore Degp(-. ) € Cgf‘lﬁé(B), the maps & € By, — o, 1 € Rare
differentiable and

k. my

1Ded . E)l2wv—r6:8 + [Deptol + Y Y 1Depun]
k=11=1

< CUgC EMloave: B + 1Deg EMlo,wv—1.6: B
=+ ||h(, 5)”6‘2.&(38) + ||D§h(, 5)”6‘2.&(83)). (239)

The proof of this result can be found in [43] and we omit it. For simplicity we have
stated Proposition 2.4 under the assumption v — 1 # —ug - A similar result also holds if

v—l=—ao, but estimate (2.37) has to be replaced by:

o +&2.862) —d + &1, ED2.wp-1.08,, < Clé2 — &1l
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where v — 8 < v < v for some § > 0 and with the constant C now depending on v.
Similarly, (2.39) is replaced by

Ky omy

IDed . )l -1.6:8 + [Depol + Y Y |Depuril
b=li=l (2.40)
<CUgC EMowp.er +11Deg. E)lo,av—1.6:B

+ 1A EMlc2egp) + 1Deh (. E) | c2e o py)-

Next we extend Proposition 2.3 to an operator of the form —A — L; — él" , where L;

is a suitably small second-order differential operator. We will take L, of the form
Liw = a;j(x, O)Djjw + b (x, YDjw + c(x, Hw. (24D

LEMMA 2.5. Suppose that the coefficients of L, satisfv: a;;(-. 1), bi(-.0), ¢;(-, 1) are
C%(B) and for some C it holds

||Cll](, t)”C&(E) + ||bl(, t)”C&(E) + ||C(’, t)”CO((E) < C|f|
Assume

Jky such that o € R and  —op < v < —ag .

Then there exists eg > 0 such that if |&] < o, [t] < &y and gg € CS”?(B) satisfies
leo — Ulz=(B) < &0, then given any g € CS:?(B) and h € C>%(3B), there exist unique
¢ € C2 (Byand po. prg e R(k=1,..., kp,l=1...., mp) solution to

¢ £0
—A¢ — L1 — ¢ = &
|x — §|2 |x §|2 | §|2
k1 my
+ Z Z MeiVire  inB (2.42)
=1 I=1
o=1 on 0B.
Moreover
ko omy
b 2.t + 1ol + 3> ikl < Clllglloaes + Il ceap)-  (243)
k=11=1

PROOF. Fix i € C%%(3B) and |&] < o, where gy is the constant appearing in
Proposition 2.3. For g € CS:?(B) let ¢ = T(g/|x — &[%) be the solution to (2.24) as
defined in Proposition 2.3. Then (2.42) is equivalent to ¢ = T(g/|x — £|2 + L:¢). Define

T =T(g/lx — &>+ Lig).

We apply the fixed point theorem to the operator 7 in a ball Bz of the Banach space
CS:?(B) equipped with the norm || - ||2,0,v.£: B-
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Note that by Proposition 2.3 we have |T(g/|x — EIZ)IIQ,a,v,g;B < Cliglo,av.e B +
Al c2e(gp)). Using this inequality, for [|¢]2,«,v.e:8 < R we have

1T @) 2.cv:8 < CUEN0.wvE: + 1Lidllo.wv-268 + 17l c2eop)
< Clglo.wv.e + 1R + Rl c2eap) < R,

if we first take ¢ so small that C|¢| < % and then choose R so large that C(]|gll0,«,v.6:8 +

R
Il c2eqapy) < 7
For ||¢1||2,oz,v,§;B <R, ||¢2||2,oz,v,§;B < R we have

1T (p1) — T @D lrave:n < ClLI 1 — D l0.0v—2.6:8
< Cltlll¢1 — ¢21l2,0,v,8: B

and we see that T is a contraction on the ball Bgr of Cvzﬁ’g(B) if ¢ is chosen small

enough. O

The previous results on differentiability also hold for perturbed operators of the form
—A—L; — —5.
|x—&J

PROPOSITION 2.6. Assume the following conditions:

dky such that cv,:l ceR and - a,\fl <V < _ak_l—i-l

N
) _— 2,
Vo> 3 =+
and
v—1# - (2.44)
Let sy > Oand for & € By, let go(-, &), g(-, &) € Cvljg(B) be such that

Ag = sup (||go(, 5)”1,04,11,528 + ||D§g0(’, S)”O,a,v—l,é;B) < X0
56350

and

A= sup (lgC. EMlLave s+ D8 E)llowv-148) < 00
§e By

On the operator L; we assume
llaij . t)”Cl.a(E) + [1bi (-, [)”Cl.&(E) + [le(, t)”Cl.&(E) = Clt].
Let h(-. &) € C>*(3B) with

sup (lA (., §)||C3(BB) + ||D§h(~, f)HCl&(aB)) < X

£€By,
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and let ¢ (-, &) denote the solution to (2.42). Then there exist £g > 0, C > 0 such that if
g0 < &0, lgo(-. &)Y — L||z=(B) < 80, |t| < g0 and &1. &2 € Bg,, we have

g +&2.862) —d + &1, ED 2. wv—1.0:8,, < Clé2 — &1l (2.45)

Furthermore,
1
De(x; &) = }ur(l) ?(qﬁ(x; E4tn) —p(x: &) existsVx € B\ {&), V e RV,
the maps & € By (0) — o, nr; € R are differentiable and

I1Ded(x: EMl2,av—1.6:8 < CUILC EMo,av.e:8 + 1 D& E)0,0,0—1.2:B

(2.46)
+ hC Ecre@py + I1Deh (- E) | c2e o py)-

The argument uses again the fixed point theorem. Details can be found in [43].

2.2, Perturbation of singular solutions

Recall that ¢* = 2(N —2). Hence, if N > 4 then N — 1 < ¢* < 2N and therefore o > 0,
a, < 0(cf. (2.4)). As mentioned before we choose v = 0. We see that (2.26) holds now
with k1 = 1. We may thus apply Proposition 2.3 and I.emma 2.5. In dimension N > 35,
since (2.35) and (2.44) hold, we may also apply Propositions 2.4 and 2.6.

Write

Vgﬁg = Vlﬁgﬁg £=1,..., N,

where V| ¢ ¢ is defined in (2.25), and set

~ 1 |
c,ty=L, (1
Jonn ’<°g|x—s|2)

and note that

If . 01x = &P lloq-26 < Cltl. (247)
Concerning (1.25) we prove:

LEMMA 2.7. Write ¢ = ¢* = 2(N — 2). Then there exists ey > 0 such that if || < eq,

[t| < eq, there exist ¢ € CS:?(B) and po. . . ., un € R such that
c c 1
~Ap— Lip ~ ¢ = (€ =1 =) + po—pze’
g2 T g . - &2
+fan0+) wiVig inB (2.48)

i=1

1
¢=—log——— ondB.
lx — &2
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If N = 5, we have in addition that:
o the map & € Bey — @ (-, &) is differentiable in the sense that

1
Dedp(x, &) = lilrb ?(qﬁ(x, E4+1n) —P(x, &) existsforall x € B\ {&}

andn e RV,
o for v < 0 small, Degp(-, &) € Cizfl’é(B), the maps &€ € Bey — po.pti € R are
differentiable and there exists a constant C independent of & such that

Ky omy

1Ded . E)lnws—r.6:8 + [Depol + Y Y |1Depurl < C. (2.49)
k=11=1

PROOF. Case N > 5.

Let g¢ be as in Lemma 2.5. Consider the Banach space X of functions ¢ (x, &) defined
for x € B, & € By,, which are twice continuously differentiable with respect to x and once
with respect to & for x £ & for which the following norm is finite

lollx = sup l¢C.EM20.068 +2IDed . E)2,0.5-16 8-
56350
where A > 0 is a parameter to be fixed later on and v < 0 is close to zero.
Let B = {¢ € X||¢llx < R}. Using Lemma 2.5 we may define a nonlinear map
F : Br — X by F(y) = ¢, where ¢ (-, &) is the solution to (2.42) with
1

v — &2

(2.50)

We shall choose later on R > 0 small. Observe that in Lemma 2.5 the constants C in (2.43)
and & associated to gy = eV, stay bounded and bounded away from zero respectively as
we make R smaller, since e =R < ¢¥ < R for ¢ € Bg.

Let us show that if ¢ is small then one can choose R small and A > 0 small so that
F : B — Bg. Indeed, let v € Br and ¢ = F (). Then by (2.43), (2.47) we have

Ipll2.06:8 < Cllce” —1—y) 4 |x — &1 F(x. Ollo.wog: s + ED

g=cle” —1—1//)+|x—§|2f(x,t), gw=eV., h=—log

(2.51)

R
< CR? + e + D) <

provided R is first taken small enough and then |¢| and || < &g are chosen small. Similarly,
recalling (2.40),

1De@ll2,0,5—1.¢: B
< C(lete” = 1—y) + [x — 2 F(x, Ol0.0,0.6:8
+lleDgte” —1—y) + Dg(lx — £12 f(x. ) lo.ai—-16:8 + 1)
§C<R2+I+R—2+1) <X
A 20

if we choose now A small enough.
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Next we show that F is a contraction on Bgr. Let i, 2 € Bg and ¢¢ = F(3/¢),
£=1,2. Let MEU, i=0,..., N be the constants in (2.42) associated with vr¢. By (2.43)
and repeating the calculation in (2.51)

N 7
>’ < R (2.52)
£

Let ¢ = ¢1 — ¢o. Then ¢ satisfies

v Vi — V2] =y
c e 1 e 2
—A¢—L,¢—.72¢:c< — 5 T %3 )
lx —&| lx —&| lx —&|
Y1 _ o2 1
)¢ ¢ (1 @,_¢
g (g — 1y )
N
X 2
+3 !~ ie B
i=1
¢ =0 ondB.
(2.53)
Apply (2.43) with go = % h=0and
i — V21— Y1 _ o2
4 1 4 2 (2)6’ 4
gi=c - +py . (2.54)
<IW%P x — |2 ) O —gP
to conclude that
N
1 2
Ipll2aoe + Y lis” — 1| < Cliglo.ao- (2.55)
i=0

Using (2.52), we have in particular that |/1(()2)| < R and it follows from (2.54) and (2.55)
that

l¢1 — d2ll2.0.06 < CR|Y1 — ¥2ll2.0.0.- (2.56)
Thanks to (2.46) we also have the bound
1De (b1 — d)ll1ai-1.6:8 < C(le” — Y1 — ("' — ¥2)[l0.0.0.2:8
+ 1D (e?t — 1 — "' — P2 0.0 5-1.:B)

< CR|Y1 — V22,008
+ CRIIDg (1 — ¥2)llo,,5-1.6:B- (2.57)

Combining (2.56), (2.57) we obtain
| F (1) — F)lx < CRIIY1 — ¥2llx.

This shows that F is a contraction if R is taken small enough.
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Case N = 4. In this case (2.35) fails for v = 0 and estimates like (2.45) or (2.46) may
not hold. So we work with the Banach space X of functions ¢ (x, &) which are twice
continuously differentiable with respect to x and continuous with respect to & for x # &,
for which the norm

I¢llx = sup @ E)2,a.0e:B

56350

is finite. Working as in the previous case, we easily obtain that F is a contraction on some
ball Bg of X. O

PROOF OF THEOREM 1.11. We define the map (€. ¢) — ¢ (&, ¢) as the small solution to
(2.48) constructed in Lemma 2.7 for ¢, & small. We need to show that for ¢ small enough
there is a choice of & such that u; =0 fori =1, ..., N.Let

Vi &) = Wi jx —&mix —&), j=0,....N, (2.58)

where 11 € C*(R) is a cut-off function such that0 < | <1,

(2.59)

mr)y=0 forr <
ni(ry=1 forr

<1
— 8
- 1
Eay

Multiplication of (2.48) by {/\] (x; &) and integration in B gives

/(—AVj(x:S)—Ler(x:E) x §|2V]()‘ 5))¢
B
L aVid) [ 0o
1 ! —V;
+/g,B ©8 x —&12  9n B n o8

= (¢ — 1— $)Vi(x: §)+uo/ Vix: €)
/B|x—s|2 ’ |x s|2 ’
+/ f(x,rﬁj(x:swzui/ Vie Vi 6).
B = B
When & = 0 the matrix A = A(&) defined by
Al-,j(g)zf VieVix; &) fori,j=1...N
B

is diagonal and invertible and by continuity it is still invertible for small &. Thus, we see
that u; =0fori =1,..., N if and only if

Hj(¢,1)=0, Vj=1,...N, (2.60)
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where, given j =1, ..., N,

Hij¢. 1) = / X |2(e —1—¢)V]()c EH-MQ/ X 5|2Vj(x:§)

. ~ 1 E)V-(x,é)
C (X 1 /
—i—/ fx.nOVix: &) — / 0g TV

/ —V]()c £) — /(—Avj(xzs)—L,Vj(xzs)
B

V (x: S)) ¢.
It SIZ
If this holds, then pi(&.¢) = -+ = un(&, 1) = O and ¢ (&, ) is the desired solution to
(1.25) (with p in (1.25) equal to po(&, 1)).

Observe that

d 1V é)
— log 3
kL Jon lx —&| n £=0

3V (x: 0) 13 Vi 6
=2 xp———+ 5
9B an aB |JL —E23g  on le=o

aV;(x:0)
=2 Xp——. (2.61)
9B an
Forj=1,..., N we have Wy ;(x) = (|x|” o _ x| ™% )(pj(ﬁ) for x € 3B, and hence
IWy _ 7—0(4.'
Tt () = (¢ — o pj(x) = T fl/ﬂx].

Case N > 5. By Lemma 2.7, ¢ (-, 5) is differentiable with respect to £. We may then
compute the derivatives of the other terms of H;. For instance

8/ € _?—1 ¢)V-(x~s)‘ —0
3 Jp Ix — &2 R PP

because the expression above is quadratic in ¢ and the computation can be justified using
estimate (2.49).
Similarly

i [ / 5 s>} 0
—|ro | ——> Vil =0.
0&x Blx—¢£P2"’ £=0

Finally, using that ¢|s¢=o = 0 and integration by parts, we find

9 U a¢A /( AV — L, V; — V)qﬁ}
o5 Lp, 0 T ), il £0.1=0

/ aV; o¢ < R aqy)A
=] 2L —--/(-a—--— V.
o On &g B 0&  |x|° 9&

(2.62)
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But when & = 0, ag satisfies
3 . g 1 N ou
_Aa_(ﬁ_.iza(ﬁ 8“0 2 Zaul .0 in B
& [Po& 9 || & (2.6
ad
_¢ = 2xx on dB
9k
sinccaté = 0,¢ =0and u; = 0for0 < i < N. By the conditions (2.11) we find
%0 — 0 and
£
8Vvll
ad X
LR VE O (2.64)

3 f 3 VioWy;
The integral above is zero whenever i £ k and thus, using (2.63), (2.64) in (2.62) we obtain

9 I~ ~ ~ o~
_|:/ —Vj—/ <_Avj_Lij_.—2Vj)¢i|
0&k [ Jap, On B |x| £=0,1=0

oWy

AV, X —~

:2/ Vi, faB T /Vk,ijZO
dv fB VioWik

thanks to (2.59). This and (2.61) imply that the matrix ( =200, 0)) is invertible.

We may then apply the Implicit Function Theorem, to conclude that there exists a
differentiable curve + — &(f) defined for |¢]| small, such that (2.60) holds for & = &(1).
Letting v(x) = log m +¢(x, &) forx € Band u(v) = v(v + t(»)) for vy € Qr,
we conclude that « is the desired solution of (1.22).

Case N = 4. We use the Brouwer Fixed Point Theorem as follows. Define H =

1 W
B(£)=(By,..., B ith Bj&)= [ 1 —s
&) = (B ~)  with  B;(§) / 2 TTER an
By (2.61), B is differentiable and D B(0) is invertible. (2.60) is then equivalent to

£ =G&),
where
G(&) = DB L (DBO)E — H(E.1)).

To apply the Brouwer Fixed Point Theorem it suffices to prove that for ¢, p small, G is a
continuous function of § and G : B, — B,. The following two lemmas are proved in
[43].

LEMMA 2.8. G is continuous for t, & small.

LEMMA 2.9. If p > O and |t| are small enough then G : B, — B,.



Singular solutions of semi-linear elliptic problems 135
3. Reaction on the boundary
3.1. Characterization and uniqueness of the extremal solution

In this section we are interested in the characterization of the extremal solution presented
in Lemma 1.16. As mentioned in Section 1.4 we shall prove this characterization under
the assumptions that g satisfies (1.35) and (1.36), since the argument is simpler and works
in the case that I'; and I'; form an angle. Later on in Section 3.2 we shall prove the
uniqueness of the extremal solution for the problem with reaction on the boundary, which
is the analog of Theorem 1.8 for g satisfying (1.2) and (1.3), assuming that 3€2 is smooth.

LEMMA 3.1. Suppose that u € HY(Q) is a weak solution to (1.34). Then for any
0 < & < A* (1.34) has a bounded solution.

PROOF. Let u be an energy solution to (1.34). We basically use the truncation method of
[19]. For this the first step is to show that if & : [0, co) — [0, co) is a concave C? function
such that ®" € L then ®(u) is a supersolution, in the sense that

/ Vo(u)Ve > A/ ' )gu)p Yo e cl@).p>0. 3.1
Q r
Indeed, let i = Ag(u) and for m > 0 let

hm = h if |h| <m

hm - hm = —I lf h < —m
hy =m ifh > m.

Let u,, denote the H! solution of

Au,, =0 in
Aty

av

Um =0 onI'y.

=h, onl}y

Note that i, — u in H'(Q) and in L1(I'1). Let ¢ € C1(Q), ¢ > 0. Using &’ (1, )¢ as a
test function we find that

/ Vit (D" () Vit + O (1) Vo) dx — / & () Ve = 0.
Q '

Using that ®” < 0 and ¢ > 0 we have

/ V{(®(u;)) Vo dx > hmq)/(”m Yo dx.
Q I

Now we let m — oo. Since ®’ € L™ it is not difficult to verify that

/V(@(lhﬂ)V(pd}c—)/ V(CI)(lt))V(pd)c
Q Q
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and

/ By @' (1t Yo dx — hCI)/(lt)(p dx
Iy I

since we have convergence a.e. for a subsequence and
1
|hmq)/(”m Yol < |l CD/”OO llellz==|h] € L")

since h = Ag(u) € LY(IM).
Now note that under (1.36) we have g(t) > ct® for some « > 1 and ¢ > 0 and hence

>0
/ KL (3.2)
o &)
Let0 < A < A and define
o) =H 'O\ Huw)/r), (3.3)
where
U d
Hu) = / L (3.4
o &(s)

Then it is possible to verify that ® is a C? concave function with bounded derivative. Since
AD (1) g(u) = A g(P(u)) it follows from (3.1) that v = P (1) satisfies

/ VuVg > )J/ gwp YoeC' (). ¢=0
Q '

and is thus a supersolution to (1.34) with parameter A’. Now, condition (3.2) implies that
v = ®(u) is bounded. By the method of sub and supersolutions (1.34) with parameter A’
has a bounded solution. O

PROOF OF LEMMA 1.16. Under hypothesis (1.36) the argument to prove Lemma 1.16
is similar to that of Theorem 1.9 but simpler because we can immediately say that «* €
H'(£2) and we do not need to rely on a uniqueness result for x* similar to Theorem 1.8.
By Lemma 3.1 A < A*. Now, if A < A* then exactly the same argument as in Theorem 1.9
leads to a contradiction. Thus A = A*. We wish to show that v = u*. Since v is a
supersolution to (1.34) we see that u;, < v forall 0 < A < A* and taking A — A* we
conclude #* < v. For the opposite inequality observe that by density (1.39) holds for
¢ € H'(Q) such that ¢ = 0 on I'. By hypothesis v € H'(2) and since g satisfies (1.36)
we have * € H'(£2). Thus we may choose ¢ = v — u*. We obtain

(g™ — (gw)+ W —v)w—u") <0.
I
But the integrand is nonnegative since v > 1* a.e. and g is convex. This implies
gy =g+ gwyw* —v) ae only.

It follows that g is linear in intervals of the form [¢*(x), v(x)] for a.e. x € I';. The union
of such intervals is an interval of the form [a, co) for some @ > 0. Assuming this property
for a moment we reach a contradiction with (1.36).
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To prove the claim above we follow the argument of Dupaigne and Nedev [51]. First we
show that &*(I") is dense in [essinfr, u*, ess supr, 1*]. Indeed, if not, then there exists
a nontrivial interval (a., b) such that {x € I'y : u*(x) < ag}and {x € I'1 : u*(x) > b}
both have positive measure in I'y. Hence there is a smooth function 7 : R — R with
0 < 5 < 1 such that n(u™), is either O or 1, but such that {x € I'y : n(x*(x)) = 0} and
{x € I'l : n(u*(x)) = 1} have positive measure. Since u* € H'(2) we have n(u*) €
HY() and therefore nu*) € HYZ(T'}) and has values O and 1. But it is known, see for
instance Bourgain et al. [16], that a function in W*?(I"y; Z) with sp > 1 is constant.
This contradiction shows that indeed #*(1"1) is dense in [ess infr, «#*, ess supr, 1©*]. Let
S C TI'y by a compact set with dist(S.I) > 0. By the strong maximum principle
essinfg(v — u*) > 0. It follows that Uycs[u*(x), v(x)] 2 Uyeslur™(x), u™(x) + £] and
hence is an interval [a, 00), because ess supr, ¥ = 400 as u* is unbounded. |

3.2, Weak solutions and uniqueness of the extremal solution

Throughout this section we will assume that g satisfies (1.2) and (1.3).

An important tool in the proofs in [19,87] is Hopf’s lemma, so before adapting their
arguments we need to find a suitable statement that replaces this lemma for problems with
mixed boundary condition. et us recall a form of Hopf’s lemma combined with the strong
maximum principle which will be our model. Let 2 ¢ RY be a bounded smooth domain.
If u satisfies

—Au=h In&
(3.5)
u=0 onadQ2
with i € L*=(Q), h > 0, h Z 0 then there exists ¢; > 0 such that
c18 <u in$, (3.6)

where
S§(x) =dist(x, 082).

The bound is sharp in the sense that # < ¢»8 for some ¢y > 0 by Schauder’s estimates. The
constant c; in the lower bound of (3.6) above can be made more precise in its dependence
onh

cS(x)(/ 811) <u(x) Vxef,
Q

where ¢ > 0 depends only on 2. This estimate was proved by Morel and Oswald
(unpublished) and can also be found in [18].
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Let us consider the following linear problem with mixed boundary condition

Au=h; inQ

ad

X —hy only 3.7
av

=0 onl>,

where A1, hy are smooth functions defined on 2 and I'y respectively. Here I'y, I'; is a
partition of 3€2 into surfaces separated by a smooth interface. More precisely I'y, I'y C 922
are smooth N — 1-dimensional manifolds with a common boundary I'y N ", = I which is
a smooth N — 2-dimensional manifold.

We shall define next a function which will play the role of § for (3.5). The definition is
motivated by the fact that the function

1
v=TIm(iz"? = —\//x2+v2 —x. I=x4iy
V2 ’ ’

is harmonic in the upper half of the complex plane {z € C| Re(z) > 0}, and satisfies the
mixed boundary condition

9
0, 0)=0 x >0, 8—U(x,0):0 X <0
v

For x in a small fixed neighborhood of 9$2 we write £ for the projection of x on 9£2, that
is, 1 is the point in 2 closest to x. We let v(x) denote the outer unit normal vector to 952 at
X. Given x € 92 in a fixed small neighborhood of 7 we write 7 (x) for the point in 7 with
smallest geodesic distance on 92 to x. Then there exists a neighborhood ¢/ of I in € and
r > 0 such that

xeUd — (I(X),dpx),8x) el x(—r,r)x(0,r) (3.89)

is a diffeomorphism, where d; (x) denotes the signed geodesic distance on 92 from X to
I (x) with the sign such that

dixy<0 ifxerly, dix)y=0 ifx eIy

We define ¢ (x) for x € U as:

Cx) =+ Vs2+12—s, wheret=38(x). s =d(x),

and we extend ¢ to Q2 \ U as a smooth function such that

inf 0 d =0 I\ U.
r111{M§> and ¢ only\

The next result is the analog of (3.6) for (3.5).
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PROPOSITION 3.2. Let h1 € L™(), h1 > 0and hy € L>™(T'1), ho > 0 and assume
h1 #£ 0orhy £ 0. Let u be the solution to (3.7). Then there exist constants c1, ¢z > 0 such
that

c1¢ <u<ct in . (3.9)

PROOF. For convenience we write U4, as the neighborhood of 7 in €2 introduced in (3.8).
We will show, using suitable barriers, that (3.9) holds in I/, for some » > 0 small. Using
then the strong maximum principle and the usual Hopf’s lemma we will establish the
desired inequality in €2.

Recall that ¥ = 8(x) and s = d;(X) are well-defined smooth functions on .. For a
function v(s, t) its Laplacian can be expressed as

v A% 5 | |
—W—l—ﬁ—i—O(t—i-lsl)lD vl + O(1)|Dv|, (3.10)
where O(t + |s|) denotes a function bounded by ¢ + |s| in /., O (1) a bounded function,
|D%v| and |Dv| are the norms of the Hessian and gradient of v respectively. Indeed, let
us consider a smooth change of variables of a neighborhood of xg in 7 onto an open set in
RN=2 thatis ¢ : B,(xo) N I — V < RVN=2. Define the map

Av

Y (x) = (G E)). di(%).8(x) = (z.8.8) € V x (—r. 1) x (0,7) C RY.

We shall write v = (z,s,1), thatis z = (v, ..., YN-—2), § = YN—1, ! = vn. Then
Vi oo vy are local coordinates of a neighborhood of xg, and
1 Kl
Ao =y (veeay). 3.11)
oyl ay!

where g;; = ) is the Euclidean metric tensor in the coordinates vy, ..., VN,

dv; * Jv;
g = det(g; ;) and g isjthe inverse matrix of g;;. By construction of ¥, when t = s = 0
(which corresponds to the interface I) the coefficients g;; are O wheneveri = N — 1, N
or j = N — 1, N, since at / D+ maps the normal vector v = % to the vector ey, the
vector ;‘—S perpendicular to / and tangent to 3€2 to ey—1 and vectors in the tangent space
to I to vectors of R with the last two components equal to 0. Hence if k = N — 1, N or
I =N —1, N we have gk’ = O(t + |s|) and formula (3.10) follows from (3.11).
Let us introduce polar coordinates for s, ¢:

s = rcos(d), t = rsin(f).
As a first term for the subsolution we take
up = rl/2 sin(6 /2).
Then according to (3.10) and since |D2u1| = O(r~/2), |Dui| = O(r~V?) we have

Auy = 02y, (3.12)
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Letl/2 <y <« < 1,b > 0 and define
uy = r(sin(y0) + b6?).
Using (3.10) again we find

Aiy = r®? ((cv2 — ) sin(y0) + «206? + 21)) + 0r*™h

> 2 L 0, (3.13)
for some positive constant ¢. Set
U =uy+u.
By (3.12) and (3.13) there exists 79 > O but small such that
Ay > cr?™® inthe region r < ry

for some ¢ > 0. Let us compute the normal derivative:
au _ du _ 10u
v arl=0 roo
where ¢ > 0, if b is taken sufficiently small.

We use the maximum principle in the region D contained in I4,,,, which in terms of the
polar coordinates is given by

D={r<ryp0<0 <m}.

= r* Ly cos(ym) + 2bm) < —er® L,

O=m

The boundary of D consists of

oD = Mo U M U M>,

where
M ={0<r<rp,0=n}=0dDNT
My={0<r<ry,06=0=3DNTH
Mz={r=rp.0<0 <m}=03DNK.
We have
Ay <0, Au>0 inD
%ZO, %<0 on M;
u=90, u=0 on M,
and

i >cuy on Ms,

for some ¢ > 0. This follows from the standard strong maximum principle and Hopf’s
lemma applied to u, since the distance from M5 to the interface 7/ is strictly positive. It
follows that

u>cy inD.

This yields the lower bound for «.
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To obtain the upper bound for « in (3.9) choose
u=uy—un,
where «, y, b are as before, thatis 1/2 < y < o < 1, b > 0. By (3.12) and (3.13)
AT <—cr® 2+ 00 H+ o007 < —ero? (3.19)

for small r for some positive fixed c. Similarly

ou ou 10w w1 _1
7 - S— 2bm) > cr® ., 3.15
v at lr=0 7 380 lo=r ! (y costy ) +2bm) = cr ( )
where ¢ > 0, if D is taken sufficiently small. Applying the maximum principle in the same
region D as before we find u < Czin D. O
One consequence of (3.9) is that even if Ay, hy are smooth the solution « to (3.7) is
in general not smooth, having at worst a behavior of the form wu(x) ~ dist(x, I y1/2 and

|Vu(x)| ~ dist(x, )~1/2,

We need to define the notion of weak solution to (1.4), and before this, we need to define
what we understand as weak solution to a linear problem. Define the space L 41 (I'1) as the
space of measurable functions /s : I'y — R such that frl |h|¢ < 4+o0. We define the class
of test functions 7 as the collection of ¢ € C2(2) N C(K) such that ¢ = 0 on 'y, Ag
can be extended to a continuous function in Q, for any x € a8\ I there is r > 0 such
that Vg admits a continuous extension to € N B, (x) and g—f, which is now well defined in
I"; \ 7 and can be extended as a continuous function on I'y. In particular, given ; € C(2),
n2 € C(I'1) the solution ¢ to

—Ap=mn1 InQ
ad
9y oonly (3.16)
Qv
=0 only,

is in 7. Moreover by Proposition 3.2 we see that ¢ satisfies
lpl < C¢  inf2. (3.17)

LEMMA 3.3. Given h € Lé(Fl) there is a unique 1| € LY(Q), uy € LY(T)) such that

50
/111(—A§0)+/ <h(p—ltz—(p) =0 VoeT. (3.18)
Q ll v

Moreover
il gy + llu2llpyr,y < Cllhlngm), (3.19)

andifh > Othenuy, up > 0.
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PROOF. We deal with uniqueness first. Suppose u; € L1(), up € L1(I'y) satisfy (3.18)
with 4 = 0. Given n € C§°(I'1) let ¢ be the solution to (3.16) with ny = 0, 2 = 1. Then
¢ € T and by (3.18)

/ urn = 0.
I

Hence 17 = 0. Then given n € C§°(£2), setting ¢ as the solution to

—Ap = in £2
{ = (3.20)

=0 onaQ2

we deduce [, u1n = 0. It follows that u; = 0.

We prove (3.19) in the case 1| > 0, u» > 0. For this we may take n; = l and 55 = 1 in
(3.16). Then from (3.18) and (3.17) we see that (3.19) holds.

For the existence part we take h € L é ('), h > 0 and let h,,, = min(Gn, k). Then

Au,, =0 in
ity
ov

Uy =0 onl'y

=h, onl}y

has a solution i, € H'(2) and we have the bound
lttm — ”n”Ll(Q) + |l ttm — l‘n”Ll(r‘l) < |y — hm ”L}(rl)’

Thus u,, — w1 in LY($2) and u,|r, — w2 in LY(I'}). For ¢ € 7 we have
1

dp
U (—Agp) + Un— — hmp = 0.
Q I av

Passing to the limit shows that 11, u2 satisfies condition (3.18). We see also that uy > 0,
1z > 0. For general i we may rewrite it as the difference of two nonnegative functions. [

If i is smooth then we may find a solution # € 7 to

Au=0 1nQ

9

M—h onTy (3.21)
v

u=0 onl»
and u1, up in Lemma 3.3 correspond to  restricted to €2 and I'; respectively.

DEFINITION 3.4. Wesay thatu; € L(Q), up € L1(I') is a weak solution to (3.21) if they
satisfy (3.18). In the sequel, when referring to a weak solution 1 € LY, u0 € LY to
(3.21) we will identify u and u5 as just «, and according to the context we write 1 € L1(£2)
oru e Ll(Fl).
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Weak supersolutions are defined as:

DEFINITION 3.5. We say that # € L'(I'}) is a weak supersolution to (3.21) if

/ ui(—Agp)+ / <h(p — uz&_(p) >0 VoeT,¢>0. (3.22)
Q r av
We consider the problem (1.4), that is,
Au=0 in 2
% =Agu) only (3.23)
u=20 onI'y.

DEFINITION 3.6. We say that # € L'(I'y) is a weak solution to (3.23) if g(u) € Lé(Fl)
and (3.23) holds in the sense of Definition 3.4 with 7 = Ag(u).

Let us remark that only with hypotheses (1.2) and (1.3) the extremal solution «* is a
weak solution in the sense of Definition 3.6. Indeed, the same calculations as in (1.6) and
(1.7) with ¢1 > O the first eigenfunction for

Apr =0 in

d
hadl = A1y only
av

o1 =0 onl’
show that

/ glpr = C
I

with C independent of A. Note that by Proposition 3.2 we have ¢ < Cg; and it follows
that

/ glun)t < C. (3.24)
Iy
To show that u* € L1(R) let x solve
“Ax=1 mQ
ax
— =90 r
a0 onl
x=0 onl,.

By Proposition 3.2 we have x < (¢ and hence, after multiplying (3.23) by x and
integrating by parts we have

/zm:)»/ zmxfC/ glut <C
Q I Iy

by (3.24). Hence u* € LY(Q), gu®) € Lé(Fl) and it is not difficult to verify that it
satisfies Definition 3.6.
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Our next result is an adaptation of a result of Nedev [96] for (1.1), that shows that «*
is bounded in dimensions N < 3 for that problem. It also provides some estimates of the
form g(u*) in L? for some p > 1 in any dimension. The argument is the same as in [96]
except that some of the exponents change slightly.

THEOREM 3.7. Assume g satisfies (1.2) and (1.3). Then if N < 2 we have u* € L™ ().
IfN >3 then gw*) e LP(I') for1 < p < 2(1}/\7_—_12) and u* € LP(T'}) for 1 < p < §=4.

PROOF. We estimate the minimal solution «; for 0 < A < A*. Let
t
AGES / g (s)%ds
0
and multiply (3.23) by v (u;) to obtain

/g’m)2|vm|2 :A/ UL AUTS) (3.25)
Q I

We shall use the notation g (i) = g(u) — g(0). Using the weak stability of u; with g(u,)
we have

A/ g’(lm)g(lm)zifg’(lu)zlvlm|2~
' Q
Hence, by (3.25) we have

/g’(zmg<zm2=/ g(ux)l/f(ux)zf gl (un) + g(0) Yua).
' ' I

I
(3.26)
As in [96] let
t
hm:/ ge)g 0 —gsnds.
0
Then from (3.26) we have
/ glh(uy) < g(0) Y1) (3.27)
I I
But
o -_ (3.28)

t——+0o0 g/([) B

Indeed, for any M > 0, by the convexity of g we have

M M
h(t) z/ g —gsnNds z/ g ) — g M)ds
0 0

= (g(M) — g(ON(g'(t) — g (M)).
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Dividing by ¢’(r) we have
ht
liminfL) > (g(M) — g(0)
t——+00 g’([)
(by (1.3) limy_, 4 () = +00). Since M is arbitrary we deduce (3.28).
On the other hand
(3.29)

f
V) 2/ g ds < g g,
0
Thus, by (3.27), (3.28) and (3.29) we find

/ gludh(uy) <C  and Yiu) < C
I I

with C independent of A and also

/ gug uy) < C.

I

The convexity of ¢ implies g’(f) > g(r)/t, and hence
(3.30)

~ 2
/ gluy) -c
' i),

It follows that g(u,) € LYT'}) since, one needs to control f g(uy,) in the region where

i) > M, and there, g(;’—i)“ > u; if M is large enough. By regularity theory

lwsllrry <€ forl < p < Y=k (any p < c0if N = 2).

TetO < o < 1and
™ B={x el g ux = gu)* ).

A={xel: g < ui

Then A, B cover all I'1. By (3.30)
/ g(ltx)z_a <C
B

and

/?(lu)p S/ftf/“ <C
A A

if p/a < %—:% Choosing ¢ = 22(%:_%) we see that

2N-1)
forl < p < Sx=%

g e, <C

Repeating this process yields the desired conclusion
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Next we show, following the argument of Brezis, Cazenave, Martel and Ramiandrisoa,
that there are no weak solutions for A > A*.

THEOREM 3.8, Assume g satisfies (1.2) and (1.3). Then, for » > A*, problem (3.23) has
no weak solutions.

For the proof we need the following:

LEMMA39. Leth € Lé(Fl) andu € LY(T') be weak solutions of (32D). Let®: R — R

be a C? concave function with &' € L™ and ®(0) = 0. Then ®(u) is a weak supersolution
fo (3.21) with h replaced by ®'(u)h.

PROOF. Form > Oleth,, = hif |h| <m, hy, = —mifth < —m and h,, = m it h > m,
and let u,, denote the H! solution of (3.21) with A replaced by h,,. Note that u,, — u in
LY () andin LY(I";) by (3.19). Let ¢ € T, ¢ > 0. Using ®'(11,,)¢ as a test function we
find that

/ Vit (D ) Vit + O (um) Vo) dx — / & (upm)Yme = 0.
Q '

Using that ®” < 0 and ¢ > 0 we have

/ V(P (um ) Vo dx — h® () dx >0 (3.31)
Q Iy

and integrating by parts
dp ;
Pup)(—Ap) + Pum)— — hm @ (1) = 0.
Q I av

Now we let m — 00. We have

/|<I><u,,,>—c1><u>||Aw|dxsnAwn%ncb’u%/ it — 4] dx — 0
Q Q

ad
_(pH ”CD/”OO/ [ty —u|ldx — 0O
o0 '

e
® — P Ll dx <
J s = s[5 a2 |55

and

o @ (14, Jpdx — hCD/(lt)(p dx
I I

since we have convergence a.e. (at least for a subsequence) and
|hmq)/(”m)(/7| = ”CD/”OO“”C € LI(FI)
by the assumption 1 € Lé(Fl). O

LEMMA 3.10. If(3.23) has a weak supersolution w > O then it has a weak solution.
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PROOF. The proof is by the standard iteration method: set g = O and 1z as the solution
to

Aupg =0 in 2
dup
ML rglur) onlg
av
ur+1 =0 on .

The 1, is an increasing sequence bounded above by w which belongs to L' (€2) and L' (I'y),
and g (uy) is increasing, bounded above by g(w) € Lé(Fl). The limit 1 = lim_, 4o U
thus exists and is a weak solution. O

PROOF OF THEOREM 3.8. Assume that (X, 1) is a weak supersolution to (3.23). Let
0 < A’ < X and @ be defined as in (3.3), (3.4). By Lemma 3.9 we see that ®(u) is a
supersolution to (3.23) with parameter A’. Suppose first that g satisfies fooo ds/g(s) <
+00. Then ®(u) is also bounded and hence (3.23) with parameter A’ has a bounded
solution,

Next we consider the case fooo ds/g(s) = 4+co. Asin [19] let ¢ > 0O be small and let
M =(1—-g)A Letv; = ®(u). Then 0 < vy < w. But H is concave, $O

1 — vy

H(u) < H(w)) + (u —v)H'(v1) = H(v)) + .
g(vr)

Recall that by definition of ® and H (3.3), (3.4) we have H(v1) = (1 — &)H (i). Hence

U — v
eHu) <

g(vp)

and therefore

) < C—2— <Cl+u) e LT (3.32)
Hu)

Then by Lemma 3.10 there exists a weak solution #; to (3.23) with parameter (1 — g)A
such that 7 < vy and by (3.32) we have g(u1) € LYT). Thus u; € LP(I'y) for any

p < %—:é (p < oo if N = 2). Repeating this process, we define v = ® (u;) and as before
obtain g(v2) < C(1 +uy1) € LP(I'y) for any p < %—:é (p < oo if N = 2). Then there
is a solution u2 < vy to (3.23) with parameter (1 — )25 and it satisfies glua) € LP(I')
for p < %—:é By induction there is a solution uy to (3.23) with parameter (1 — £)*2 and

satisfying g(ur) € LP(I"}) for any % >1— ﬁ provided 1 — ﬁ > 0. Fork > N we
find ur € L>®(I"1). O

Finally this is the uniqueness result of [87] in the context of problem (3.23).

THEOREM 3.11. Suppose that g satisfies (1.2) and (1.3). Then for & = L*, problem (3.23)
has a unique weak solution.

PROOF. Letu1, up be different solutions to (3.23), and without loss of generality we may
assume that #; = «™* is the minimal one, so that iy > 1 in 2.
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First we show that (3.23) has a strict supersolution v. For this we note that any convex
combination vy = tu1 + (1 — Huy, t € (0, 1) is a supersolution, by the convexity of g.
Suppose vy is still a solution for all 0 < ¢ < 1. Then

gltur(x) + (1 —Nua(x)) = tglur(x)) + (1 —ngluz(x)) ae.only

and for all + € (0,1). Then there is a set £ of full measure in I'; such that
g1 (x)+ (1 — Nuax)) = rglur(x)) + (1 — t)g(ua(x)) holds for t € (0,1) N Q and
x € E. This means g is linear in [i1(x), u2(x)] for a.e. x € I';. The union of the
intervals [u1(x), u2(x)] with x in a set of full measure in ' is an interval. The argument
is the same as in the end of the proof of Lemma 1.16, with the only difference that in
this case, we do not have the information that #; = «* is in H'(£2). But now, thanks
to Theorem 3.7 we know that g(u*) € L¥(I'y) for some p > 1. Then by L? theory
[2,3] we also have Vu* € LP(I'}) for some p > 1 and therefore u* € wlr ),
As in the proof of Lemma 1.16, this is sufficient to guarantee that #*(I";) is dense in
[essinfr, u*, ess supp, «*]. The conclusion from the previous argument is that i, u solve
a problem with a linear g, say g(f) = a + bt. By a bootstrap argument, 1, 12 are bounded
solutions. Recall that by the implicit function theorem the first eigenvalue of the linearized
operator at 1* is zero. Let ¢1 > 0 denote the first eigenfunction of the linearized operator,
that is,

Apr =0 in
ad
ﬂ = )»*b(pl on Fl
av
o1 =0 on Iy,

Since 1* solves (3.23) with g(1) = a + b, multiplying that equation by ¢ and integrating
by parts yields

/ A a + bie :/ Abug;.
I I

Then ¢ = 0 and we reach a contradiction.
We claim that there is some £ > 0 such that

Au=20 in 2

du «

™ =Aguy+e only (3.33)
vV
u=90 onl'

has a weak supersolution. Indeed, there is a strict supersolution v to (3.23). Let V be the
solution of

AV =0 in

— =A%gw) onl}
av

V=0 on I
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and let x solve

Ax=0 in®
9

X1 onry (3.34)
av

x=0 onl,.

By Proposition 3.2 there is a constant e > Osothatv —V > ex. Hencew =V 4+¢ex < v
and

Jw X X
™ =Algwl+e=rgw)+¢
v

and thus w is the desired supersolution.
Let O < &1 < &. Then there exists a bounded supersolution to

Au=10 in 2

au X

= Agu)+e only (3.35)
vV
u=20 on 'y,

To see this, define ¢ : [0, 00) — [0, 00) so that

D(t) d t d
/ 7s:/ @ forall ¥ > 0.
0 A*g(s)y+ &1 o AFgs)+¢

A calculation as in [19] shows that & satisfies the hypothesis of L.emma 3.9. If
f0°° ds/g(s) < 4oco then ® is bounded. ILet w be a supersolution of (3.33). Then
by Lemma 3.9 ®(w) is a bounded supersolution for (3.35). By the method of sub and
supersolutions there is a bounded solution to (3.35).

It f0°° ds/g(s) = 4oco then an iteration with @ as in the proof of Theorem 3.8 still yields
a bounded solution to (3.35). In fact, let

/’ ds
H.(1) = —_—
o Atg(s)+e

and let 0 < &1 < &. Then we may restate the definition of ® as ® = Hg‘l1 o H, or
H. (®(t)) = H.(t) forallt > 0.
Denoting by w the supersolution to (3.33) and v = ® (w) we thus have
H; (v) = He(w). (3.36)

The function H, is concave and v < w, SO

H, (w) — He(v) 1
He) = He®) g v

= (3.37)
w—v Atg(vy+ ¢
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But, thanks to (3.36)

v 1 1
Hé‘ — Hg = Hg - Hé‘ = - d
(w) (v) (V) ) /0 <A*g(s) +e A*g(S)JrE) '

v 1
> (& —¢€1) ——ds. (3.38)
L /0 (A*g(s))?

From (3.37) and (3.38) we see that

C(l+w)
g) < ——.
A |

The rest of the argument proceeds as in the proof of Theorem 3.8.
Since (3.35) has a bounded supersolution it also has a bounded solution w. Let " > A*
to be chosen later, and set

/
W= )\—*w —&1X,

where y is the solution of (3.34). Then observe that

W 2
— =MNgw) + —e1 — &1 > Mg(w). (3.39)
av ¥

We now choose A'/1* close to 1, so that

and therefore
w > W. (3.40)

This is possible because w € L™ and therefore w < Cyx for some constant C > 0,
by Proposition 3.2. Then (3.39) combined with (3.40) implies that W is a supersolution of
(3.23) with 1* replaced by 2’. This is in contradiction with 1* being the maximal parameter
for (3.23). O

3.3. Kato's inequality

In this section we will prove
THEOREM 3.12. Let B = B1(0) be the unit ballin RY, N > 3. Then foranv1 < gq < 2

there exists c = c¢(N, q) > 0 such that

2 .
@ 2 oo N
|V¢|22HN/ Ol . Ve e CRERY A B).
/R%B ar¥np x| wha(RENB) 0
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REMARK 3.13. (a) The singular weight |TI| on the right-hand side of (1.43) is optimal,
in the sense that it may not be replaced by ﬁ with ¢ > 1. This can be easily seen by

a—1

choosing ¢ € H 1(Rﬁ ) such that p(x) = |)¢|‘¥Jr T in a neighborhood of the origin.
Moreover, the infimum in (1.44) is not achieved.

(b) In dimension N = 2 the infimum (1.44) is zero.

(¢) Using Stirling’s formula it is possible to verify that

N -3 1
Hy = T+ 0<N) as N — oo. (3.41)

Let us turn our attention to the proof of Theorem 3.12. Following an idea of Brezis
and Vazquez (equation (4.6) on page 453 of [20]) it turns out to be useful to replace ¢ in
(1.43) by v = ¢/w, where w = wy with o = NT_Z as defined in (1.47). Observe that
C(N, NT_Z) = Hy by (3.57) and hence w is harmonic in the half space Rﬁ and satisfies

ow w
— = Hy— ondRY.
av N |x +

PROOF OF THEOREM 3.12. When N > 3, C°@RY \ {0}) is dense in HY(RY). So it
suffices to prove (1.43) for ¢ € Cg* (Rﬁ \ {0}). Fix such a ¢ = 0 and let w be the function
defined by (1.47). Notice that, on supp ¢, w is smooth and bounded from above and from

below by some positive constants. Hence v := £ e Cf° (@) is well defined. Now,
¢ =vw, Vo =vVw 4+ wVv and

|V(p|2 = 112|Vw|2 + u72|Vu|2 + 2vwVoVuw.

Integrating

/ |V(p|2:/ U2|Vw|2+/ u72|Vu|2+2/ vwVoVw
RY Y Y Y

- - -

and by Green’s formula

9
/ U2|Vw|2:/ Uzwﬂ—/ wV (V2 Vw)
RY oRY v SRy

, dw
= v wa— -2 wvVwVv,
N ) N
aRY ! &Y
since w is harmonic in RY . Thus,

du
/ |V(p|2 :/ u72|Vu|2+/ viw—
RY RY oRY av

y
2
ow
:/Nw2|VU|2+/ o (3.42)
K )

N ) )
¥ R+u81
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But by (3. 57) ‘“ (Y = % forx € E)RN and hence,
/ |Ve|? > HN/ v +/ w?|Vu]® Vg e HY(RY). (3.43)
RY RY x| RY

The second term on the right-hand side of the above inequality yields the improvement of
Kato’s inequality when ¢ has support in the unit ball.

Now we assume ¢ € C° (Rﬁ \ {0} N B) and, as before, set v = %. Our aim is to prove
that given 1 < ¢ < 2 there exists C > 0 such that

2g.2 o L
I:= w|Vul* = =|lellyig. (3.44)
RY ¢
In spherical coordinates

1
I:/ rN_I/ wz(r9)|Vu(r9)|2d9dr,
0 sy

where Sfr =8N RN and S1 {x € RN /|x| = 1} is the sphere of radius 1. From (3.56)
we have w(x) > = |x| “ forsome C > Oandallx € BN RN Hence

1
1> —/ r/ |Vu(r6)|2do dr.
Clo Jsf

Let us compute the Sobolev norm of ¢:

1
lole =/ |w|qu:/ rN—I/ Vo (r0)|1d6 dr
W RN 0 st

+

1
= / PNt /+ [Vo(ro) wrd) + Vw () v(ro)|1do dr
0 5]

=G /01,_N_1 /S+ Vo) |2 [w(r0)|? + |[Vuro)|? [v(-0)|1do dr.
Define 1
/ A= 1/ \Vo(r6)|4 [w(r0)|2d6 dr
I —/ N 1/ |Vw(r6)|2|v(r6)|2d6 dr.

Since w(x) < Clx|™ %% we have by Holder’s inequality

l 1 (Nfl)q
I < c/ N=1- / |Vu(r6)|2d6 dr
S

[/ /WU(:Q)IZde;} [/O o1y

(R
13

|

b

(R
\

Q

QL

~

[
12|

Il

a

P~
(R

since g < 2.
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N
Using |Vw(x)| < Clx|™ 2 we estimate /5:

1
b < C/ / PN=1=50 0008 dr .
st Jo

From the classical Hardy inequality

1 p NP pl
/ ry|f(r)|p dr < <_) / ’.y+p|f/(r)|p dr
0 y+1 0

(p=1,y>—1, f e 50, 1)) we deduce

1 N—1 Ng L N-1 Nq
/ T o)) dr SC/ PN Vo) dr
0 0
and therefore

1
b < C/ / PN=1=544 G 0:0)14 dr do.
st Jo

Holder’s inequality yields

! D oveioBagg 2 C
L<C / /r|Vu(r9)|2drd9 / /r 23055 dr do
st Jo st Jo

—CI?, (3.46)

(&1
(&

where we have used g < 2. Gathering (3.45) and (3.46) we conclude that (3.44) holds. [

3.4. Boundedness of the extremal solution in the exponential case

In this section we shall give a proof of Theorem 1.20. We proceed by contradiction,
assuming that ©* is unbounded. A central point in the argument is to obtain some
information of the singularity that ©* should have at the origin. More precisely, we claim
that for any O < o < 1 there exists r > 0 such that

1
w(x) = (1 - a)logﬂ Vel x| <r (3.47)
X
Observe first that for all 0 < A < A* the minimal solution #, is symmetric in the variables
Xlsooes Xy—1 by uniqueness of the minimal solution and the symmetry of 2. Moreover,
using the symmetry and convexity assumptions on £2 combined with the moving-plane
method (see Proposition 5.2 in [32]) we deduce that u; achieves its maximum at the
origin.
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Assume by contradiction that (3.47) is false. Then there exists ¢ > 0 and a sequence
xr € I'y with xr — 0 such that

1
w*(xp) < (1 —o)log—. (3.48)
x|

Let sz = |xx| and choose 0 < Ax < A* such that
1
max u;, = u,;,(0) =log—. (3.49)
Q Sk

Note that Az — A", otherwise u;, would remain bounded. Let

X 1
Uk(x)zw c e Q= —L.
logg Sk

Then 0 < vr < 1, v (0) = 1, Avr = 0 1n £f and

vk 1
A X) = —— SkAk €XPUn (kX))
v log -~
< T — 0.
log W

by (3.49). By elliptic regularity vy — v uniformly on compact sets of @ to a function v
satisfying 0 < v < L,v(0) =1, Av =01in ]Rf, % =0on B]Rf. Extending v evenly to

R¥ we deduce that v = 1. Since |xz| = s we deduce that

Uy (xXK)
log i

which contradicts (3.43).
Now we use (3.47) to obtain a contradiction with the stability property of u*. ILet

Pp(x) = faRﬁ K. w|y|*N¥tedy and ¢ (x) = faRﬁ K(x. y)|_v|2712\]+€ dy. Then,
a¢ 1-Nae M —N+e
— =K C — =K C 2, .
oy = Kolxl oy = Kulxl (3.50)

where the constants Ky, Ky are given by
K¢=)\,Q’N8+O(82) and Ky = Hy + Ole).

Indeed, since 1 and ¢ are harmonic in €2,

/ 9 R
— = —
a0V a v
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Clearly, f, I ‘qﬁ% < C, for some constant C independent of ¢. So

1 ; 1
1\ 1 1
K¢/ IOg <_) _’.Z—N-i-é‘rN—Zdr — )‘*O,N/ _’.Z—N-i-é‘rN—Zdr + O
0 r)r o
A

Now, [ log Lr—1+24r = L 50 we end up with
o 10g4 2

Ky = ho,ne + 0(8 ).
Similarly, since v and w (defined in (1.47)) are harmonic in €2, we have
d d
/ WV [0
a0V a0

As before the boundary terms on I'; are bounded independently of € so

1 1
K rmedr = Hy r=*edr + 0.
4 0 0

Hence,
Multiplying (1.34) by ¢ and integrating by parts twice yields

duty, duy,

/ llx_:)‘/ p—=2»x ¢€M+)‘/ ¢—<)\ pett. (3.51)
a@ v ag OV ry T

Let 5 € C(RY) be such that 7 = 1 in Bg(0), where R > 0 is small and fixed, and = 0
on I['5. Using the stability condition (1.37) with 7 yields

)
x/ e"“/fzif |V(m/f>|2=/ —(W)(m/r)—/WMNWW
FiNBR(0) < o5 0V “
Iy
5/ Wy (3.52)
r

1NBg(0) OV

where the constant C does not depend on ¢ and . Since ¥2 = ¢ on E)Rf combining (3.51)
and (3.52) we obtain

i, — < v+ C
/ 31’ /rmBR(o v

and letting . 7 A* we find

a a
/ w20 - Wy tc
o  Ov NBg(0) OV
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Using (3.50) we atrive at

Ky W x|V < er/ Ix['=N*e 4 ¢
CiNBR(O) 1NBR(0)

and thus

1 H 1
/ Wl < —20)1\7—1—N +0 <—) .
TN BR(0) 3 AO,N &

where wy_1 is the area of the N — 1-dimensional sphere. We rewrite this inequality as

R 1 H 1
/ r Tty dr < Ry Y 1o <—) . (3.53)
0 &% AN &

Leto > 0 and (o) > 0 be such that (3.47) holds for |x| < r(o). Then using (3.47) and
(3.53) we find

ro) 1K 1 H 1
(1—0)/ 1og—r8—1dr5——"’+C=—2—N+0<—). (3.54)
0 r e Ky &% AN e

Integrating

Lo (Lrer 4+ Lroriog Y« LA oL
U-o 82’(0 +8’(U Ogr(a) ~ 2N e/’

Letting £ — 0 yields

Hpy
1-— < —.
( U)_A

0N
As o is arbitrarily small we deduce Hy > Ag n. But
Hy > hoy ifandonlyif N > 10 (3.55

(see [45]). This proves the theorem. |

3.5. Auxiliary computations

PROOF OF LEMMA 1.21. We write x = (', xy) € RY with x’ € R¥=L xy > 0. It
follows from (1.47) and a simple change of variables that

wy (X", XxN) = wyle(x’). xn) for all rotations e € O(N — 1),
and similarly

we (Rx", Rxn) = R™%wy (X', xN). (3.56)
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Differentiating with respect to xy yields

ad ad
Do Ry Raw) = RV 222 00 ).
Ixy dxy
Letx € E)Rf ,x = (x',0)and plug R = |TI| = ﬁ in the previous formula to find
Uy, Jwy S dwy [ X1\
()= — L 0) = x| — —.,0])]).
dv o) dxy - ) = Il dxy \ |x']
Define
9 A
CIN.ay=—-2(2_9 (3.57)
axy \|x'|

and observe that it is independent of x’ € RV 1,
Using (3.56) and the radial symmetry of w in the variables x’, there exists a function
v : [0, 00) — R such that

L o
Wy (x", xn) = 1XYWy <L X—N) = x| % <X—N) . (3.58)

/| x| x|

Writing = |x'|, t = % we have

P = we XL rr), Vi e RYTL X =1
The equation Aw = 0 is equivalent to

(L+ 20" 4+ Qo+ 4 — N)t'() +ala —N+3)o) =0, >0, (3.5)
while (1.48) implies

v(0) = 1.
The initial condition for v’ is related to (3.57)

v'(0) = —C(N, ).

In addition to these initial conditions we remark that w, is a smooth function in Rﬁ and
this together with (3.58) implies that

lim v(#)¢¥ exists. (3.60)
f—00

Using the change of variables ; = it with / the imaginary unit and defining the new
unknown /(z) := v(—iz) equation (3.59) becomes

(1 —29h"(2) — Qo +4 — N)zh' () — ala — N +3)h(z) = 0, (3.61)
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with initial conditions

lim h(t) =1, lim Oh’(it) =iC(N, a). (3.62)

t>0,t—0 t>0,t—

On the other hand (3.60) implies

lim  A@i)e” exists. (3.63)
telR, t— 00

The substitution

=

2(2) = (1 — 25+~ po) (3.64)

transforms equation (3.61) into

2
(1—z9)g"(2) — 228" () + (v(v -2t ) ¢(z) =0, (3.65)

1-232
with

2-N N -4
p=at o v=e (3.66)

The general solution to (3.65) is well known. Indeed, equation (3.65) belongs to the
class of Legendre’s equations. Two linearly independent solutions of (3.65) are given by
the Legendre functions P! (z), Q4 (z) (see [1]), which are defined in C \ {—1, 1} and
analytic in C \ (—oo, 1] (see [1, Formulas 8.1.2 — 8.1.6]). Moreover the limits of P} (z),
Q% () on both sides of (—1, 1) exist and we shall use the notation

Piax+i0) = Tm Pl —l<x<l,

;—x,Im(z)>

. (3.67)
Pt —i0) = lim OPU"‘(:;), —l<x<1,

z—x,Im(z)<

and a similar notation for Q% .
The solution g of (3.65) is therefore given by

(@) =P + 200 (2).

for appropriate constants ¢y, ¢. These constants are determined by the initial conditions
(3.62), which imply:

1 PO+ i0) + 2 Q4 (0 +i0) = 1, (3.68)
d , d . . .
CIEPUH(OJHO)JFCZ;Q@ (04+i0)=iC(N,«). (3.69)

In order to evaluate C(N. «), we also use condition (3.63), which is equivalent to

lim R(cva/"(it) + o Q{'f(it))t%_l exists. (3.70)

t—00, te
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But according to [1, Formulas 8.1.3, 8.1.5]
Plzy~z" as|z| - o
OM(z)y~z77 ! as|z| — oc.
This and (3.64), (3.70) imply that ¢; = 0 and we obtain from (3.68), (3.69)
d Al .
e (0 + i0)
C(N.a)= —id”%i..
Qv (0 + IO)

From the properties and formulas in [1] the following values can be deduced:

FrG+5+3)
'y —54+D
FG+5+1D

QL (0 +i0) = 2\ 2eirm—ivE

% QI (0 + i0) = 21 217 ~1V3

The relations (3.71), (3.72), (3.73) and the values (3.60) yield formula (1.49).

4. A fourth-order variant of the Gelfand problem
4.1. Comparison principles

LEMMA 4.1 (Boggio’s principle, [15]). Ifu € C4(§R) satisfies

Ay >0 in Bg
a
uza—u:0 on dBg
n

then u > 0 in Bg.

LEMMA 4.2. Letu € LY(Bg) and suppose that

/ A’ >0
Br

159

(3.71)

(3.72)

(3.73)

forall p € C*(BRr) such that ¢ = 0in B, ¢lopy, =0 = %IaBR. Then u > 0 in Bg.

PROOF. Let¢ € Cy¥(£2), ¢ = 0 and solve

Alp=¢ in B
ad
@ = @ _ 0 ondBg.
an

By Boggio’s principle ¢ > 0 in Bg and we deduce that fBR u¢ > 0. Since ¢ € Cyo(£2),

¢ > 0is arbitrary we deduce u > 0.

O
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LEMMA 4.3. Ifu € H2(Bg) is radial, A’u > 0in Bg in the weak sense, that is
/ AulAp >0 Vo € C°(Bgr). ¢ =0
Br
and ulypg > 0, %MBR < Othenu > 0in Bg.

PROOF. We only deal with the case R = 1 for simplicity. Solve

A = A%y in By
a1
Uy = 2 =0 onodB;
an

in the sense ;] € HOZ(Bl) ande1 AuiAg = fBl Aulgpforallg € C°(By). Thenuy > 0
in By by Lemma 4.2.

Let up = u — uy so that A%y = 0 in By. Define f = Aup. Then Af = 0in B
and since f is radial we find that f is constant. It follows that up = ar? + b. Using the
boundary conditions we deduce a + b > 0 and a < 0, which imply u > 0. O

Similarly we have

LEMMA 44. Ifu € H2(Bg) and A*u > 0 in By in the weak sense, that is

/ AulAp >0 Vo € C¥(Br).¢ =0
Br

and ulgpy =0, %IaBR <0 thenu > 0in Bg.

The next lemma is a consequence of a decomposition lemma of Moreau [95]. For a
proof see [67] or [68].

LEMMA 4.5. Let u € HOZ(BR). Then there exist unique w,v € HOZ(BR) such that
u=w-+v, w>0 A% <0in Bgr andeR AwAv =0.

PROOF OF LEMMA 1.29. (a) Letu = i1 — u». By Lemma 4.5 there exist w, v € Hoz(BR)
such that ¥ = w + v, w > 0 and AZv < 0. Observe that v < 080 w > 1| — us. By
hypothesis we have

/ Ay —u)Ap < i | ("' —e)p VYo e Ci'(Br). ¢ =0,
Br Bpg
and by density this holds also for w:
(Aw)? = / Ai] —u2)Aw < A (" — " Hyw, 4.1
Bgr Br Br
where the equality holds because [’ 3y AwAv =0. By density we deduce from (1.39)

A/ My? < (Aw)?. 4.2)
Bgr Bgr
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Combining (4.1) and (4.2) we obtain
/ ezqu < (6’"1 _ eug)w’
Bgr Bgr
Since 11 — uz < w the previous inequality implies

0< (e"l —e"2 — "y — up)Hw. 4.3)
Br

Un

But by convexity of the exponential function ¢! — 2 — ¢"1 (1] — up) < 0 and we deduce
from (4.3) that (e*! — €2 — " (1| — uo))w = 0. Recalling that | — 1y < w we deduce
that 11 < u».

(b) We solve for i1 € Hoz(BR) such that

/ AlAp = / A(ur —u)Ap Vo € Cg°(Bg).
Bg Bg

By Lemma 4.3 it follows that it > 11 —uy. Next we apply the decomposition of Lemma 4.5
tou,thatis s = w+ v withw, v € HOZ(BR), w > 0, A%v < 0in Bg and fBR AwAv =0.
Then the argument follows that of Lemma 1.29. O

4.2, Uniqueness of the extremal solution
PROOF OF THEOREM 1.24. Suppose that v € H?(B) satisfies (1.52), (1.53) and v % u*.

Notice that we do not need v to be radial.
The idea of the proof is as follows:

Step 1. The function

= ! (" +v)

o= = v

10 3 I

is a supersolution to the following problem

A%y = A*e" + une* in B

u=a on dB 4.4)
b
ou =b ondB
an

for some 1 = po > 0, where n € Cj°(B), 0 < n < lis a fixed radial cut-off function
such that

nx)y=1 for|x| <4, nx)=0 for|x|> 3.

Step 2. Using a solution to (4.4) we construct, for some A > A*, a supersolution to (1.50).
This provides a solution «; for some A > A*, which is a contradiction.
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Proof of Step 1. Observe that given 0 < R < 1 we must have for some cp = cg(R) > 0
v(x) = u*(x)+co x| <R. (4.5)
To prove this we recall the Green’s function for A% with Dirichlet boundary conditions
A%G(x, v=4§8, xe€B
Gx.v)=0 xedB
G
—(x,v)=0 xe€0B,
an
where 8, is the Dirac mass at v € B. Boggio gave an explicit formula for G (x. y) which

was used in [71] to prove that in dimension N > 5 (the case 1 < N < 4 can be treated
similarly)

(4.6)

dix Zd 2
G(x,y)~|x — _v|4_N min | 1, M
lx — |4

where
dx)=dist(x,dB) =1 — |x]|,

and @ ~ b means that for some constant C > 0 we have C~'a < b < Ca (uniformly for
X,y € B). Formula (4.6) yields

G(x.v) > ed(x)?d(v)? 4.7

for some ¢ > 0 and this in turn implies that for smooth functions v and # such that
b —ii € H}(B)and A2(3 —it) > 0,

NG L 9T — i)
0B \ Onx an

+/BG(x, y)Az(ﬁ —u)dx
> cd()? L(A2~ — A%id (x)* dx.
Using a standard approximation procedure, we conclude that
v(y) — () = cd(y)zx*/B(e“ —")d(x)? dx.

Since v > u*, v # u™ we deduce (4.5).
Letup = (u* + v)/2. Then by Taylor’s theorem

1 1 1
eV = "0 + (v —up)e'o + E(U — up)2eto + E(U —up)eto + ﬂ(u —up)*e®2
4.8)
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for some g < & < v and

. 1
et = "0 (1™ — up)e"t + E(u* — up)reto

1 1
+ 6(”* —up)e"o + ﬂ(”* —up)tet (4.9)
for some u* < & < up. Adding (4.8) and (4.9) yields
1 v ut u 1 12 u
E(e +e )Zeo—i—g(u—u)eo. 4.10)

From (4.5) with R = 3/4 and (4.10) we see that ug = («* + v)/2 is a supersolution of
(4.4) with pg := cp/8.

Proof of Step 2. Let us now show how to obtain a weak supersolution of (1.50) for some
A > A%, Given u > 0, let « denote the minimal solution to (4.4). Define ¢ as the solution
to

A% = une" inB

p1=0 on dB
b
ad =0 on dB,
an

and ¢, be the solution of
A’ =0 inB
¢pr»=a ondB

Y2 _
an

If N > 5 (the case 1 < N < 4 can be treated similarly), relation (4.7) yields

b ondB.

Pr(x) > cld(x)2 forall x € B, 4.1D

for some ¢y > 0. But u is a radial solution of (4.4) and therefore it is smooth in B \ By 4.
Thus

u(x) < Moy +¢, forallx € By, 4.12)

for some M > 0. Therefore, from (4.11) and (4.12), for 1 > A* with & — A* sufficiently
small we have

A ' A ' .
F_l u<¢+ F_l ¢ inB.
Letw = %u —p1— (k—ﬁ —1)¢>. The inequality just stated guarantees that w < . Moreover

A
Azw = re" + )\_/:nell _ Hﬂeu > ae' > re”  in B
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and
Jw
w=ag — =) onoB.
an
Therefore w is a supersolution to (1.50) for 4. By the method of sub and supersolutions a
solution to (1.50) exists for some A > A*, which is a contradiction. O

PROOF OF COROLLARY 1.26. Let u denote the extremal solution of (1.50) with b > —4.
We may also assume that ¢ = 0. If « is smooth, then the result is trivial. So we restrict
to the case where « is singular. By Theorem 1.25 we have in particular that N > 13. If
b = —4 by Theorem 1.24 we know thatif N > 13 then © = —4log |x| so that the desired
conclusion holds. Hence we assume b > —4 in this section.

For p > 0 define

up(r) =ulpr)+4logp,
so that
A%u, =2*e" in By,

Then

d
Uy — W () +4 0.
dp lp=lr=1

Hence, there is § > 0 such that
up(r) < u(r) foralll -6 <r<1,1-8<p=<1.
This implies
up(r) <u(r) foral0<r<1,1-8<p =<1 (4.13)
Otherwise set
ro =sup{0 < r < lu,(r) > u(r)}.
This definition yields
p(ro) = u(ro) and  u),(ro) < u'(ro). (4.14)
Write o = 1u(ro), B = 1’ (ro). Then i satisfies
A%y =e"  on By,
u(ro) = o
u'(ro) = B

while 1, is a supersolution to this problem, since u’p(ro) < B by (4.14). But this problem
does not have a strict supersolution, and we conclude that

u(ry=uy(r) forall0 < r <y,
which in turn implies by standard ODE theory that
u(ry=uy(r) forall0<r <1,

a contradiction. This proves estimate (4.13).
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From (4.13) we see that

% (ry=0 forall0<r <1 4.15)
dp lp=1
But
du, ,
— (FH=u(rir+4 forall0<r <1
dp lp=1

and this together with (4.15) implies

du, 1, 1
—— ()= —(u'(pr)pr +4) >0 forall0<r<—,0<p <1, 4.16)
dp P P

which means that (7} is nondecreasing in p. We wish to show that lim,_.¢ 1, (r) exists
for all 0 < r < 1. For this we shall show

-2 —4 1
w) forall0 <r<—,0<p<l.
0

up(r) = —4log(r) + 10g<

I
4.17)
Set
uo(ry = —4log(r) + log <W)
and suppose that (4.17) is not true for some 0 < p < 1. Let
ri=sup{0 < r < 1/plup(r) < up(r)}.
Observe that A* > 8(N — 2)(N — 4). Otherwise w = —4logr would be a strict

supersolution of the equation satisfied by «, which is not possible by Theorem 1.24. In
particular, r; < 1/p and

up(r)) =uo(ry) and  u),(r1) = ug(ry).
It follows that u«¢ is a supersolution of

A%y =2%e" in By,
u=A on 9B,
du

— =B on 9B, ,
an n

4.18)

with A = u,(r1) and B = u/,(r1). Since u,, is a singular stable solution of (4.18), it is the
extremal solution of the problem by Proposition 1.28. By Theorem 1.24, there is no strict
supersolution of (4.18) and we conclude that 1, = ug first for 0 < r < ry and then for
0 < r < 1/p. This is impossible for p > 0 because 1,(1/p) = 0 and uo(1/p) < 0. This
proves (4.17).
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By (4.16) and (4.17) we see that
v(r) = }ifb up,(r)y existsforall 0 < r < 400,
where the convergence is uniform (even in C* for any k) on compact sets of RV \ {0}.
Moreover v satisfies
A%v=21%" RV \ {0} (4.19)
Then for any r > 0

v(r) = lin})up(r) = lin%)u(pr) + 4log(pr) — 4log(r) = v(l) — 4log(r).
IO—) IO—)

Hence, using equation (4.19) we obtain

S(N —2)(N —4))
) =g,

v(r) = —4logr + log < e

But then
w,(r) =u'(prip — —4, asp — 0,
and therefore, with r = 1
o' (p) > —4 asp— 0. O (4.20)

PROOF OF PROPOSITION 1.28. Letu € H?(B), . > 0 be a weak unbounded solution of
(1.50). If A < A* from Lemma 1.29 we find that ¥ < 1, where i;, is the minimal solution.
This is impossible because i, is smooth and « unbounded. If A = A* then necessarily
1 = u* by Theorem 1.24. O

4.3. A computer-assisted proof for dimensions 13 < N < 31

Throughout this section we assume @ = b = 0. As was mentioned before, the proof of
Theorem 1.27 relies on precise estimates for ™ and A*. We first present some conditions
under which it is possible to find these estimates. ILater we show how to meet such
conditions with a computer-assisted verification.

The first lemma is analogous to LLemma 1.30.

LEMMA 4.6. Suppose there exist ¢ > 0, A > 0 and a radial function u € HYB)
WX (B {0}) such that

A%y <re forall0<r <1

au
lu(D)| <&, |—(1)| <¢
an
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u g L™(B)

)»eS/Be"(pz < /B(A(p)2 forall ¢ € Cg°(B). 4.21)
Then

A< e®.
PROOF. Let

() = er? — 2 (4.22)
so that

Ay =0,  yh=-e  P)=2e
and

Qe <Y(r)<—¢ foral0<r <1
It follows that
A2+ ) < he = re VTV < pe etV

On the boundary we have u(1) + ¥ (1) < 0, t'(1) + ¥’(1) > 0. Thus u + ¢ is a
singular subsolution to the equation with parameter 1e2¢. Moreover, since ¢ < —e& we
have re2¢ et < e et and hence, from (4.21) we see that 1 + 1 is stable for the problem
with parameter Ae%. If Le* < A* then the minimal solution associated with the parameter

%e2¢ would be above u + v, which is impossible because  is singular. O

LEMMA 4.7. Suppose we can find e > 0, » > Oand u € H*(B) N Wf:)’COO(B \ {0} such
that

A%y = e forall0<r <1

lu(1)] <&, <e.

au 1)
an

Then
re T2 < AF

PROOF. Let ¢ be given by (4.22). Then u# — v is a supersolution to the problem with
parameter ie ~%¢. O

The next result is the main tool to guarantee that «* is singular. The proof, as in (1.61),
is based on an upper estimate of ©* by a stable singular subsolution.
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LEMMA 4.8. Suppose there exist eg. ¢ > 0, by > 0 and a radial function u € H2(B)yn

Wf:)’COO(B \ {0)) such that

A%y < (hg +80)e"  forall0<r < 1

A%y > (hg —eg)e"  forall0<r <1

[u(D)] <e,

au ol <
— £
an -

u g L™(B)

,BQ/Be"gaz < /B(Aga)z forall g € C§°(B),

where

(ha + 50)3 9
0= —T——5¢
‘3 ()‘«a - 80)2

Then u* is singular and
(ha — £0)e™> <1 < (ha + £0)e™

PROOF. By Lemmas 4.6 and 4.7 we have (4.29). Let

. .
8 =log <;74-§(;) + 3e,
a T

and define
() = —2r% 128
Fy=—-r .
¢ 4
We claim that
u* <u+¢ inBj.
To prove this, we shall show that for A < A*
Uy <wu4+¢ in Bj.
Indeed, we have

A?p = —82N(N +2)
pry=486 forall0<r <1
ply=8>e, ¢(1)=-8<—¢

and therefore

A%+ @) < (g + 200" + A%0 < (hg + 0)e" = (g +£0)e et

< (hg +e0)e 0"

(4.23)
(4.24)

(4.25)
(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)
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By (4.29) and the choice of §
g+ e0)e™ = (g — g0)e™ < A% (4.33)

To prove (4.31) it suffices to consider % in the interval (1, — g9)e ™ < A < A*. Fix such
A and assume that (4.31) is not true. Write

Uu=u+g
and let
Ry =sup{0 < R < 1|up(R) = u(R)}.

Then 0 < Ry < 1 and u;(R1) = i(R1). Since u’k(l) = 0and #'(1) < 0 we must have
u’k(Rl) < if’(Ry). Then u; is a solution to the problem

A%y = pe" in Bg,
u=u;(Ry) ondBg
au

7
— =u (R on dB
an 1, (R1) R

while, thanks to (4.32) and (4.33), u is a subsolution to the same problem. Moreover i is
stable thanks to (4.27) since, by Lemma 4.6,

A< AF < (g + £0)e® (4.34)
and hence
)\,é’ﬁ < (hg + 80)628628614 < ,306’u~

We deduce & < u; in Bg, which is impossible, since « is singular while u; is smooth.
This establishes (4.30).
From (4.30) and (4.34) we have

* -
Are" < Poefe"
and therefore

fB(A(p)Z _ )»*6’"*(/)2

inf > 0.
peCE(B) [ 0?
This is not possible if «* is a smooth solution. O

For each dimension 13 < N < 31 we construct « satisfying (4.23) to (4.27) of the form

—4logr + log ( forO <r < ry

w(r) forrg <r <1,

8(N-2)(N-4)
A

u(r) = 4.3

where i is explicitly given. Thus u satisfies (4.26) automatically.
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Numerically it is better to work with the change of variables
wi(s) =u(e’)+4s, —-00<s<0
which transforms the equation A%y = re" into

Lw+ 8N —2)N —4)y=xre¥, —oco<s <0,

where
d*w d>w ) d*w
Lw=—F+4+2N—-4)— + (N — 10N + 20)—
w ds4+ ( )ds3 +( + )ds2
dw
—2(N = 2)(N —4)—.
ds
The boundary conditions u#(1) = 0, u’(1) = O then yield
wO)y =0, w0 =4
Regarding the behavior of w as s — —oo observe that
8(N —2)(N —4)
u(ry = —4logr + log <$) forr < rg
if and only if
8(N — 2N —4
w(s) = log SW =2V =4 forall s < logryg.

A
The steps we perform are the following:

(1) We fix x¢ < 0 and using numerical software we follow a branch of solutions to

L+ 8N —2)(N —4) =2re?, xp<s5<0
w0)=0, W)=t
8(N — 2N —4) d*w d3a

wxg)=log——— —x0)=0, ——=xp)=0

(x0 g o ds2 X0 ds3 0
as f increases from O to 4. The numerical solution (w, 1) we are interested in corresponds
to the case + = 4. The five boundary conditions are due to the fact that we are solving a
fourth-order equation with an unknown parameter .

(2) Based on w, A we construct a C* function w which is constant for s < xo and

piecewise polynomial for xo < s < 0. More precisely, we first divide the interval
[x0, 0] into smaller intervals of length #. Then we generate a cubic spline approximation

g1 with floating point coefficients of % From gy we generate a piecewise cubic

polynomial g,, which uses rational coefficients and we integrate it four times to obtain
w, where the constants of integration are such that %(xo) =0,1 < j < 3and

w(Xg) 1S a rational approximation of log(8(N — 2)(N — 4)/A). Thus w is a piecewise
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polynomial function that in each interval is of degree 7 with rational coefficients, and
which is globally C3. We also let A be a rational approximation of . With these choices
note that Lw 4+ 8(N —2)(N —4)— re™ is a small constant (not necessarily zero) for s < xy.

(3) The conditions (4.23) and (4.24) we need to check for « are equivalent to the
following inequalities for w

Lw—+8(N—-2)(N—-4)— h+ene <0, —o0<s<0 (4.36)
Lw+ 8N —-2)N—-4)—(h—¢gp)e? >0, —co<s <0 4.37)

Using a program in Maple we verify that w satisfies (4.36) and (4.37). This is done
evaluating a second-order Taylor approximation of Lw + 8(N — 2)(N —4) — (L 4+ gp)e™
at sufficiently close mesh points. All arithmetic computations are done with rational
numbers, thus obtaining exact results. The exponential function is approximated by a
Taylor polynomial of degree 14 and the difference with the real value is controlled.

(4) We show that the operator A2 — Be", where u(r) = w(logr) — 4logr, satisfies
condition (4.27) for some S > By, where By is given by (4.28).

We refer the interested reader to [44], but we shall justify here that, although Be* is
singular, the operator A2 — Be* has indeed a positive eigenfunction in HOZ(B) with finite
eigenvalue if S is not too large, if N > 13. The reason is that near the origin

C
‘Bell — ,
I

where ¢ is a number close to 8(N —2)}(N —4)8/A. If B is not too large compared to A then
¢ < N*(N — 4)2/16 and hence, using (1.57), A2 — Be" is coercive in HZ(B,,).

The full information on the Maple files and data used can be found at:
http://www .lamfa.u-picardie.fr/dupaigne/
http://www.ime.unicamp.br/ " msm/bilaplace-computations/bilaplace-computations.html
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