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Abstract. We consider the problem:{
∆u+ up + uq = 0 in RN ,
0< u(x)→ 0 as|x| →+∞,

where1 < p < N+2
N−2

< q. We prove that ifq is fixed and we letp approachN+2
N−2

from
below, then this problem has a large number of radial solutions. A similar fact takes place
if one fixesp > N

N−2
and then letsq approachN+2

N−2
. If q is fixed andp gets close enough

to N
N−2

, then no solution exists. 2000 Académie des sciences/Éditions scientifiques et
médicales Elsevier SAS

Solutions positives d’équations elliptiques dansRN avec non-linéarité
super-sous-critique

Résumé. On considère le problème de trouver des solutions de l’équation elliptique:{
∆u+ up + uq = 0 dansRN ,

0<u(x)→ 0 lorsque|x| →+∞,

où 1 < p < N+2
N−2

< q. Si l’on fixeq et p croît en tendant versN+2
N−2

, alors il y a un grand
nombre des solutions radiales. On peut obtenir un résultat analogue si l’on fixep > N

N−2
etq approcheN+2

N−2
. De plus, si on fixeq et on prendp assez proche deN

N−2
, alors il n’existe

pas de solution. 2000 Académie des sciences/Éditions scientifiques et médicales Elsevier
SAS

Version française abrégée

On considère le problème de trouver des solutions de l’equation elliptique semi-linéaire :

Note présentée par Haïm BRÉZIS.
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{
∆u+ up + uq = 0 dansRN ,

0< u(x)→ 0 lorsque|x| →+∞,
(1)

1< p<
N + 2

N − 2
< q. (2)

Dans le casp = q on connaît déjà la relation entre l’exposantN+2
N−2 et l’existence des solutions. Si

p < N+2
N−2 nous n’avons pas des solutions, tandis que sip > N+2

N−2 il existe des solutions radiales. Nous
sommes intéresés à l’existence de solutions dans le cas où les puissances dep etq sont sous- et sur-critiques.
Une solution explicite a été donnée par Lin et Ni dans le cas où (2) est vérifié etq = 2p− 1, mais le cas
général reste encore ouvert.

On a le résultat suivant :

THÈORÉME 1. –
(a) Soitq > N+2

N−2 etk > 1. Alors il existe un nombrepk avecpk < N+2
N−2 tel que sipk < p< N+2

N−2 , alors(1)
a au moinsk solutions.

(b) Soit N
N−2 < p < N+2

N−2 et k > 1. Alors il existe un nombreqk avecpk > N+2
N−2 tel que siqk > q > N+2

N−2 ,
alors (1) a au moinsk solutions.

(c) Soitq > N+2
N−2 . Alors il existe un nombrēp avec N

N−2 < p̄ < N+2
N−2 tel que si1< p < p̄, alors il n’existe

pas de solution de(1)–(2).

Pour la démonstration de ces résultats on utilise un changement de coordonnées qui ramène l’equation
ordinaire des solutions radiales à un système autonome du premier ordre. Les solutions dans ces
coordonnées correspondent aux orbites hétérocliniques entre deux points singuliers du flux associé. Pour la
démonstration, on fait une analyse exhaustive de la géométrie du flux, en faisant une perturbation quand on
prend un exposant critique purp et q est fixé supercritique.

1. Introduction

In this work we consider the problem of finding positive solutions of the following semilinear elliptic
equation inRN : {

∆u+ up + uq = 0 in RN ,

0< u(x)→ 0 as|x| →+∞.
(1.1)

Here∆ denotes the Laplacian operator inRN , N > 3. We also assume that the powersp and q are
respectively sub- and supercritical, namely

1< p<
N + 2

N − 2
< q. (1.2)

It is natural to search for radially symmetric solutionsu= u(|x|) for (1.1), so thatu(r), r = |x|, satisfies
the ordinary differential equation:{

u′′ + N−1
r u′ + up + uq = 0, r > 0,

u′(0) = 0, 0< u(r)→ 0 asr→+∞.
(1.3)

A solution of (1.3) will be called aradial ground stateof (1.1). In the case of a nonlinearity constituted
by a pure power, namelyp = q, the role of the critical exponent in the problem of existence of positive
ground states is well understood. Ifp < N+2

N−2 , no positive solutions exist [3], while ifp= N+2
N−2 all positive

solutions are necessarily radial around some point. At this exponent, as well as forp > N+2
N−2 , radial ground
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states are constituted by a one-parameter family of functions. More precisely, for everyα> 0, the solution
u(r) of the initial value problem (1.3) withp= q, u′(0) = 0, u(0) = α> 0 is a family of ground states.

We also notice that in case (1.2), it follows from a result in [2] that all solutions of (1.1) which decay at a
sufficiently fast rate are necessarily radial around some point; this is however not known forall solutions.

A question raised by W.-M. Ni is the following: are there radial ground states of (1.1) under the
restriction (1.2)? Given the completely different pictures exhibited by purely subcritical and purely
supercritical powers, an answer is not obvious. An interesting example was discovered by Lin and Ni
in [4]. If p andq satisfy (1.2) and additionallyq = 2p− 1, then there is an explicit solution of the form
u(r) =A(B + r2)−1/(p−1), whereA andB are positive constants depending onp andN . The question of
existence of ground states in the general range (1.2) has remained however widely open.

THEOREM 1. –
(a) Let q > N+2

N−2 be fixed. Then, givenk > 1 there exists a numberpk < N+2
N−2 such that ifpk < p < N+2

N−2 ,
then(1.1)has at leastk ground states.

(b) Let q > N+2
N−2 be fixed. Then there is a numberp̄ > N

N−2 such that if1< p < p̄ then there is no radial
ground state of(1.1).

(c) Let N
N−2 < p < N+2

N−2 be fixed. Then there exists a numberqk >
N+2
N−2 such that if N+2

N−2 < q < qk,
then(1.1)has at leastk ground states.

We observe that the nonexistence result (b) is optimal, in the sense that forq = 2p− 1 there are ground
states, andN+2

N−2 = 2 N
N−2 −1. We should also mention that there are (explicit) numbersp∗(N), q∗(N) such

that givenq < q∗(N), respectivelyp > p∗(N), the sequencespk andqk above can be chosen so that for
p= pk, respectivelyq = qk, there are infinitely many ground states. We will not elaborate about this fact in
this Note.

2. Sketch of proofs

The proof of Theorem 1.1 is based on the introduction of the classical Emden–Fowler transformation

x(t) = r
2
q−1 u(r)|r=et (2.1)

which transforms equation (1.3) into the equivalent problem:{
x′′ + αx′ + xq + eγtxp − βx= 0, −∞< t <+∞,
x(t)> 0 for all t, x(t)→ 0 ast→±∞,

(2.2)

where

α=N − 2− 4

q− 1
, β =

2

q− 1

(
N − 2− 2

q− 1

)
, γ = 2

q− p
q− 1

.

By definiteness, we mean herexa = xa+ wherex+ = max{x,0}. Introducing the variablesy = x′ and
z = eγt, the problem becomes equivalent to the autonomous first order system:

x′ = y, y′ =−αy + βx− xq − zxp, z′ = γz, z > 0. (2.3)

Our task is therefore equivalent to finding a solutionx(t) = (x(t), y(t), z(t)) of this system, withx(t)> 0,
z(t)> 0, such thatx(t)→ (0,0,0) ast→−∞, andx(t)→ (0,0,∞) ast→+∞.

We observe that the planez = 0 is invariant under the flow associated to this system. This plane contains
the two singularities of the flowO0 = (0,0,0) andP0 =

(
β1/(p−1),0,0

)
. For the flow restricted to this

plane,O0 is a hyperbolic saddle;P0 is an attractor, either a focus or a node, and they are connected by a
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heteroclinic orbit, precisely a branch of the unstable manifold ofO0 restricted toz = 0. This manifold is
transversal tox= 0. This phase plane analysis (corresponding to the case of a single power) is actually well
known, and observed first by Fowler [1].

Now, for the entire flow, an expanding vertical direction is added, in such a way that from standard
invariant manifold theory,O0 has a two-dimensional unstable manifold,Wu(O0) transversal to thex= 0
andz = 0 planes. Its closure turns out to contain the (one-dimensional) unstable manifold ofP0,Wu(P0).

In order to analyze the behavior of trajectories nearz = +∞ it is convenient to introduce the additional
transformation,

x̃= xz
1
p−1 , ỹ = (y +

γ

p− 1
)z

1
p−1 , z̃ =

1

z
q−1
p−1

.

which makes the system equivalent to

x̃′ = ỹ, ỹ′ = α̃ỹ+ β̃x̃− x̃p − z̃x̃q, z̃′ =−γ̃z̃, z > 0.

with

α̃=
4

p− 1
− (N − 2), β̃ =

2

p− 1

(
N − 2− 2

p− 1

)
, γ̃ = 2

q− p
p− 1

.

This transformation corresponds to using the exponentp instead ofq in the Emden–Fowler transforma-
tion (2.1), which is expected to reflect better the behavior of a ground state at infinity. In fact, the effect
of this transformation is to “blow-up” the “singularity”(0,0,∞) into the planẽz = 0. The system (2.3)
extends up tõz = 0, which remains invariant under the associated flow, with singularities at the points
O∞ = (0,0,0) andP∞ =

(
β̃1/(p−1),0,0

)
. Restricted tõz = 0, O∞ is a hyperbolic saddle andP∞ is a re-

pulsive node or focus. The stable manifold ofO∞ is transversal tõx= 0 and connects this point withP∞.
For the entire flow, a contracting vertical direction is added, so thatO∞ has a two-dimensional stable man-
ifold W s(O∞), transversal to the planes̃x= 0 andz̃ = 0 and whose closure contains the one-dimensional
stable manifold ofP∞,W s(P∞).

A ground state (with fast decay) corresponds precisely to a trajectory (other than thez-axis) which lies
simultaneously onWu(O0) and onW s(O∞). The proof of parts (a) and (c) of the theorem are thus reduced
to establishing that in the situations there described many such trajectories appear.

In order to prove part (a), we fixq and letp= N+2
N−2 . In such a case, it is a consequence of a Pohozaev type

identity, that all trajectories inWu(O∞) which start positive ast→−∞ remain positive up tot= +∞, and
they cannot approachO∞. The same is true for the “singular solution” whose orbit isWu(P0). We observe
that the orbitW s(P∞) is such that its̃x coordinate approaches the constant valueβ̃1/(p−1). Further,P∞
restricted tõz = 0 is a center, namely every orbit close to it is periodic. From these facts, it can be shown
that the trajectoryWu(P0) “winds around”W s(P∞) infinitely many times unless they are identically
equal (in terms of their̃x coordinates, they cross each other transversally an infinite number of times). Let
us assume they do not coincide. The other case can be treated with arguments slightly different to the ones
to follow. Oncep is perturbed down from the critical value, one still sees the trajectory inWu(P0) winding
aroundW s(P∞) an arbitrarily large number of times. For a given numberz0 let us consider the sections
U(z0) =Wu(O0)∩ {z = z0} andS(z0) =W s(O∞)∩ {z = z0}. These sections are constituted by curves
with a fixed point at thez-axis, and with endpoints precisely in the respectivez0-sections ofWu(P0) and
W s(P∞). Finally, it can be proven that if between heightsz = a andz = b the planar vector joining these
endpoints has a total winding number equal tok (which corresponds precisely toWu(P0) andW s(P∞)
winding around each otherk times between those heights), then the curvesS(b) andU(b) must intersect at
leastk− 1 times, thus leading to at leastk− 1 distinct ground states.

The proof of part (c) is analogous. The situation here actually mirrors the one just described. Finally, the
proof of (b) is based on the following fact: forp6 N

N−2 , the singularities at∞, O∞ andP∞ collapse and
become a single repelling singularityO∞ for the flow restricted tõz = 0, thus allowing only thẽz axis as
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a trajectory approaching to it. For givenq all trajectories inWu(O0) which get close toO∞ must leave the
planex = 0 at a certain (uniform) positive distance in the˜ coordinates from thez-axis. This structure is
still preserved if one letsp become slightly bigger thanNN−2 , thus yielding the result.
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