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Abstract. We consider the problem:

AutuP+ui=0 inR"Y,

0<u(z)—0 as|z| — +oo,
wherel < p < 2 < ¢. We prove that ifg is fixed and we lep approachf®2 from
below, then this problem has a large number of radial solutions. A similar fact takes place
if one fixesp > <~ and then letg approachi£2. If ¢ is fixed andp gets close enough

to % then no solution existsl 2000 Académie des sciences/Editions scientifiques et
médicales Elsevier SAS

Solutions positives d’équations elliptiques daR$’ avec non-linéarité
super-sous-critique

Résumé. On considére le probléeme de trouver des solutions de I'équation elliptique

Au+u? +u?=0 dansR”,
0<u(z)—0 lorsque|x| — 4o,

oul < p< X2 < ¢. Silon fixeq etp croit en tendant verg—Z, alors il y a un grand
nombre des solutions radiales. On peut obtenir un résultat analogue si I'op t»(gVNTQ

etq approche%. De plus, si on fixg et on preng assez proche dﬁN_— alors il n'existe

pas de solution 2000 Académie des sciences/Editions scientifiques et médicales Elsevier
SAS

Version francaise abrégée

On considére le probléme de trouver des solutions de I'equation elliptique semi-linéaire :

Note présentée par Haim REzIS.
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{Au—i—up—i—uq:O dansR®, B
0<u(z)—0 lorsquejz| — +oo,
N+2
1<p< <q. 2
pP< 5 <4 (2)
Dans le cagp = ¢ on connait déja la relation entre I’exposq‘,%j\ﬁ et I'existence des solutions. Si
p< %Jfg nous n'avons pas des solutions, tandis qug 3i % il existe des solutions radiales. Nous

sommes intéresés a 'existence de solutions dans le cas ou les puissgneggsint sous- et sur-critiques.
Une solution explicite a été donnée par Lin et Ni dans le cas ou (2) est vérifi& 8p — 1, mais le cas
général reste encore ouvert.

On a le résultat suivant :

THEOREME 1. —
(a) Soitg > X+Z etk > 1. Alors il existe un nombrg;, avecp;, < X2 tel que sip, < p < {2, alors(1)
a au moinsk solutions.
(b) Soit~5 < p < XE2 etk > 1. Alors il existe un nombre, avecp;, > X2 tel que sigy, > g > {2,
alors (1) aau momsk solutions.
(c) Soitg > L2, Alors il existe un nombrg avec~5 < p < 22 tel que sil < p < p, alors il n’existe
pas de solutlon dél)—(2).

Pour la démonstration de ces résultats on utilise un changement de coordonnées qui raméne I'equz
ordinaire des solutions radiales a un systeme autonome du premier ordre. Les solutions dans
coordonnées correspondent aux orbites hétérocliniques entre deux points singuliers du flux associé. Po
démonstration, on fait une analyse exhaustive de la géométrie du flux, en faisant une perturbation quan
prend un exposant critique ppret ¢ est fixé supercritique.

1. Introduction

In this work we consider the problem of finding positive solutions of the following semilinear elliptic
equation inR™V:
A P4ud=0 inRY,
{ u+uP +u (1.1)
0<u(x)—0 as|z| — +oo.

Here A denotes the Laplacian operatord¥, N > 3. We also assume that the powersind ¢ are
respectively sub- and supercritical, namely

N+2
l<p<

N _2 <q. (1.2)

Itis natural to search for radially symmetric solutians: u(|z|) for (1.1), so thatu(r), r = |z|, satisfies
the ordinary differential equation:
{u”+N Lo/ +uP +u? =0, >0, 13)
u'(0)=0, O0<u(r)—0 asr— +oc.

A solution of (1.3) will be called aadial ground stateof (1.1). In the case of a nonlinearity constituted
by a pure power, namely = ¢, the role of the critical exponent in the problem of existence of positive
ground states is well understood plk %Jfg no positive solutions exist [3], while jf = N+2 all positive
solutions are necessarily radial around some point. At this exponent, as wellas t%t— radlal ground
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states are constituted by a one-parameter family of functions. More precisely, forexedythe solution
u(r) of the initial value problem (1.3) with = ¢, v/ (0) =0, «(0) = « > 0 is a family of ground states.

We also notice that in case (1.2), it follows from a result in [2] that all solutions of (1.1) which decay at :
sufficiently fast rate are necessarily radial around some point; this is however not knoalinsmlutions.

A question raised by W.-M. Ni is the following: are there radial ground states of (1.1) under the
restriction (1.2)? Given the completely different pictures exhibited by purely subcritical and purel:
supercritical powers, an answer is not obvious. An interesting example was discovered by Lin and
in [4]. If p andq satisfy (1.2) and additionally = 2p — 1, then there is an explicit solution of the form
u(r) = A(B 4 r?)~1/(»=1) whereA andB are positive constants dependingoand N. The question of
existence of ground states in the general range (1.2) has remained however widely open.

THEOREM 1. —
(a) Letq > £+2 be fixed. Then, giveh> 1 there exists a number, < £+£2 such that ifp, < p < {22,
then(1. 1)has at least ground states.
(b) Letq > N+2 be fixed. Then there is a numher- 1~ such that ifl <p < p then there is no radial
ground state of1.1).
(c) Let i < p < &2 be fixed. Then there exists a numbgr> {42 such that if $22 < ¢ < g,
then(1.1)has at leask ground states.

We observe that the nonexistence result (b) is optimal, in the sense tlgatfap — 1 there are ground
states, ang=2 = 22 — 1. We should also mention that there are (explicit) numpe(s/), ¢* (V) such
that giveng < ¢ (N) respectlvelyp > p*(N), the sequences, andg; above can be chosen so that for
p = pi, respectivelyy = g, there are infinitely many ground states. We will not elaborate about this fact in
this Note.

2. Sketch of proofs

The proof of Theorem 1.1 is based on the introduction of the classical Emden—Fowler transformation
2(t) = rTTu(r)]y—e (2.1)
which transforms equation (1.3) into the equivalent problem:

{x"—i—aw'—i—xq—i—e”txp—ﬂxzo, —00 <t < 400,

(2.2)
xz(t)>0forallt, x(t)— 0ast— +oo,

where

4 2 2 —
a=N-2-—"_ pg=—2 (N_2- 2, ~,=217F
qg—1 q—1 q—1
By definiteness, we mean heré = x4 wherex = max{z,0}. Introducing the variableg = =" and
z = ¢7t, the problem becomes equivalent to the autonomous first order system:

/ /

=y, y=—ay+pPr—al—z2P =~z 220. (2.3)
Our task is therefore equivalent to finding a solutigqn) = (z(t), y(t), z(t)) of this system, withe(¢) > 0,
z(t) > 0, such that(t) — (0,0,0) ast — —oo, andx(t) — (0,0, 00) ast — +oo.
We observe that the plane= 0 is invariant under the flow associated to this system. This plane contains

the two singularities of the flowd, = (0,0,0) and P, = (3'/(*=1),0,0). For the flow restricted to this
plane,Oy is a hyperbolic saddlel) is an attractor, either a focus or a node, and they are connected by
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heteroclinic orbit, precisely a branch of the unstable manifol@gfestricted toz = 0. This manifold is
transversal ta: = 0. This phase plane analysis (corresponding to the case of a single power) is actually we
known, and observed first by Fowler [1].

Now, for the entire flow, an expanding vertical direction is added, in such a way that from standal
invariant manifold theoryQ, has a two-dimensional unstable manifdid}*(O,) transversal to the = 0
andz = 0 planes. Its closure turns out to contain the (one-dimensional) unstable manifejdif (7).

In order to analyze the behavior of trajectories near+cc it is convenient to introduce the additional
transformation,

5 L B (+ ) L B 1
x:xzp—7 = Zp—7 z = =
y=\y -1 zp_*i
which makes the system equivalent to
i =7, §=aj+pi—i" -z, F=-3% 220
with
4 ~ 2 2 —
G=— (N-2), f=—(N—-2--2), 5=2177
p—1 p—1 p—1 p—1

This transformation corresponds to using the expopénstead ofy in the Emden—Fowler transforma-
tion (2.1), which is expected to reflect better the behavior of a ground state at infinity. In fact, the effe
of this transformation is to “blow-up” the “singularity(0, 0, co) into the planez = 0. The system (2.3)
extends up taz = 0, which remains invariant under the associated flow, with singularities at the points
Os = (0,0,0) and P, = (/=1 ,0,0). Restricted to? = 0, O is a hyperbolic saddle ankl,, is a re-
pulsive node or focus. The stable manifold@f, is transversal taé: = 0 and connects this point witR .

For the entire flow, a contracting vertical direction is added, so@hathas a two-dimensional stable man-
ifold W*(O), transversal to the planeés= 0 andz = 0 and whose closure contains the one-dimensional
stable manifold ofP,,, W*(Px).

A ground state (with fast decay) corresponds precisely to a trajectory (other thara#i€) which lies
simultaneously oV *(Og) and onlV* (O, ). The proof of parts (a) and (c) of the theorem are thus reduced
to establishing that in the situations there described many such trajectories appear.

In order to prove part (a), we fixand letp = % In such a case, itis a consequence of a Pohozaev type
identity, that all trajectories ifi" (O, ) which start positive as— —oo remain positive up to = +oo, and
they cannot approadb.,. The same is true for the “singular solution” whose orbitig (P, ). We observe
that the orbitl*(P,,) is such that itst coordinate approaches the constant vallidr—1) . Further, Py,
restricted toz = 0 is a center, namely every orbit close to it is periodic. From these facts, it can be show
that the trajectoryV*(P,) “winds around”W?#(P,) infinitely many times unless they are identically
equal (in terms of theif: coordinates, they cross each other transversally an infinite number of times). Le
us assume they do not coincide. The other case can be treated with arguments slightly different to the ¢
to follow. Oncep is perturbed down from the critical value, one still sees the trajectoily i P, ) winding
aroundW*(P,,) an arbitrarily large number of times. For a given numhbgtet us consider the sections
U(z0) =W"(Op) N{z =z} andS(zp) = W*(Ox) N{z = 20}. These sections are constituted by curves
with a fixed point at the-axis, and with endpoints precisely in the respectiysections ol (FP,) and
W#(Ps). Finally, it can be proven that if between heights: « andz = b the planar vector joining these
endpoints has a total winding number equaktéwvhich corresponds precisely & (Fy) andW*#(P,)
winding around each othértimes between those heights), then the cuSigg andU (b) must intersect at
leastk — 1 times, thus leading to at lealst— 1 distinct ground states.

The proof of part (c) is analogous. The situation here actually mirrors the one just described. Finally, t
proof of (b) is based on the following fact: fer< % the singularities ato, O, and P, collapse and
become a single repelling singularity,, for the flow restricted t@ = 0, thus allowing only the axis as
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a trajectory approaching to it. For giverall trajectories inl¥*(O,) which get close t@., must leave the
planex = 0 at a certain (uniform) positive distance in theoordinates from the-axis. This structure is
still preserved if one lets become slightly bigger thaﬂ%, thus yielding the result.
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