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1 Introduction

In this note we address an open question posed by Bourgain, Brezis and Mironescu
[BBM]. Their initial motivation was the study of the behavior of theW s,p norm
of a functionf , when1 ≤ p < ∞ is fixed ands → 1, 0 < s < 1. A often used
semi-norm inW s,p(Ω) for this range ofs andp, whereΩ ⊂ Rn is a bounded
smooth domain is

|f |pW s,p(Ω) =
∫
Ω

∫
Ω

|f(x) − f(y)|p
|x − y|n+sp

dx dy.

Slightly more general is the problem of finding the limit of expressions of the
type ∫

Ω

∫
Ω

|f(x) − f(y)|p
|x − y|p ρi(x − y) dx dy ,

whereρi is a sequence of radial mollifiers, that is, a sequence of functions such that

ρi ≥ 0, ρi(x) = ρi(|x|),
∫
Rn

ρi = 1 (1)

and

lim
i→∞

∫ ∞

δ

ρi(r)rn−1 dr = 0 for all δ > 0. (2)
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One of the results of Bourgain, Brezis and Mironescu (see [BBM, Theorem 3])
asserts that: iff ∈ W 1,1(Ω) then

lim
i→∞

∫
Ω

∫
Ω

|f(x) − f(y)|
|x − y| ρi(x − y) dx dy = K1,n

∫
Ω

|∇f |, (3)

whereK1,n is a constant depending only onn (see an expression in (4) below).
They also showed [BBM, Theorem 3’] that iff ∈ L1(Ω) thenf ∈ BV(Ω) if and
only if

lim inf
i→∞

∫
Ω

∫
Ω

|f(x) − f(y)|
|x − y| ρi(x − y) dx dy < ∞,

and in this case

C1|f |BV(Ω) ≤ lim inf
i→∞

∫
Ω

∫
Ω

|f(x) − f(y)|
|x − y| ρi(x − y) dx dy

≤ lim sup
i→∞

∫
Ω

∫
Ω

|f(x) − f(y)|
|x − y| ρi(x − y) dx dy ≤ C2|f |BV(Ω),

whereC1 andC2 depend only onΩ. The question raised by Bourgain, Brezis and
Mironescu was if forf ∈ BV(Ω) we still have (3). In this note we give a proof of
this.

Theorem 1 Let Ω ⊂ Rn be open, bounded with a Lipschitz boundary, and let
f ∈ BV(Ω). Consider a sequenceρi satisfying (1) and (2). Then

lim
i→∞

∫
Ω

∫
Ω

|f(x) − f(y)|
|x − y| ρi(x − y) dx dy = K1,n|f |BV(Ω).

For the proof we consider the following measures

µi =
(∫

Ω

|f(x) − f(y)|
|x − y| ρi(x − y) dx

)
dy.

The main observation is the following (which is interesting in its own).

Lemma 2 Assume the sequence(ρi) satisfies (1) and (2) and letf ∈ BV(Ω). Then

µi⇀K1,n|∇f |

weakly in the sense of Radon measures inΩ. This lemma holds ifΩ ⊂ Rn is any
open set (not necessarily bounded or with a smooth boundary).
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2 Notation

The constantK1,n mentioned in the introduction is defined by

K1,n =
∫

Sn−1
|e · w| ds(w), (4)

wheree ∈ Rn is any unit vector. We use the notationx · y for the usual inner
product inRn and|x| is the Euclidean norm inRn. Sn−1 is the unit sphere{x ∈
Rn, |x| = 1 }, andds is the usual surface measure onSn−1.

The semi-norm|f |BV(Ω) is defined by

|f |BV(Ω) = sup
{∫

Ω

f divϕ
∣∣ ϕ ∈ C1

c (Ω,Rn), |ϕ| ≤ 1 in Ω
}

andBV(Ω) is defined as

BV(Ω) = {f ∈ L1(Ω) | |f |BV(Ω) < ∞}.
(see for instance Evans and Gariepy [EG].)

Recall that iff ∈ BV(Ω), ∇f is a vector valued Radon measure onΩ. We
denote its total variation by|∇f | and note that ifU ⊂ Ω is open|∇f |(U) can be
computed by

|∇f |(U) = |f |BV(U) = sup
{∫

Ω

f divϕ
∣∣ ϕ ∈ C1

c (U,Rn), |ϕ| ≤ 1 in U
}
.

We recall also that the Radon-Nikodym derivative

σ =
d∇f

d|∇f |
is a vector valued|∇f |-measurable function and|σ(x)| = 1 |∇f |-a.e. With this
notation the relation∫

Ω

divϕf dx =
∫

Ω

ϕ · d(∇f) =
∫

Ω

ϕ · σ d|∇f |

holds for allϕ ∈ C1
c (Ω,Rn).

Let us mention here a density result (see [EG, Theorem 2, p. 172] for example):
if f ∈ BV(Ω) there is a sequencefj ∈ C∞(Ω) ∩ W 1,1(Ω) such that

fj → f in L1(Ω)

and for anyU ⊂ Ω open
∫

U

|∇fj | dx → |∇f |(U). (5)

In [EG] a sequencefj is constructed with the property that|fj |BV(Ω) → |f |BV(Ω),
but the same sequence satisfies also (5).
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Finally we mention that ifΩ is bounded and has a Lipschitz boundary, there is
an extension operatorE : BV(Ω) → BV(Rn), i.e.E is a bounded linear operator
that satisfiesEf = f a.e inΩ for all f ∈ BV(Ω), with the additional property: if
Uδ is the open set

Uδ = {x ∈ Rn | dist(x, ∂Ω) < δ }
then we can control

|∇(Ef)|(Uδ) ≤ C1|∇f |(U(C2δ) ∩ Ω) (6)

whereC1 > 0, C2 > 0 depend only onΩ. This can be achieved by a standard
reflection across the boundary, so that|∇(Ef)|(∂Ω) = 0 (that is,E doesn’t create
any jump across the boundary ofΩ).

3 Proof of the theorem

The main computation that we need to prove Lemma 2 is the following.

Lemma 3 LetE be a Borel set andR > 0. Let

ER = E +BR(0) = {x+ y |x ∈ E, y ∈ BR(0) }

and suppose thatER ⊂ Ω. Then

∫
E

dµi ≤ K1,n

∫
ER

|∇f | + 2
R

‖f‖L1(Ω)

∫
Rn−BR(0)

ρi. (7)

Proof. We start with the

Casef ∈ C∞(Ω) ∩ W 1,1(Ω). We split

∫
E

dµi = I1 + I2

where

I1 =
∫
E

∫
|x−y|<R

|f(x) − f(y)|
|x − y| ρi(x − y) dx dy

I2 =
∫
E

∫
x∈Ω

|x−y|≥R

|f(x) − f(y)|
|x − y| ρi(x − y) dx dy.

Fory ∈ E and|x − y| < R we have

f(x) − f(y) =
∫ 1

0
∇f(tx+ (1 − t)y) · (x − y) dt
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so

I1 ≤
∫
E

∫
|x−y|<R

∫ 1

0

∣∣∇f(tx+ (1 − t)y) · (x − y)
|x − y|

∣∣ρi(x − y) dt dx dy

=
∫

|h|<R

∫ 1

0

∫
E

∣∣∇f(y + th) · h

|h|
∣∣ dy dt ρi(h) dh

≤
∫

|h|<R

∫
ER

∣∣∇f(z) · h

|h|
∣∣ dz ρi(h) dh

=
∫ R

0

∫
ER

∫
Sn−1

|∇f(z) · w| ds(w) dz rn−1ρi(r) dr

=
∫ R

0

∫
ER

|Sn−1| K1,n |∇f(z)| dz rn−1ρi(r) dr

= K1,n

( ∫
ER

|∇f |
)( ∫

BR(0)
ρi

)

≤ K1,n

∫
ER

|∇f |.

To estimateI2, let us considerf to be extended by 0 outsideΩ. Then

I2 ≤
∫
E

∫
|x−y|≥R

|f(x) − f(y)|
|x − y| ρi(x − y) dxdy

≤ 1
R

∫
|h|≥R

∫
Rn

|f(y + h) − f(y)| dy ρi(h) dh

≤ 2
R

‖f‖L1(Ω)

∫
|h|≥R

ρi(h) dh.

This proves the lemma in the casef ∈ C∞(Ω) ∩ W 1,1(Ω).

Case f ∈ BV(Ω).
There is a sequence(fj) ∈ C∞(Ω) ∩ W 1,1(Ω) such thatfj → f in L1(Ω)

and ∫
U

|∇fj | →
∫

U

|∇f | for all U ⊂ Ω open.

Using (7) withfj and noting thatER is an open set, we conclude that (7) is valid
for f .

Proof of Lemma 2.We divide this proof in several steps.

Step 1.There is a subsequenceij and a Radon measureµ in Ω such that

µij⇀µ.
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Proof. It is enough to show that for all compact setsE ⊂ Ω we have

sup
i

∫
E

dµi < ∞. (8)

For such anE chooseR > 0 small enough so thatER ⊂ Ω. Then (8) follows from
(7).

Step 2.

µ(B) ≤ K1,n|∇f |(B) (9)

for all Borel setsB ⊂ Ω. In particular,µ is absolutely continuous with respect to
|∇f | and therefore we can write

µ(B) =
∫

B

g d|∇f |

whereg is |∇f |-measurable and

g ≤ K1,n |∇f |−a.e. (10)

Proof. Is enough to show that for all compact setsE ⊂ Ω we have

µ(E) ≤ K1,n|∇f |(E). (11)

Let thenE ⊂ Ω be compact andR > 0 small enough so thatE2R ⊂ Ω. Then
observe that

µ(E) ≤ µ(ER)
≤ lim inf

i→∞
µi(ER), and using (7) with E replaced by ER

≤ lim inf
i→∞

K1,n|∇f |(E2R) +
1
R

‖f‖L1(Ω)

∫
Rn−B2R

ρi

= K1,n|∇f |(E2R).

We now letR → 0 and use that sinceE is compact, we have

E =
⋂

R>0

E2R

so that

|∇f |(E2R) ↘ |∇f |(E) as R ↘ 0.

Step 3.

µ = K1,n|∇f | (12)

and the whole initial sequenceµi converges weakly.
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Proof. Here we need two facts proved in [BBM] which we state now: consider
ϕ ∈ C∞

c (Rn) and a unit vectore ∈ Rn. Then for allx ∈ Rn we have

lim
i→∞

∫
(y−x)·e≥0

ϕ(y) − ϕ(x)
|y − x| ρi(y − x) dy =

1
2
K1,n∇ϕ(x) · e (13)

and for anyf ∈ L1(Rn)
∣∣∣∣∣
∫
Rn

∫
(y−x)·e≥0

f(x)
ϕ(y) − ϕ(x)

|y − x| ρi(y − x) dy dx

∣∣∣∣∣

+

∣∣∣∣∣
∫
Rn

∫
(y−x)·e≤0

f(x)
ϕ(y) − ϕ(x)

|y − x| ρi(y − x) dy dx

∣∣∣∣∣

≤
∫
Rn

∫
Rn

|f(x) − f(y)|
|x − y| |ϕ(y)|ρi(x − y) dx dy. (14)

Here the integrals on the left arewell defined becauseϕ is Lipschitz, and the integral
on the right is well defined (but may be infinite for a generalf ∈ L1(Rn).)

Nowwe considerf ∈ BV(Ω), extended by 0 outsideΩ, and takeϕ ∈ C∞
c (Ω),

ϕ ≥ 0. We leti → ∞ in (14). By (13) the left hand side of (14) has limit

K1,n

∣∣∣
∫

Ω

f(x)∇ϕ(x) · e dx
∣∣∣ = K1,n

∣∣∣
∫

Ω

ϕd(∇f · e)
∣∣∣. (15)

On the other hand, for the right hand side of (14) we claim that

lim
i→∞

∫
Rn

∫
Rn

|f(x) − f(y)|
|x − y| ϕ(y)ρi(x − y) dx dy =

∫
Ω

ϕdµ. (16)

Indeed, to prove (16) letR = dist(supp(ϕ), ∂Ω) and note that
∫
Rn

∫
Rn

|f(x) − f(y)|
|x − y| ϕ(y)ρi(x − y) dx dy =

∫
Ω

ϕdµi +
∫
Ω

∫
Rn−Ω

|f(x) − f(y)|
|x − y| ϕ(y)ρi(x − y) dx dy

by the definition of the measuresµi. The second term on the right is bounded by

2
R

‖ϕ‖∞‖f‖L1(Ω)

∫
Rn−BR

ρi → 0 as i → ∞.

Therefore, combining (14), (15) and (16) we find that

K1,n

∣∣ ∫
Ω

ϕd(∇f · e)∣∣ ≤
∫

Ω

ϕdµ
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for all unit vectorse ∈ Rn and allϕ ∈ C∞
c (Ω) with ϕ ≥ 0. This shows that

K1,n∇f · e ≤ µ (17)

(as measures) for all unit vectorse ∈ Rn.
To conclude recall the densities

g =
dµ

d|∇f | , and σ =
d∇f

d|∇f |
and also recall that by the differentiation theorem for Radonmeasures, for|∇f |-a.e.
x ∈ Ω we have

g(x) = lim
R→0

µ(BR(x))
|∇f |(BR(x))

and σ(x) = lim
R→0

∇f(BR(x))
|∇f |(BR(x))

.

Take such anx ∈ Ω. By (17), for anyR > 0 small and unit vectore we have

K1,n
∇f(BR(x)) · e
|∇f |(BR(x))

≤ µ(BR(x))
|∇f |(BR(x))

.

Taking the supremum over all unit vectorse we find

K1,n
|∇f(BR(x))|
|∇f |(BR(x))

≤ µ(BR(x))
|∇f |(BR(x))

and lettingR → 0 we obtain

K1,n|σ(x)| ≤ g(x).

But |σ(x)| = 1 |∇f |-a.e., so this and (10) prove that
µ = K1,n|∇f |.

Finally the compactness of the sequenceµi and the uniqueness of any possible limit
show that the whole sequenceµi converges weakly toK1,n|∇f |.

Proof of Theorem 1.For δ > 0 and small let

Vδ = {x ∈ Ω | dist(x, ∂Ω) > δ }.
Then

∂Vδ = {x ∈ Ω | dist(x, ∂Ω) = δ }
so|∇f |(∂Vδ) = 0 for all but perhaps countably manyδ′s in an interval(0, δ0). For
any suchδ

µi(Vδ) → K1,n|∇f |(Vδ).

To conclude note that|∇f |(Ω − Vδ) → 0 asδ → 0 we only need to control

µi(Ω − Vδ)

uniformly asi → ∞. Considerf̃ = Ef whereE : BV(Ω) → BV(Rn) is an
extension operator with the additional property (6) mentioned in Section 2.
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Now, by (7) applied to the functioñf with E = Ω − Vδ we have

µi(Ω − Vδ) ≤ K1,n|∇f̃ |((Ω − Vδ) +BR

)
+

2
R

‖f̃‖L1(Rn)

∫
Rn−BR

ρi.

Letting i → ∞ we see that

lim sup
i→∞

µi(Ω − Vδ) ≤ K1,n|∇f̃ |((Ω − Vδ) +BR

)

and this holds for anyR > 0. We takeR = δ and use property (6) of the extension
f̃ :

lim sup
i→∞

µi(Ω − Vδ) ≤ K1,nC1|∇f |({ x ∈ Ω | dist(x, ∂Ω) < 2C2δ })

and the right hand side of this inequality has limit 0 asδ → 0. ��
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