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1 Introduction

In this note we address an open question posed by Bourgain, Brezis and Mironescu
[BBM]. Their initial motivation was the study of the behavior of thé*? norm

of a functionf, whenl < p < o is fixed ands — 1,0 < s < 1. A often used
semi-norm inW*?({2) for this range ofs andp, wheref2 ¢ R" is a bounded
smooth domain is

£y _/ dedy.
Q

Ws.p(£2) — ‘.I‘ _ y‘n—o—sp

Slightly more general is the problem of finding the limit of expressions of the

type
// Wpi(fc—y) dzdy ,

0 02

wherep; is a sequence of radial mollifiers, that is, a sequence of functions such that

pz 0 p@=pla [ =1 )
and
lim pi(r)r"~tdr =0 forall§ > 0. (2)
11— 00 6
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One of the results of Bourgain, Brezis and Mironescu (see [BBM, Theorem 3])
asserts that: if € W11(£) then

2 2

17— 00

where K ,, is a constant depending only en(see an expression in (4) below).
They also showed [BBM, Theorem 3" thatffe L'(£2) thenf € BV(£2) if and

only if
lim inf // Wm(m —y)drdy < oo,

1— 00

2 2

and in this case

. [f(x) = f()]
Cilflev(a) < liminf Tm(x —y)dxdy
Z! |z =yl

< limsup// me(gj —y)dzdy < Ca|flpv(a),

i—00
2 02

whereC; andC> depend only orf2. The question raised by Bourgain, Brezis and
Mironescu was if forf € BV ({2) we still have (3). In this note we give a proof of
this.

Theorem 1 Let 2 ¢ R™ be open, bounded with a Lipschitz boundary, and let

f € BV(£2). Consider a sequengg satisfying (1) and (2). Then

i—00

e // Wpl(x —y)dedy = Ky nlflBv(2)-
00

For the proof we consider the following measures

i = (/ﬂ 'f(ﬁjgfy)'m(x—y) dx) dy.

The main observation is the following (which is interesting in its own).

Lemma 2 Assume the sequenge) satisfies (1) and (2) and Igt€ BV ({2). Then
pi— K1,V f]

weakly in the sense of Radon measurefihis lemma holds if2? ¢ R™ is any
open set (not necessarily bounded or with a smooth boundary).
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2 Notation

The constanfs; ,, mentioned in the introduction is defined by

Kip = / e+ w) ds(w), @)
S'H.fl

wheree € R™ is any unit vector. We use the notatien y for the usual inner
product inR™ and|z| is the Euclidean norm ilR". S"~! is the unit spheré = €
R", |z| = 1}, andds is the usual surface measure &t !.

The semi-norm f|gy (o) is defined by

|flBv(2) = SUI){/QfdliVSZJ | € CL,R™), || < 1in Q}
andBV({2) is defined as

BV(2)={f e L) | [flbv(e) < oo}

(see for instance Evans and Gariepy [EG].)

Recall that if f € BV(£2), Vf is a vector valued Radon measure @nWe
denote its total variation byV f| and note that it/ C 2 is open|V f|(U) can be
computed by

|Vf|<U) = |f|BV(U) = sup { Afdlvw ’ Y e Ccl(Ua Rn)v |(P| < lin U}

We recall also that the Radon-Nikodym derivative

__ vy
 dV/]

is a vector valuedV f|-measurable function and(x)| = 1 |V f|-a.e. With this
notation the relation

[ diverde= [ o avp)= [ o-oavs

holds for allp € C!(£2,R™).
Let us mention here a density result (see [EG, Theorem 2, p. 172] for example):
if f € BV(£2)thereis asequencg € C>(£2) N W1(2) such that

fi—=f inL'(R)
and for anyU C {2 open
| IV81de = o510, ©)

In [EG] a sequencg; is constructed with the property thel [sv (o) — |flBv(2)
but the same sequence satisfies also (5).
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Finally we mention that if? is bounded and has a Lipschitz boundary, there is
an extension operatd : BV({2) — BV(R"), i.e. E'is a bounded linear operator
that satisfied f = f a.e inf2 for all f € BV(2), with the additional property: if
Us is the open set

Us={zecR"|dist(z,002) <0}
then we can control
IV(ES)|Us) < CLIVfI(Uic,s) N 12) (6)
whereC; > 0, C5 > 0 depend only orf2. This can be achieved by a standard

reflection across the boundary, so tfatFE f)|(0f2) = 0 (thatis,E doesn't create
any jump across the boundary @Y.

3 Proof of the theorem

The main computation that we need to prove Lemma 2 is the following.

Lemma 3 Let E be a Borel set and > 0. Let
Er=FE+Br(0)={x+y|lz e E, y<c Br(0)}

and suppose thair C 2. Then

2
[aw<tin [ Wi+ R e [ e @
E ERr RnfBR(O)

Proof. We start with the
Casef € C*(2) N W1(£2). We split

/ d/,L1211+I2
JE

where

E/ / |x_y| )|P($*Z/)dﬂﬂdy

|z—y|<R

E

zef?
lz—y|>R

Fory € E and|z — y| < R we have

1
f(@) — fly) = / Vf(tz + (1—t)y) - (x —y) dt
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SO

! @—y, N
I1§/ / /Ony(tx+(1—t)y)- _y"pl(x y) dt dx dy

|z
E |z—y|<R
/ / /|Vf y+th)- |h‘|dydtpz
|h|<R
< / /!Vf W\dzm h) dh
|h|<R ERr
R
:/ //|Vf(z)~w|ds(w)dzr"71pi(r)dr
0 Er Sn—1

R
:/ /|S"_1\ Ky, |Vf(z)|dz r"_lpi(r) dr
0 Fa

= Kl,n(/ER Vf|)(/BR(O) Pi)
< Ki, /E N

To estimatel,, let us conside)f to be extended by 0 outside. Then

I2§/ / Mpi(w—y)dwd@/

|z =yl
E|x y|>R
<u [ [uten - sldy s an
|h|>R R»

A

2
< Ml [ pilh) .
[h[>R

This proves the lemma in the cages C°°(2) N W1 ().

Case f € BV(12).
There is a sequendg;) € C*>(£2) N W1(£2) such thatf; — fin L'(£2)
and

/|ij|—>/|Vf| for all U C {2 open.
U U

Using (7) with f; and noting thaf'r is an open set, we conclude that (7) is valid
for f. O

Proof of Lemma 2We divide this proof in several steps.

Step 1.There is a subsequengeand a Radon measugein (2 such that

fi;— -
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Proof. It is enough to show that for all compact sé&sC {2 we have
sup/ dp; < oo. (8)
% E

For such arE’ chooseR > 0 small enough so thdir C (2. Then (8) follows from

(7).
Step 2.
u(B) < K1,|Vf|(B) ©)

for all Borel setsB C (2. In particular,i: is absolutely continuous with respect to
|V f] and therefore we can write

w(B) = [ gavs]
wherey is |V f|-measurable and
g< Kipn |V f]—a.e. (10)
Proof. Is enough to show that for all compact sétsC 2 we have
u(E) < K1,|V|(E). (11)

Let thenE C {2 be compact and? > 0 small enough so that;r C 2. Then
observe that

w(E) < u(Er)
< liminf p;(Fr), and using (7) with E replaced by Eg
i—00

L. 1
<lminf Ky VF|(Ear) + [l / o
i—00 R R"—Ban
= K1 4|V f|(E2R).

We now letR — 0 and use that sincg' is compact, we have

E= () Ezxr

R>0
so that
IVII(E2r) \(IVFI(E)  as R\0.
Step 3.
w=Kq,|Vf] (12)

and the whole initial sequengg converges weakly.
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Proof. Here we need two facts proved in [BBM] which we state now: consider
v € C*(R™) and a unit vectoe € R™. Then for allz € R™ we have

. — (T 1
Jim / WIJ; — Z( )m(y —2)dy =S K1nVe(z) e (13)
(y—)-e20

and for anyf € L*(R")

f(l‘)Wpi(y —x)dydx

R™ (y—x)-e>0

H [ [ 0Py ayas

R" (y—z)-e<0

< / [ o -y dedy. )
R" R"
Here the integrals on the left are well defined becauisd.ipschitz, and the integral
on the right is well defined (but may be infinite for a genefrat L'(R").)
Now we considelf € BV ({2), extended by 0 outsid@, and takep € C°(£2),
@ > 0. We leti — oo in (14). By (13) the left hand side of (14) has limit

Kl,n

/ f@)Ve(x) ~edm‘ =K,
Q

/god(Vf-e)‘. (15)
(93

On the other hand, for the right hand side of (14) we claim that

1— 00

| @ =S o
lim /R/ W@(i‘/)/h( y) dx dy /Q%Ddll- (16)

Indeed, to prove (16) leR = dist(supp(p), 912) and note that

R" R"

/sodm // |x_y| |<P(y)pi(x—y)dxdy

by the definition of the measures. The second term on the right is bounded by

2 .
Hlelalflie [ g0 wio
R

n_BR

Therefore, combining (14), (15) and (16) we find that

Kl,n|/9sod(Vf~e)<s/deu
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for all unit vectorse € R™ and allp € C2°(£2) with ¢ > 0. This shows that
KinVf-e<p (17)
(as measures) for all unit vectarse R"™.
To conclude recall the densities

dp AV f

= T o = —
9= qvy] AV /]

and also recall that by the differentiation theorem for Radon measuré¥, fpa.e.
x € 2 we have

o) — i (B2(@)

————— 7 an o(x) = lim Vf(BR(x))
B Br) ™ W=

R=0 |V f|(Br(z))
Take such am € 2. By (17), for anyR > 0 small and unit vectoe we have
V/(Br(@)-e _ _p(Br()

IVfI(Br(x)) — [Vf(Br(z))

Taking the supremum over all unit vectersve find

Vi (Br@)| _ _n(Br())

Vf(Br(x)) ~ [VfI(Br(x))

and lettingR — 0 we obtain

Kl,n

1,n

Ky nlo(z)] < g(2).
But|o(x)| = 1|V f|-a.e., so this and (10) prove that
n= Kl,n|vf|

Finally the compactness of the sequepgand the uniqueness of any possible limit
show that the whole sequenggconverges weakly t&; |V f]. 0

Proof of Theorem 1Foré > 0 and small let
Vs ={z € 2| dist(z,002) > § }.

Then
OVs ={x e 2] dist(z,002) =6}

so|V f|(0Vs) = 0 for all but perhaps countably ma#$s in an interval(0, §,). For
any suchy
/Li(‘/:;) — Kl,n|vf|(v:5)

To conclude note tha¥ f|({2 — V5) — 0 asé — 0 we only need to control
pi(£2 = Vs)

uniformly asi — co. Considerf = Ef whereE : BV(£2) — BV(R") is an
extension operator with the additional property (6) mentioned in Section 2.



On an open question about functions of bounded variation 527

Now, by (7) applied to the functiofi with E = 2 — V5 we have

_ 9 .
(2 = Vo) < Ky o V(2= Vo) + Br) + g floey [

R"—-Bpgr

Letting: — oo we see that

lir_nsupm(() —Vs) < K11n|Vf\ ((Q - Vs)+ BR)
1— 00
and this holds for any? > 0. We takeR = ¢ and use property (6) of the extension
I

limsup p;(2 — Vs) < K1,C1|Vf|({ € 2| dist(z, 092) < 2C56 })

1—00

and the right hand side of this inequality has limit ®as> 0. O
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