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Abstract Let B be the unit ball in R
N , N ≥ 3 and n be the exterior unit normal

vector on the boundary. We consider radial solutions to

Δ2u = λ(1 + sign(p)u)p in B, u = 0,
∂u

∂n
= 0 on ∂B

where λ ≥ 0. For positive p we assume 5 ≤ N ≤ 12 and p > N+4
N−4 , or N ≥ 13 and

N+4
N−4 < p < pc, where pc is a constant depending on N . For negative p we assume
4 ≤ N ≤ 12 and p < pc, or N = 3 and p+

c < p < pc, where p+
c is a constant. We

show that there is a unique λS > 0 such that if λ = λS there exists a radial weakly
singular solution. For λ = λS there exist infinitely many regular radial solutions and
the number of radial regular solutions goes to infinity as λ → λS .
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144 J. Dávila et al.

1 Introduction

In their well known work, Joseph and Lundgren [30] gave a complete characterization
of all positive solutions of the problem

−Δu = λg(u) in B, u = 0 on ∂B, (1)

where g(u) = eu or g(u) = (1 + a u)p, ap > 0, B is the unit ball in R
N , and

λ > 0. In particular, they found a remarkable phenomenon for g(u) = eu and N > 2:
either (1) has at most one solution for each λ or there is a value of λ for which infi-
nitely many solutions exists. In the case of a power nonlinearity the same alternative
is valid if N ≥ 3 and p �∈ (1, (N + 2)/(N − 2)]. The multiplicity result of Joseph
and Lundgren, established for radial solutions, is based on earlier work of Barenblatt
for the exponential nonlinearity, who used Emden’s transformation to obtain infinitely
many solutions for one λ in 3 dimensions, see [21]. We recall that all positive smooth
solutions of (1) are radial by the result of Gidas et al. [23].

A general problem formulated by Lions [33, Sect. 4.2 (c)] is whether it is possible
to obtain a description of the solution set of higher order semilinear equations, similar
to those known for (1).

In this paper we study a semilinear equation involving the bilaplacian operator and
a power type nonlinearity:

Δ2u = λ (1 + sign(p)u)p in B, u = 0,
∂u

∂n
= 0 on ∂B (2)

where λ > 0, p ∈ R, p �= 0 and sign(p) = 1 if p > 0, sign(p) = −1 if p < 0.
We also treat Navier boundary conditions. We show that (2) presents a multiplicity
phenomenon of radial solutions similar to the one known for the second order equa-
tion, if p is restricted to be in a region that involves a critical number pc, defined in
(7) below, which was introduced in a recent work by Gazzola and Grunau [20]. We
consider only radial solutions, since all positive smooth solutions of (2) are radial, see
Berchio et al. [6].

A motivation for considering negative powers in (2) stems from a model for the
steady states of a simple micro electromechanical system (MEMS) which has the
general form (see for example [32,37])

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

αΔ2u =
⎛

⎝β

∫

Ω

|∇u|2 dx + γ

⎞

⎠Δu + λ(1 − u)−2 f (x)

(1 + χ
∫

Ω
dx

(1−u)2
)

in Ω

0 < u < 1 in Ω

u = 0, α
∂u

∂n
= 0 on ∂Ω.

We will consider this equation posed in Ω = B with β = γ = χ = 0, α = 1 and
f (x) ≡ 1. Note that in this model only the power p = −2 is relevant, but we shall
work with a larger range of negative powers.
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Multiplicity for the bilaplacian with power nonlinearity 145

Problem (2) for positive powers has been studied in [5,14–16,31] and the case of
negative powers has been treated in [9,11,16,26–28,34]. For both cases it is known that
there exists λ∗ > 0 such that there is a radial classical solution of (2) for 0 < λ < λ∗
and there are no solutions for λ > λ∗. In fact, for 0 < λ < λ∗ there is a pointwise mini-
mal and regular solution uλ. It is also known that the monotone limit u∗ = limλ→λ∗ uλ
belongs to at least L1(B) and is a weak solution, called the extremal solution. For the
proofs see for example [14] for positive powers, where the authors also proved the
stability of the minimal solution, that singular solutions are weakly singular and char-
acterized regular versus singular solutions in terms of the behavior of an autonomous
first order system of ODEs. In [7] they obtained the existence of the threshold λ∗ when
p = −2 and N = 3, but the argument applies to any p < 0 and N ≥ 1. In [15] the
authors proved that if N ≥ 5 and p > N+4

N−4 then there is a singular solution for some
value of λ, and if addition 5 ≤ N ≤ 12 and or N ≥ 13 and p < pc then the extremal
solution is bounded. For boundedness of the extremal solution for negative powers in
[11] the authors obtain for p = −2 the sharp dimensions for which u∗ is regular. See
also [16] where they proved that if N ≤ 4 and p < 0 together with p ≤ (2 − N )/2.

An ingredient in previous arguments, e.g. in [15], is a relation of (2) with entire
solutions to

Δ2U = sign(p)U p, U > 0 in R
N . (3)

In the case of positive p and p < pc the authors in [15] showed that the positive entire
solutions of (3) oscillate infinitely around the explicit singular solution, see also [20]
for positive powers, and [27] in the case N = 3 and p = −2. The stability of the
entire solutions of (3) has been studied in [31], where the author also obtained that for
N ≥ 13 and p ≥ pc the entire solutions are ordered. A similar phenomenon for some
negative p is proved in [28].

Problem (2) has a resemblance with the case of an exponential nonlinearity studied
in [1,2,12], and [13] where we have obtained recently multiplicity results similar to
the ones in this work.

To introduce our results we define the notion of weak solution for (2). If p > 0 we
call u a weak solution of (2) if

⎧
⎪⎨

⎪⎩

u ∈ L1(B), u ≥ 0 a.e., (1 + u)p ∈ L1(B), and
∫

B

uΔ2ϕ = λ

∫

B

(1 + u)pϕ ∀ϕ ∈ C4(B̄), ϕ|∂B = ∇ϕ|∂B = 0. (4)

If p < 0 a weak solution u of (2) is

⎧
⎪⎨

⎪⎩

u ∈ L1(B), 0 ≤ u < 1 a.e., (1 − u)p ∈ L1(B), and
∫

B

uΔ2ϕ = λ

∫

B

(1 − u)pϕ ∀ϕ ∈ C4(B̄), ϕ|∂B = ∇ϕ|∂B = 0. (5)
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146 J. Dávila et al.

If p > 0 a weak solution u to (2) is called singular if u �∈ L∞(B) and regular
otherwise. If p < 0 a weak solution u to (2) is called singular if ‖u‖L∞(B) = 1 and
regular if ‖u‖L∞(B) < 1. By standard regularity theory regular solutions are C∞.
Radial solutions can be only singular at the origin, that is, if u is a radial solution then
u(r) is smooth for r ∈ (0, 1).

For p > 1 a radial singular solution u = u(r) of (2) is called weakly singular if

lim
r→0

r τu(r) exists

where

τ = 4

p − 1
,

while for p < 0 a radial singular solution u = u(r) of (2) is called weakly singular if

lim
r→0

r τ (1 − u(r)) exists.

Ferrero and Grunau [14, Theorem 3] proved that if N ≥ 5 and p > N+4
N−4 then any

radial singular weak solution of (2) is also weakly singular. For negative powers this
is also true (see Sect. 6).

Theorem 1 Assume N ≥ 4 and p < −1, or N = 3 and −3 < p < −1. Then any
radial singular weak solution of (2) is also weakly singular.

1.1 Main results for positive powers

Theorem 2 Assume N ≥ 5 and p > N+4
N−4 . Then there exists a unique λS > 0 such

that (2) with λ = λS admits a radial weakly singular solution and this weakly singular
solution is unique.

Let C denote the solution set associated to (2), that is,

C = {(λ,u) ∈ (0,∞)× C4(B) : u is radial and solves (2)}. (6)

Theorem 3 Assume N ≥ 5 and p > N+4
N−4 . The set C is homeomorphic to R and the

identification can be done through (λ,u) ∈ C → u(0).

The inverse of the above identification can be extended as 0 → (0, 0) and ∞ →
(λS,uS) where uS is the unique weakly singular solution of Theorem 2.

Define

pc = N + 2 −
√

4 + N 2 − 4
√

N 2 + HN

N − 6 −
√

4 + N 2 − 4
√

N 2 + HN

for N ≥ 3 (7)

with

HN = (N (N − 4)/4)2.
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Multiplicity for the bilaplacian with power nonlinearity 147

The constant HN appears as the best constant in the Hardy-Rellich inequality, see [38].
We note that if 3 ≤ N ≤ 12 then pc < 0 and if N ≥ 13 then pc > 0.

The main multiplicity result for positive powers is the following.

Theorem 4 Assume

5 ≤ N ≤ 12 and
N + 4

N − 4
< p < +∞, or N ≥ 13 and

N + 4

N − 4
< p < pc. (8)

Then for λ = λS problem (2) has infinitely many radial smooth solutions. For λ �= λS

there are finitely many radial smooth solutions and their number goes to infinity as
λ → λS.

1.2 Main results for negative powers

Theorem 5 Assume N ≥ 4 and p < −1, or N = 3 and −3 < p < −1. Then there
exists a unique λS > 0 such that (2) with λ = λS admits a radial weakly singular
solution and this weakly singular solution is unique.

Define C as in (6).

Theorem 6 Assume N ≥ 4 and p < −1, or N = 3 and −3 < p < −1. The set C is
homeomorphic to (0, 1)and the identification can be done through (λ,u) ∈ C → u(0).

The inverse of the above identification can be extended as 0 → (0, 0) and 1 →
(λS,uS) where uS is the unique weakly singular solution of Theorem 5.

Define

p+
c = N + 2 +

√

4 + N 2 − 4
√

N 2 + HN

N − 6 +
√

4 + N 2 − 4
√

N 2 + HN

for N ≥ 3, N �= 4. (9)

Theorem 7 Assume

N = 3 and p+
c < p < pc, or 4 ≤ N ≤ 12 and − ∞ < p < pc. (10)

where pc is given in (7). Then for λ = λS problem (2) has infinitely many radial
smooth solutions. For λ �= λS there are finitely many radial smooth solutions and
their number goes to infinity as λ → λS.

We note that if 3 ≤ N ≤ 12 then pc < 0 and if N ≥ 13 then pc > 0.When N = 3,
the range p+

c < p < pc can be written as

−2.626 . . . = −5 +
√

13 − 3
√

17

3 −
√

13 − 3
√

17
< p < −5 −

√
13 − 3

√
17

3 +
√

13 − 3
√

17
= −1.108 . . .

and when N = 4 we have pc = −1.
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1.3 Further results and comments

Concerning Theorems 2 and 5, there is a proof of existence of weakly singular solutions
for positive powers in [15], but uniqueness is not treated.

For positive powers, in [15] the authors showed, using the ideas of [12], that in the
range (8) one has λS < λ∗ and u∗ is regular. In the case p = −2, in [11] they proved
that u∗ is regular if 1 ≤ N ≤ 8 and singular if N ≥ 9. We can actually complete part
of this result for negative powers:

Corollary 1 Assume that p is in the range (10). Then λS < λ∗ and u∗ is regular.

This corollary follows from Theorem 7, since we also prove that under (10) there
are regular radial solutions for λ > λS close to λS . It follows then that λ∗ > λS . If u∗
is singular, then by Theorem 1 it would be weakly singular and this would contradict
the uniqueness part of Theorem 5.

It is natural to ask: if p is the complementary ranges to (8) and (10), more precisely,
if

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

N ≥ 13 and p ≥ pc, or

N = 3 and p ∈ (−3, p+
c ] ∪ [pc,−1), or

5 ≤ N ≤ 12 and pc ≤ p < −1, or

N ≥ 13 and p < −1,

(11)

is u∗ is singular? We know that in some cases this is true, see [11], where they proved
that if p = −2 then u∗ is singular if and only if N ≥ 9, which is consistent with (11).
But surprisingly the answer in part of the range (11) is negative. In fact, in [16] the
authors show that when N = 3 and p ≤ −1/2 then u∗ is regular. This implies that
the curve of solution must bend back at λ∗ and then continues to the weakly singu-
lar solution uS . Numerical computations shown in Fig. 1 suggest that if N = 3 and
p ∈ (−3, p+

c ] ∪ [pc,−1), there is no oscillation as λ → λS and that the number of
solutions is bounded independently of λ and bigger than one in some intervals. This
is notably different to what happens for the Laplacian with power-type nonlinearities,
where it is known that either there is uniqueness of solutions for all λ or there is some
λ with infinitely many solutions, see [30].

It remains an open problem whether u∗ is singular in the range (11), with N ≥ 5
in the case of negative powers. In Fig. 2, we observe from numerical calculations
that u∗ is regular when p = −1.02 and N = 5 or N = 6. We conjecture that for
each p ∈ (pc,−1) there exists a critical dimension Np such that u∗ is singular for
N ≥ Np.

The computations of Figs. 1 and 2 were done for the Navier problem (12) to obtain
solutions with u(0) closer to 1. We found, however, that the Dirichlet problem (2)
produces qualitatively similar pictures.

We complement the previous results with the following property, that relates the
regularity of u∗ to uniqueness of solutions.
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Multiplicity for the bilaplacian with power nonlinearity 149

Fig. 1 Bifurcation diagram of Eq. (12) for negative powers and N = 3. Since oscillations have small
amplitude, we draw in a thicker line the points to the left of λS in the range − log(1 − u(0)) > 4. We
estimate λS as the numerical value of λ at the highest point in each curve. For p = −2, the bifurcation
diagram has the form described by Theorem 9

Fig. 2 Bifurcation diagram of Eq. (12) for p = −1.02 and several dimensions. We draw in a thicker line
the points to the right of λS . We estimate λS as the numerical value of λ at the highest point in each curve.
Here for N = 5 and N = 6 we find non-uniqueness

Proposition 2 Assume

(a) N ≥ 5 and p > N+4
N−4 , or

(b) N ≥ 4 and p < −1, or N = 3 and −3 < p < −1.

Then u∗ is singular if and only if for each λ ∈ (0, λ∗) Eq. (2) has a unique solution.
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150 J. Dávila et al.

For the problem with Navier boundary conditions

{
Δ2u = λ (1 + sign(p)u)p in B

u = Δu = 0 on ∂B
(12)

we have similar results.

Theorem 8 Assume

(a) N ≥ 5 and p > N+4
N−4 , or

(b) N ≥ 4 and p < −1, or N = 3 and −3 < p < −1.

Then there exists a unique λS > 0 such that (12) with λ = λS admits a radial weakly
singular solution and this weakly singular solution is unique.

Theorem 9 Assume (8) for positive p or (10) for negative p. Then (12) with λ = λS

admits infinitely many regular radial solutions. For λ �= λS then (12) has a finite
number of regular radial solutions and the number of radial regular solutions goes to
infinity as λ → λS.

By a change of variables we transform the ODE version of (2) into a reasonable
first order 4 dimensional nonlinear system, treating simultaneously positive and neg-
ative powers. The system has 2 stationary points P1, P2. Some properties of this or
similar systems were studied in [14–16,20,27]. We review this material in Sect. 2. The
existence and uniqueness of a weakly singular solution is related to the properties of
the unstable manifold of P2. This is explained in Sect. 3.

For the multiplicity results we follow the same argument as in [13] for the bila-
placian with exponential nonlinearity. This idea traces back to the work of Bamón,
Flores, del Pino [3] and was subsequently applied also in [17–19]. An important step
consists in finding a heteroclinic connection from P1 to P2. This connection was found
by Gazzola, Grunau in [20] for positive powers and by Guo and Wei [27] in the case
N = 3 and p = −2, based on the analysis of entire solutions. We complete this
analysis for the remaining negative powers in Sect. 4. This extension is not trivial. In
[20,27] the authors introduce a natural energy that decreases along trajectories that
oscillate infinitely many times. However, for many negative exponents this energy
does not seem useful, and we have to find an alternative argument. We find a similar
difficulty in proving Theorem 1, which we do in Sect. 6.

In Sect. 5 we explain how to obtain the connection from the entire solution. This
connection is then useful to establish that in the correct range of powers the unstable
manifold of P1, which gives rise to regular solutions, has a spiral structure around the
unstable manifold of P2, and this yields the multiplicity results, see Sect. 7.

The fact that the solution set is homeomorphic to (0,∞) is based on an idea of
Guo and Wei [27], that asserts that the radial solutions to (2) are uniquely determined
by their value at the origin. We then show that these values actually cover the whole
interval (0,∞) or (0, 1). This is done in Sect. 8, where we complete the proofs of
Theorems 3, 6 and Proposition 2.
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Multiplicity for the bilaplacian with power nonlinearity 151

2 Preliminaries

2.1 Important constants

We define

τ = 4

p − 1
, and K0 = τ(τ + 2)(N − 2 − τ)(N − 4 − τ). (13)

In the sequel we shall work in the following range of p. If p is positive:

N ≥ 5 and p > N+4
N−4 (14)

and p is negative:

N = 3 and −3 < p < −1, or N ≥ 4 and p < −1. (15)

In this range we have

sign(K0) = sign(p) = sign(τ ). (16)

Indeed, even for p > N/(N − 4) and N ≥ 5, we have

τ + 2 > 0, pτ > 0, N − 4 − τ > 0, and N − 2 − τ > 0 (17)

and hence K0 > 0. If p < −1 the inequality τ + 2 > 0 holds and if N = 3, then
N − 4 − τ > 0 for p > −3. Therefore for N = 3 and −3 < p < −1 or N ≥ 4 and
p < −1 we have (17) and hence K0 < 0.

In the sequel we will write

α = sign(p).

and we shall use that α2 = 1 in some of the forthcoming computations.
For some of the arguments it will be convenient to work with the following change

of variables

U =
(

λ

αK0

) 1
p−1

(1 + αu).

Then (2) becomes

⎧
⎪⎨

⎪⎩

Δ2U = K0U p in B

U =
(

λ

αK0

) 1
p−1

and
∂U

∂n
= 0 on ∂B.

(18)
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When (16) holds the equation

Δ2U = K0U p in R
N

has an explicit radial singular solution:

U (r) = r−τ ,

however, this solution does not satisfy the boundary condition for the normal derivative
in (18).

2.2 The Emden-Fowler transformation

With the change of variables

v(t) =
(

λ

αK0

) 1
p−1

eτ t (1 + αu(r)) , r = et (19)

Equation (2) is equivalent to

Lv(t) = K0v(t)
p for all t < 0 (20)

where

L = (∂t − τ + N − 4) (∂t − τ + N − 2) (∂t − τ − 2) (∂t − τ)

with the boundary conditions

v(0) =
(

λ

αK0

) 1
p−1

, v′(0)− τv(0) = 0. (21)

and the behavior at −∞ of regular solutions is given by

lim
t→−∞ v(t)

α = 0, lim
t→−∞(v

′(t)− τv(t)) = 0.

The operator L can also be written in the form

Lv = v(4) + K3v
′′′ + K2v

′′ + K1v
′ + K0v

where K0 is defined in (13) and

⎧
⎪⎨

⎪⎩

K1 = −4τ 3 + (6N − 24)τ 2 + (20N − 2N 2 − 40)τ − 2N 2 + 12N − 16

K2 = 6τ 2 + (24 − 6N )τ − 10N + 20 + N 2

K3 = 2N − 8 − 4τ.

(22)
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Let
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

v1(t) = v(t)α = Cαeατ t (1 + αu(et )
)α

v2(t) = α (∂t − τ) v(t) = Ce(τ+1)t du

dr
(et )

v3(t) = (∂t − τ − 2 + N ) v2(t) = Ce(τ+2)tΔu(et )

v4(t) = (∂t − τ − 2) v3 = Ce(τ+3)t d(Δu)

dr
(et )

(23)

where C = (λ/(αK0))
1

p−1 . Then (20) becomes

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v′
1 = ατv1 + v2v

1−α
1

v′
2 = (τ + 2 − N ) v2 + v3

v′
3 = (τ + 2) v3 + v4

v′
4 = αK0v

αp
1 + (τ − N + 4) v4.

(24)

In the sequel we will consider this system only for solutions such that v1 > 0. How-
ever, it is useful to extend it to be C1 for all values of v1 so that we can linearize around
the origin. We do this by replacing the last equation with

v′
4 = αK0|v1|αp + (τ − N + 4) v4.

Condition (21) is equivalent to

v1(0) =
(

λ

αK0

) 1
p−1

, v2(0) = 0. (25)

The only stationary points of the system (24) are

{
P1 = (0, 0, 0, 0)

P2 = (1,−ατ,−ατ (N − 2 − τ) , α (N − 2 − τ) τ (τ + 2))
(26)

The linearization of (24) around the point P1 is given by Z ′ = M̄ Z where

M̄ =

⎡

⎢
⎢
⎢
⎣

ατ σ 0 0

0 −(N − 2 − τ) 1 0

0 0 2 + τ 1

0 0 0 −(N − 4 − τ)

⎤

⎥
⎥
⎥
⎦

where σ = 1 if α = 1 and σ = 0 if α = −1. The eigenvalues of this matrix are
ατ, 2 + τ,−N + 4 + τ , and −N + 2 + τ . Then, in the range (14) and (15), P1 is a
hyperbolic point with a 2-dimensional unstable manifold W u(P1) and a 2-dimensional
stable manifold W s(P1).
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154 J. Dávila et al.

The linearization of (24) around P2 is given by Z ′ = M Z where

M =

⎡

⎢
⎢
⎣

τ 1 0 0
0 −(N − 2 − τ) 1 0

0 0 τ + 2 1

pK0 0 0 −(N − 4 − τ)

⎤

⎥
⎥
⎦ (27)

The eigenvalues of M are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν1 = τ + 1

2

(
4 − N + √

M1(N )+ M2(N )
)

ν2 = τ + 1

2

(
4 − N − √

M1(N )+ M2(N )
)

ν3 = τ + 1

2

(
4 − N + √

M1(N )− M2(N )
)

ν4 = τ + 1

2

(
4 − N − √

M1(N )− M2(N )
)

(28)

where

M1(N ) = (N − 2)2 + 4, M2(N ) = 4
√

(N − 2)2 + pK0

Note that for N ≥ 5 and p > (N + 4)/(N − 4) we have 0 < τ < (N − 4)/2. If
N = 3 and −3 < p < −1 then −2 < τ < −1 and for N ≥ 4 and p < −1 , we have
−2 < τ < 0. Then, in all these cases

ν2 < 0 < ν1.

It can be directly checked that M1(N )− M2(N ) < 0 is equivalent to pK0 > HN . The
numbers pc and p+

c are such that when p = pc or p = p+
c then

p K0 = HN .

See the appendix Sect. B for the explicit calculation of pc and p+
c . In the range (8) for

positive p or (10) for negative p we have pK0 > HN , and then ν3, ν4 are complex
conjugate with nonzero imaginary part and negative real part. More precisely in the
ranges (8) or (10) we have

ν2 < Re(ν3) = Re(ν4) < 0 < ν1.

On the other hand if

pc < p < +∞ if N ≥ 13 (29)
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Multiplicity for the bilaplacian with power nonlinearity 155

or
⎧
⎪⎨

⎪⎩

−3 < p < p+
c or pc < p < −1 if N = 3,

pc < p < −1 if 5 ≤ N ≤ 12,

p < −1 if N ≥ 13

(30)

hold, then we have 0 < pK0 < HN . Thus in this range all eigenvalues are real and
ν3, ν4 are negative, with

ν2 < ν4 < ν3 < 0 < ν1.

In the range (8) for positive p or (10) for negative p or in the ranges (29) and (30),
P2 is a hyperbolic stationary point with a 1-dimensional unstable manifold W u(P2)

and a 3-dimensional stable manifold W s(P2).
Concerning the eigenvectors of M we have:

Lemma 3 The vector

v(k)=[1, νk −τ, (νk −τ)(νk +N −2−τ), (νk −τ)(νk +N − 2 − τ)(νk − 2 − τ)]
(31)

is eigenvector of M associated to νk , k = 1, . . . , 4. We have that v(1), v(2) are always
real, and v(3), v(4) are complex conjugate if N and p are in the range (8) or (10). Let
us write v(i) = (v

(i)
1 , v

(i)
2 , v

(i)
3 , v

(i)
4 ), i = 1, . . . , 4. If N ≥ 3 and −3 < p < −1, or

N ≥ 4 and p < −1, or N ≥ 5 and p > N+4
N−4 then

v
(1)
1 > 0, v

(1)
2 > 0, v

(1)
3 > 0, v

(1)
4 > 0, (32)

and

v
(2)
1 > 0, v

(2)
2 < 0, v

(2)
3 > 0, v

(2)
4 < 0. (33)

Proof is given by the matrix M defined in (27). Let v(1) = (t1, t2, t3, t4) an eigenvector
for M with eigenvalue ν1. We claim that

t1 = 1 > 0, t2 = ν1 − τ > 0,

t3 = (ν1 + N − 2 − τ)(ν1 − τ) > 0,

t4 = (ν1 − 2 − τ)(ν1 + N − 2 − τ)(ν1 − τ) > 0.

In fact, since ν1 > 0, it is sufficient to prove that ν1 − 2 − τ > 0. This holds if√
M1(N )+ M2(N ) > N and this is equivalent to pK0 > 0. ��
Let V = (v1, . . . , v4). From Theorem 6 in [14] we learn that when N ≥ 5 and

p > N+4
N−4 , u is a regular solution of (2) if and only if

lim
t→−∞ V (t) = P1
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while u is a weakly singular solution if and only if

lim
t→−∞ V (t) = P2.

The same property also holds for negative powers.

Lemma 4 Assume N = 3 and −3 < p < −1, or N ≥ 4 and p < −1. Let u be a
radial weak solution of (2) and V = (v1, . . . , v4) be defined as in (23). Then u is a
regular solution of (2) if and only if

lim
t→−∞ V (t) = P1 (34)

while u is a weakly singular solution if and only if

lim
t→−∞ V (t) = P2. (35)

Proof Directly by definition we have: if u is a regular solution then (34) holds and if
(35) holds then u is weakly singular. To prove the reciprocals of these statements we
use Theorem 1 since we also get from its proof: either u is a regular solution and then
satisfies (34) or satisfies (35) and then it is weakly singular. ��

The proof that (34) implies that u is a regular solution can also be done similarly
as for positive powers, see Theorem 6 in [14].

By a result of Belickiı̆, see [4] or [39, Page 25], we know that the system (24) is
C1-conjugate to its linearization around the point P2 under the non-resonance condi-
tion:

Re(νi ) �= Re(ν j )+ Re(νk) when Re(ν j ) < 0 < Re(νk) (36)

where ν1, . . . , ν4 are the eigenvalues of M defined in (27).

Lemma 5 If N and p are in the range (8) or (10), then the system (24) is C1-conjugate
to its linearization around the point P2.

Proof In the range (8) or (10) we have

Re(ν2) < Re(ν4) = Re(ν3) = τ + 4 − N

2
< 0 < Re(ν1).

Thus the only relation to be verified is

Re(ν1)+ Re(ν2) �= Re(ν3) = τ + 4−N
2

which is equivalent to τ + (4 − N )/2 �= 0, and this is true in the considered range of
N and p. ��
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3 The unstable manifold at P2

Let v( j) denote the eigenvectors of the linearization of (24) at P2 with corresponding
eigenvalue ν j . Then W u(P2) is one dimensional and tangent to v(1) at P2. Hence, if
V = (v1, . . . , v4) : (−∞, T ) → R

4 is any trajectory in W u(P2) there are 2 cases:

〈V ′(t), v(1)〉 < 0 for t near −∞
〈V ′(t), v(1)〉 > 0 for t near −∞.

The main results in this section are

Proposition 6 Suppose that V = (v1, . . . , v4) : (−∞, T ) → R
4 is the trajectory in

W u(P2) such that 〈V ′(t), v(1)〉 < 0 for t near −∞. Then

(a) v2(t) < −ατ for all t ∈ (−∞, T ), and
(b) v3(t) < −ατ(N − 2 − τ) for all t ∈ (−∞, T ).

Proposition 7 Let V = (v1, . . . , v4) : (−∞, T ) → R
4 be the trajectory in W u(P2)

such that 〈V ′(t), v(1)〉 > 0 for t near −∞, where T is the maximal time of existence.
Then

(a) v1(t) > 1 for all t < T .
(b) There exists a unique t0 such that v2(t0) = 0. Moreover the trajectory of V

intersects the hyperplane {v2 = 0} transversally.
(c) There exists a unique t1 such that v3(t1) = 0. Moreover the trajectory of V

intersects the hyperplane {v3 = 0} transversally.

The idea of the proof of these results is similar to [15, Proposition 1].

Proof of Proposition 6 (a) The relations (32) and the hypothesis 〈V ′(t), v(1)〉 < 0
for t → −∞ imply that for t near −∞

{
v1(t) < 1, v2(t) < −ατ,
v3(t) < −ατ(N − 2 − τ), v4(t) < ατ(N − 2 − τ)(τ + 2).

(37)

Assume by contradiction that v2(t) ≥ −ατ for some t < T . Thus we may define
t0 < T the smallest time such that v2(t) = −ατ . Then v′

2(t0) ≥ 0. By (24) we
have 0 ≤ v′

2(t0) = v3(t0)+ ατ(N − 2 − τ), that is,

v3(t0) ≥ −ατ(N − 2 − τ).

By (37) we can define t1 ≤ t0 as the smallest time such that v3(t) = −ατ(N −
2 − τ). Then v′

3(t1) ≥ 0 and (24) implies

v4(t1) ≥ ατ(N − 2 − τ)(τ + 2). (38)

Again using (37), let t2 ≤ t1 be the smallest time that v4(t) = ατ(N −2−τ)(τ+
2). Then v′

4(t2) ≥ 0 and by (24)

v1(t2) ≥ 1
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Thanks to (37) we must have a smallest time t3 ≤ t2 such that v1(t) = 1. But
then v′

1(t3) ≥ 0 which by (24) implies

v2(t3)+ ατ ≥ 0.

Thus v2(t3) ≥ −ατ . This cannot happen if t3 < t0 because v2(t) < −ατ for
all t < t0. If t3 = t2 = t1 = t0 then v′

1(t0) = v′
2(t0) = v′

3(t0) = v′
4(t0), which

means V (t) ≡ P2, a contradiction. This proves that v2(t) < −ατ for all t < T .
(b) Let us show now that v3(t) < −ατ(N − 2 − τ) for all t < T . If not, we can

define t1 < T as the smallest time such that v3(t) = −ατ(N − 2 − τ). Then
v′

3(t1) ≥ 0 and we may repeat the same argument starting at (38) to find t3 ≤ t1
such that v2(t3) ≥ −ατ . This is impossible and proves the result. ��

Proof of Proposition 7 By (32) and the hypothesis 〈V ′(t), v(1)〉 > 0 for t → −∞ we
have

v′
1(t) > 0, v′

2(t) > 0, v′
3(t) > 0, v′

4(t) > 0 (39)

for t near −∞.
Let us first prove that for α = −1 we have

v1(t) > 0 ∀t < T

This is valid for t near −∞ by the first inequality in (39). If v1(t) = 0 for some t then
v1 would be constant by the equation,

v′
1 = v1(v2v1 − τ),

and this is not possible.
We claim that

v′
3(t) > 0 ∀t < T . (40)

To prove (40) suppose it fails. Let s0 < T be the smallest time such that v′
3(s0) = 0.

Using (24) we see that

0 = v′
3(s0) = (2 + τ)v3(s0)+ v4(s0).

But v3(s0) > −ατ(N −2−τ)we deduce v4(s0) < ατ(N −2−τ)(2+τ). Let s1 ≤ s0
be the smallest time such that v4(t) = ατ(N − 2 − τ)(τ + 2). Then v′

4(s1) ≤ 0 and
hence

v1(s1) ≤ 1.
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Let s2 ≤ s1 be the smallest time such that v1(s2) = 1. Then v′
1(s2) ≤ 0 and we

conclude

v2(s2) ≤ −ατ.

Let s3 ≤ s2 be the smallest time such that v2(s3) = −ατ . Then v′
2(s3) ≤ 0 and we

conclude

v3(s2) ≤ −ατ(N − 2 − τ).

Now since s2 < s0, we have v3(s2) > −ατ(N − 2 − τ), a contradiction. This estab-
lishes our claim (40).

Since (40) holds we have then v3(t) > −ατ(N − 2 − τ) for all t < T . From the
second equation in (24), we have

v′′
2 = −(N − 2 − τ)v′

2 + v′
3

We claim that v′
2 > 0. By contradiction if s0 is the smallest time such that v′

2(s0) = 0
then using (40), we have that v′′

2 (s0) > 0 so v2 has a local minimum at s0 which is not
possible, since v2 is increasing near t = −∞. We conclude that

v′
2(t) > 0 ∀t < T . (41)

Similarly using

v′′
1 = (−τ + 2v1v2) v

′
1 + v2

1v
′
2, for α = −1

or

v′′
1 = τv′

1 + v′
2, for α = 1,

the inequality (41), and if α = −1, the positivity of v1 in (−∞, T ), we obtain that

v′
1(t) > 0 ∀t < T . (42)

and now using the fourth equation in (24), and (42), we have

v′
4(t) > 0 ∀t < T,

this proves that (39) is valid for all −∞ < t < T .
Now using (42) the property (a) follows.
Let us prove now that

sup
t<T

v1(t) = +∞. (43)
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If we assume the contrary, i.e. v1 remains bounded, then (24) implies the estimate

|(v1, . . . , v4)
′(t)| ≤ C |(v1, . . . , v4)(t)| ∀t < T,

for some C > 0 and from Gronwall’s inequality we deduce that the solution is defined
for all times, that is, T = +∞. Since v1 is increasing, v1(t) → L < +∞ as t → ∞,

and v′
1(tk) → 0 along some sequence tk → ∞. But v1, v2 are increasing and v2(t) >

−ατ and v1(t) > 1 for all t > −∞. From the equation for v′
1, i.e.

v′
1 = τv1−α

1 α(vα1 − 1)+ v1−α
1 (v2 + ατ)

we obtain a contradiction, since α(vα1 (t)− 1) > 0 for all t > −∞. This proves (43).
Now using (42) the property (a) follows.

We claim that

sup
t<T

v2(t) > 0. (44)

If this fails, then v2(t) ≤ 0 for all t < T . Therefore by the equation for v′
1 in (24)

0 ≤ v′
1(t) ≤ Cv1(t).

Gronwall’s inequality implies that v1 cannot blow up in finite time. But v1(t) blows
up as t → T and this implies that T = +∞. Now let us show that v4(t) → ∞
as t → ∞. Indeed, if we assume that v4(t) → L < ∞ as t → ∞ then for some
sequence tk → ∞, v′

4(tk) → 0.Using the equation for v′
4 and (43) we obtain a contra-

diction. Applying the same argument and the equation for v′
3, we obtain v3(t) → ∞

as t → ∞, and v2(t) → ∞ as t → ∞. This contradicts our assumption and proves
(44).

We also have

sup
t<T

v3(t) > 0. (45)

In fact, using the equation for v′
2 in (24):

v3(t) = v′
2(t)+ (N − 2 − τ)v2(t)

we see that if v2(t) > 0 then v3(t) > 0, because v′
2(t) > 0 and N − 2 − τ > 0.

Finally the property b) clearly follows from (44) and that v′
2(t) > 0 for all t < T .

Similarly property c) is a consequence of (45) and that v′
3(t) > 0 for all t < T . ��

Proof of Theorems 2, 5 and 8 By Propositions 6 and 7 we know that W u(P2) ∩
{v2 = 0} is a single point, which we call P∗. Any weakly singular radial solution of

(2) gives rise, through the change of variables v(t) = (λ/(αK0))
1

p−1 eτ t (1 + αu(et )),
t ≤ 0, and (23), to a solution V : (−∞, 0] → R

4 of the system (24) such that the
final conditions (25) hold. Since the solution is weakly singular, limt→−∞ V (t) = P2.
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Hence V ((−∞, 0]) is contained in W u(P2) and therefore there are 2 possibilities:
either 〈V ′(t), v(1)〉 < 0 for t near −∞ or 〈V ′(t), v(1)〉 > 0 for t near −∞. The first
case is not possible, because Proposition 6 shows that V cannot satisfy the end con-
dition v2(0) = 0. Thus we are in the second case and we can apply Proposition 7 b).
Therefore there exists a t0 > −∞ such that v2(t0) = 0 and by uniqueness t0 = 0.
Then V (0) = P∗, which implies that V is uniquely determined. This concludes the
proof of Theorems 2 and 5. The proof of Theorem 8 is similar, using Proposition 7 c),
since v3(0) = CΔu(1). ��

4 Entire solutions for negative powers

Throughout this section we assume that p is in the range defined by:

p < −1 if N ≥ 4, or −3 < p < −1 if N = 3. (46)

We consider the initial value problem

{
Δ2U = K0U p, u > 0 r ∈ (0, Rmax(β))

U (0) = 1, U ′(0) = 0, ΔU (0) = β, (ΔU )′(0) = 0
(47)

where K0 < 0 is given by (13). Here [0, Rmax(β)) is the interval of existence of the
solution. The main result here is the following.

Proposition 8 Assume N ≥ 4 and p < −1, or N = 3 and −3 < p < −1. Then
there is a unique β∗ > 0 such that:
(a) If β < β∗ then Rmax(β) < ∞,
(b) If β ≥ β∗ then Rmax(β) = ∞
(c) If β = β∗ then

lim
r→∞ r τUβ∗(r) = 1. (48)

(d) If β ≥ β∗ then

Uβ(r) ≥ Uβ∗(r)+ β − β∗

2N
r2 for all r ≥ 0 (49)

and

U ′
β(r) ≥ U ′

β∗(r)+ β − β∗

N
r > 0 for all r ≥ 0.

(e) If 0 < β < β∗ then there exists 0 < R0 < Rmax(β) such that U ′
β(r) > 0 for all

r ∈ (0, R0), U ′
β(R0) = 0, U ′

β(r) < 0 for r ∈ (R0, Rmax(β)).
(f) If β ≤ 0 then U ′

β(r) < 0 for all r ∈ (0, Rmax(β)).
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McKenna and Reichel [34, Theorem 3.1] proved (a) and (b) of the above result for
N ≥ 3. In the same reference the authors showed that for any β,

Uβ ≤ Cr2 for all r ≥ 1,

for some C > 0. Guo and Wei [27, Theorem 1.3] obtained statement c) for p = −2
and N = 3. The goal here is to extend the result to the remaining powers.

Let us introduce some notation. Given Uβ the solution of the problem (47) let

vβ(t) = r τUβ(r), r = et , −∞ < t < log(Rmax(β)).

Then vβ satisfies Eq. (20) in (−∞, log(Rmax(β))). We also define Vβ = (vβ,1, . . . ,

vβ,4) by (23). Then V satisfies the system (24). We then see that

vβ,1 = eατ tUα
β vβ,2 = αe(τ+1)t d

dr
Uβ(e

t )

vβ,3 = αe(τ+2)tΔUβ(e
t ) vβ,4 = αe(τ+3)t d

dr
ΔUβ(e

t )

For any β > 0, from the formula

dΔUβ
dr

(r) = r1−N K0

r∫

0

s N−1Uβ(s)
pds < 0 for 0 ≤ r < Rmax(β) (50)

we deduce that ΔUβ(r) is decreasing on [0, Rmax(β)) and

lim
r→Rmax(β)

ΔUβ(r) exists.

We recall a comparison result.

Lemma 9 (McKenna and Reichel [34, Lemma 3.2]) Assume that f : R → R is
differentiable and increasing. Let u, v ∈ C4([0, R)), R > 0 be such that

∀r ∈ [0, R) Δ2u(r)− f (u(r)) ≥ Δ2v(r)− f (v(r)),

u(0) ≥ v(0), u′(0) ≥ v′(0), Δu(0) ≥ Δv(0), (Δu)′(0) ≥ (Δv)′(0).

Then for all r ∈ [0, R)

u(r) ≥ v(r), u′(r) ≥ v′(r), Δu(r) ≥ Δv(r), (Δu)′(r) ≥ (Δv)′(r). (51)

Moreover:
(i) The initial point 0 can be replaced by any initial point ρ > 0 if all four initial

data are weakly ordered.
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(ii) A strict inequality in one of the initial data at ρ ≥ 0 or in the differential inequal-
ity on (ρ, R) implies a strict ordering of u, u′, Δu, (Δu)′ and v, v′, Δv, (Δv)′
in (51).

Although the lemma is stated for f differentiable, the proof is also valid if f (u) = −up

(p < 0) and u, v are positive.

Lemma 10 Let β ≥ β∗ so that Rmax(β) = ∞. Then limr→∞ΔUβ(r) ≥ 0 and
limr→∞ΔUβ(r) = 0 if and only if β = β∗.

Proof If

lim
r→∞ΔUβ(r) < 0

integrating twice we deduce

Uβ(r) ≤ −C1r2 + C2 for all r ≥ 0

with C1,C2 > 0, which is impossible.
Assume now that

lim
r→∞ΔUβ(r) > 0

then

Uβ(r) ≥ cr2 and U ′
β(r) ≥ cr for all r ≥ 0 (52)

for some c > 0. Also, integrating once the Eq. (47) we see that for all r ≥ 2:

(ΔUβ)
′(r) ≥ −c

⎧
⎪⎨

⎪⎩

r1−N if N < −2p

r1−N log r if N = −2p

r1+2p if N > −2p.

(53)

Let m ∈ R to be fixed and

v(r) = (1 + r2)m .

A computation shows that:

Δ2v = A(2m)(1 + r2)m−2 + B(2m)(1 + r2)m−3 + C(2m)(1 + r2)m−4

where

A(ν) = ν(ν + N − 2)(ν − 2)(ν + N − 4)

B(ν) = −2ν(ν − 2)(ν − 4)(ν + N − 4)

C(ν) = ν(ν − 2)(ν − 4)(ν − 6).
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For N ≥ 3 and 2m ∈ (1, 2) we have A(2m) < 0, B(2m) < 0 and C(2m) < 0. Let
b > 0 and w(r) = v(br). Then for b > 0 large enough

Δ2w ≤ K0w
p for all r ≥ 0,

(a similar calculation is done in [34, Lemma 3.5]). We choose m ∈ (1/2, 1) close to 1 so
that 2m−3 > 1+2p. From (52) and (53) there exists r0 > 0 such that Uβ(r0) > w(r0),
U ′
β(r0) > w′(r0), ΔUβ(r0) > Δw(r0) and (ΔUβ)′(r0) > (Δw)′(r0). By the contin-

uous dependence of the solution to (47) there is β1 < β such that

Uβ1(r0) > w(r0), U ′
β1
(r0) > w′(r0)

and

ΔUβ1(r0) > Δw(r0), (ΔUβ1)
′(r0) > (Δw)′(r0).

Using Lemma 9 we deduce that Uβ1 ≥ w for all r ≥ r0. This shows that uβ1 is defined
for all r ≥ 0 and hence β1 ≥ β∗. We deduce that β > β∗.

Now suppose that β > β∗. From Lemma 9 we deduce that

(ΔUβ)
′(r) ≥ (ΔUβ∗)′(r) for all r ≥ 0.

Integrating this we find

lim
r→∞ΔUβ(r)− β ≥ lim

r→∞ΔUβ∗(r)− β∗

which implies

lim
r→∞ΔUβ(r) ≥ β − β∗ > 0.

��
Lemma 11 It cannot happen than vβ∗(t) → +∞ as t → ∞. If limt→∞ vβ∗(t) = L
exists, then L = 1.

Proof For simplicity we write v = vβ∗ . We have

(∂t + N − 2 − τ)(∂t − τ)v = h(t)

where h(t) = e(τ+2)tΔUβ∗(et ). Thanks to Lemma 10 h(t) = o(e(τ+2)t ) as t → ∞.
Using the variation of parameters formula:

v(t) = Aeτ t + Be(τ+2−N )t + 1

N − 2

t∫

t0

[
eτ(t−s)h(s)− e(τ+2−N )(t−s)h(s)

]
ds.
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Hence

v(t) = o(e(τ+2)t ) as t → ∞. (54)

If v(t) → +∞ as t → ∞ then (20) takes the form:

Lv = g(t) with g(t) = o(1) as t → ∞.

The linearly independent solutions of the homogeneous equation Lz = 0 are eνi t with

ν1 = τ + 2, ν2 = τ + 2 − N , ν3 = τ + 4 − N , ν4 = τ

(except when N = 4, in which case they are eνt with ν = τ+2, τ+2− N , τ and teτ t ).
The only positive νi is ν1 = τ + 2. For simplicity we proceed assuming N �= 4. The
case N = 4 can be treated similarly. By the variation of parameters formula (Theorem
6.4 [10, Chap. 3])

v(t) =
4∑

i=1

ci e
νi t + d1

∞∫

t

eν1(t−s)g(s) ds +
4∑

i=2

di

t∫

0

eνi (t−s)g(s) ds (55)

where the integrals represent a concrete choice of a particular solution and di , i =
1, . . . , 4 are fixed constants. Since ν1 = τ + 2 > 0, we have

∞∫

t

eν1(t−s)g(s) ds → 0 as t → ∞.

For i = 2, 3, 4 we have νi < 0 and hence,

t∫

0

eνi (t−s)g(s) ds → 0 as t → ∞.

If v(t) → ∞ as t → ∞ we conclude that c1 �= 0 in (55), that is,
limt→∞ v(t)e−(τ+2)t = c, with c > 0. This contradicts (54).

The rest of the proof is the same as [27, Lemma 4.3]. ��
Lemma 12 We have

lim sup
t→∞

vβ∗(t) > 0. (56)

Proof We use the test-function method of Mitidieri and Pohozaev [35], see also
[1,14,20]. Let us write v = vβ∗ . Assume by contradiction that

lim
t→∞ v(t) = 0.
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Let 0 < δ < 1/2 be fixed. Then there exists T > 0 such that v(t) ≤ δ for all t ≥ 0.
Since the Eq. (20) is autonomous we can assume that T = 0.

Let φ ∈ C4(R) be such that, 0 ≤ φ ≤ 1, φ(t) = 0 for t ≤ 0 and t ≥ 3, φ(t) > 0
for t ∈ (0, 3), φ(t) = 1 for t ∈ [1, 2], and for i = 1, 2, 3, 4

3∫

0

(φ(i))2

φ
dt < +∞.

Let L > 1 and φL(t) = φ(t/L). We rewrite the Eq. (20) in the form

4∑

i=1

Kiv
(i)(t) = K0(v

p − v) for t ∈ R (57)

where K0, . . . , K3 are as before and K4 = 1. Multiplying (57) by φL and integrating
we find

4∑

i=1

Ki (−1)i
3L∫

0

φ
(i)
L v dt = K0

3L∫

0

(v p − v)φL dt. (58)

Since 0 < v(t) < 1 for t ≥ 0 and p < 0 we have v(t)p − v(t) > 0. Thus (58) yields

|K0|
3L∫

0

(v p − v)φL dt ≤ K max
i=1,...,4

3L∫

0

v|φ(i)L | dt (59)

where K = ∑4
i=1 |Ki |. Let ε > 0 to be fixed later on. Using

v|φ(i)L | ≤ εv2φL + Cε
(φ
(i)
L )

2

φL

we obtain from (59)

3L∫

0

(
|K0|(v p − v)− εKv2

)
φL dt ≤ CεK max

i=1,...,4

3L∫

0

(φ
(i)
L )

2

φL
dt. (60)

Recall that 0 < v(t) ≤ δ for all t ≥ 0. Since 0 < δ < 1/2,

min
v∈(0,δ] |K0|(v p − v) > 0.

Therefore we can fix ε > 0 sufficiently small so that

c(δ) = min
v∈(0,δ] |K0|(v p − v)− εKv2 > 0.

123



Multiplicity for the bilaplacian with power nonlinearity 167

This implies |K0|(v(t)p − v(t))− εKv(t)2 ≥ c(δ) > 0 for all t ≥ 0. It follows from
this and (60) that

c(δ)L ≤ c(δ)

3L∫

0

φL(t) dt ≤ CεK max
i=1,...,4

3L∫

0

(φ
(i)
L )

2

φL
dt.

But

3L∫

0

(φ
(i)
L )

2

φL
dt = L1−2i

3∫

0

(φ(i))2

φ
dt ≤ Ci L1−2i .

Then

c(δ)L ≤ CεK max
i=1,...,4

Ci L1−2i for all L > 1,

which is not possible. ��

Lemma 13 We have

lim inf
t→∞ vβ∗(t) > 0. (61)

Proof We write v = vβ∗ , V = (v1, . . . , v4) = Vβ∗ and U = Uβ∗ . Suppose by con-
tradiction that lim inf t→∞ v(t) = 0. Then, since (56) holds, there is a sequence (tk)
such that tk → ∞, tk+1 ≥ tk + 1, v(tk) → 0, v′(tk) = 0 and v′′(tk) ≥ 0. Let Rk = etk

and define

Uk = 1

v(tk+1)R
−τ
k+1

U (Rk+1r).

Then Uk satisfies

Δ2Uk = v(tk+1)
p−1 K0U p

k in R
N ,

Uk(1) = 1, Uk(Rk/Rk+1) = v(tk)R
−τ
k

v(tk+1)R
−τ
k+1

= U (Rk)

U (Rk+1)
.

But d
dr U ≥ 0 and Rk+1 ≥ Rk . Therefore,

Uk(Rk/Rk+1) ≤ 1.
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We compute

ΔUk(r) = Rτ+2
k+1

v(tk+1)
ΔU (Rk+1r)

= Rτ+2
k+1

v(tk+1)
e−(τ+2)(tk+1+t) [v′′(tk+1 + t)+ (N − 2 − 2τ)v′(tk+1 + t)

−τ(N − 2 − τ)v(tk+1 + t))
]
.

Therefore

ΔUk(1) ≥ 0 and ΔUk(Rk/Rk+1) ≥ 0.

Define now uk = 1 − Uk . Then uk satisfies

Δ2uk = |K0|v(tk+1)
p−1(1 − uk)

p in R
N (62)

uk(1) = 0, uk(Rk/Rk+1) ≥ 0, Δuk(1) ≤ 0, Δuk(Rk/Rk+1) ≤ 0.

Let Dk = B1(0)\B Rk/Rk+1(0). Let λk be the first eigenvalue for −Δ with Dirichlet
boundary condition in the annulus Dk and φk > 0 be an associated eigenfunction, that
is

{
−Δφk = λkφk in Dk

φk = 0 on ∂Dk .

Then Δ2φk = λ2
kφk . Multiplying (62) equation by φk and integrating by parts we

obtain

|K0|v(tk+1)
p−1

∫

Dk

(1 − uk)
pφk dx =

∫

Dk

Δ2ukφk dx

=
∫

∂Dk

[
∂Δuk

∂n
φk −Δuk

∂φk

∂n
+ ∂uk

∂n
Δφk − uk

∂Δφk

∂n

]

+
∫

Dk

ukΔ
2φk dx .

But on ∂Dk , φk = Δφk = 0, ∂φk
∂n ≤ 0 and ∂Δφk

∂n ≥ 0. Hence

Δuk
∂φk

∂n
≥ 0 and uk

∂Δφk

∂n
≥ 0 on ∂Dk .

Using also the inequality (1 − u)p ≥ u for 0 ≤ u < 1 it follows that

|K0|v(tk+1)
p−1 ≤ λ2

k .
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But since the annulus Dk has a width that does not converge to zero, λk remains
uniformly bounded, even if Rk/Rk+1 → 0. It follows that v(tk+1) remains bounded
away from zero as k → ∞, which is a contradiction. ��
Lemma 14 There exists C > 1 such that for all t ≥ 0

1

C
≤ vβ∗,1(t) ≤ C, −C ≤ vβ∗,2(t) ≤ 0, −C ≤ vβ∗,3(t) ≤ 0, 0 ≤ vβ∗,4(t) ≤ C,

and

|v(i)β∗ (t)| ≤ C ∀i = 0, . . . , 4.

Proof In this proof we omit β∗ from the notation. The estimate (61) implies that
v1(t) ≤ C for all t ≥ 0. Using the equation for v4 we find that for 0 ≤ t0 ≤ t

v4(t) = e−(N−4−τ)t
⎡

⎣e(N−4−τ)t0v4(t0)+ |K0|
t∫

t0

e(N−4−τ)sv1(s)
|p| ds

⎤

⎦

a formula that shows that v4 remains bounded as t → ∞. Similarly, integrating the
equation for v3 we obtain for 0 ≤ t ≤ t0

v3(t) = e(τ+2)t

⎡

⎣e−(τ+2)t0v3(t0)+
t∫

t0

e−(τ+2)sv4(s) ds

⎤

⎦ .

Since v4 is bounded and τ + 2 > 0 the integral
∫ ∞

t0
e−(τ+2)sv4(s) ds exists. Using

Lemma 10 we know that v3(t) = o(e(τ+2)t ) as t → ∞, a condition that implies

v3(t0) = −e(τ+2)t0

∞∫

t0

e−(τ+2)sv4(s) ds.

The fact that v4 is bounded and this formula imply that v3 is bounded. Repeating the
same argument that we used for v4 we may prove that v2 remains bounded as t → ∞.
Writing the equation for v1 in the form

d

dt

(
e−|τ |tv1(t)

)
=

(
e−|τ |tv1(t)

)2
e|τ |tv2(t)

and integrating over 0 ≤ t0 ≤ t yields

v1(t) = e|τ |t
e|τ |t0
v1(t0)

− ∫ t
t0

e|τ |sv2(s) ds
.
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But the fact that d
dr U ≥ 0 implies that v2 ≤ 0, and since |v2| is bounded, we deduce

from the above formula that v1 is bounded below by a positive constant.
Finally, v3 ≤ 0 is due toΔU ≥ 0 and v4 ≥ 0 is because d

drΔU ≤ 0. The estimates
for v and its derivatives follow from the estimates for vi and (23), (24). ��

For v solving (20) for all t ∈ R and v(t) > 0 for all t ∈ R we define

E(t) = 1

2
(v′′(t))2 − K2

2
(v′(t))2 − K0

2
v(t)2 + K0

v(t)p+1

p + 1
.

As we will see, this energy is useful if K3 > 0 and K1 < 0. We note that K3 > 0 is
equivalent to τ < (N − 4)/2, which always holds for negative exponents. However,
the sign of K1 is not constant in the range (10).

Lemma 15 Assume K1 < 0. Suppose v > 0 solves (20) for all t ∈ R. If t1 < t2 and
v′(t1) = 0, v′(t2) = 0 then

E(t2) ≤ E(t1)

with strict inequality unless v is constant in [t1, t2].
Proof Using the equation

E(t2)−E(t1)=
t2∫

t1

E ′(t) dt =v′′′v′ ∣∣t2
t1 +K3v

′′v′∣∣t2
t1
−K3

t2∫

t1

(v′′(t))2 dt+K1

t2∫

t1

(v′(t))2 dt.

(63)

The lemma follows once we know that K3 > 0 and K1 < 0. ��
Lemma 16 Assume K1 < 0. Then

∞∫

0

v′
β∗(s)2 ds < +∞,

∞∫

0

v′′
β∗(s)2 ds < +∞ (64)

Proof It is a consequence of (63) and the fact that v is bounded and bounded away
from zero, and that the derivatives of v remain bounded as t → ∞. ��
Lemma 17 Assume K2 K3 − K1 > 0. Then (64) holds.

Proof Using (63) in the interval [t0, t1] with t0 ≤ t1 and that v and its derivatives are
uniformly bounded by Lemma 14 we obtain

K3

t1∫

t0

(v′′)2 − K1

t1∫

t0

(v′)2 = O(1) (65)

with O(1) bounded independently of t0 and t1.
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Multiplying (20) by v and integrating over [t0, t1] we find

[

v′′′v − v′′v′ + K3v
′′v − K3

2
(v′)2 + K2v

′v + K1

2
v2

]t1

t0

+
t1∫

t0

(v′′)2 − K2

t1∫

t0

(v′)2 + K0

t1∫

t0

v2 − K0

t1∫

t0

v p+1 = 0.

Using Lemma 14 we deduce that

t1∫

t0

(v′′)2 − K2

t1∫

t0

(v′)2 + K0

t1∫

t0

v2 − K0

t1∫

t0

v p+1 = O(1)

where O(1) is bounded independently of t0 and t1. Hence by (65)

K2 K3 − K1

K3

t1∫

t0

(v′)2 + |K0|
t1∫

t0

(v2 − v p+1) = O(1). (66)

Then

t1∫

t0

(v2 − v p+1) ≤ C (67)

with a constant C independent of t0, t1. But just integrating (20) on [t0, t1] and using
the bound on v and its derivatives (c.f. Lemma 14) we find

t1∫

t0

(v − v p) = O(1), (68)

where O(1) is bounded independently of t0, t1. Using the inequality v−v p ≤ v2−v p+1

for all v > 0 together with (68) yields

−C ≤
t1∫

t0

(v2 − v p+1).

We deduce from this and (67) that

t1∫

t0

(v2 − v p+1) = O(1).
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Hence, by (66) we have
∫ ∞

0 (v′)2 < ∞. The relation (65) gives also
∫ ∞

0 (v′′)2 < ∞.

��
Proof of Proposition 8 (a) and (b) are proved in [34, Theorem 3.1].

(c) We write v = vβ∗ . An explicit computation using (22) shows that for all N ≥ 3
and all τ < (N −4)/2 we have K1 < 0 or K2 K3 − K1 > 0, see the Appendix, Sect. A.
If K1 < 0 we may apply Lemma 16 and if K2 K3 − K1 > 0 we apply Lemma 17 to
conclude that (64) holds.

Let (tk) be a strictly increasing sequence such that tk → +∞, limk→∞(tk+1−tk) =
0, and

v′(tk) → 0 as k → ∞.

If t ≥ s ≥ 0 we have by (64)

|v′(t)− v′(s)| ≤ C |t − s|1/2.

Hence for t ∈ [tk, tk+1]

|v′(t)| ≤ |v′(tk)| + C(tk+1 − tk)
1/2.

This shows that v′(t) → 0 as t → ∞. Using then elliptic estimates we deduce

v(i)(t) → 0 as t → ∞

for i = 1, 2, 3, 4. Using the equation we also deduce that v(t) → 1 as t → ∞. We
hence obtain that (v1(t), . . . , v4(t)) → P2 as t → ∞.

(d) Let β > β∗. Using Lemma 9 we see that (ΔUβ)′ ≥ (ΔUβ∗)′ for all r ≥ 0.
Since ΔUβ(0)−ΔUβ∗(0) = β − β∗, integrating we deduce that

(r N−1(U ′
β − U ′

β∗))′ ≥ (β − β∗)r N−1 for all r ≥ 0.

Integrating successively we deduce U ′
β(r) ≥ U ′

β∗(r)+ (β − β∗) r
N > 0 for all r > 0

and (49).
(e) Let 0 < β < β∗. Then by (50), ΔUβ is decreasing. But it is also positive

at 0 and it cannot be positive in (0, Rmax(β)), because otherwise Uβ would be an
entire solution. Hence ΔUβ changes sign exactly once in (0, Rmax(β)). Using then
the formula

r N−1U ′
β(r) =

r∫

0

s N−1ΔUβ(s) ds ∀r > 0 (69)

we see that U ′
β is first increasing, then decreasing. It has to be negative at some point

because otherwise Uβ would be entire. Thus U ′
β vanishes at exactly one point R0, is

positive on (0, R0) and negative on (R0, Rmax(β)).
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(f) If β ≤ 0 then ΔUβ(0) ≤ 0 and then ΔUβ(r) < 0 for all r ∈ (0, Rmax(β)).
Hence by (69), U ′

β(r) < 0 for all r ∈ (0, Rmax(β)). ��

5 Heteroclinic connection from P1 to P2

Proposition 18 In the following cases:
(a) N ≥ 5 and p > N+4

N−4
(b) N ≥ 4 and p < −1
(c) N = 3 and −3 < p < −1

system (24) has an heteroclinic orbit from P1 to P2.

When p is positive this result is related to the properties of the initial value problem:

Δ2U = K0|U |p−1U r ∈ (0, Rmax(β))

U (0) = 1, U ′(0) = 0, ΔU (0) = β, (ΔU )′(0) = 0
(70)

where [0, Rmax(β)) is the maximal interval of existence, and for negative p it is related
to the initial value problem (47).

In the case of negative powers we will deduce Proposition 18 from Proposition 8,
and in the case of positive powers we will use the following result.

Theorem 10 (Gazzola and Grunau [20, Theorem 2]) Assume N ≥ 5, p > N+4
N−4 . Then

there exists a unique β∗ < 0 such that Rmax(β
∗) = +∞ and

lim
r→∞ r τUβ∗(r) = 1. (71)

Moreover:
(a) If β < β∗ there exists 0 < R1 < R such that Uβ(R1) = 0 and

limr→Rmax(β) Uβ(r) = −∞.
(b) If 0 > β > β∗ there exists 0 < R0 < Rmax(β) such that U ′

β(r) < 0
for r ∈ (0, R0), U ′

β(R0) = 0, U ′
β(r) > 0 for r ∈ (R0, Rmax(β)), and

limr→Rmax(β) Uβ(r) = ∞.

The these properties we add the following:

Lemma 19 Assume N ≥ 5, p > N+4
N−4 and let Uβ be the solution to (70). If β < β∗

then

U ′
β(r) ≤ U ′

β∗(r)+ β − β∗

N
r for all r ∈ [0, Rmax(β))

and

Uβ(r) ≤ Uβ∗(r)+ β − β∗

2N
r2 for all r ∈ [0, Rmax(β)). (72)

If β ≥ 0 then U ′
β(r) > 0 for all r ∈ (0, Rmax(β)).
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Proof of Proposition 18 We fix β∗ is such that either (48) or (71) holds. Define v(t) =
r τUβ∗(r), r = et , t ∈ R. Then v satisfies Eq. (20) for all t ∈ R. We also define
V = (v1, . . . , v4) by (23). Then V satisfies the system (24) for all t ∈ R. Since Uβ∗
is smooth at the origin

lim
t→−∞ V (t) = P1

and (71) tells us that

lim
t→∞ v1(t) = 1.

The proofs of Theorem 10 and of Proposition 8 actually yield:

lim
t→∞ V (t) = P2.

See indeed Proposition 3 in [20] for p positive and Sect. 4 for negative p. ��
Proof of Lemma 19 Let β < β∗ (recall that β∗ < 0). Using Lemma 9 we see that
(ΔUβ)′ ≤ (ΔUβ∗)′ for all r ≥ 0. Since ΔUβ(0) − ΔUβ∗(0) = β − β∗, integrating
we deduce that

(r N−1(U ′
β − U ′

β∗))′ ≤ (β − β∗)r N−1 for all r ≥ 0.

Integrating successively we deduce U ′
β(r) ≤ U ′

β∗(r)+ (β − β∗) r
N < 0 for all r > 0

and (72).
If β ≥ 0 then ΔUβ(0) ≥ 0. Since

dΔUβ
dr

(r) = r1−N K0

r∫

0

s N−1Uβ(s)
pds > 0

for 0 ≤ r < Rmax(β) we have ΔUβ(r) > 0 for all r ∈ (0, Rmax(β)). Hence by (69),
U ′
β(r) > 0 for all r ∈ (0, Rmax(β)). ��

Lemma 20 Assume V : (T,∞) → R
4, V = (v1, v2, v4, v4) is a solution to (24)

such that limt→∞ V (t) = P2 and either

V ′(t)
|V ′(t)| + v(2)

|v(2)| → 0 as t → +∞ (73)

or

V ′(t)
|V ′(t)| − v(2)

|v(2)| → 0 as t → +∞. (74)

Then V cannot be extended to a connection from P1 to P2.
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Proof The case of positive p was already treated in [15, Proposition 1].
Assume first that (73) holds. Then by (33) we have

v′
1(t) < 0, v′

2(t) > 0, v′
3(t) < 0, v′

4(t) > 0

for all t near +∞ and

v1(t) > 1, v2(t) < −ατ,
v3(t) > −ατ(N − 2 − τ), v4(t) < ατ(N − 2 − τ)(τ + 2)

(75)

for all t near +∞. We claim that

v2(t) < −ατ ∀t > T . (76)

Assume by contradiction that this fails. Then from (75) we can define t1 > T to be
the last time such that v2(t1) = −ατ . Then v′

2(t1) ≤ 0. Using the Eq. (24) we deduce
that

v3(t1) ≤ −ατ(N − 2 − τ).

Then thanks to (75) we can define t2 ≥ t1 to be the last time such that v3(t2) =
−ατ(N − 2 − τ). This implies that v′

3(t2) ≥ 0 and by the system (24)

v4(t2) ≥ ατ(N − 2 − τ)(τ + 2).

Let t3 ≥ t2 be the last time such that v4(t3) = ατ(N −2−τ)(τ +2). Then v′
4(t3) ≤ 0.

We deduce from (24) that

v1(t3) ≤ 1.

Let t4 ≥ t3 be the last time such that v1(t4) = 1. Then v′
1(t4) ≥ 0 and by (24)

v2(t4) ≥ −ατ.

But v2(t) < −ατ for all t ∈ (t1,∞), which is a contradiction. This proves claim (76)
and shows that the trajectory defined by V cannot come from P1.

Assume now that (74) holds. We claim that in this case

v3(t) < −ατ(N − 2 − τ) for all t > T . (77)

The proof is similar as before. Note that under the assumption (74) we have the oppo-
site inequalities in (75). If the statement (77) fails we can defined the last time t1 such
that v3(t1) = −ατ(N − 2 − τ). Then define successively t2 ≥ t1 such that v4(t2) =
ατ(N − 2 − τ)(τ + 2), v′

4(t2) ≥ 0, t3 ≥ t2 such that v1(t3) = 1, v′
1(t3) ≤ 0, t4 ≥ t3

such that v2(t4) = −ατ and v′
2(t4) ≥ 0, which leads to v3(t4) ≥ −ατ(N − 2 − τ)

which yields a contradiction. This shows that the trajectory cannot come from P1. ��
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6 Proof of Theorem 1

We assume here N = 3 and −3 < p < −1 or N ≥ 4 and p < −1. Let u be a radial
singular weak solution to (2). We define v(t), t ≤ 0 by (19) and v1, . . . , v4 by (23).

The arguments are very similar to those of Sect. 4, so we will skip some of the
proofs. The first step is to prove the following estimates.

Lemma 21 We have

lim sup
t→−∞

v(t) > 0.

The proof is the same as for Lemma 12.

Lemma 22 We have

lim inf
t→−∞ v(t) > 0. (78)

The proof is analogous to that of Lemma 13.

Lemma 23 There is C > 0 such that for i = 1, 2, 3, 4

|vi (t)| ≤ Ceτ t for all t ≤ 0.

Proof We assume that 0 ≤ u(r) < 1 for 0 < r ≤ 1 which implies 0 < v(t) ≤ eτ t for
all t ≤ 0. We regard (20) as an elliptic equation, or use interpolation inequalities such
as in Chapter 6 of [22] to obtain: for t ≤ −1 and i = 1, 2, 3, 4

|v(i)(t)| ≤ C sup
[t−1,t+1]

(|v| + |v p|).

Since v(t) ≤ eτ t and v bounded away from zero by (78), we deduce that |v(i)| ≤ Ceτ t

for all t ≤ 0. Using the formulas (23) we deduce the result for v1, . . . , v4. ��
Lemma 24 There exists C > 1 such that for all t ≥ 0

1

C
≤ v1(t) ≤ C, |v2(t)| ≤ C, |v3(t)| ≤ C, |v4(t)| ≤ C,

and

|v(i)(t)| ≤ C ∀i = 0, . . . , 4.

Proof Case of dimension N ≥ 5. By [16, Theorem 6] we know that there exists some
constant C > 0 such that

1

C
r−τ ≤ 1 − u(r) ≤ Cr−τ for all 0 < r ≤ 1.
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This means that 1
C ≤ v(t) ≤ C for all t ≤ 0. By interpolation inequalities [22,

Chapter 6] we obtain: for t ≤ −1 and i = 1, 2, 3, 4

|v(i)(t)| ≤ C sup
[t−1,t+1]

(|v| + |v p|).

Since v is bounded and bounded away from zero, we deduce that v(i) remains uni-
formly bounded. The estimates for v1, . . . , v4 follow from (23).
Case N = 3, 4. We observe that (78) implies that v1(t) ≤ C for all t ≤ 0 and some
C > 0. Let t0 ≤ t1 ≤ 0. Integrating the equation for v′

4 we find

v4(t0) = e−(N−4−τ)t0
⎡

⎣v4(t1)e
(N−4−τ)t1 − |K0|

t1∫

t0

e(N−4−τ)sv1(s)
|p| ds

⎤

⎦

Since N − 4 − τ > 0 and v1 is uniformly bounded above by Lemma 22 the integral
above converges as t0 → −∞. We will prove that

v4(t1)e
(N−4−τ)t1 = |K0|

t1∫

−∞
e(N−4−τ)sv1(s)

|p| ds (79)

holds for all t1 ≤ 0. Indeed, suppose this fails for some t1 ≤ 0. Then

v4 ∼ e−(N−4−τ)t . (80)

where we use the notation

f ∼ g if lim
t→−∞ f (t)/g(t) exists and is no zero,

for f, g : (−∞, 0] → R such that g(t) �= 0. Integrating the equation for v′
3 on [t, t1]

with t ≤ t1 we find

v3(t) = e(τ+2)t

⎡

⎣v3(t1)e
−(τ+2)t1 −

t1∫

t

e−(τ+2)sv4(s) ds

⎤

⎦ . (81)

Since τ + 2 > 0, we find from (80) that v3(t) ∼ e−(N−4−τ)t . Integrating the equation
for v′

2 in [t, t2] with t ≤ t2 ≤ 0 we obtain

v2(t) = e−(N−2−τ)t
⎡

⎣v2(t2)e
(N−2−τ)t2 −

t2∫

t

e(N−2−τ)sv3(s) ds.

⎤

⎦
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But we know by Lemma 23 that |v2(t)| ≤ Ceτ t for all t ≤ 0. Since τ+2− N < τ < 0
we must have

v2(t2)e
(N−2−τ)t2 =

t2∫

−∞
e(N−2−τ)sv3(s) ds for all t2 ≤ 0. (82)

We deduce from this formula that

v2(t) ∼ e−(N−4−τ)t . (83)

Writing the equation for v′
1 in the form

d

dt

(
e−|τ |tv1(t)

)
=

(
e−|τ |tv1(t)

)2
e|τ |tv2(t)

and integrating over t ≤ t2 ≤ 0 yields

v1(t) = e|τ |t
e|τ |t2
v1(t2)

+ ∫ t2
t e|τ |sv2(s) ds

. (84)

Assume N = 4. Then, since v2(t) ∼ e−(N−4−τ)t we have

t2∫

t

e|τ |sv2(s) ds ∼ t,

and hence v1(t) ∼ e|τ |t
|t | . But v = 1/v1 and 1 − u(et ) = Ce−τ tv(t). From this we

deduce that 1 − u(et ) ∼ |t | as t → −∞, which is impossible because 1 − u(r) ≤ 1
for all 0 < r ≤ 1. This proves (79) when N = 4.

Assume now N = 3. Then by (83), e|τ |sv2(s) ∼ es and therefore the integral∫ t2
t e|τ |sv2(s) ds has a finite limit as t → −∞. If

e|τ |t2
v1(t2)

+
t2∫

−∞
e|τ |sv2(s) ds �= 0

for some t2 ≤ 0 then by (84)

v1(t) ∼ e−τ t .

123



Multiplicity for the bilaplacian with power nonlinearity 179

This means v(t) ∼ eτ t , and hence 1−u(et ) = Ce−τ tv(t) ∼ 1. Thus, limr→0(1−u(r))
exists and is not zero. Then u is a regular solution, which we assume is not. Therefore

e|τ |t2
v1(t2)

+
t2∫

−∞
e|τ |sv2(s) ds = 0

for all t2 ≤ 0. This formula yields

v1(t) = − e|τ |t
∫ t
−∞ e|τ |sv2(s) ds

which implies v1(t) ∼ e−(1+τ)t , by (83) so that v(t) ∼ e(1+τ)t . Then 1 − u(et ) =
Ce−τ tv(t) ∼ et and therefore

1 − u(r) ∼ r as r → 0. (85)

Then (1 − u(r))−p ∼ r−p and this belongs to Lq(B) for q < 3/|p|, in 3 dimensions.
By L p regularity u ∈ W 4,q(B) and in 3 dimensions this is contained in C1,α(B) for
some α > 0 if 1/q − 1 < 0. But q can be chosen such that q > 1 because |p| < 3.
Therefore u ∈ C1,α for someα > 0, but this contradicts (85). We have then established
(79) also in the case N = 3.

Using now (79) and the fact that v1 is bounded we deduce that v4 is bounded.
This and (81) imply that v3 remains bounded as t → −∞. By (82) v2 remains
bounded. Consider now formula (84). Knowing that v2 remains bounded we see that∫ t2

t e|τ |sv2(s) ds has a limit as t → −∞. If

e|τ |t2
v1(t2)

+
t2∫

−∞
e|τ |sv2(s) ds �= 0

for some t2 ≤ 0 then v1(t) ∼ e|τ |t and this implies that 1 − u(r) ∼ 1 as r → 0. But
then u is a regular solution, which we assume is not. Therefore

e|τ |t2
v1(t2)

+
t2∫

−∞
e|τ |sv2(s) ds = 0

for all t2 ≤ 0. This formula yields

v1(t) = − e|τ |t
∫ t
−∞ e|τ |sv2(s) ds

and since v2 is bounded we deduce from it that v1 is bounded below. This concludes
the proof. ��
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Proof of Theorem 1 The proof is similar to the one of Proposition 8 part c). We claim
that

0∫

−∞
v′(s)2 ds < +∞,

0∫

−∞
v′′(s)2 ds < +∞ (86)

In the case K1 < 0 this can be proved multiplying the equation by v′ and integrating
in some interval [t, 0] (similar to using E in Lemma 16). In the case K2 K3 − K1 > 0
the same proof as in Lemma 17 yields (86).

Since for all N ≥ 3 and all τ < (N − 4)/2 we have K1 < 0 or K2 K3 − K1 > 0,
see the Appendix, Sect. A, we obtain the validity of (86) in any case. Using (86) one
may prove as in Proposition 8 part c) that v(t) → 1 as t → −∞ and hence u is a
weakly singular solution. ��

7 Proof of Theorems 4 and 7

Throughout this section we assume (8) for positive powers and (10) for negative pow-
ers. Let P1, P2 be the stationary points of the system (24) defined in (26). Then P1 has
a 2-dimensional unstable manifold W u(P1) while P2 has a 1-dimensional unstable
manifold W u(P2) and a 3-dimensional stable manifold W s(P2).

Let V0 : R → R
4 be the heteroclinic connection from P1 to P2 of Proposition 18

and V̂0 = V0(−∞,∞). Then V̂0 is contained in both W u(P1) and W s(P2).

Lemma 25 W u(P1) and W s(P2) intersect transversally on points of V̂0. More pre-
cisely for points Q ∈ V̂0 sufficiently close to P2 there directions in the tangent plane
to W u(P1) which are almost parallel to v(1), the tangent vector to W u(P2) at P2.

Proof Let Uβ(r) be the solution to (70) or (47) defined in the maximal interval
[0, Rmax(β)). Let β∗ denote the unique value of β such that Rmax(β

∗) = ∞ and

lim
r→∞ r τUβ∗(r) exists.

In Lemma 19 (for positive p) and in Proposition 8 d) (for negative p) is shown that
for αβ < αβ∗ the following estimate holds:

αU ′
β(r) ≤ αU ′

β∗(r)− α
β∗ − β

N
r ∀r ∈ [0, Rmax(β)).

Then ∂Uβ
∂β
(r)|β=β∗ satisfies the linearized equation at Uβ∗ and

∂U ′
β

∂β

∣
∣
∣
β=β∗(r) ≥ 1

N
r ∀r ≥ 0. (87)
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Let v(t) = eτ tUβ∗(et ), t ∈ R. Let V = (v1, . . . , v4) be defined by (23) and let
Z = ∂V

∂β
|β=β∗ . Then Z = (z1, . . . , z4) satisfies

Z ′ = (M + R(t))Z

where M is the matrix defined in (27) and

R(t) =

⎡

⎢
⎢
⎢
⎣

(1 − α)(v−α
1 v2 − τ) v1−α

1 − 1 0 0

0 0 0 0

0 0 0 0

pK0(v
αp−1
1 − 1) 0 0 0

⎤

⎥
⎥
⎥
⎦
.

Recall that V (t) → P2 as t → ∞. Moreover the convergence is exponential, that is
there are C, σ > 0 such that |V (t)− P2| ≤ Ce−σ t for all t ≥ 0. This follows from the
Hartman-Grobman theorem (see Theorem 7.1 in [29, Chap. IX] or Theorem 1.3.1 in
[25, Chap. 1]), which shows that the system (24) is C0-conjugate to its linearization
near P2. Recall that the eigenvalues of M are ν1 > 0 > ν2 and ν3, ν4 which have
negative real part and nonzero imaginary part. Let v(i) ∈ C

4 denote an eigenvector
associated to νi . By Theorem 8.1 in [10, Chap. 3] there are solutions ϕk to

ϕ′
k = (M + R(t))ϕk, t > 0

such that limt→∞ ϕk(t)e−νk t = v(k). It follows from this that Z = ∑4
i=1 ciϕi for

some constants c1, . . . , c4 ∈ C. The condition (87) and the definitions in (23) imply
that |z2(t)| ≥ ce(2+τ)t for some c > 0 and all t ≥ 0. But τ +2 > 0, so |Z(t)| → ∞ as
t → ∞. Since ν1 > 0 and ν2, ν3, ν4 have negative real part, we conclude that c1 �= 0
and

Z(t) = c1v
(1)eν1t + o(eν1t ) as t → ∞.

Since v(1) is the tangent vector to W u(P2), we have that ∂V
∂β

is not tangent to W s(P2)

for t large. On the other hand ∂V
∂β

is tangent to W u(P1) by construction. This shows

that W s(P2) and W u(P1) intersect transversally on points of V̂0 close to P2. By the
invertibility of the flow away from the stationary points, W s(P2) and W u(P1) intersect
transversally on all points of V̂0. ��
Proof of Theorems 4 and 7 We will write generic points in the phase space R

4 as
(v1, v2, v3, v4). Let {e j : j = 1, . . . , 4 } denote the canonical basis of R

4.
By Propositions 6 and 7 we know that W u(P2) ∩ {v2 = 0} is a single point, which

we call P∗ = (P∗
1 , P∗

2 , P∗
3 , P∗

4 ). Let E = W u(P1) ∩ {v2 = 0}. Each regular radial
solution of (2) corresponds to exactly one point v = (v1, . . . , v4) ∈ E with v1 > 0.

The multiplicity results are consequence of the following claims:

(a) E contains a spiral S about the point P∗,
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(b) S is contained in a 2-dimensional C1 surface Σ ⊆ {v2 = 0}, and
(c) the plane generated by e2, e3, e4 is transversal to the tangent plane to Σ at P∗.

More precisely, by (a) we mean that after a C1 diffeomorphism of a neighborhood
of P∗ to a neighborhood of the origin in R

4, which maps P∗ to the origin, the curve
S can be parametrized by a C1 function of the form (r(s) cos(s), r(s) sin(s), 0, 0),
s ∈ [0,∞), such that r(s) > 0 for all s ≥ 0 and r(s) → 0 as s → ∞. Moreover
one can choose this diffeomorphism such that Σ corresponds to part of the surface
{x = (x1, x2, x3, x4) ∈ R

4 : x3 = x4 = 0}.
Assume (a), (b) and (c) have been proved and define the hyperplane Hλ = {v1 =

(λ/αK0)
1

p−1 } where λ > 0. After the C1 diffeomorphism described above we can
assume that S = {(r(s) cos(s), r(s) sin(s), 0, 0) : s ≥ 0} and Σ ∩ Bρ = {x =
(x1, x2, x3, x4) ∈ R

4 : x3 = x4 = 0} ∩ Bρ for some ρ > 0. The hyperplane Hλ is
transformed into a C1 hypersurface. If λ = λS then Hλ contains the origin and the
condition c) ensures that it is transversal toΣ at the origin. By transversality, Hλ ∩Σ
is a C1 curve through the origin contained in {x3 = x4 = 0} (in the new coordinates).
Using polar coordinates in {x3 = x4 = 0} we then see that Hλ intersects the spiral S
infinitely many times, which means that (2) has infinitely many radial regular solu-
tions. If λ �= λS but λ is close to λS , Hλ ∩ E contains a large number of points, which
yields a large number of radial regular solutions of (2).

In what follows we will prove (a), (b) and (c). Let Xt denote the flow gener-
ated by (24), that is, Xt (ξ) is the solution to (24) at time t with initial condition
X0(ξ) = ξ ∈ R

4. For fixed ξ , Xt (ξ) is defined for t in a maximal open interval
containing 0.

Since (24) is C1-conjugate to its linearization around the point P2 by Lemma 5,
there is an open neighborhood NP2 of P2 and a C1 diffeomorphism R : NP2 → N0 to
an open neighborhood N0 of 0 such that R Xt R−1 = Lt where Lt is the flow generated
by M , and the formula holds in some neighborhood of the origin.

Let D be the 3 dimensional disk D = {v = (v1, . . . , v4) : v2 = 0, |v− P∗| < 1 },
which by Proposition 7 is transversal to W u(P2). Let Bs ⊆ W s(P2)∩ NP2 be an open
neighborhood of P2 relative to W s(P2) diffeomorphic to a 3 dimensional disk. By
choosing smaller neighborhoods if necessary, we may apply the λ-lemma of Palis
[36]. Let Dt be the connected component of Xt (D) ∩ NP2 that contains Xt (P∗).
Then, given ε > 0 there exists some t0 < 0, |t0| large, such that Dt0 contains a
3-dimensional C1 manifold M that is a εC1-close to Bs , which means that there is a
diffeomorphism η : M → Bs such that ‖i − η‖C1(M) ≤ ε where i : M → R

4 is the
inclusion map.

Chose some point Q ∈ V̂0 such that Q ∈ NP2 . By Lemma 25 we may choose a C1

curve contained in W u(P1), say Γ = {γ (s) : |s| < δ } with γ : (−δ, δ) → R
4 a C1

function with γ (0) = Q, γ ′(0) not tangent to W s(P2) at Q. We can assume also that
this curve is contained in NP2 . Choosing ε small we can assume that Γ intersects M.

We summarize in the next lemma several properties that we prove later on in this
section.

Lemma 26 For large t, Xt (Γ )∩M is a single point that we call Pt and the following
properties hold:
1. The collection of the points Pt for large t forms a spiral.
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2. There exists a 2 dimensional C1 manifold Σ̃ that contains Pt for all t large.
3. Let Qt0 be the intersection of M with W u(P2). Then the tangent plane to Σ̃ at

Qt0 becomes parallel to the one generated by Re(v(3)), I m(v(3)) (the eigenvector
corresponding to ν3, ν4) as ε → 0.

4. Moreover, for s > 0 suitably small the time t such that Xt (γ (s)) ∈ M satisfies

s = ce−ν1t + o(e−ν1t ) as t → ∞ (88)

where c > 0.

Let S̃ denote the collection {Pt : t ≥ t1} where t1 is suitably large. Define S =
X−t0(S̃) and Σ = X−t0(Σ̃). Since X−t0 is a smooth diffeomorphism from M to a
neighborhood of P∗ inside the hyperplane {v2 = 0} we see that S is a spiral contained
in a C1 surface Σ . The points of S belong to W u(P1) because they were obtained
though the flow from points in Xt (Γ ). This proves parts (a) and (b).

We now prove statement c). It is sufficient to show that inside the space {v2 = 0}
the plane generated by e3, e4 is transversal to the tangent space to Σ at P∗. Let
V = (v1, . . . , v4) : (−∞, 0] → R

4 denote the trajectory corresponding to the weakly
singular solution, that is, limt→−∞ V (t) = P2, v2(0) = 0. To prove our claim we
need to transport the plane generated by e3 and e4 back along V to P2 and this
is accomplished by solving the linearized equation around V . More precisely, let
Z , Z̃ : (−∞, 0] → R

4 be solutions to the linearization of (24) around V , that is,
Z = (z1, z2, z3, z4) satisfies for t < 0

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

z′
1 = (ατ + (1 − α)v−α

1 v2)z1 + v1−α
1 z2

z′
2 = −(N − 2 − τ)z2 + z3

z′
3 = (2 + τ)z3 + z4

z′
4 = −(N − 4 − τ)z4 + pK0v

αp−1
1 z1

(89)

and similarly for Z̃ = (z̃1, z̃2, z̃3, z̃4). As final conditions we take Z(0) = e3,
Z̃(0) = e4.

By Theorem 8.1 in [10, Chap. 3] there are solutions ϕk : (−∞, 0] → C
4 to (89)

such that

lim
t→−∞ϕk(t)e

−νk t = v(k) (90)

where v(1), . . . , v(4) are the eigenvectors of M . Recall that v(1), v(2) are real, and
v(3), v(4) are complex conjugate. Thus one can assume that ϕ1, ϕ2 are real ϕ3, ϕ4 are
complex conjugate. Then

Z(t) =
4∑

i=1

ciϕi (t), and Z̃(t) =
4∑

i=1

c̃iϕi (t)

for some constants c1, . . . , c4, c̃1, . . . , c̃4 ∈ C. We note that c1, c2, c̃1, c̃2 are real and
c3ϕ3(t)+ c4ϕ4(t) ∈ R, c̃3ϕ3(t)+ c̃4ϕ4(t) ∈ R for all t ≤ 0.
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We claim that

c2 �= 0 or c̃2 �= 0. (91)

Assume, by contradiction, that c2 = 0 and c̃2 = 0. Define

f (t) = e(N−4−2τ)t

(
z4(t)z̃1(t)

v1−α
1

− z3(t)z̃2(t)+ z2(t)z̃3(t)− z1(t)z̃4(t)

v1−α
1

)

, ∀t ≤ 0.

A calculation using (89) shows that f is constant. Using the final conditions for Z and
Z̃ we see that f (0) = 0 and hence

f (t) = 0 ∀t ≤ 0.

Using (90), (31) and the assumption c2 = 0, c̃2 = 0 we can compute

lim
t→−∞ f (t) = (c3c̃4 − c̃3c4)B

where

B = (ν3 − τ)(ν3 + N − 2 − τ)(ν3 − 2 − τ)− (ν3 − τ)(ν3 + N − 2 − τ)(ν4 − τ)

+(ν4 − τ)(ν4 + N − 2 − τ)(ν3 − τ)− (ν4 − τ)(ν4 + N − 2 − τ)(ν4 − 2 − τ)

= −1

2
M2(N )

√
M1(N )− M2(N )

Thus B ∈ iR, B �= 0 and we conclude that (c3c̃4 − c̃3c4) = 0. This means that
there exists a λ ∈ C such that c̃k = λck , k = 3, 4. Since c3ϕ3(t) + c4ϕ4(t) ∈ R,
c̃3ϕ3(t) + c̃4ϕ4(t) ∈ R for all t ≤ 0, ν1 > 0 and we assume that c2 = c̃2 = 0, we
must have λ ∈ R. Using Z(0) = e3 and Z̃(0) = e4 we see that

(c̃1 − λc1)ϕ1(0) = e4 − λe3.

But ϕ1 = cV ′, for some constant c ∈ R, since both solve (89) and both tend to 0 as
t → −∞. We know that v′

2(0) > 0 by Proposition 7 and this implies c̃1 − λc1 = 0, a
contradiction.

Finally, the condition (91) implies the assertion c). Indeed, let us recall that Σ =
X−t0(Σ̃) where Σ̃ is defined in Lemma 26 and t0 < 0, with |t0| large. Let Qt0 be
the intersection of Σ̃ with W u(P2). By 3. of Lemma 26 the tangent plane to Σ̃ at
Qt0 is almost parallel to the plane generated by Re(v(3)), I m(v(3)) (the eigenvector
corresponding to ν3). The condition (91) shows that for |t0| large at least one of the
vectors Z(t0) or Z̃0 is transversal to the tangent plane to Σ̃ at Qt0 , since one of these
vectors contains a component almost in the direction of v(2).

To finish the proof of Theorem 4 we still need to verify one assertion: for λ �= λS (2)
has at most a finite number of solutions. We will do this in Proposition 31 of Sect. 8.

��
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Proof of Lemma 26 Let us recall that by Lemma 5 there is a C1 diffeomorphism
R : NP2 → N0 from an open neighborhood NP2 of P2 to an open neighborhood N0
of 0 with R(P2) = 0, det(R′(P2)) > 0, such that R Xt R−1 = Lt where Lt = eMt is
the flow generated by M , and the formula holds in some neighborhood of the origin.

Thus we may assume that P2 is at the origin, and after a further linear change of
variables, that W s(P2) in a neighborhood of the origin is {(y1, . . . , y4) : y1 = 0 }
and Bs = {(y1, . . . , y4) : y1 = 0, |y| < δ} for some δ > 0. We can also assume that
the heteroclinic orbit V0 near the origin in the new variables is given by

V0(t) = (0, c2eν2t , c3 Re(eν3t ), c4 I m(eν3t )), t ≥ 0 (92)

for some constants c2, c3, c4. By Lemma 20 the curve V0 cannot have a direction that
becomes parallel to e2 = (0, 1, 0, 0) as t → ∞. Since |ν2| > |Re(ν3)| by (28), c3 �= 0
or c4 �= 0. By choosing ε small, we can assume that the normal vector to M near
P∗ is almost parallel to e1 = (1, 0, 0, 0). Thus by passing to a subset of M we may
assume that M is a C1 graph over the variables (y2, y3, y4), that is, there exists a C1

function ψ : {y′ = (y2, y3, y4) ∈ R
3, |y′| < δ} → R with ψ(0) > 0 such that

M = {(ψ(y′), y′) : y′ ∈ R
3, |y′| < δ}.

By Lemma 25 the tangent plane to W u(P1) at points close to the new origin (i.e.
P2) contains vectors almost parallel to e1 = (1, 0, 0, 0) and hence γ ′

1(0) �= 0. Using
the implicit function theorem we see that for large t the intersection of M and Lt (Γ )

occurs at points of the form

Pt = (γ1(s)e
ν1t , γ2(s)e

ν2t , γ3(s)Re(eν3t ), γ4(s)I m(eν3t ))

where s = ce−ν1t + o(e−ν1t ) as t → ∞ for some c > 0. Since c3 �= 0 or c4 �= 0 in
(92) we can define a surface

Σ̃ = {y = (y1, y2, y3, y4) : |y| < δ, y1 = ψ(y2, y3, y4), y2 = g(y3, y4)}

that contains the points Pt , where g is smooth away from the origin and has the property

g(y3, y4) = O(|(y3, y4)|β)

with β = ν2/Re(ν3). Thanks to (28) we see that β > 1. Therefore g is C1 and Σ̃ is a
C1 surface. ��
Proof of Theorem 9 By Propositions 6 and 7 we know that W u(P2) ∩ {v3 = 0} is a
single point, which we call P̄∗ = (P̄∗

1 , P̄∗
2 , P̄∗

3 , P̄∗
4 ).

As in Theorem 4, the multiplicity results asserted in Theorem 9 are consequence
of the following claims:

(a) E := W u(P1) ∩ {v3 = 0} contains a spiral S about the point P̄∗,
(b) S is contained in a 2-dimensional C1 surface Σ ⊆ {v3 = 0}, and
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(c) the plane through P̄∗ parallel to e2, e3, e4 is transversal to the tangent plane to
Σ at P̄∗.

The proofs are similar to the Dirichlet case, now changing v2 = 0 for v3 = 0. So
to prove c) it will be sufficient now to show that inside the space {v3 = 0} the plane
generated by e2, e4 is transversal to the tangent space to Σ at P̄∗. We define now Z
satisfying (89) with the final condition Z(0) = e2, and Z̃ remains unchanged. In the
same form we claim that (91) holds. Indeed using the same argument as before with
Z(0) = e2 and Z̃(0) = e4, we find

(c̃1 − λc1)ϕ1(0) = e4 − λe2.

But we know by Proposition 7 that v′
3(0) > 0 and this implies c̃1 − λc1 = 0, a

contradiction. The rest of the proof is the same. ��

8 Structure of the solution set

The initial value problems (70) for positive p and (47) for negative p yield solutions
to problem (2). Indeed, let Uβ be the solution of (70) or (47) defined in the maximal
interval of existence [0, Rmax(β)). Set

I =
{
(β∗(p), 0) for N ≥ 5, p > N+4

N−4

(0, β∗(p)) for N = 3 and −3 < p < −1, or N ≥ 4 and p < −1,

where β∗(p) is the critical value obtained in Proposition 8 for negative p and in Theo-
rem 10 for positive p. Thanks to these results we know that if β ∈ I then U ′

β vanishes
exactly at R0(β), and for β outside I , U ′

β does not vanish. It is not difficult to verify

that R0(β) defines a C1 function of β ∈ I . Let us introduce, for β ∈ I the function

uβ(r) = sign(p)

[
Uβ(R0(β)r)

Uβ(R0(β))
− 1

]

, 0 ≤ r ≤ 1. (93)

Then uβ is a solution of (2) for the value of λβ = |K0|Uβ(R0(β))
p−1 R0(β)

4.
As in Sect. 7, we let E = W u(P1) ∩ {v2 = 0} and recall that each regular

radial solution of (2) corresponds to exactly one point v = (v1, . . . , v4) ∈ E with
v1 > 0. Define E0 = W u(P1) ∩ {v2 = 0, v1 > 0}. For β ∈ I we let Vβ =
(vβ,1, . . . , vβ,4) : (−∞, T (β)) → R

4 be the function obtained from vβ(t) = Uβ(et )

for t < T (β) through the transformations (23), where T (β) = log(Rmax(β)). Define
also T0(β) = log(R0(β)) for β ∈ I . Then Vβ satisfies (24) and v2,β(T0(β)) = 0. Since
Vβ(−∞, T (β)) lies in W u(P1)we have Vβ(T0(β)) ∈ E . Let us define φ : I → R

4 by

φ(β) = Vβ(T0(β)) for all β ∈ I.

Then by construction φ(β) ∈ E0 for all β ∈ I .
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Lemma 27 Let P∗ be the intersection of W u(P2) with {v2 = 0}. Then

lim
β→β∗ φ(β) = P∗, lim

β→β∗ T0(β) = +∞

and

lim
β→β∗ uβ(0) =

{
∞ for positive p

1 for negative p.

Proof Let M, Q and Γ = {γ (s) : |s| < δ } with γ : (−δ, δ) → R
4 be as in the proof

of Theorem 4. Let Γ0 = {γ (s) : 0 < s < δ }. We note that for β ∈ I and β close to
β∗ there is some time t1(β) such that Vβ(t1(β)) ∈ Γ0. As β → β∗, Vβ(t1(β)) → Q
Fixing δ sufficiently small, we may define the function τ : Γ0 → R+ where τ(p) is
such that Xτ(p)(p) ∈ M. Then τ is continuous, and by (88)

1

C
log(1/s) ≤ τ(γ (s)) ≤ C log(1/s) for 0 < s < δ

where C > 0 is some constant. This shows that τ(p) → +∞ as p → Q and then
T0(β) → ∞ as β → β∗. As in the proof of Lemma 26 one can also show that as
p → Q, p ∈ Γ0 the point Xτ(p)(p) approaches the intersection of M with W u(P2).
This shows that φ(β) → P∗ as β → β∗. Finally, since T0(β) → ∞ as β → β∗ we
see from formula (93) that uβ(0) → ∞ as β → β∗ if p is positive and uβ(0) → 1 as
β → β∗ if p is negative. ��
Lemma 28 We have

lim
β→0

φ(β) = 0 and lim
β→0

uβ(0) = 0.

Proof Using the implicit function theorem there is δ > 0 such that for λ > 0 small
there is a unique small solution uλ of (2). The map λ → uλ is C1 into C4(B). Set

Ũλ(r) = 1 + α uλ(Aλr)

1 + α uλ(0)

where

Aλ =
( |K0|(1 + α uλ(0))

1−p

λ

)1/4

.

Then Ũλ is the solution of (70) with β = β(λ) where β(λ) := αA2
λΔuλ(0)/(1 +

α uλ(0))by uniqueness of that initial value problem. In particularuβ = uλ ifβ = β(λ).
Since uλ → 0 as λ → 0, using standard elliptic estimates one can prove that

uλ
λ

→ 1

8N (N + 2)
(1 − r2)2 as λ → 0
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in C4(B). It follows that β(λ) = O(λ1/2) as λ → 0. Thus for small β ∈ I the solution
of the shooting problem (70) or (47) is Ũλ with λ > 0 such that β(λ) = β, and this
λ > 0 is uniquely determined. Then as β → 0, λ → 0 and Uβ(0) = uλ(0) → 0.
Also R0(β) = 1/Aλ → 0 and φ(β) → 0 as β → 0 (since φ(β) is expressed in terms
of derivatives of uλ). ��

Analogously to [27, Lemma 5.1] we have:

Lemma 29 Let p ∈ R. Suppose that u1, u2 are smooth radial solutions of (2) asso-
ciated to parameters λ1 > 0, λ2 > 0 such that u1(0) = u2(0). Then λ1 = λ2 and
u1 ≡ u2.

Proof First we consider the case p �= 0. Suppose we have smooth radial solutions u1,
u2 of (2) associated to parameters λ1 > λ2 such that u1(0) = u2(0) = κ .

Let α = sign(p). For j = 1, 2 define

v j (r) = 1 + α u j (λ
−1/4
j r)

1 + α κ
, for r ∈ [0, λ1/4

j ]

The v j satisfies

Δ2v j = f (v j ) for r ∈ [0, λ1/4
j ]

v j (0) = 1, v′
j (0) = 0, (Δv j )

′(0) = 0

v j (λ
1/4
j ) = 1

1 + ακ
, v′

j (λ
1/4
j ) = 0

where f (t) = α(1+ακ)p−1t p. Note that f is increasing. Since u1 and u2 are decreas-
ing functions on (0, 1), we have that

αv′
j (r) < 0 for all r ∈ (0, λ1/4

j ). (94)

Assume that αΔv1(0) < αΔv2(0). Then by Lemma 9 α v1(r) < α v2(r) for all
r ∈ [0, λ1/4

2 ]. In particular α v1(λ
1/4
2 ) < α v2(λ

1/4
2 ) = α/(1 + ακ) which is impossi-

ble because (94) implies that α v1(r) > α/(1 + ακ) for all r ∈ [0, λ1/4
1 ).

Assume now that αΔv1(0) > αΔv2(0). Then by Lemma 9 αv1(r) > αv2(r),
αv′

1(r) > αv′
2(r), αΔv1(r) > αΔv2(r), α(Δv1)

′(r) > α(Δv2)
′(r) for all r ∈

[0, λ1/4
2 ]. Since v1 is defined up to λ1/4

1 , v2 can be extended to [0, λ1/4
1 ] and the

previous inequalities are valid in this interval. Evaluating at λ1/4
1 we deduce that

0 = αv′
1(λ

1/4
1 ) > αv′

2(λ
1/4
1 ). (95)

Since w = αΔv2 satisfies Δw = α f (v j ) > 0 it is subharmonic and hence w(r1) ≤
w(r2) for all 0 ≤ r1 ≤ r2 ≤ λ

1/4
1 . But the Green function for the bilaplacian in the

ball of radius R > 0 with Dirichlet boundary conditions G(x, y) satisfies G(x, y) ≥
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c(R − |x |)2(R − |y|)2 for some c > 0, see [24]. This implies that αΔv2(λ
1/4
2 ) > 0

and therefore w(r) > 0 for all r ∈ [λ1/4
2 , λ

1/4
1 ]. Thus

r N−1αv′
2(r) =

r∫

λ
1/4
2

t N−1αΔv2(t) dt > 0 for all r ∈ (λ1/4
2 , λ

1/4
1 ].

In particular αv′
2(λ

1/4
1 ) > 0 which contradicts (95).

It follows that Δv1(0) = Δv2(0) and hence v1 ≡ v2. This implies that λ1 = λ2
and that u1 ≡ u2.

The remaining case p = 0, can be solved explicitly and we find that λ = 8(N +
2)N u(0). ��
Proof of Theorems 3 and 6 To prove this we will show that

E0 = {φ(β) : β ∈ I } (96)

Indeed, by construction φ(β) ∈ E0 for each β ∈ I . To prove E0 ⊆ {φ(β) : β ∈ I }
we need to show that given any radial regular solution u of (2) there exists β ∈ I
such that u = uβ . Note that if p is negative and u is a radial regular solution for some
λ > 0 then 0 < u(0) < 1. Using Lemma 29 it is sufficient to find β ∈ I such that
u(0) = uβ(0). We have by Lemma 27 that uβ(0) → +∞ as β → β∗ if p is positive
and uβ(0) → 1 if p is negative. By Lemma 28 we know that uβ(0) → 0 as β → 0.
Since uβ(0) varies continuously with β there is β ∈ I such that u(0) = Uβ(0). ��
Lemma 30 The map φ : I → R

4 is a real analytic.

Proof Let β0 ∈ I . Then there is r0 > 0 and δ > 0 such that Uβ(r0) is well defined
for all β ∈ (β0 − δ, β0 + δ) and is analytic. Fix R0(β0) < R1 < Rmax(β0). Then, by
standard theory of ODE, by taking δ > 0 smaller if necessary we find that Uβ(r) is
well defined for all r ∈ [0, R1]. Moreover Uβ(r) is analytic with respect to β ∈ (β0 −
δ, β0 + δ) and r ∈ (R0(β)− δ, R0(β)+ δ) (see [8]). Since ∂

∂β
Uβ(R0(β0))|β=β0 �= 0,

by the implicit function theorem the map β → R0(β) is analytic in a neighborhood
of β0. It follows that φ(β) = Vβ(T0(β)) is analytic in a neighborhood of β0. ��
Proposition 31 Assume p is in the range (8) or (10). If λ �= λS, then there is at most
a finite number of regular radial solutions of (2).

Proof By (96) and Lemmas 27 and 28 we can consider P1 and P∗ as the endpoints of
E0. If λ = 0 then u = 0 is the only solution of (2). Let λ �= 0, λ �= λ∗. By analyticity
E0 ∩ {v1 = λ} can only accumulate at either P1 or P∗. Since P∗ is not included in
{v1 = λ} accumulation in P∗ is not possible. Similarly, since P1 �∈ {v1 = λ} the set
E0 ∩{v1 = λ} cannot accumulate at P1. Thus E0 ∩{v1 = λ} consists of a finite number
of points, which correspond to regular radial solutions of (2). ��
Proof of Proposition 2 By [7] and [14] there exists λ∗ such that if 0 ≤ λ < λ∗ then
(2) has a minimal smooth solution uλ and if λ > λ∗ then (20) has no weak solution.
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Although in [7] the authors deal with (2) when p = −2 and N = 3, the proof applies to
any p < 0 and N ≥ 1. The limit u∗ = limλ↗λ∗ uλ exists pointwise, belongs to H2(B)
and is a weak solution to (20) in the sense (4) or (5). The functions uλ, 0 ≤ λ < λ∗
and u∗ are radially symmetric and radially decreasing.

Assume u∗ is singular. Fix λ̄ ∈ (0, λ∗) and let v be a smooth radial solution to (2)
with parameter λ̄. Since λ ∈ (0, λ∗) → uλ(0) depends continuously on λ, and since
limλ→λ∗ uλ(0) → ∞ we see that there exists someλ ∈ (0, λ∗) such that v(0) = uλ(0).
By Lemma 29 we conclude that λ̄ = λ and v = uλ.

Now assume that for all 0 < λ < λ∗ there is a unique solution. Then this solution
has to be the minimal uλ and is therefore regular. This shows that λS ≥ λ∗. Since we
always have the opposite inequality we deduce λS = λ∗. We claim that u∗ = uS . If
u∗ is not regular then it has to be weakly singular and by uniqueness u∗ = uS . So,
suppose that u∗ is regular. Since uλ ≤ u∗ and u∗ is regular there would be a constant
C such that (1 + sign(p)uλ)

p ≤ C for all 0 < λ < λ∗ and all 0 ≤ r ≤ 1. Recall the
family of solution uβ constructed in (93). By Lemma 27

lim
β→β∗(1 + sign(p)uβ(0))

p = ∞.

But each uβ corresponds to some uλ by uniqueness, which gives a contradiction. ��

Appendix A: Sign of some constants

We see that K1 is a cubic polynomial in τ and that N−4
2 , which corresponds to the

critical exponent p∗ = N+4
N−4 , is a root. Then

K1 = −4

(

τ − N − 4

2

)

(τ − τ−)(τ − τ+)

where

τ+ = N − 4

2
+

√
(N − 2)2 + 4

2
, τ− = N − 4

2
−

√
(N − 2)2 + 4

2
.

Since τ −< (N − 4)/2 < τ+ for all N ≥ 3 we see that K1 < 0 on (τ−, (N − 4)/2)
and (τ+,∞).

Using formulas (22) we see that K2 K3 − K1 is a cubic polynomial in τ which can
be written as

K2 K3 − K1 = −20

(

τ − N − 4

2

)

(τ − τa)(τ − τb)

where

τa = N − 4

2
−

√
(N − 2)2 + 4

2
√

5
, τb = N − 4

2
+

√
(N − 2)2 + 4

2
√

5
.
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Since τa < (N − 4)/2 < τb for all N ≥ 3 we see that K2 K3 − K1 > 0 on (−∞, τa)

and ((N − 4)/2, τb). It follows that for all τ < (N − 4)/2 we have K1 < 0 or
K2 K3 − K1 > 0.

Appendix B: Calculation of pc and p+
c

The relation pK0 = HN can be written as a fourth order polynomial in τ , that is

(τ + 4)(τ + 2)(N − 2 − τ)(N − 4 − τ) = HN .

This polynomial has four real roots given by

τ±
1 = N − 6

2
± 1

2

√

4 + N 2 − 4
√

N 2 + HN

and

τ±
2 = N − 6

2
± 1

2

√

4 + N 2 + 4
√

N 2 + HN .

We can check that τ±
2 are always outside the range (14) or (15), because τ+

2 ≥ N − 2
(the corresponding value of p satisfies 1 < p ≤ (N +2)/(N −2)), and τ−

2 ≤ −4, (0 ≤
p < 1) and so we write

pc = 4 + τ−
1

τ−
1

and p+
c = 4 + τ+

1

τ+
1

.

Note that p+
c only appears as a critical power when N = 3, since for N = 4, τ+

1 = 0
and for N > 4, we have τ+

1 > (N − 4)/2, (1 < p < (N + 4)/(N − 4)).
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