VARIANTS OF KATO’S INEQUALITY
AND REMOVABLE SINGULARITIES

By

JuaN DAVILA AND AUGUSTO C. PONCE*

Abstract.  An inequality reminiscent of Kato’s inequality is presented.
Motivated by this, we discuss some criteria to decide whether a singularity of
the equation Au = g in 2\ K comes from a Radon measure or not. As an appli-
cation, we extend a lemma of H. Brezis and P. L. Lions on isolated singularities to
the case where the singularity lies on a compact manifold.

1 Introduction and main results

The original motivation for this work is the following remark, which is related
to Kato’s inequality (see Kato [K]). First, let us recall one of its many versions.
Consider 2 C RN an open set, and let v € L*(2) be such that Av € L!(). Then

{1 Alv] > sign(v)Av in D'(Q),

where sign(s) = 1if s > 0, —1 if s < 0 and zero at s = 0. If we assume in addition
that v is continuous in 2, it is easy to verify that

@) Alv| = sign(v)Av in D'(Jv # 0)).

Comparison between (1) and (2) suggests that the inequality in (1) should be a
consequence of the fact that |v| achieves its minimum on the set [v = 0], where one
has A|v| > 0 in a suitable sense.

Motivated by this fact, Y. Li posed the following question: suppose u € L!(Q2)
is such that ¢ > 0 a.e. in 2 and « = 0 on a compact set K in some reasonable sense.
Set g = Au in D’'(Q2\ K) and assume that g € L1(2\ K) (no conditions on A are
prescribed on the “zero set” K). Let § be the extension of g to 2 such that § =0
on K. Define

pi=Au-g in D'(Q),
*This author was supported by CAPES, Brazil, under the grant BEX1187/99-6.
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144 J. DAVILA AND A. C. PONCE

so that supp(y) C K. Is it true that u is a nonnegative distribution? In this case it
has to be a Radon measure supported in K (see Schwartz [S]).

We have given a positive answer to this question in the following theorem,
which includes the case where u € C(Q) and K C [u = 0].

Theorem 1. Let Q@ C RV be a bounded open subset, and u € L*(Q) such that
u > 0a.e inf. Let K C Q be compact. Set

g:=Au inD'(Q\K).

Assume that g € L'(Q\ K) and that

3) lim sup ][ u=0.
B.(z)

10 zeK

Let § be the extension of g to Q2 such that § = 0 on K. Then Au > §in D'(Q2); in
other words,

@ JRNE / G, Ve €CPQ), 920,
Q Q

As we have pointed out before, the theorem above implies the following

Corollary 2. Let Q C RN be open, bounded, and u € C(Q) be a nonnegative
Junction. Let K C 2 be a compact subset such that u = 0 on K. Set

g:=Au inD'(\K),

and assume that g € L*(Q0\ K). Let § be the extension of g to Q such that § = 0 on
K. Then Au > § in D'(Q), in other words,

5) / wAp > / Go, Vo€ CP(Q), ¢ 0.
Q Q

Remark 1. We shall see later that if the set K is sufficiently small and a certain
growth condition for u near K is prescribed, then one really has the equality Au = §
in D'(Q2) (see Corollary 7). This is not the general case, though, as one can see by
very simple examples. For instance, if u(z) := 1|zn| forz € RV, then Au = dz' in
D'(RN), where dz’ denotes (N — 1)-dimensional Lebesgue measure on (zy = 0].

Remark 2. A consequence of this theorem is that 4 = Au — § is a nonnegative
distribution, and hence a Radon measure. This implies that u € Wlf)’c”(ﬂ) for any
1< p < N/(N —1) (see Bénilan—Brezis—Crandall [BeBrC]).
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Remark 3. The same theorem holds under the weaker hypothesis that € is
just open, K C  is relatively closed, and

lim sup ][ u=0 forall A C K compact.
40 zeA B.(z)

In fact, for any § > 0 set

Qs = {z € Q:d(z,d0) > 6 and |z| < 1/5}.

Now fix é > 0 and let ¢ € C§°(§25), 0<¢y<landyp=1in Q35. We can then
apply Theorem 1 in ﬁa tod:=up, K:=Kn 525, and conclude that (4) holds for
all p € C3*(Qas).

Remark 4. A simple application of the Besicovitch Covering Lemma implies
that condition (3) is equivalent to

©) lim iN u =0,
ror NA(K)

where N, (K') denotes the r-neighborhood of K, i.e.,
N.(K)={z e RN :dist(z,K) <r}.

The assumption required in (3) (or equivalently (6)) is probably too strong but
we do not know how to weaken it in this general setting. In the case where X' C {2
is a smooth manifold of codimension 1, we have been able to relax the hypothesis
(3) by assuming that

lim u =0,
rlO E,‘(K)

where Z, = E,(K) is the tubular neighborhood of K with radius r. In other words,
for such singular sets, one can replace the factor 1/rV in (6) by 1/r, and still get
the same conclusion of Theorem 1. More precisely,

Theorem 3. Let 2 C RN be an open set and MN~! C Q be a compact, smooth
manifold, without boundary, of codimension 1. Let u € L}, (), and assume that
there exists g € L} (Q) such that

loc

Au=g inD'(Q\ M)
If
L1
) hm—/_ [u] =0,

rl0 r
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1
then, for each p € C§°(Q), = /_ uyp convergesasr | 0, and

Sr

1 1 0
®) Iﬁﬁ}ﬁ s,W—E/QuA(P—W’ Vo € C3° ().

In particular, if we suppose in addition that u > 0 a.e. in €}, then
©) Au>g inD'(D).

Remark 5. As mentioned in Remark 2, a posteriori we conclude from (9)
thatu € Wll”’ () for 1 < p < N/(N - 1), in which case condition (7) is equivalent

oC
tou = 0 in M in the sense of the trace.

Next, we study the case where the singular set M is a compact manifold of
codimension k > 2. It turns out that, in this case, the condition u > 0 a.e. in
already suffices to conclude that —Au is a (nonnegative) measure on M. More
precisely, we have

Theorem 4. Let Q2 C RN be a bounded open set and let M C ) be a compact,

smooth manifold without boundary of codimension k > 2. Letu € L. (), u > 0

a.e. in §), and assume there exists g € L} (S2) such that

Au=g inD'(Q\M).

Set
(10) p:=Au—-g inD'(Q),
which is a distribution supported on M.
Then
(11) # Is a nonpositive measure on M

and, for any ¢ € C§*(8), we have

.1 .
~2(k-2) lrlﬁ)l;?_/awp ifk>3,

up ifk=2.

(12) (1, ) =

im ————
rlﬁ)lﬂllogrl s,

We should mention that the conclusion (11) holds true in a much more general
setting. In fact, a classical result in potential theory states that if in the statement
above one replaces M by a compact set of zero H!-capacity K (this includes the
case of a smooth manifold of codimension k > 2), then u, defined by (10), is a
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nonpositive measure on K (see L. L. Helms [H], Theorem 7.7). We present in
Section 5 a completely independent proof of this result in our special case in order
to deduce (12), which is used to prove Theorems 5 and 6 below.

Even if we do not assume any conditions on the sign of u, we can still charac-
terize the case when u is a measure in terms of the growth of |u| near M. More
precisely, we have proved the following

Theorem 5. Let 2 C RV be a bounded open set and let M C Q be a compact,
smooth manifold without boundary of codimension k > 3. Let u € L} () (here
we do not assume that u > 0 a.e. in Q) and assume there exists g € L}, () such
that

Au=g inD'(Q\M).
Set
p:=Au—-g inD'(Q),
which is a distribution supported in M. Then p is a Radon measure if and only if

1
7'23

(13)

lu| remains bounded asr | 0.

In this case, for all p € C§°(N) we have

.1 1
(14) lrlfolr—z/;r up = —m(#,w)-
Moreover,
1 I
(1s) im 5 . 1l = gyl

where ||ul| := sup { [, wdp; w € C(M), |lwllw < 1} denotes the usual norm of
Radon measures on M.

Remark 6. Using a formula deduced in Section 3, we show (see Remark 9)
that (14) still holds if one replaces (13) by

1
(16) 133;/5' lu] = 0.

On the other hand, if one takes, for instance, the function u(z) = z,/|z|® in R®\{0},
then Au = ¢D,, 8 for some constant ¢ # 0. In the notation of Theorem 35, let
M := {0}, g = 0 and u := ¢D., do, so that u is a distribution of order 1 and

an lim l/ [u] > 0.
B"

rlo T
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The example above suggests the following

Open problem. Let M C 2 be a compact, smooth manifold without boundary
of codimension k > 3. Let u and g be as in the statement of Theorem 5, and set
u:= Au — g in D'(Q). If (16) holds, is 1 a measure?

There is also a result analogous to Theorem 5 in the case of codimension k = 2:

Theorem 6. Let 2 C RN be a bounded open set and let M C Q be a compact,
smooth manifold without boundary of codimension k = 2. Let u € L}, .(Q) (here
we do not assume that u > 0 a.e. in §)) and assume there exists g € Li, () such
that

Au=g inD'(Q\M).

Set
p:=A~Au—g inD'(Q),

which is a distribution supported in M. Then u is a Radon measure if and only if
1 .
(18) S / |u| remains bounded as v | 0.
r?|logr| J=,

In this case, for all p € C§° () we have

1 1
19 lim ——— =-= .
(19) o TTogr] /Erwp 5 (ks )
Moreover,

1 1
20 lim —-———— = Z|ipll-
(20) i o | 1l = el

As a consequence of Theorems 5 and 6 we have the following removable
singularity statement:

Corollary 7 (Removable singularity). Under the assumptions of
Theorems 5 and 6 above, Au € L () if and only if

. 1
1) lrlﬁ;-ﬁ/a lul=0, fork>3,
. i

Next, we give an application of Theorem 4, by extending an earlier result of
Brezis-Lions [BrL] originally concerning the study of isolated singularities.



VARIANTS OF KATO’S INEQUALITY 149

Theorem 8. Let  C RN be an open set and MN~% C Q be a compact
manifold without boundary of codimension k > 2. Letu € L} _(Q2\ M) be such that

Au € Li,.(\ M) in the sense of distributions on Q1 \ M,
u>0 ae infl,
Au<au+f aeinQ\M,

where a is a nonnegative constant and f € L} ().

Thenu € L} (), and there exist h € L}, () and a nonnegative Radon measure

u supported on M such that
23) —Au=h+yu inD'(Q).

Since a compact manifold M of codimension k > 2 is a set of zero H!-capacity,
and also because of the linear nature of Theorem 8, the classical result we mention
just after Theorem 4 leads us to state the following

Open problem. Suppose that in the statement of Theorem 8 one replaces
the smooth manifold M by a compact set K of zero H!-capacity. Can one still
conclude that u € L (), and that there exists k € L;,.(©2) such that (23) holds
for some p supported on K? (Note that potential theory would tell us that p is
necessarily a nonnegative Radon measure.)

If the answer to the open problem above is affirmative, it gives a sort of linear
version of a general result of P. Baras and M. Pierre (see [BaPi]).
An immediate consequence of Theorem 8 is the following

Corollary 9. Let M C 2 be as above. Assume f : Ry — R is continuous and

litminf @ > —00.

Suppose u, f(u) € LL (Q\ M), u >0 a.e. in}, and
—Au= f(u) inD'(Q\M).

Thenu, f(u) € L _(Q) and

1
loc
(24) —-Au=f(u)+u inD'(Q)

for some nonnegative Radon measure u supported on M.

A simple application of Corollaries 7 and 9 allows us to recapture the following
consequence of a removable singularity result which was originally proved by
L. Véron for the case k > 2 (see [V1]).
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Corollary 10. Under the hypotheses of Corollary 9, if

liminf ¢ =%/ * =2 £(t) > 0, fork>2,
t—o0

(25)
litm infe @ f(t) >0, fork=2 foralla >0,
—00

thenpu=0, ie.,
-Au = f(u) inD'(Q).

Warning. The result of Corollary 10 may seem misleading at first. For
instance, assume k > 3 and f(t) = t*/(*-2)_ Although it implies that —Au =
u*/(¥=2) in D' (), one cannot conclude solely from this equation that u is smooth.
What Corollary 10 tells us is that the eventual singularities of u are not detectable
at the distribution level. In fact, a result of Mazzeo—Pacard [MPa] says that,
given some compact manifolds in {2 (not necessarily with the same codimension),
and for certain values of p > 1, depending on their codimension, one can construct
nonnegative solutions of the equation — Au = 1*/(¥~2) in D'(Q2), whose singularities
lie precisely on the prescribed manifolds. See Véron [V2] for details.

2 Proof of Theorem 1

In this section, we use the following notation.

Notation. For an open set U C RY and § > 0, we write
Us = {z € U | d(z,0U) > 6},
and for any set A C RV and 6 > 0, we let
Ns(A) = {z € RN :d(z, A) < 6}.

We also use the standard notation for averages:

Jgvap
vdpy = FE—r.
]{; #Z T tdu

Proof of Theorem 1. Take p € C§°(B;) suchthatp > 0in RN and [pnp=1.
For any € > 0, define p(z) := e Np(z/e) on RV, u, := p, * u and g. := p. * § on
2,. Using this notation, one can easily check that

(26) Au, =g, on Qg \ Noo(K).

Fore > 0, let
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Step 1. Condition (3) implies that
lsﬁll ne = 0.
In particular, u. — 0 uniformly on K as ¢ | 0.

Proof. For z € No.(K), let z € K be such that |z — z| < 2¢. Since B.(z) C
Bs.(z) for all e > 0, we have

Ue(2) = }N/&(Z)p (3Y) wwy

S weSf
€ B¢(Z) € B:u(l')

= _3N—C u—0

B (3€)N Bs,(,)

uniformly in z € Ny (K) as € = 0, by (3). This concludes the proof of the claim.

Step 2. There exists a measurable set L(u) C §? such that

(liminfu, > 0] C L(u) CQ\ K

and
@) / uhp > / G, Vo€ CRQ), p > 0.
Q L(u)
Proof. It follows from Kato's inequality (with | - | replaced by sign* in (1))
that
(28) Aue —ne)t > sign™ (ue — ne) A(ue - ne)

= X[u;)'h]AuE n D’(ng),

where X[y, >5,] is the characteristic function of the set [u, > 7].
Since u, < 7. on No. (K), it follows from (26) and (28) that

29 Afue — "le)+ 2 X[ue>n.)9¢ in DI(Q25)~

Now, given ¢ € C§°(Q) such that ¢ > 0, if ¢ > 0 is so small that supp CC Q2.
(29) implies that

(30 / (ue — e} Ap > / X{ue >ne]9e -
Q Q
Since v, — u in L} () and 5. — 0 as € = 0, we conclude that

31) /(ue -ne)tAp = / uAp ase — 0.
Q Q
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On the other hand, take a sequence €, | 0. Up to a subsequence of (€,),>1, we

have
U, S u ae.inf),

g.., 2§ ae.inQ,
|ge.| < h ae.inQ, Vn > 1, for some h € L1(1).

Set
L(u) := liminf {uc, >n.,] =

IIC8

o0
ﬂ [ue, > 76, )

Note that, by our choice of 7., we have K C \ L(u). By Fatou’s Lemma, which
may be applied here since g., > —h a.e. in 2, we have

6 [ xuie= [ Imin X, om0 < lmint [ Xiuon, 1900
It then follows from (30), (31) and (32) that
/QuAtp > /Qmeéw, Vo € C°(R), ¢ 2 0.

Step 3. Proof of Theorem 1 completed. Given A > 0, let hy € C®(RY)
be such that hy =0 on WK_) and hy > 0 outside _NA(_KF

If we apply (27) in Step 2 with the function u replaced by u + k) (note that
condition (3) is still satisfied if we replace u by u + h,), we get

(33) /Q (u+ ha)Ap > /Q Xoturnyy @+ Dha)o, Vi € C(Q), ¢ 2 0.

Now, for a.e. z € 2\ Na(K), we have (u + hy)e, (z) = u(z) + ha(z) > 0 as
n — oo. By the definition of the set L(u + h,), we conclude that z € L(u + h)) for
a.e. z € 2\ N,(K); in other words,

XL(ut+hy) = 1 ae. inl \ N)\(K)

In view of (33) and the relation above, for any ¢ € C§°(Q),

[ 6802 [ xumo@+ Amae - [ Ahp
Q Q Q

= / (9+ Aha)e + / XL(ut+hy)JP — / ____Ahy
Q\N> (K) N> (K) VAT

=/ gp+ / X L(u+hy) 9P
\NL(K) JNA(K)

= /Qétp+0(1),
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where o(1) is a quantity which converges to 0 as A | 0. In the expression above, let
A | 0 to finally conclude that

/uAtpz/éso, Yy € C5° (), ¢ 2 0.
Q Q g

Remark 7. It is noteworthy that the proof of Theorem 1 is somewhat simpler
if one assumes that « is continuous at each point of K. In fact, in this case, Step 1 is
unnecessary and one can apply the other steps of the proof directly to the function
u instead of to its convolution.

3 Some useful formulas

Let us recall some standard results.

Given a compact smooth manifold M ¥ —* (with or without boundary) embedded
in RV with codimension k > 1, we define its distance function d : RV — R, by
d(z) := dist (z, M). The case k = N is included, i.e., M may be a finite collection
of points. It is a well-known fact that for § > 0 small enough, the set Ns(M) is
a smooth manifold with boundary, also called the §-tubular neighborhood of M,
which from now on we denote by Z5(M ), and when no confusion arises, simply by
Zs. The distance function d is Lipschitz in RV, is smooth in Z5 \ M and satisfies

(for the second property see Véron [V2])

(34) IVd| =1 ae.inRY;
k-1

(35) Ad=-—=+a inZ\M,

where ay is a bounded function in Z5 \ M.

For each x € Z;, there exists a unique element 7 (z) € M for which the distance
function is realized, i.e., such that |z — n(z)| = d(z). The projection 7 : Z5 - M
thus defined is also smooth.

For simplicity, from now on we assume that =5 is a smooth tubular neighborhood
of M.

. Finally, let us recall that if v € L!(RV), we have by the coarea formula (see

Evans and Gariepy [EG])
]
/ v= / / vdo dr.
=5 0 =,

Lemma 11. Let Q@ C RN be a bounded open set and let M C ) be a compact,
smooth manifold without boundary of codimension k > 1.



154 J. DAVILA AND A. C. PONCE

Letu € L} (), and assume there exists g € L} () such that
Au=g inD'(Q\M).

Set
pi=Au-g inD(Q),

which is a distribution supported on M.
Fork > 1landt,r >0, define

_11; fo<t<r,
(36) Gk(r’ t) = k-1 Tk
T fo<r<t

Then for any R € (0, 1) fixed and ¢ € C§° (), all the limits below exist and
(a) if k > 3, then

() =i —i/ +
k)P T s

1 (R
+ ;3/ G(r,t) (/ 2uVyp . - Vd + ucpa()) dt} ;
0 g,

(b) if k = 2, then
1 . 1
§<“’(p>_lrlﬂll { 2| logr| /:‘,u<p+

1 R
+ W/o Ga(r,t) (/Et2uV¢-Vd+uwao) dt};

(c) ifk =1, then

—l( y = lim ——1—/ +l lim/ u
QWP =8 T2 A oz, ¢

.
+ 7—‘13 (/ 2uVyp - -Vd+ ugpa0> dt} .
0 z,

Proof. The idea of the proof is first to derive the following

(38)

(39

Claim. For any ¢ € C3°(Q), the function s — fas, up is C! on (0,1) and

dys 1
_ _ . k1 8¢ L _
{(Au, @) _/5. ulp 2/&5, uVp-Vd+s ds(sk—l /_ mp)

=,
- / upag.
3z,

(40)
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Proof of (40). We first assume that u is smooth.
Fix a smooth, nonincreasing function ¢ : R — R such that &(t) = 0fort > 1
and ®(¢t) = 1 fort < 0. Fore > 0, set

t—-1
20 = ().
Now let ¢ € C§°(2) and for e, s > 0, define

o(x) ifz € Z,,
Pocl®) = { p(2)®.(d(z)/s) if T € Earre) \ Zo,
0 if 7€ 0\ Ey(14e)-

Observe that ¢, = ¢ in Z, and @, = 0in O\ Z,4.). We now compute in
Es1+¢) \ Zs, using (35),

2
Aps e = Ap D (d/s) + ;ch -Vd®L(d/s)
1 ]
+ S—2<p{q>;'(d/s) +2@L(d/s)(k ~ 1+ aod)}.
Since y, . is an admissible test function, we obtain
(a1) (Bu,poe) = [ ubpB(@)s) + 1 + I+ I+
Q

where

L = g/ uVp - Vd ®.(d/s),
Q

L)

1
I = g‘/s)u‘P‘I’lsl(d/s),

k-1 7
I = T/QUE 3.(d/s),

Iy = l/ upag BL(d/s).
s Ja

Next we find the limit as ¢ | 0 of the four previous integrals. For this purpose,
we compute

2 _
L== <I>’(——d/s 1)uV<p-Vd
€8 Eu(l+¢)\31 €

and by the coarea formula

2 [t irfs—1
—{;8 {(I)( p )/asrump-Vd}dr

1
= 2~/ {d)’(t)/ uw-w} dt.
0 02 (1+¢t)s
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We now lete | 0:

1
- _ 1 .
lim I _2/0 Q(t){/;E’uV¢ Vd}dt

(42)
= —2/ uVy - Vd.
8E,

We now proceed with I5:
L = l/ up ®2(d/s)
52 Q €
1 wrdfs—1
= 6—232/~ ~ up ® (—-—E )
;s(1+e)\='8

1 1
=— " (t) / up ¢ dt.
€8 Jo { O (1+e1) }

Integrating by parts, we have

1
L= —@’(t)/ ugoji
[68 B2, (14et)

Letting ¢ | 0, we arrive at

t=1

_/01 (q)'(t) [% /aa u(p] ,\:s(1+a)) dt.

t=0

. d ,
43) 151151 I = I o=, uip.

The computations for I3, I, are similar; they yield

. k-1
(44) limIy = —=— /a _
(45) lim I, = ~ /8 _ upan.

Thus, passing to the limit as € | 0 in (41) and using (42)—(45), we get

(Au,<p)=/ uAcp—2/ uV<p~Vd+i/ uc,o—u up—
Z, 8z, ds Jsz, S

(46) o=,
- / uUPag.
9z,
But
d k - 1 k-1 d 1 A
“n ds Joz, “ $  Jo=, WES G <3k_1 /as,, u<p),

therefore, combining (46) with (47) we find (40).
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We now consider u as in the statement of the lemma, i.e., u € L} () so that
p := Au — g is a distribution with support in M, where g € L} (). Using a
density argument and the fact that u € Wlicl (2 \ M), we deduce that the function
8+ Joz, upis C' on (0,1) and that

d 1
3 3 _ . k—1% —
<ll" ‘P) - /5, (UA<'0 g‘P) 2 /0:5, uv‘p Vdts ds (sk_l /Es U(p)

- / upay.

At this point, we distinguish the three cases: (a) k> 3,(b)k = 2,and(c) k = 1.
(a) Case k > 3. Fix R € (0,1) and let 0 < ¢ < R. Dividing (48) by s*~! and
integrating over s € (t, R), we get

1 \ 1 1
- =o(1])—— — ——— _
(k — 2)tk_-2 (/1" 2 0( )tk_-z -1 -/651 up

R
_/ {S:%/ ucpao+2chp-Vd} ds,
t 8=,

where o(1) denotes a quantity that goes to zero as ¢ — 0. Multiplying (49) by t¢~!
and integrating over ¢ € (0,r) with 0 < r < R, we obtain

gy ) = ol - i / up-

(48)

(49)

(50)

- — kl/ skl/ vdsdt,
where
&3)) v = 2uVyp - Vd + upay.

We now integrate by parts in the last term on the right hand side of (50):

R s=R R
1 d 1 1
‘/; _sk—l (a—s‘/‘E ’U) ds = |:-——sk_1 ‘/E ’U] » —/ (1 - k)s—";/_‘:_‘ vds
1

. t
1

TR VTt =”+
—1/ /vds

1 r
k—1
/t /skl/_vdsdt R’“I/Ev = /_vdt+

—1

Therefore,

(52)

t" 1 vdsdt,

sk

—'0
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and changing the order of integration in the last term of (52) gives

r R 1/ rk R
k-1 — .
(53) /0 t /t o /E"Udsdt- k'/o /E.vds+ i /r o /Eavds

Then, (52) in combination with (53) yields
k-1
= / skI/H vdsdt = Rkl/av kr2//vdt+
Hence, using (54) in (50), we conclude that

k-1 4o
+ e /rs—k/s’vds.
1

2(k—_2)<ﬂ,@)= (1)—%2/ k12 T/E vdi—
_1 k- 2/R 1 / vds
=o(1)—;§/srucp+r—2/0 Gk(r’t)/s,v)dt

where Gy, is given by (36).
This establishes (37).
We now deal with
(b) Case k = 2. Note that (48) is still valid; and, since k = 2, it takes the form

<n,<p)=0(1)—/~ v+sad;(l/a u<p),

where v is given by (51). Dividing the last equation by s and integrating over
s € (¢, R), we get

(34)

(log R —logt){p, ) = o 1)|logt|—/ / vds——/ wp.

9%,

Multiplying by ¢ and integrating over ¢ € (0,r), we obtain

6s) Y )—o(l)——l-—/rt/RI/ dsdt — — /
g\ P = rllogr| Jo Ji s S‘U r2|log | Erutp

Integrating by parts yields

[ fara=li LA [ 5 ) v
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Hence, using Fubini, we get

Rl r r r Rl
/ / /wvds——ﬁ . -/o/s,vdt-‘—/o t/t 3_2/5‘vd8dt
1 /(" r2 (R
(56) —ﬁ/‘;n’b‘—i‘/o‘ /E‘Udti"?/r ;L.vds.

So, from (55) and (56), we infer that

1
— = o(1)
2(u,<p) rzllogr| Lr r2|logr|/ '[tvdt
‘2llogr|/r 7 [ v
—o(l)——l—/ u +—1—/R(G (rt)/ )dt
- r2llogr] Jz, ¥ " Pllogrl Jo \ 27 Jg, )

where G- is given by (36) with k = 2.
This proves (38).
Finally
(c¢) Case k = 1. This time (48) becomes

d
(M,¢)=/Au¢—gso—/ v+d/ up.
Q = S

Integrate the previous relation over s € (¢, A):

(57) (=) = o) = [ N /a uo- /a _w

where o(1) = 0 as A = 0. Since v = 2uVyp - Vd + upag € L} .(Q), letting ¢ | 0 in
(57), we see that lim g |, oz, W exisis and

(58) Mu, ) = o(1) — /: v+ / U (nm _ mp).

t10 Jo=

We now integrate (58) over A € (0,r) and divide by 2 to find

1 1 1 1 /[T
5(/1,,()0):0(1)-{-1.—2/;;,. ga——(lgg/ wp)—ﬁ/o /E‘vdt,

which concludes the proof of the lemma. a

4 Proof of Theorem 3

Setu = Au—g. Suppose (7) holds. Then, since hm uyp existsby Lemma 11,
oz,
we conclude that

59) liFol uwp=0, VypeCQ).
ri0 JpE,
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On the other hand, given £ > 0, (7) implies that there exists § > 0 such that
/ jul <e, Vre(0,6).
5z,

Therefore, we have

/Or (Lt2uV¢-Vd+u¢ao)dt‘ SC/Or (/E-l |u|> dt

r 2
SC/ etdt=e%, vr € (0,4).
0

Since € > 0 was arbitrary, we deduce that
1 r
(60) lim ——/ (/ 2uVyp - Vd + uwao) dt = 0.
0 =,
Inserting (59) and (60) into (39), we get

1 .1
5(,‘,90):1:1313 | up, Vo € C5° ().

Now (8) follows since, by definition, 4 = Au — g. This completes the proof of the

theorem.

S Proof of Theorem 4

We prove Theorem 4 only for the case of codimension k > 3, the case k = 2

being entirely analogous.

Let G be the function defined by (36). Then, using the fact that « > 0 a.e. in

1, we have
R
/ Ge(r,t) (/ 2uVyp - Vd + ucpa(;) dt
0 g

r R _x
61 L
(61 SC/O (/Etu)dt+(]/r m (/E‘u)dt
Rk
SCT/= u+C/r t_’“</5 u)dt, Vr € (0, R).

Choose R; € (0, R) so small that CR; < .

<

Applying (37) with R := R, and ¢ € C§°(), ¢ = 1 on Zg,, we have by (61)

and our choice of R;

1 R ok
(62) 5/_ u—C/ Tk(/ u)dtSCrz, vr € (0, Ry).
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We shall use (62) and a bootstrap argument to conclude that
(63) / u<Cr? Vre(0,R).

In fact, since [ u is uniformly bounded for ¢ € (0, Ry),

R,rk
(64) /z,;(/ u)dtSC’r, Vr € (0, Ry).

In particular, (62) and (64) imply that

%/ u<Cr, Vre(0,R,),

Er

so that

R _k
(65) /’t'—k(/_ u)dtsCrZ, Vr € (0, Ry).

=t

Therefore, by (62) and (65), we conclude that estimate (63) holds.
It then follows from (63) and (61), with R replaced by R;, that the right-hand
side in (61) is bounded by Cr3, for all r € (0, R;). In particular,

R,
(66) liirg le { Gi(r,t) (/ 2uVy - Vd + u<pa0> dt} =0.
r 0 =
By (37) and (66), we have
1 1 -
67 s =tm g [ up, Vo e CF)

If we now apply (67) with estimate (63), we conclude that u is a measure. Since
u > 0 a.e. in 2, (67) implies that 4 is nonpositive, O

6 Proof of Theorems 5 and 6

Proof of Theorem 5. We split the proof of the theorem into 3 steps.
Step 1. If

1
(68) = / lu] remains bounded as r | 0,
then u is a measure and

.1
69) ) = -2k -lim 5 [ wp, VoeCR®).
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Proof. It is easy to see that condition (68) implies that

R
lig)lrl2 { Gi(r,t) (/ 2uVp - Vd + ucpao) dt} =0,
T 0 h

where G, is the function defined by (36). From the limit above and (37), we deduce
that (69) holds. In particular, it follows from (68) and (69) that x is a measure and

1

< - iminf — .

(70) Il < 20k - 2 timnt = [
Step 2. If 4 is a measure, then
1) r% / lu| remains bounded as r | 0,
and
@ Il > 25 = 2 limsup % [ Jul.
rio T J=,

Proof. In this step, we use an estimate given in the proof of Theorem 4 and the
representation of the solutions of Av = vin RV when v is a measure in terms of the
fundamental solution. More precisely, let E(z) = cy/|z|V~? be the fundamental
solution of —A in RV, N > 3, where the constant cy is chosen so that —AFE = &.
If v is a Radon measure, then v := E * v satisfies —Av = v in D'(RV).

Now let v := g+ p in . Next, we decompose v = v+ — v~ into its positive and
negative parts, where vt = g* + u*. Let v* := E » v*. As observed above, we
have

—AvE =vE =gt 4t inD'(RVY).
Moreover, vt > 0a.e.in RV . In particular, the functions v* satisfy the assumptions
of Theorem 4, so that (11) holds with u and u replaced by v* and —u*, respectively.
In other words, we have

(73) / vE < Cr? Vre(0,1),

and

1
(74) Wt o) =lim = [ v*e, Voe @)

2(k - 2) 0 72

On the other hand, it is easy to see that u = v~ — v + w a.e. in Q for some
harmonic function w. Since w is bounded in some neighborhood of M, we have

(75) lim — / w| = 0.

rl0 r2
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In particular, (71) follows from (73) and (75). Moreover, if we apply (74) with a
test function ¢ such that ¢ = 1 in some neighborhood of M, then we have

1 1
3% =2) llull = 2k —2) (¢

1 1
=lim—= [ (vt +v~ > lims ——/ .
im 5 [ 0% 40+ w2 tmswp 5 [

pt, 1)+ (27,1) +0)

This concludes the proof of Step 2.
Step 3. Proof of Theorem 5 completed. By Steps 1 and 2, we know that
1 is a measure if and only if

%2 / |u| remains bounded asr | 0,
in which case formula (14) holds. Moreover, applying (70) and (72), we get
1 1
< 2(k — 2) liminf — < 2(k-2)li = <
Il < 206 = 2) i 5 [l < 20k~ 2) imowp 5 [l <

so that all the inequalities are reduced to equalities in the estimate above and (15)

holds. O
Proof of Theorem 6. The proof of Theorem 6 follows the same lines as those
in the previous one and is omitted. O

Remark 8. Although we derived (14) in Theorem 5 through a somewhat
lengthy computation, there is a more natural approach if one assumes that the
limits involved exist. Indeed, take ¢ € C§°(Q). Then, using I’Hbpital’s rule, we
obtain

.1 1

But, using formula (106) of the Appendix (with A = 1), we have

1 Cip o [
it [ o= tim {r [ woereten) da(&)}

) _ A(uep) _ o0
k—1 ; k-1
- I}ﬁ)l {r oz, OV °mO+r 8%, (ug) o or

+ (k—1)rk2 /651 (up) o 7y 9}

. 8(up) 90 1
—I:E)l{ 8=, v +_/85'u‘p(—a7@)°7r1

+k_-1 u
T Joz, L
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. . .1
We can solve from the previous equations for 1%1 - up:
r 8%,

1 _ 1 A(uyp) / 001 }
o7 Joz, " (k-2) it {/z;s, o 0%, u<p( ar @) ey

lim - =

Integrating by parts and using estimates in the Appendix, we find

1 1
(77) lim ~ e —m(#, ©)-

Thus, (76) and (77) combined yield

lim — / =——L1 )

012 Jo "0 T T -2y ¥l
Remark 9. Formula (14) in Theorem 5 holds under weaker conditions than
that stated in the theorem, namely that % fEr ju| remains bounded as r | 0, or

equivalently, that Au = p + g with g € L{ () and x a Radon measure supported
in M. For example, it is easy to check that if

(78) -11:/ |u] =0 asr 40,
then (14) holds, i.e. (in codimension k > 3),

lim~ [ wp=-— Ve € C(A).

1
"o 12 J5 =) )

This suggests the following

Open problem. Let & C RV be a bounded open set and let M C
be a compact, smooth manifold without boundary of codimension k£ > 3. Let
u € L} () and assume there exists g € L}, () such that Au = gin D'(2\ M).
Set pp:= Au — g in D'(2). Assume that

him 1 / Ju| = 0.
r{0 T =,
Is 1 a measure?

The requirement (78) cannot be further relaxed, for instance, by asking instead
that

1 ,
79 - / |u} remains bounded as r | 0.
For example, if u(z) = z;/|z|® in R?, then Au = ¢D,, 8, for some constant ¢ # 0,
and % fsr |u| remains bounded away from 0 as r | 0. In any case, if (79) holds,
then from the formulas in Lemma 11 we see that  has to be a distribution of order
1.
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7 Proof of Theorem 8

As in [BrL], the proof consists of the following two steps.
Step 1. u € L{ () and there exists a constant C > 0 such that

r? if k>3,
(80) / w<C
2, r?logl ifk=2,

for all r > 0 sufficiently small.
Step 2. Set h := —Au a.e.in 2\ M. Then h € L} () and

81) [mos-[use, voer,
Q Q
where the class F of admissible test functions is defined by

p>0mQ, }

82 F = C5e(Q
(82) {goe 0 (@ 3A > 0suchthat V- Vd =00n =,

By Steps 1 and 2, we conclude that xw € L] (), and we can write
~Au=h+p inD'(Q)

for some function h € L} () and some distribution x supported on M. Since
u > 0 a.e. in ), we deduce from Theorem 4 that y is a positive measure (note
the change of sign in the definition of z). In other words, in order to show that
Theorem 8 holds, it suffices to prove Steps 1 and 2.

Proof of Step 1. Consider the function
ﬁ(r):%/ udo:/ wow, Olo,r)de, D<r<l,
8z, =,

where @ is a smooth function defined on 8=; x [0, 1] which arises from the change
of variables (see (107) and Lemma 12 in the Appendix), and =,. is defined by

— T —
e (z) = 7(z) + riwg), T €5\ M.
We use the function @ to prove (80) in a similar way as in Brezis—Lions [BrL].
In order to get some of its properties, suppose for a moment that u € C®(Q\ M);
then

7 0
T = [ Gremelend©+ [ womPlen )

=y =1



166 J. DAVILA AND A. C. PONCE

Hence, by Corollary 13,

k—1_d_'_‘ _/ a_“ k—I/ 3_@ .
() = - do+r v, (§,7) do(§);

=1

and, integrating by parts, we have

== Ou k-—1/ 00
- /a,o\s, Au+/a et oz, Br (€r)do(8),

Erg

for any ro > 0 small enough. Throughout this step, we denote by v the unit
normal vector to Z,, pointing out of =, (which explains the minus sign in front of
fEro\Er Awu in the expression above).

Fora generalu € L} (Q\ M) with Au € L], (Q\ M), by using Fubini’s Theorem

and the fact that u € W (2 \ M), it follows by density that @ € C*(0,1), diz/dr is

loc
absolutely continuous on (0, 1), and

du Ju 00
E-10U ou k—1 ov
r o () /Ero\sr A'u+/&5r0 3 do+r /aaluom pe (&, r)do(€)

is still true for a.e. r¢g > 0 small (which will be fixed later).
We now proceed with the main computation. The next formulas hold for a.e.
r € (0,1). We have

rkl"l %( k_l%g) - ;’}—T b8, Au
(83) + .,.kl-l dii {rk_l /8 . uom, %—?(E,'r) da(§)}
= ﬁl__l - Au+ FZ 111 + L,
where
= /851 wor %?—({,r) do(¢) = rkl‘l /as, ¢ (%%_?) °m
and

dr

Ou 00 s)
k—1 k—1
=r /asl—ayow,.—ar +r /: Uomy a2

"o w85)om s [ +65R) n

d
h=r2 [ wom S2endoe
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At this point it is convenient to set

1 9'0

)= ———— =
v (27) G)(wl(z),d(:c)) Ori (7l'1(22),d(.’13)), i=1,2
Then we can rewrite I; and I, as
84 L=-2 M)
( ) ) ‘I"‘_l asr u ’
L= Ou gy 4 / ud®,
oz, Ov 89S,
Integrating the expression for I, by parts, we get
(1)
L =- / 2 + / uAg®) — / Aug™M)
8(Er\E,) OV 0o \Es 0o \Er
(85) + / u g 4 / ud®,
0., OV 9=
o -

From Corollary 13 in the Appendix (in combination with the lower bound for © of
Lemma 9), we obtain the following estimates for 909,

(86) |DiI9M| < cd*It, §=0,1,2;

(87) [9®| < cdF-2.

Therefore,

88 L=-_[ wv<c

(88) e et

and

(89) L<C u+C ud*3 — / Aud® + C.
0%, E.\En E,o\Er

Combining (83), (88) and (89), we find
1 dy 4 da 1 C
— = V< — =
T (r dr) ST Joe Au+ v Joe. utC o= u+

+C udb—3 — / AuwdV) +C.
Erp\Er Erp\Er

Then, multiplying the last inequality by r*—* and integrating with respect to r
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yields

_du 1 di
"g 1@(70)—” 1d—r(r) <

To To
SC/ s"“z/ udads+C/ s"‘I/ uda ds
r =, r =,

ro
(90) +C / ! / ud*=3 do ds
r Zr6\Zs
ro To
+/ Audo ds —/ sH/ AudV dz ds
r 9=, r Zeo\Ss
+ Crg.

We now estimate each term on the right-hand side of (90). We start with

To To To
91) / sk‘Q/ udods < r’5‘2/ / udods < / sk=1a(s)ds.
r =, r =, r

Similarly,

0 0
92) / skl / udods < / s"“z‘t(s) ds.
r =, r
The third term on the right-hand side of (90) is, by Fubini,
ro To 70
/ s’H/ ud* 3 do ds =/ / / s*1urk 3 do dr ds
r Erp\Ea r Js Ea

ro . A
= / / ulk—3 / s*~ldsda d)
(93) r 0=y r

To
<C / / uA**~3do d)
r DSX

70
SC/ s*~1a(s) ds,

since A?*73 <1 for0 < A < rp < 1. We now estimate the fifth term in (90), again
using Fubini:

o To fTo
/ sk / AudD do ds = / / / s£=1 Au 9N+ do d)ds,
- S \Zs r Js JOE,

o A
=/ Ay ,\’H/ ¥V dsdo d)
r 85)‘

r

7o
= / Au O(rE* 1) do dA,
r 83,\
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where O(r2¥~1) denotes a function bounded by Cr2*~!. Hence the fourth and fifth
terms of (90) combined yield

70 70
/ Audads—/ sk_l/ AudV dods =
r JOE, r Zro\Es
To
=/ / Au(1+ O(r2F71) ) dodA.
r OE

We now fix 7o > 0 so small that 1/2 < 1+ O(r3¥~!) < 3/2. Since Au < au + f a.e.
inQ\ M,

To To
/ Audo‘ds—/ sk_l/ AudWV dods <
r JOE, r Ev\Es

o
94 SC/ / au + fdodi
r O

< C’/rro sk 1a(s) ds +/E f

(in the hypotheses of the theorem, after replacing f with ft we may assume that
f > 0a.e. in Q). Hence, from (90)-(94), we get

di o
—rkF=12(r) < C’/ skla(s)ds + C.
dr r
We now proceed exactly as in [BrL]. Take 0 < R < rq to be chosen later and define
R
Yr(r) = / sk~1a(s) ds, 0<r<R.
T

With this notation, we have

~rt12(r) < Cn(r) + O,
where Cg is a constant that depends on R, but C is independent of R. After

integration, we find

R R
_ _ P(s) ds
u(r)—u(R)SC/r ;k_—ldS+CR/r ey
and therefore
_ R 1
95) ar) <C / rbn(s)ds + Cr(1+ =)

if k > 3. In the case k = 2, we have to replace 1/r*~2 by | logr| in the second term
on the right-hand side. Since ¥g is nonincreasing, we thus obtain

Tk—lﬁ(‘l') < CR’(IJR(’I’) + Cg.
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Integrating once more, we get

R R
Prr) = / s"_lﬂ(s) ds < CR/ Yr(8)ds + Cgr
< CR*yg(r) + Cr.

(96)

Now choose 0 < R < rp such that (1 — CR?) > 1/2; then from (96) we see that

d)R (1') < C)

with C independent of r € (0, R). By letting » — 0, we conclude that u € L} ().
Moreover, from (95), we see that

L ifk>3,
a(r) < C ¢ r+? -
logr| ifk=2

which implies the estimate

r 2 if £ > 3,
/ u =/ s la(s)ds < C " nr=
=, 0 r?llogr| ifk=2.

This concludes the proof of the first step.

Proof of Step 2. First, note that to prove the whole statement of Step 2, it
is enough to show that (81) holds. In fact, suppose that (81) has already been
established. By the assumptions of the theorem, we know that A > —au — f a.e. in
Q, and au + f € Li _(Q) by Step 1. If we take an admissible test function ¢ € F
such that ¢ = 1 in some small neighborhood of M, then we have

OSL(h+au+f)¢§—/QuAcpi—/Q(au+f)<p<oo,

which implies that & € L] ().

We now proceed with the proof of (81).

Let ¢ € F. Since (81) is trivially satisfied if ¢ = 0 near M (in fact, we have
equality in (81) in this case), there is no loss of generality if we assume that
suppy C Z; and ¢ # 0 near M. Next, fix A > 0 such that Vi - Vd = 0 in Z,.

Let ® € C3(R) be a convex function such that ®(t) = 0 for¢ > 1, and ®(0) = 1,
to be given explicitly below.

For0 < e < 1, and if k > 3, define

gk2 . =\ =
plz) @ (W) ifz €z \ &,
0 otherwise;

Pe(z) =
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if k =2, we let

log 70y =
d | — if =Z1\E
QOE(:L‘) — (p(z) ( lOg-:— Hzrzezy \ €

0 otherwise.

By construction, we have . € C3(Q) and . = 0 on Z,. In particular,

©7) / hpe = /Am.oe - / ubgs.

In the argument that follows, we assume k > 3, the proof of (81) when k = 2
being entirely analogous.

If we compute Ay, explicitly on Z; \ =, and use (34) and (35), we get (recall
that ¢, = 0 outside this set)

k 2 , k 2 Ek 2

Ek 2 2ant Ek -2 E.lc: -2 , Ek -2
s {(k - (dk )i e (dk )ow).

where O(1) is a quantity which remains bounded as ¢ | 0.

Note that
ck—2

(98)

and

ek=2\ gk-2
@' (F) F — 0,
both limits being uniform in any compact subset of 2\ M ase | 0.

Since Ay ® ( ) is uniformly bounded and V¢ - Vd = 0 on Z,, we conclude
that

k 2 , ek -2 €k_2
99
—)/uAcp ase ] 0.
Q

Next, we analyze the behavior of the term between brackets in (98). Before
that, let us make a special choice of the function ®.
Let a > 3 be a number sufficiently large to be chosen below. Define ® : R — R

by
1-¢t)°t ift <1,
0 otherwise.
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In particular, ® € C3(R), ®(t) = 0for ¢t > 1, and ®(0) =
For z € 2 \ E,, we have

ek -2 - Ic 2 EIc—2 , 6Ic—2
s { -2 (5=) e o (G o) =
ck—2 ck-2\ 27! ck—2 ck—2
(a+l)dk - <1 - Ek_-5> {a(k——2)2dk_l - (1 = 2>0(1)}

= (a+ 1)2: f <1 - ZZ:Z)M {Z:—:j(a(k _9)? +O(1)d) —0(1)}.

Now choose K > 0 and then a > 3 both so large that

—2)2
(I(L?—)—ZKZIO(I)I, for0 <e < 1.

Then we get
Ek -2 " k 2 Ek—Z , ek—2
T {22 (5) S+ (5= ) o) =
k 2 61:—-2 (k 2)2 k-2
(a+1)d’° : (l—d—k—_—2—> {_Z—_d 0(1)} : H.

Next we split the estimate for a lower bound of H into two cases, depending on
how near the point x is with respect to the singular set M
a(k — 2)% gF-2
— 2 a2k

In this case, by our very choice of K, the expression defining H must be
nonnegative, i.e., H > 0.
a(k —2)% gk~

2 gkt
If the inequality above holds, we have

Case 1.

Case 2. < K.

ck—2 ck—2 1
H (a+l)dk1<l—d-—k'_3) K

2K 8 4
> - —_— --K*=:-C.
(a+1)a(k—2)2K> 3K C
In both cases, we have
(100) H>-C,

for some constant C' > 0 independent of ¢ and .
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It now follows from (98)—(100) and Fatou’s Lemma (recall that
h> —au - f € L} .(0)) that, if we let e | 0in (97), we get

(101) /hcpﬁ—/Aucp#-C/ucp, Vo e F,
! Q Q

which is “almost” the inequality we want to prove. In any case, the argument
presented at the beginning of this step, applied to (101), already gives h € L} ().
Next, we show how the constant C > 0 above can be removed.

Given any small 6 > 0, let s € C§°(Z5) be suchthat 0 < 75 < 1andns = 1on
Zs/2- Note that ;s still belongs to F so that, after replacing ¢ in (101) by ¢ns, we

get

[’upna < —/ uA(cpms)+C/wpna-
Q Q Q

On the other hand, since ¢(1 ~ 75) € C§(Q\ M),

/h¢(1—na) = —/uA(w(l—na))-
Q Q

Now adding both relations, we obtain

/htpg—/uAcp+C/uLpn5.
Q Q Q

If we let 4 | 0 in the inequality above, we get (81), as claimed. This concludes the
proof of Step 2.

8 Proof of Corollary 10

Letu € L}, .(), u > 0 a.e. in , be as in Corollary 9. Since f(u) € L),
(25) implies that

(102) we LMED @) ifk>2,
(103) e e LL () ifk=2, foralla>0.

If k > 2, we apply Holder’s inequality to conclude from (102) (using the fact that

|Z,| ~ r* as r | 0) that
lim iz/ u=0.
ri0 T =,

By Corollary 7, we must have x4 = 0 in (24), which proves the result in the case
k>3.
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Let us now suppose k = 2. For a > 0 fixed, we have by Jensen’s inequality and
(103) that
e]!'—n Jz, au <

1|/ e‘"‘gg—“l, Vr > 0 small,

|=
where C, > 0 is a constant depending on a. We conclude that
(104) l?l_l/ auglogig—“l.

Let 0 < a; < a2 be such that a;7? < |Z,| < asr? for all » > 0 small. From
(104), we get

2
1 / au < log (Co/ar1r?) —o4 log(Ca/al)‘

azrilogl/r logl/r logl/r

By letting r | 0, we deduce that

2
limsup—z—l—/ ugﬂ, Va > 0.
rio r2|logr| Jg, a

If we take a 1 oo, then we have

1
lim —— =0.
10 2| logr| /Er u=0

We now invoke Corollary 7 to get the result in the case k = 2. O

Appendix

In the sequel, we assume that =, is a tubular neighborhood of M~ ~* of radius
r, where M -* is a compact manifold without boundary in RV of codimension
k > 1. We use here the same notation as in Section 3. Before stating the lemma
below, let us recall the definition of the projection 7, : = \ M = 9=, :

mr(z) =m(z) +r z—;(—zgx—)

Note that, if 0 < r, A < 2, then 7, |pz, : =) — 0=, is a smooth diffeomorphism
between the manifolds 8=, and 9=;,.
Throughout the Appendix, we will use the notation

(105) O(z,r) := ;k—l_—lJ(w,.]agx), z € 0%, rA€(0,2],

where J(7,|gz, ) denotes the Jacobian of the map =, |sz, , so that

aoe) [ v= /8 _vom (0N dax(e), Vo€ LGSy,
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or equivalently, by the coarea formula,

(107) / v /0 /8 vom(0(E st don(E)ds, Vo€ L))

We should remark at this point that the choice of the normalization factor 1/r*~1
comes from the degeneracy rate of J(7,|sz, ) as r | 0, as we shall see in Lemma 12.

In the next lemma, we present some properties of this function, which were used
in some of the main results in this paper. We handle only the case of codimension
k > 2. Since we are mostly interested in the limiting behavior of O(-,r) asr | 0,
we consider © as a function defined on 8Z; x (0, 2], i.e., we take A = 1 in equations
(106) and (107).

Lemma 12. Suppose M C RY is a compact manifold without boundary of
codimension k > 2. Then © € C*(9Z, x [0,2]) and satisfies:

(i) there exists a > 0 such that © > a > 00n 9= x [0,2];

(ii) there exist smooth functions a, § defined on 8=, such that
(108) O, r) = af) +r*B(€), V(&) € 051 x[0,2).

Proof. Instead of computing J{m,|sz,) directly in (105) to get the desired
properties of ©, we try to find another representation for the function ©. We
proceed as follows.

Given a small geodesic neighborhood U € M, leth : U x B — 7= 1(U) x int =,
be a diffeomorphism such that h(z;,0) = 2, w(h(z1,-)) = 21, and h(z,-) is an
affine linear isometry for each z; € U.

Using the parametrization of Z, induced by h and the coarea formula, we have

/ v=// vohJh
Z.na—1(U) UJB
r
=/// vohJhdozdzds
o JuJeB:

= /r/[]L U(h(zl,SC)) Jh'(zl,SC)Sk_l dU(C)dzlds
0 k-1
= /O'L/;k-lvohojs(ll,g) Jh o js(21,¢)s* ! do(¢)dz1ds,

where js (zl ) C) = (zla SC)
Therefore, we get the following expression for the integral of v on 2, N7~} (U):

/ v
g,.Ar-1(U)

(109) r
=/ / vom, [Jhoj, Oh'lJ(h‘llagl)]s"_ldads,
0 JoEINa—1(U)
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where we have used the fact that, by our very choice of h, we must have
me = hoj,oh™! on 8Z;. If we compare the identities (107) and (109), we then
conclude that

(110) O =Jhoj, o h L J(h Y ez,) on (85, Na1(U)) x (0,2).

Since U was an arbitrary small geodesic neighborhood of M and h was a
diffeomorphism, (110) immediately implies that © € C*°(d=; x [0,2]) and © > 0
on 9Z; x [0,2], so that (i) must hold.

In order to prove (ii), we first rewrite (110) as

O(h(z),r) = Jh(21,r25) J(h7Y|sg,) (h(2)),

111
b Y(z,7) € (U x S*1) x [0,2].

By choosing a smaller open subset of U if necessary, we may assume we
have a parametrization p : R¥N=% — U. Next, define h : RVN~% x B¥ - =, by

h(y1,y2) := h(p(y1),y2), so that
(112) Th(y,y2) = Jh(p(y1), y2) Jp(w1).

In view of (111) and (112), in order to show that © may be written as (108), it
suffices to prove the following decomposition for Jh:

(113) Jh(y) = a(y) + By), Yy= (y1,y2) € RV =* x BE,

where &, 3 are smooth and 3(y:,y2) is a homogeneous polynomial of order k with
respect to the yo-variable, for each y; € RV %,
From the properties of h, we may write it more explicitly as

h(z1,22) = 21 + T(21)z2, VY(z1,22) € U x B;’f,
for some linear isometry T(z;) : R = RV=* 2, € U, so that
h(y1,¥2) = p(w1) + T(@1))y2 =: p(y1) + T(1)y2,

which implies

Jh(y1,y2) = det (Dp(yl) + DT (1), T(yl))
= det (Dp(y1), T(31)) + det (DT (y1)ys, Tan) )
Now (113) follows if we take
&(y) = det (Dp(), Twn)),
Bly1,v2) = det (DT (w)ye, Twn))-
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In particular, note that 3(y:, -) is a homogeneous polynomial of order k. As we
have already remarked, (111), (112) and (113) imply (ii). This concludes the proof
of the lemma. O

The following corollary gives some estimates we needed in the proof of
Theorem 8.

Corollary 13. Foranyj>0andzx € 2, \ M,

. [0°'© O(d*-7) if1<i<k,
(114) D |G m(@),da))| = { . Fiok

In particular, estimates (86) and (87) hold.

Proof. First, we see from (108) that we only need to prove (114) for1 < i < k.
If we differentiate (108) with respect to r and evaluate the resulting expression at
the point (£,r) = (m (z),d(z)), for some & € Z; \ M, we get

k!
(k — )

In particular, (114) with j = 0 (and any 7 < k) follows from the expression above.

Next, assume j > 1. Instead of differentiating (115) directly with respect to
z, we write it in terms of conveniently chosen local coordinates, as we did in the
proof of Lemma 12.

For a sufficiently small geodesic neighborhood U C M, we can find a parametriza-
tion p: R¥N—*% U and a diffeomorphism h : U x B — =~1(U) N int Z; such that
h(z1,0) = z1, w(h(z1,-)) = z1, and h(zy,-) is an affine linear isometry for each
z eU. .

Define h(y) := h(p(y1),y2), ¥ € BN x B, so that h is a diffeomorphism
between B % x B% and 7~ (p(BJ,*)) Nint E, =: V; moreover, the derivatives of
h and A~ are bounded (which explains why we defined k using Bj,~*, instead of
RN —k)_

Given z € V\ M, lety € BN~ x B% \ {0} be such that h(y) = z. Using the
properties of k (or rather of k), we may write (115) as

a1s) B r(2),d(z) = (@) Bl (2)).

%Q(wl(z) d()) = w2l B(m (h(v)))

()'

(116) = z),lyzlk A )

k! i
= k- z)||y2|'c ﬂ(yl,l 2|) =: Fi(y).
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One can now check that the derivatives of F' satisfy
|DIFi(y)] < Cijlyal*™*7, Vye B * x Bf\ {0}, Vjx1

If we now apply the chain rule to (116), then the estimates above and the
boundedness of the derivatives of A~! imply that (114) holds for j > 1.

Finally, estimates are readily checked using (114) and the fact that © > a > 0
on d=; x [0,1]. O
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