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Abstract.  An inequality reminiscent of Kato's inequality is presented. 
Motivated by this, we discuss some criteria to decide whether a singularity of 
the equation Au = g in ~ \ K comes from a Radon measure or not. As an appli- 
cation, we extend a lemma of H. Brezis and P. L. Lions on isolated singularities to 
the case where the singularity lies on a compact manifold. 

1 Introduct ion and main  results 

The  original  mot iva t ion  for  this work  is the fo l lowing  remark ,  wh ich  is related 

to K a t o ' s  inequal i ty  (see Ka to  [K]). First,  let us recall one  o f  its m a n y  versions.  

Cons ide r  f~ C R N an open  set, and let v E L 1 (f/) be such that Av  E L l(f t) .  T h e n  

(1) Alvl > s ign(v)Av in ~D'(f~), 

where  sign(s)  = 1 i f s  > 0, - 1  i f s  < 0 and zero  at s = 0. I f  we  a s sume  in addi t ion 

that v is con t inuous  in f~, it is easy to ver i fy  that 

(2) Air I = s ign(v)Av in V'([v  # 0]). 

Compar i son  be tween  (1) and (2) suggests  that the inequal i ty  in (1) should  be  a 

consequence  o f  the fact  that Iv I achieves  its m i n i m u m  on the set Iv = 0], where  one  

has Air I ___ 0 in a suitable sense. 

Mot ivated  by this fact, Y. Li  posed  the fo l lowing  quest ion:  suppose  u E L 1 (f2) 

is such that u > 0 a.e. in f~ and u = 0 on a c o m p a c t  set K in s o m e  reasonab le  sense. 

Set  g = A u  i n / ) ' ( f / \  K)  and assume that g E L l ( f / \  K)  (no condi t ions  on A u  are 

prescr ibed on the "ze ro  set" K).  Let  ~ be  the extension o f  g to f / s u c h  that .~ = 0 

on K. Define 

# :=  A u  - ~ in ~D'(~q), 

*This author was supported by CAPES, Brazil, under the grant BEX1187/99-6. 

143 
JOURNAL D'ANALYSE MATI~MATIQUE, Vol. 91 (2003) 
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so that supp(#) C K.  Is it true that # is a nonnegative distribution? In this case it 

has to be a Radon measure supported in K (see Schwartz [S]). 

We have given a positive answer to this question in the following theorem, 

which includes the case where u E C(f~) and K C [u = 0]. 

T h e o r e m  1. Let ~ C R N be a bounded open subset, and u E L 1 (Q) such that 

u > 0 a.e. in f~. Let K C f~ be compact.  Set 

g : = A u  in 79'(f~ \ K ) .  

Assume  that g E L 1 (Q \ K )  and that 

(3) lira sup f u = 0. 
r$O zEK J B.(z) 

Let [~ be the extension o f  g to f~ such that ~ = 0 on K .  Then A u  >_ [1 in 79'(f~); in 

other words, 

(4) 0. 

As we have pointed out before,  the theorem above implies the following 

C o r o l l a r y  2. Let f~ C R Iv be open, bounded, and  u E C(~)  be a nonnegative 

function. Let  K C ~ be a compact  subset  such that u - 0 on K.  S e t  

g := Au in 79'(f~ \ K),  

and assume that g E Lt(f l  \ K) .  Let  9 be the extension o f  g to f~ such that 9 =_ 0 on 

K.  Then A u  > ~ in 79'(0); in other words, 

R e m a r k  1. We shall see later that if  the set K is sufficiently small and a certain 

growth condition for u near K is prescribed, then one really has the equality Au = t~ 

in 79'(f~) (see Corollary 7). This is not the general case, though, as one can see by 

very simple examples. For instance, i f u (z )  := llz~v I forz  ~ ~ N  then Au = dx' in 

79,(Rlv), where dz'  denotes (N - 1)-dimensional Lebesgue measure on [ZN = 0]. 

R e m a r k  2. A consequence of  this theorem is that # = Au - 9 is a nonnegative 
1,p distribution, and hence a Radon measure. This implies that u E Wlo c (f~) for  any 

1 < p < N / ( N  - 1) (see B6nilan-Brezis-Crandal l  [BeBrC]). 
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R e m a r k  3. The same theorem holds under the weaker hypothesis that ft is 

just  open, K C f~ is relatively closed, and 

lim sup ~ u = 0 for all A C K compact. 
r$O zEA JBr(x) 

In fact, for any ~ > 0 set 

:= {x e f l :  d(x, Of~) > ~ and Ixl < 1/6). 

Now fix g > 0 and let r E C~(fi2~), 0 < r < 1 and r - 1 in ~3~. We can then 

apply Theorem 1 in ~ to fi := ur := K n ~2~, and conclude that (4) holds for 

all ~v E C~(~3~). 

R e m a r k  4. A simple application of  the Besicovitch Covering Lemma implies 

that condition (3) is equivalent to 

(6) lim ~ [ u = O, 
r$0 r JNr(K) 

where Nr(K) denotes the r-neighborhood of  K,  i.e., 

Nr(K) = { x E R N : dist(x, K)  < r }. 

The assumption required in (3) (or equivalently (6)) is probably too strong but 

we do not know how to weaken it in this general setting. In the case where K C f~ 

is a smooth manifold of  codimension 1, we have been able to relax the hypothesis 

(3) by assuming that 

lira ~ u = O, 
r~o J=-r(K) 

where E~ - E~ (K) is the tubular neighborhood of  K with radius r. In other words, 

for such singular sets, one can replace the factor 1/r N in (6) by 1/r, and still get 

the same conclusion of  Theorem 1. More  precisely, 

T h e o r e m  3. Let f~ C W v be an open set and M N-1 C f~ be a compact, smooth 

manifold, without boundary, of  codimension 1. Let u E L~oc([2), and assume that 

there exists 9 E L~oc(~ ) such that 

If 

(7) 

A u = g  i n Z ) ' ( ~ \ M ) .  
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then, f o r  each ~ E C~(f~), -~ u~  converges as r $ O, and  
r 

rr r .  . ~ u ~  - g~, V~ E C3 ~(fl). 

In particular, i f  we suppose in addition that u > 0 a.e. in f~, then 

(9) A u  > 9 in D'(~).  

R e m a r k  5. As mentioned in Remark 2, a posteriori we conclude from (9) 

that u E Wl~P(fl) for 1 < p < N / ( N  - 1), in which case condition (7) is equivalent 

to u = 0 in M in the sense of  the trace. 

Next, we study the case where the singular set M is a compact manifold of  

codimension k _> 2. It turns out that, in this case, the condition u > 0 a.e. in 

already suffices to conclude that - A u  is a (nonnegative) measure on M. More 

precisely, we have 

T h e o r e m  4. Let f~ C ~N be a bounded open set and let M C f~ be a compact, 

smooth manifold without boundary o f  codimension k >_ 2. Let  u E L~oc(f~ ), u _> 0 

a.e. in f~, and assume there exists 9 E L~or such that 

A u  = 9 in D'(f) \ M) .  

Set 

(10) /z := Au - g 

which is a distribution supported on M. 

Then 

in D'(~) ,  

(11) # is a nonpositive measure on M 

and, f o r  any ~ E G~(~ ) ,  we have 

(12) (#, ~o) = 
- 2  lim 1 f~ rt0 r~llogrl u~o i f k  = 2, 

r 

We should mention that the conclusion (11) holds true in a much more general 

setting. In fact, a classical result in potential theory states that if  in the statement 

above one replaces M by a compact set of  zero HI-capaci ty  K (this includes the 

case of  a smooth manifold of  codimension k _> 2), then #, defined by (10), is a 
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nonpositive measure on K (see L. L. Helms [H], Theorem 7.7). We present in 

Section 5 a completely independent proof  of  this result in our special case in order 

to deduce (12), which is used to prove Theorems 5 and 6 below. 

Even if we do not assume any conditions on the sign of  u, we can still charac- 

terize the case when # is a measure in terms of  the growth of  lul near M. More 

precisely, we have proved the following 

T h e o r e m  5. Let f~ C •N be a bounded open set and let M C f~ be a compact, 

smooth manifold without boundary o f  codimension k > 3. Let u E L~oc(f~ ) (here 

we d o  n o t  assume that u > 0 a.e. in fU and assume there exists 9 E L~oc(f~) such 

that 

A u  = 9 in D'( f l  \ M) .  

Set 

/~ := A u - g in l) '  ( f~ ) , 

which is a distribution supported in M.  Then # is a Radon measure i f  and only i f  

(13) r-- ~ lul remains bounded as r $ O. 

In this case, f o r  all qo E C~ ~ (f~) we have 

(14) lim 1 f~ ~.o ~- u~o = 
r 

Moreover, 

1 

2 ( k -  2) (p'~)" 

(15) lim 1 f_: 1 rX0 ~ lul - 2(k - 2 - - - - - ~  II~ll' 
r 

where I1~11 := sup{ fM wd~ ; w e C(M),  Ilwlloo _< 1} denotes the usual norm of 
Radon measures on M.  

R e m a r k  6. Using a formula deduced in Section 3, we show (see Remark 9) 

that (14) still holds if one replaces (13) by 

(16) l i m l f ~  lu I = 0 .  
r . l , 0  r r 

On the other hand, if one takes, for instance, the function u(x) = x l / I x l  3 in R 3 \{0}, 

then A u  = cDx~6o for some constant c ~ 0. In the notation of  Theorem 5, let 

M := {0}, g _= 0 and p := cDz~6o, so that # is a distribution of  order 1 and 

(17) lim 1 , ,o  ; lul > 0. 
I- 
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The example above suggests the following 

O p e n  p r o b l e m .  Let M C f~ be a compact, smooth manifold without boundary 

of  codimension k > 3. Let u and 9 be as in the statement of  Theorem 5, and set 

# := Au - 9 in D'(f~). If  (16) holds, is # a measure? 

There is also a result analogous to Theorem 5 in the case of  codimension k = 2: 

T h e o r e m  6. Let f~ C l~ N be a bounded open set and let M C f~ be a compact, 

smooth manifold without boundary o f  codimension k = 2. Let  u E L~oc(fl) (here 

we d o  n o t  assume that u > 0 a.e. in fl) and assume there exists 9 E L~oc(fl ) such 

that 

Au  = g in D'(f~ \ M) .  

Set 

(19) 

Moreover, 

/ z : = A u - - 9  in D' ( f~ ) , 

which is a distribution supported in M. Then # is a Radon measure i f  and only i f  

IL 
(18) r21 logrl [u[ remains bounded as r $ O. 

In this case, f o r  all ~ E C~(f~) we have 

lim 1 f 1 
~.0 r~[logr[ a-= uqa = - ~ ( # , ~ ) .  

r 

(20) lim 1 f= r+0 r2llogr[ lul = I[#l[. 
v 

As a consequence of  Theorems 5 and 6 we have the following removable 

singularity statement: 

C o r o l l a r y  7 ( R e m o v a b l e  s ingu lar i t y ) .  Under the assumptions o f  

Theorems 5 and 6 above, Au E Lloc(fl) i f  and only i f  

(21) lim 1 f= r+o ~ lul = 0, f o r  k > 3, 
r 

(22) lim 1 f__ r~o r2llogr[ lul = 0; f o r k = 2 .  
r 

Next, we give an application of  Theorem 4, by extending an earlier result of  

Brezis-Lions [BrL] originally concerning the study of  isolated singularities. 
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T h e o r e m  8. Let f~ C ~N be an open set and M N-k  C ~ be a compact 

manifold without boundary o f  codimension k .>_ 2. Let u E L~oc(f~ \ M )  be such that 

Au E L(oc(f~ \ M)  in the sense o f  distributions on f~ \ M,  

u >>_ O a.e. in f~, 

A u < a u +  f a.e. i n ~ \ M ,  

where a is a nonnegative constant and f E L~oc(f~). 

Then u E L~o c (f~), and there exist h E L~o c (f~) and a nonnegative Radon measure 

iz supported on M such that 

(23) - A u  = h + # in D'(f~). 

Since a compact manifold M of codimension k > 2 is a set of zero HI-capacity, 

and also because of  the linear nature of  Theorem 8, the classical result we mention 

just after Theorem 4 leads us to state the following 

O p e n  p r o b l e m .  Suppose that in the statement of  Theorem 8 one replaces 

the smooth manifold M by a compact set K of  zero Hi-capacity. Can one still 

conclude that u E L~oc(~2), and that there exists h E L~o~(f~) such that (23) holds 

for some # supported on K ?  (Note that potential theory would tell us that # is 

necessarily a nonnegative Radon measure.) 

If the answer to the open problem above is affirmative, it gives a sort of  linear 

version of  a general result of  P. Baras and M. Pierre (see [BaPi]). 

An immediate consequence of Theorem 8 is the following 

C o r o l l a r y  9. Let M C f~ be as above. Assume f : ~+ --+ ~ is continuous and 

l iminf f ( t )  > -cx~. 
t~x~ t 

Suppose u, f (u )  E L~oc(f~ \ M), u > 0 a.e. in ~2, and 

- A u  = f (u )  in D'(f~ \ M).  

Then u , f ( u )  E L~oc(f~) and 

(24) - A u  = f (u )  + # in D'(f~) 

fo r  some nonnegative Radon measure It supported on M. 

A simple application of Corollaries 7 and 9 allows us to recapture the following 

consequence of  a removable singularity result which was originally proved by 

L. V6ron for the case k > 2 (see [V1]). 
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(25) 

C o r o l l a r y  10. Under the hypotheses o f  Corollary 9, if  

l irninft-k/(k-2)f(t) > O, f o r k  > 2, 

liminf e-at f ( t )  > O, f o r k  = 2, for  all a > O, 
g-+co  

then # = O, i.e., 
- A u  = f(u) in D'(f~). 

W a r n i n g .  The result o f  Corol lary 10 may seem misleading at first. For 

instance, assume k > 3 and f ( t )  = t k/(k-2). Although it implies that - A u  = 

u k/(k-2) in D'(12), one c a n n o t  conclude solely f rom this equation that u is smooth.  

What  Corol lary  10 tells us is that the eventual singularities o f  u are not detectable 

at the distribution level. In fact, a result o f  M a z z e o - P a c a r d  [MPa] says that, 

given some compac t  manifolds in 12 (not necessari ly with the same codimension),  

and for certain values of  p > 1, depending on their codimension,  one can construct  

nonnegat ive solutions of  the equation - Au = uk/(k-2) in D'  (f~), whose singularities 

lie precisely on the prescribed manifolds.  See V6ron [V2] for details. 

2 P r o o f  o f  T h e o r e m  1 

In this section, we use the fol lowing notation. 

N o t a t i o n .  For an open set U C I~ N and 6 > 0, we write 

U6 = {x �9 U ld(x, OU) > ~}, 

and for any set A C IR N and (f > O, we let 

N6(A) = {x �9 R N : d(x,, A) < 5}. 

We also use the standard notation for  averages: 

/ E v d l ~ -  f E v d #  
fE l dl~" 

P r o o f  o f  T h e o r e m  1. Take p �9 C~(B1) such that p > 0 in I~ N and fan P = 1. 
For any e > 0, define &(x) := e-Np(x/e)  on IR N, u~ := p~ �9 u and g~ := & * ~ on 

~ , .  Using this notation, one can easi ly check that 

(26) 

For e > O, let 

5u~ = g~ on 122~ \ N2~ (K). 

: =  m a x  ~e- 
N2, (r) 
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S t e p  1. Condition (3) implies that 

lim r/, = 0. 
e~.0 

In particular, u~ ~ 0 uniformly on K as c ,~ 0. 

P r o o f .  For z E N2,(K),  let x E K be such that Ix - z I < 2e. Since BE(z) C 
B3~-(x) for all ~ > 0, we have 

1 /B ( ~ - ~ )  

C 

3Nc 
- u ~ O  (3~) N s,(,~ 

uniformly in z �9 N2,(K) as z ~ 0, by (3). This concludes the proof of the claim. 

Step 2. There exists a measurable set L(u) C ~ such that 

and 

(27) 

P r o o f .  

that 

[lim inf u, > 0] C L(u) C f~ \ K 

L u~X~>/ ~, v~ec~(n), >0. f 

JL (u) 

It follows from Kato's inequality (with I" I replaced by sign + in (1)) 

A(u,  - r/,) + > sign+(u, - 0,) A(u,  - r/~) 
(28) 

= Xb,,>n, lAu, in D'(ft2,),  

where X[u,>,7,] is the characteristic function of  the set [u~ > rk]. 

Since u, < r/, on N2,(K),  it follows from (26) and (28) that 

(29) A(u,  - r/,) + > Xt~,,>o, lg, in 79'(02,). 

Now, given ~p E C ~  (f~) such that ~a > 0, i f ,  > 0 is so small that supp ~p C C f~2,, 

(29) implies that 

(30) L ( u , -  rk)+A~o > f ,  Xtu,>,,lge~p. 

Since u, ---r u in L~oc(ft ) and rk ~ 0 as e -~ 0, we conclude that 

(31) L ( u , - o , ) + A ~ a - - + ~ u A ~  as e --, 0. 
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On the other hand, take a sequence en $ O. Up to a subsequence of  (en)n_>l, we 

have 
ue, -~ u a.e. in f~, 

g~. ~ 0  a.e. inf~, 
Ig~, I -< h a.e. in ~2, Vn _> 1, for some h �9 L l(f~). 

Set 
(x) oo 

L(u) := lirninf [ue. > rk.] = U N [u~. > ~?e.], 
k----1 n = k  

Note that, by our choice of rk, we have K C ft \ L(u). By Fatou's Lemma, which 

may be applied here since g~. > - h  a.e. in fl, we have 

(32) f~ XL(u)[7~O = f~ lim inf Xru" >'l" ]gs" ~o < lim inf f X['~',,>n~.]ge" - - - -- n~oo jf~ 

It then follows from (30), (31) and (32) that 

S t e p  3. P r o o f  o f  T h e o r e m  1 c o m p l e t e d .  Given ~ > 0, let ha �9 C~176 N) 
be such that ha ~ 0 on N;~(K) and ha > 0 outside Na(K). 

If  we apply (27) in Step 2 with the function u replaced by u + hx (note that 

condition (3) is still satisfied if  we replace u by u + ha), we get 

(33) 

Now, for a.e. x �9 f~ \ Na(K), we have (u + ha)�9 ---r u(x) + ha(x) > 0 as 

n --+ ~ .  By the definition of  the set L(u + ha), we conclude that x �9 L(u + ha) for 

a.e. x �9 f~ \ Na(K);  in other words, 

Xt(u+hx) = 1 a.e. in f~ \ Na(K). 

In view of  (33) 

f uA~o > 

and the relation above, for any ~o e C ~  (~2), 

f 
= fn\~V~(m(O + Aha)~ + fg--Z-~XL("+h~)'J~ -- f~\N~(m 

= + o 0 ) ,  

_ _  Ahx~ 
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where o(1) is a quantity which converges to 0 as A $ 0. In the expression above, let 

A $ 0 to finally conclude that 

/ u A q o > _ ~ ,  V~ E C ~ ( ~ ) ,  ~ _> O. [] 

R e m a r k  7. It is noteworthy that the proof  of  Theorem 1 is somewhat simpler 

if one assumes that u is continuous at each point o f  K. In fact, in this case, Step 1 is 

unnecessary and one can apply the other steps of  the proof  directly to the function 

u instead of  to its convolution. 

3 S o m e  u s e f u l  f o r m u l a s  

Let us recall some standard results. 

Given a compact  smooth manifold M N-e  (with or without boundary) embedded 

in I~ N with codimension k > 1, we define its distance function d : W v -~ N+ by 

d(x) := dist (x, M).  The case k = N is included, i.e., M may be a finite collection 

of  points. It is a well-known fact that for ~ > 0 small enough, the set N6(M) is 

a smooth manifold with boundary, also called the ~-tubular neighborhood of  M, 

which from now on we denote by E6(M), and when no confusion arises, simply by 

E~. The distance function d is Lipschitz in 11~ N, is smooth in E6 \ M and satisfies 

(for the second property see V6ron [V2]) 

(34) [Vd I = 1 a.e. in ~N; 

k - 1  
(35) A d =  d + a 0  i n E 6 \ M ,  

where a0 is a bounded function in E6 \ M. 

For each x E E6, there exists a unique element  7r(x) E M for which the distance 

function is realized, i.e., such that Ix - rr(x)l = d(x). The projection 7r : E6 -~ M 

thus defined is also smooth. 

For simplicity, f rom now on we assume that E2 is a smooth tubular neighborhood 

of  M. 

�9 Finally, let us recall that if v E L 1 (]~N), we have by the coarea formula (see 

Evans and Gariepy [EG]) 

~ v = v da dr. 

L e m m a  l l .  Let fl C R N be a bounded open set and let M C f~ be a compact, 

smooth manifold without boundary o f  codimension k > 1. 
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Let u E L~oc(f~ ), and assume there exists 9 E L~o~(f~) such that 

Au = 9 in D' (f~ \ M). 

Set 
# : = A u - - g  in D'(f~), 

which is a distribution supported on M. 
For k >_ 1 and t, r > O, define 

k i f O < t < r ,  
(36) Gk (r, t) = k ~ 1 r k 

i fO<r<t .  

Then for any R E (0, 1)fixed and qo E C~~ all the limits below exist and 
(a) i fk  > 3, then 

(37) 
2(k - 2 )  
- - ( # , ~ ) = [ i m  - ~  uqo+ 

r.~O 

1 R ( f - z )  } + ~ f o  Gk(r,t) 2uV~o. Vd+u~oao dt ; 
$ 

(b) / fk  = 2, then 

(38) 

{1/__ 
l (u ,~)  =li~0 rZllogrl uq> + 

+ r2llogr~--- [ G2(r,t) 2uV~p. Vd+u~oao dt ; 
t 

(c)/fk = 1, then 

(39) 

1 i ( 1 f._ l ( l i m f  go) - z(#' qa) -- 1~o -~-i uqo+-  u . r \t+0 Jo=, 

+ --~ for ( ~  2uV~o" Vd + u~oa~) dt)  . 

Proof.  The idea of the proof is first to derive the following 

Claim. For any ~o E C~~ the function s --+ fo-, u~o is C 1 on (0, 1) and 

(40) 
(Au,~Y) = f=oUA~o- 2 fo~L 

-- fOE. u~ao. 

k _ l d [  1 f x 
uV~o. Vd + s --~s ~s---~-f_ 1 Jo u ~ t -  
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P r o o f  o f  (40). We first assume that u is smooth. 

Fix a smooth, nonincreasing function r : R --> 11~ such that r = 0 for t > 1 

and ~(t) = 1 for t < 0. Fore  > 0, set 

(41) 

where 

r = r  

Now let qo E C8 ~ (f~) and for s s > 0, define 

f qo(x) if x E Es, 

~8,~(x) = ~qo(x)r if x E E~(I+~) \ E,,  

t o i f x  E fl \ E~(I+~). 

Observe that ~o~,, = ~o in E8 and ~o,.~ = 0 in ft \ E ,0+ ,  ). We now compute in 

-~(x+~) \ E~, using (35), 

2 
A~8,, = Z X ~ , ( d / s )  + 7 V ~ .  Vd~ 'Ad / s  ) 

8 t + ~ { i " ( d / s ) +  71~(d/s)(k- 1 + aod)}. 

Since ~o,,~ is an admissible test function, we obtain 

= fuAqor + I 1 + 12 -+- I3 + I , ,  
J~ 

I~ = _2s f~ uV~o �9 Vd r (d/s), 

/2 = ~ -  ~ ~ (d/~) ,  

k - 1 f~ ~ ~,, (d/~), I3 - s u - ~  

1 f~ u~ao 4'~(d/s). 1 4 =  s 

Next we find the limit as e $ 0 of the four previous integrals. For this purpose, 

we compute 

11 : ~ "(1+i)\ "~' 

and by the coarea formula 

2 f ' ( l + ' ) {  (rls-i~L } = - -  4 '  uV~o. Vd  dr 
s j s \ S / ~ .  
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We now let 6" $ 0: 

f01 { f o  } lim/a = 2 r uVqo. Vd  dt 
e$O - 

(42) / ,  

= - 2 ]  uVqg-Vd. 
.to E, 

We now proceed with I2: 

1 s u~,V~'(d/~) 

: i f_ u q o f f " ( ~ )  
E'282 s(l+e)\~ s 

1/o1( /o = -  ,b"(t) u~o dt. 
6"8 =-,(l+~t) 

Integrating by parts, we have 

Letting e $ O, we arrive at 

(43) lim/2 = d [ 
e$O -~8 J05, 

u~9. 

The computations for 13, 14 are similar; they yield 

(44) l i m l a -  __k-lfo uqa, 
e,[.O S -~ 

(45) 
f 

lim I4 = - / uqol2 O . 
e$O JOE, 

(46) /_- /o (Au,~)  = , u A q ~  z o u V ~ ' V d +  ds = s = 

-- fOE, uqOao. 

But 

d fo u~ k - 1  (47) d-'~ ~., s 
k _ l d [  1 

therefore, combining (46) with (47) we find (40). 

Thus, passing to the limit as e $ 0 in (41) and using (42)-(45), we get 
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We now consider u as in the statement of the lemma, i.e., u E L~oc(f~) so that 

# := Au - 9 is a distribution with support in M, where 9 E L~oc(ft). Using a 
1,1 density argument and the fact that u E Wlo ~ (~ \ M), we deduce that the function 

s ~ foz, u~o is C l on (0, 1) and that 

d 1 

(48) 
-- L E ,  u~Pao. 

At this point, we distinguish the three cases: (a) k _> 3, (b) k = 2, and (c) k = 1. 

(a) C a s e  k > 3. Fix R E (0, 1) and let 0 < t < R. Dividing (48) by s k-1 and 

integrating over s C (t, R), we get 

I 1 1 f 
(k - 2)t k-2 (/~' ~o) = o(1) tk_2 tk-1 ]0"~, uqo- 

(49) - f t n {  1 f + 2 u V q o - V d } d s ,  J o=-, u~oao 

where o(1) denotes a quantity that goes to zero as t -~ O. Multiplying (49) by t k-1 

and integrating over t E (0, r) with 0 < r < R, we obtain 

1 1 f 
2(k --- 2)(# '~)  = o ( 1 ) -  ~-ff J_ uqo- 

(50) 

/, /o 1 t k-1 n 1 v ds dt, 
r2 ~ E~ 

where 

(51) v = 2uVqo �9 Vd + ucpao. 

We now integrate by parts in the last term on the right hand side of  (50): 

ftt R 1 d 1 ,=R n 1 
s--iz-f_x (-d-~s f= v ) d s :  [s-iZ-f_ x ~ v],=t - ftt (1-k)-~-g ~ vds 

- R k _ l  v - ~ v +  
R t 

Therefore, 

(52) 
/o r f /o 1 t k-1 n 1 vdsdt - 

r-~ s - ; = f - l =  
a/or kRk_ 1 v -  -~ vdt+ 

R t 

k - 1  fr k-1 R 1 
+ -~--- ]0 t ft ~-s fZ. v ds dt' 
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and changing the order of integration in the last term of (52) gives 

L ~ i n  1 ~ 1 L r  ~ r k / n  1 ~ (53) t k- ' -~ v ds dt = -~ v ds + --~ ~ yds. 
~ ~ 8 

Then, (52) in combination with (53) yields 

1 L r t k - 1 / n  1 fo vdsdt  - -  

(54) 

Hence, using (54) in (50), we conclude that 

kRk_ 1 v - ~r 2 v dt+ 
R t 

_ R 1 

1  xf0" 2) (p, qo ) = o(1) - u~od- v d t -  
2(k 

r t 

vds 

-rffl f uqo -~ffl L R (Gk(r,t) s v)dt, = o(1) - J~. + 

where Gk is given by (36). 

This establishes (37). 

We now deal with 

(b) Case  k = 2. Note that (48) is still valid; and, since k = 2, it takes the form 

 1/o (/.t, ~0> = 0(1) -- V A- S~-~S ( ;  Uq0), 
--o E. 

where v is given by (51). Dividing the last equation by s and integrating over 

s E (t, R), we get 

/"/o So (logR logt)(#,~) o(1)llogt I 1 1 . . . .  v ds - - u~. 
8 = t ---t 

Multiplying by t and integrating over t E (0, r), we obtain 

L1 r2ilogr[1 L" /R1 L r2ilog r]l 7_ (55) X(/.t, to) = o(1) t - vdsdt  u~2. 

Integrating by parts yields 

/nil [!~ ],=R /R i f a - vds = v + f i  vds 
8 ms s s m t  ~ 

1 v - 1  
t s vas. 
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Hence, using Fubini, we get 

t v ds = v - v dt + t v ds dt 
~ s  R t s 

r2 ~ l f o r f =  - r2 frrR 1 f= (56) = ~-~ v - ~ v dt + ~ ~7 vds.  
~ R  t s 

So, from (55) and (56), we infer that 

1 ~ 1 fo~ ~ I(#,~> = o(1) r2l logrl  u~o+ 2r211ogrl v d t -  
r t 

1 f r R a f ~  2] logr[ -~ v dt 
t 

1 fz 1 for ( ~ ) = o(1) r2llogrl u~o+ r2llogr-------- ] G2(r,t) v dt, 

where G2 is given by (36) with k = 2. 
This proves (38). 
Finally 
(c) Case k = 1. This time (48) becomes 

s /o <u, ~,> = a u ~  - g ~  - v + Ts u~.  

Integrate the previous relation over s E (t, ~): 

(57) ( A - t ) ( # , q o , = o ( l ) - ~  v +  fo u~o- fo u~p, 
x\Et Ex Et 

where o(1) ~ 0 as A -~ 0. Since v = 2uV~o �9 Vd + u~oao E L~oc(f~), letting t $ 0 in 
(57), we see that limt,o fo=, u~o exists and 

(58) A ( # , ~ ) = o ( 1 ) - ~  v + f o  u ~ - ( l i m ~  uqo). 
x - x  \ t.l-0 E t  

We now integrate (58) over A E (0, r) and divide by r 2 to find 

1 l(lim / ucp) 1(#,~o) = o(1) + -~ uqo - - - v dt, 
r \ t ,o  Jo~,  

which concludes the proof of the lemma. [] 

4 P r o o f  o f  T h e o r e m  3 

Set # = A u - g .  Suppose (7) holds. Then, since lim [ u~o exists by Lemma 11, 
,-J,o Ja~,. 

we conclude that 

(59) l i m f  uqo=0, V~EC8 ~ 
,.J.o Jo-~ 
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On the other hand, given e > 0, (7) implies that there exists 5 > 0 such that 

fo lui Vr e (0,5). < 6~ 

Therefore, we have 

L" <_ 6' etdt = e 2 ,  u e (0,5). 

Since e > 0 was arbitrary, we deduce that 

(60) lim 1 f0" ( ~  2uV~.Vd+uqaao) dt=O. 
r4O r" t 

Inserting (59) and (60) into (39), we get 

1s 
(.,~) = lifo #- u~, v~ �9 cg(a) .  

r 

Now (8) follows since, by definition, # = Au - g. This completes the proof of  the 

theorem. [ ]  

5 P r o o f  o f  T h e o r e m  4 

We prove Theorem 4 only for the case of codimension k > 3, the case k = 2 

being entirely analogous. 

Let Gk be the function defined by (36). Then, using the fact that u > 0 a.e. in 
fl, we have 

(61) < C ~ ( L  u) --  , .~  , ; a r k  dt 

<_Cr u + C j r  u dt, Vre(O,R). 

1 Choose R1 E (0, R) so small that CR1 < ~. 
Applying (37) with R := R1 and qo E CS~ ~ = 1 on ER~, we have by (61) 

and our choice of R1 

(62) ~ u - C  -~ u d t < C r  z, Vre(O, R1). 
r t 
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We shall use (62) and a bootstrap argument to conclude that 

(63) L U < Cr 2, Vr �9 (0, R1). 
r 

In fact, since f.- u is uniformly bounded for t �9 (0, RI), 

/? (/:) (64) -fs u dt < Cr, Vr E (0, R1). 
t 

In particular, (62) and (64) imply that 

-~ u < Cr, Vr �9 (0, Ri),  
r 

so that 

(/:) (65) -fs u dt < Cr 2, Vr E (0, R1). 
t 

Therefore, by (62) and (65), we conclude that estimate (63) holds. 
It then follows from (63) and (61), with R replaced by R1, that the right-hand 

side in (61) is bounded by Cr 3, for all r E (0, RI ). In particular, 

(66) lim 1 {f0 R~ ( ~ )  } r~o r-2 Gk(r, t) 2uVs Vd + u~oao dt = O. 
t 

By (37) and (66), we have 

1 1s 
(67) 2(k - 2) (/~' qo) = lifo ~ uqo, Vqo �9 C ~  (fl). 

If we now apply (67) with estimate (63), we conclude that/a is a measure. Since 
u > 0 a.e. in fh (67) implies that # is nonpositive. [] 

6 P r o o f  o f  T h e o r e m s  5 a n d  6 

P r o o f  of  T h e o r e m  S. We split the proof of the theorem into 3 steps. 
Step 1. If 

(68) ~- ]u[ remains bounded as r 4. 0, 
r 

then/~ is a measure and 

(69) 
r 



162 J. D,/~VILA AND A. C. PONCE 

(71) 

and 

P r o o f .  It is easy to see that condition (68) implies that 

lim 1 { f0  n' ( L )  } r~O -~ Gk(r,t) 2uVqo. Vd + uqoao dt = O, 
t 

where Gk is the function defined by (36). From the limit above and (37), we deduce 

that (69) holds. In particular, it follows from (68) and (69) that p is a measure and 

(70) ]]tt H < 2 ( k -  2)l iminf 1 [ ]ul. 
- -  r . l -0 r ~ J _ q .  

S t e p  2. If  # is a measure, then 

eL lul remains bounded as r $ 0, 
r 

(72) Ilull _ > 2(k - 2)limsuprk0 ~i L lul. 
r 

P r o o f .  In this step, we use an estimate given in the proof of  Theorem 4 and the 

representation of  the solutions of  Av = v in IR N when v is a measure in terms of  the 

fundamental solution. More precisely, let E(x) = CN/Izl N-2 be the fundamental 

solution of  - A  in R/v, N _> 3, where the constant CN is chosen so that - A E  = 60. 

I f v  is a Radon measure, then v := E �9 v satisfies - A v  = v in :D'(IRN). 

Now let v := g + # in ft. Next, we decompose v = v + - v -  into its positive and 

negative parts, where v • = g• + #• Let v • := E * v • As observed above, we 

have 

- A v  •  • 1 7 7 1 7 7  inD'(~eN). 

Moreover, v • _> 0 a.e. in R N . In particular, the functions v + satisfy the assumptions 

of  Theorem 4, so that ( 1 l)  holds with u and # replaced by v • and - #• respectively. 

In other words, we have 

L v <Cr 2, VrE (0,1), (73) 

and 

1 1 L (74) 2(k- 2 ) ( / ' t + '~o )= l im~  - v+~~ V~oeC~(f l ) .  
r 

On the other hand, it is easy to see that u = v -  - v + + w a.e. in ft for some 

harmonic function w. Since w is bounded in some neighborhood of  M, we have 

(75) lim 1 [ 
I "  
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In particular, (71) follows from (73) and (75). Moreover, if we apply (74) with a 
test function ~ such that ~ = 1 in some neighborhood of M, then we have 

1 1 
2(k - 2) 11~11 - 2(k - 2) ((#+' 1) + (/z-, 1) + O) 

=lim 1 ~ f~ r~0r "~ , (v++v-+lwD>l imsup-  r~0 ~-1 ,[u[" 

This concludes the proof of Step 2. 
Step 3. Proof  of  Theorem S completed.  By Steps 1 and 2, we know that 

# is a measure if and only if 

If__ ~-~ [u[ remains bounded as r $ 0, 
r 

in which case formula (14) holds. Moreover, applying (70) and (72), we get 

[1#11_<2(k-2) liminf 1 f~ f_ r J,0 r'~ [u[ < 2(k - 2) lim sup 1 - o l u l  _< I1 '11, 

so that all the inequalities are reduced to equalities in the estimate above and (15) 
holds. [] 

Proof  of Theorem 6. The proof of Theorem 6 follows the same lines as those 
in the previous one and is omitted. [] 

Remark  8. Although we derived (14) in Theorem 5 through a somewhat 
lengthy computation, there is a more natural approach if one assumes that the 
limits involved exist. Indeed, take ~ E C~(f~). Then, using l'H6pital's rule, we 
obtain 

(76) lim 1 f~ 1 fa uqa. 

But,  using formula (106) of the Appendix (with A = 1), we have 

l i m l f 0  u ~ o = l i m l {  f0 )} - - r k - 1  (uqa) o 7rr O ( ~ , r )  d a ( ~  
r$O r ~ -  r$O r ~1 

= lim {rk_l f # O(U~p) r k _ l f  a 00 

+ (k-X)rk-2 fo (uqo) o 7rr O} 

= lim { f  0 0 ( u t p ) f o  ( 0 0 1 ~  -. + -6 / ~ 

 -1/o } + - -  u ~ o  . 
7" 8,, 
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We can solve from the previous equations for lim 1 fo uqo: 
r$0 r ~,. 

lim 1 f 
r$O r Jo=-,. 

- lim 
(k 2) r~0 _- 0u 

fo [00 1 \ } - -  § ' U ~ O / ~ ' ]  O71" 1 . 
k ( ] T  ~ 1 /  

Integrating by parts and using estimates in the Appendix, we find 

(77) lim -1 fo uqo - 
r$0 r _.- 

T h u s ,  (76) and (77) combined yield 

.m 4 f_ 
r~ .0  r "~ 

1 

(k - 2) (#' ~)" 

1 
2(k - 2) (#'~)" 

R e m a r k  9. Formula (14) in Theorem 5 holds under weaker conditions than 
that stated in the theorem, namely that 1 f . -[u[  remains bounded as r $ 0, or 

equivalently, that Au = p + g with g E L~oc(fl ) and # a Radon measure supported 
in M. For example, it is easy to check that if 

I f _  [u[ -~ 0 a s r  $0, (78) r 

then (14) holds, i.e. (in codimension k _> 3), 

limr+o~- ~1 a--'f 1 u ~ =  2(k_2----------~(#,~o)__ V~eC~(f~) .  
r 

This suggests the following 

O p e n  p r o b l e m .  Let f~ C R N be a bounded open set and let M C fl 

be a compact, smooth manifold without boundary of codimension k _> 3. Let 

u �9 L~oc(f~ ) and assume there exists g �9 L~oc(fl ) such that Au = 9 in D'(f~ \ M). 
Set # := Au - g in D'(fl). Assume that 

lim 1 f= ,,o7 I l=0. 
r 

Is # a measure? 

The requirement (78) cannot be further relaxed, for instance, by asking instead 
that 1s 
(79) ; lul remains bounded as r $ 0. 

r 

For example, if u(x) = xl/Ixl 3 in I~ 3, then Au = cDxl~o for some constant e 7~ 0, 

and ~f~,  [u[ remains bounded away from 0 as r $ 0. In any case, if (79) holds, 

then from the formulas in Lemma 11 we see that # has to be a distribution of order 
1. 
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7 P r o o f  o f  T h e o r e m  8 

As in [BrL], the proof consists of  the following two steps. 

S tep  1. u E L~oc(fl) and there exists a constant C > 0 such that 

(80) u_<C 1 if k = 2 ,  r 2 log 7 

for all r > 0 sufficiently small. 

S tep  2. Set h := - A u  a.e. in fl \ M. Then h e L~oe(fl ) and 

(81) ~ h ~ 0 _ < - ~ u A ~ o ,  V~oEY r, 

where the class .T of admissible test functions is defined by 

(82) 9v := {~o E C~(gt) I ~0 > 0 in f~, } .  
3A > 0 such that V~0. Vd = 0 on --~, 

By Steps 1 and 2, we conclude that u E L~oc(fl), and we can write 

- A u - - h + #  inD'(~)  

for some function h E L~oe(fl) and some distribution # supported on M. Since 

u _> 0 a.e. in fl, we deduce from Theorem 4 that # is a positive measure (note 

the change of sign in the definition of #). In other words, in order to show that 

Theorem 8 holds, it suffices to prove Steps 1 and 2. 

P r o o f  o f  S tep  1. Consider the function 

fi(r) -- 1 3[ ~ uda = ~o UO~rO(a,r)d~ ' 0 < r < l ,  

where O is a smooth function defined on 0El x [0, 1] which arises from the change 

of variables (see (107) and Lemma 12 in the Appendix), and lrr is defined by 

x - 

l r r (x )=Tr (x )+ r  d(x) ' x e E2 \ M. 

We use the function fi to prove (80) in a similar way as in Brezis-Lions [BrL]. 

In order to get some of its properties, suppose for a moment that u E C~176 \ M); 

then 
d~(r. ~ COu Jfo cO0 dr )=  =-~ -ff~v ~ + zlu~ (~'r)da(~)" 
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Hence, by Corollary 13, 

/0 COu r k _ l ~  (:00 rk 1 (r)---- ~-~vda+ u o ~ r ( ~ , r ) d a ( ~ ) ;  
~. =-I 

and, integrating by parts, we have 

~ CO" r k _ l ~  (:00 
= - A M +  -ff~vda+ u o ~ r ~ - ~ r ( L r ) d a ( ~ ) ,  

-o \E. E. o =-~ 

for any r0 > 0 small enough. Throughout this step, we denote by v the unit 

normal vector to St, pointing out of Er (which explains the minus sign in front of 

f=-o\'-- Au in the expression above). 
For a general u E Llloc (fl \ M) with Au E Lllor (fl \ M), by using Fubini's Theorem 

1,1 and the fact that u E Wlo c (fl \ M), it follows by density that fi E C1(0, 1), dfz/dr is 
absolutely continuous on (0, 1), and 

~ ~COU rk_lj~o 7 Au + ~ da + u o .~ (~, r) da(~) r k 1 ( r ) = - -  T'o\Zr =-'0 =-1 

is still true for a.e. r0 > 0 small (which will be fixed later). 
We now proceed with the main computation. The next formulas hold for a.e. 

r E (0, 1). We have 

(83) 

where 

and 

1 d ( ~ )  1 ~o r k-1 dr rk-1 ---- ~ =-. AU 

1 d { ~o coO"'r)da( ' )}  + rk_------T d--- ~ r k-1 U O rr -~r ( =-1 
1 fo A u + k - l I ~ + I 2 '  rk 1 = r 

f0 (:00. r 1 f 1 (:00 I1 = ~~ (~')d~ - rk-1 ,]o u ( O ~ r )  ~ 
=-i ~T, 

12 = r k-1 d ~o (:00. , ~r =- , u o . r -~r ( ~ r) d~ ( ~ ) 

= rk_ l~  0 COU (:00 rk_l~ 0 (:020 
"~'1 COr2 

~0 COu(lcoO~ ~0 ( 1CO20~ 
= - ~ ~ - ~ r  J o ~1 + u ~ T r 2  j o ~1. 
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At this point it is convenient to set 

1 
0(i) (x) -- O(Trl (x), d(x)) ~ (Trl (x), d(x)), 

Then we can rewrite/1 and Is as 

1 fO - -  U?~ ( 1 )  , (84) /1 rk_ x - .  

12=fo  O-uO(1)+fo uO(2). 

Integrating the expression for/2 by parts, we get 

( 8 5 )  

i = 1,2. 

12 = -__fZ(= o\= ) 8O(x) U--~V -t-~ro\.~ uA~(1)--~,.o\~ AU~(1) 

+ f o  O-utg(1) + ~ u~(2)" 
'~,'o OV Z. 

and 

(89) 12 <_Cfo l t T C r  udk-3-f= Au~9(1)+C. 

Combining (83), (88) and (89), we find 

1 d (  dr  u)  1 ~o Au+Cfo u + C f  u+ rk-l dr r~-I <-- r -'~T-1 -. r = jO= 

+C ~.o\= Ud~-3- ~.o\z Au~(1) +C" 

Then, multiplying the last inequality by r ~-x and integrating with respect to r 

1 fo uv~(1)<Cfo u ( 8 8 )  /1 = ~ --. _ --~ 

Therefore, 

(86) ]D~(1)I < Cd k-j-l, j = 0, 1,2; 

(87) It9(2) 1 _< Cd k-2. 

From Corollary 13 in the Appendix (in combination with the lower bound for 0 of 
Lemma 9), we obtain the following estimates for 0(i): 
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yields 

i:~ f"So < C s k-2 udads+C s k-1 udads 

(90) W C / r ~  udk-3dad s 

J r  J (9~, ~o \ ~ ,  

+C~o . 

We now estimate each term on the right-hand side o f  (90). We start with 

(91) L ~~ s ~-2 L--. udads< r~o -2/~o L--. udads<_ L TM sk-172(s)ds. 

Similarly, 

(92) L'~176 
The third term on the right-hand side o f  (90) is, by Fubini, 

L'~ i:_ foL'oS~ s k- 1 ud ~-3 da ds = s~-luAk-3 da dA ds 

i:~ < C u~2k-3do dA 
Ex 

< C --Jr~ sk-lf~(s) ds, 

since A zk-3 _< 1, for  0 < )t _< ro _< 1. We now estimate the fifth term in (90), again 

using Fubini: 

/ i=_ i:~176 ro s t -1  AuO (1) dads = 8k-IAu~9(1)Ak-1 dadAd8, 
,'o \ - .  ~x /,o z /~ 

= AuO (1) A k-1 s k-1 dsdadA 
-=x 

/:~ = Au O(r zk-1) da dA, 
Zx 
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where O(r2o k-1 ) denotes a function bounded by Cr~ k-1 . Hence the tburth and fifth 

terms of (90) combined yield 

= A u ( 1 +  O(r 2k-1))dadA. 
F.A 

We now fix ro > 0 so small that 1/2 _< 1 + O(r 2k-1) <_ 3/2. Since Au _< au + f a.e. 

in f~\ M, 

frr~ mud(Tds-frr~ ~ro\~. z~u~(1) dO'd8 ~ _ 

(94) < c  f r ~  f au+ fdadA 
Jr JO~X 

i s < C sk-lfi(s) ds + x f 

(in the hypotheses of  the theorem, after replacing f with f +  we may assume that 

f _> 0 a.e. in f~). Hence, from (90)-(94), we get 

_rk_l dfi f r  r~ --d-~r (r) <_ C sk-tf~(s) ds + C. 

We now proceed exactly as in [BrL]. Take 0 < R < r0 to be chosen later and define 

~)R(r) : =  8k-1~(8) ds, 0 < r < R. 

With this notation, we have 

< ceR(r)  + cR, ~ r  k ~ l  

where CR is a constant that depends on R, but C is independent of R. After 

integration, we find 

f r  R r f R ds fL(r) - fi(R) < C ~ ds + CR sk_ 1 , 

and therefore 

(95) fi(r) < C frR s-~_l eR(s)ds + CR(l  + rT_2 ) 

if k _> 3. In the case k = 2, we have to replace 1/r k-2 by I logr[ in the second term 

on the right-hand side. Since eR is nonincreasing, we thus obtain 

r~-lfi(r) < CReR(r) + (JR. 
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Integrating once more, we get 

/? /? (96) Ca(r)  = s~-l~(s) ds <_ CR ~bn(s) ds + Cn 

< CR2r + Cn. 

Now choose 0 < R < r0 such that (1 - CR ~) > 1/2; then from (96) we see that 

CR(r) < C, 

with C independent o f t  e (0, R). By  letting r - r  0, we conclude that u E L~or 

Moreover,  from (95), we see that 

~(r) < C  r k--2 if k_>3,  

( [ l o g r  I if k =  2, 

which implies the estimate 

f__ fo r { r  2 if k > 3 ,  
u = sk-lfi(s)ds <_ C r211ogr[ i f k  2. 

r 

This concludes the proof  of  the first step. 

P r o o f  o f  S t e p  2. First, note that to prove the whole statement of  Step 2, it 

is enough to show that (81) holds. In fact, suppose that (81) has already been 

established. By the assumptions of  the theorem, we know that h >_ -au  - f a.e. in 

9t, and au + f �9 L~oe(f~ ) by Step 1. If  we take an admissible test function qo �9 

such that qo _= 1 in some small neighborhood of  M,  then we have 

O < ~ (h + au + f)~o < - ~ uAqo + ~ (au + f)qo < cx~, 

which implies that h �9 L~oc(fl ). 

We now proceed with the proof  of  (81). 

Let ~o �9 .T. Since (81) is trivially satisfied if ~o = 0 near M (in fact, we have 

equality in (81) in this Case), there is no loss of  generality if we assume that 

supp ~ C E1 and ~ ~ 0 near M. Next, fix A > 0 such that V ~ -  Vd --- 0 in Ex. 

Let cI, �9 C3(1~) be a convex function such that ~(t)  = 0 for t > 1, and if(0) = 1, 
to be given explicitly below. 

For 0 < e < 1, and if k > 3, define 

(x) ,I~ if x �9 =-1 \ E := \ / 

otherwise; 
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if k = 2, we let 

log I ,] i f x E E , \ E ~ ,  

otherwise. 

By construction, we have ~, E U0a(fl) and ~o~ = 0 on E,. In particular, 

(97) fo  hqo~ = -  fo  Auqo~ = - fo  uA~o~. 

In the argument that follows, we assume k > 3, the proof of (81) when k = 2 

being entirely analogous. 

If we compute A~o~ explicitly on =1 \ E~ and use (34) and (35), we get (recall 

that ~ - 0 outside this set) 

A~,  = AqoO \ d k _ 2 /  - 2(k - 2)VT" Vd~'  k, dk_2 ] "~s 
(98) 

+ ~-=-~ (k - 2 ) ~  '' r  o 0 )  ~,d k-2 ] ~ + ~,d~-2 ] ' 

where 0(1) is a quantity which remains bounded as e $ 0. 

Note that 

~2 k, dk_2 ] .--> ~(0) = 1 

and 

\ d , _ 2 / ~  -~ 0, 

both limits being uniform in any compact subset of fl \ M as e $ 0. --2) 
Since A~ �9 ~ is uniformly bounded and V~. Vd = 0 on E~, we conclude 

that 

(99) ~ [Aqo~ (ek-2"~ [ek-2"~ ek-2] , 
\ ~ ' - 2  ] - 2(k - 2 )VT-Vd~ '  k, dk_2 ] ~Zi-j  

>]auA~o a s r  

Next, we analyze the behavior of the term between brackets in (98). Before 

that, let us make a special choice of the function ~. 

Let a _> 3 be a number sufficiently large to be chosen below. Define �9 : IR -~ R 

by 

( l - t )  a+l i f t < l ,  
�9 (t) := 

0 otherwise. 
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In particular, r E C3(I~), r  = 0 for t > 1, and r  = 1. 

For x E -=1 \ E~, we have 

dk-I (k-2)2r  '' \dk_~] ~ +  \dk_~] 0 ( 1 )  = 

~k-2 (1 ek-2 a-I (1 Ck-2'~ = (a + 1) d--g-~-a dk_~ ) {a(k  22k-2 - - 2) ~ ~: -~- ]  0 ( 1 ) }  

ok-2 (1 s a-1 6.k_ 2 . 
= (a + 1) ~k--~i- dk_2)  { - 2 )  2 O(1, d) 

Now choose K > 0 and then a > 3 both so large that 

a(k- 2) 2 
> K _> 10(1)1, f o r 0 < e <  1. 

Then we get 

ak-, ( k -  2)2r '' kdk-2] ~ + ~,a~-~] o(1 )  = 

6k-2 (1_ ek-2) a-a { a(k-- 2)2 ek-2 
> (a + 1) ~7 i -  d--k--~_2 ] 7 ~ - O(1)} =: H. 

Next we split the estimate for a lower bound of  H into two cases, depending on 

how near the point x is with respect to the singular set M: 

C a s e  1. a(k- 2) 2 e k-2 > K. 
2 d k - 1  - -  

In this case, by our very choice of  K,  the expression defining H must be 

nonnegative, i.e., H > 0. 

C a s e  2. a ( k  - 2) 2 e k-~ - - < K .  
2 d k-t  

If  the inequality above holds, we have 

ck-2 / 
~ > -(~ + 1)~-k-~ 1 - ~  

2K 
> -(a + 1)a(k _ 2) 2 

ok_ 2 ~ a-I 

8 2 K > - ~ K  = : - C .  

In both cases, we have 

(100) H > - C ,  

for some constant C > 0 independent of  e and ~o. 
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It now follows from (98)-(100) and Fatou's Lemma (recall that 

h >_ -au - f E L~,,c(f~)) that, if we let e $ 0 in (97), we get 

which is "almost" the inequality we want to prove. In any case, the argument 

presented at the beginning of  this step, applied to (101), already gives h E Lloc(~). 

Next, we show how the constant C > 0 above can be removed. 

Given any small ~ > 0, let r/e E C ~ ( - e )  be such that 0 < 7/e < 1 and r/e = 1 on 

Ee/2. Note that ~Oe still belongs to .7 r so that, after replacing ~ in (101) by ~pr/e, we 

get 

f htpr/e < - f  uA(qo,le)+C ff2uqorle. 

On the other hand, since ~p(1 - r/e) E C~(f~ \ M), 

f~  htp(1-  r/e)= - f uA(~p(1- r/e)). 

Now adding both relations, we obtain 

If we let/i $ 0 in the inequality above, we get (81), as claimed. This concludes the 

proof of Step 2. 

8 P r o o f  o f  C o r o l l a r y  10 

Let u E L~oc(f~), u > 0 a.e. in f~, be as in Corollary 9. Since f(u) E L~oc(ft), 

(25) implies that 

(102) 

(103) 

u E L~/~ k-~) (f~) if k > 2, 

e ~u E L~oe(~) if k = 2, for all a > 0. 

If k > 2, we apply HOlder's inequality to conclude from (102) (using the fact that 

I--rl ~ r k a s  r $ 0 )  that 

lim 1 f~ rS0 ~ u = 0. 
v 

By Corollary 7, we must have/~ = 0 in (24), which proves the result in the case 

k > 3 .  
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Let us now suppose k = 2. For a > 0 fixed, we have by Jensen's inequality and 

(103) that 

f__ Ca Vr > 0 small, el~; r  f~_ au < - 1 eaU <- I--r-~l' 
r 

where Ca > 0 is a constant depending on a. We conclude that 

1 f._ Ca 
( lO4) I~-,I a u  < log I~-rl 

r 

Let 0 < a l  < a2 be such that axr  2 < l-%[ < a2 r2 for all r > 0 small. From 

(104), we get 

1 f log (CalOtl r 2) log (CalOtl) 
ot2r 2 log 1/r  J -  au <_ log 1/r = 2 + log 1/r  

l -  

By letting r $ 0, we deduce that 

lim sup 1 f 2Ot2 
r~0 r2llogr[ J~. u < , Va > 0. a 

If  we take a $ to, then we have 

lim 1 f z  
r~O r2l logr I u = O. 

r 

We now invoke Corollary 7 to get the result in the case k = 2. [] 

Appendix 

In the sequel, we assume that Er is a tubular neighborhood of  M N - k  of  radius 

r, where M N - k  is a compact manifold without boundary in R N of  codimension 

k > 1. We use here the same notation as in Section 3. Before stating the lemma 

below, let us recall the definition of  the projection ~rr : "-2 \ M ~ 0---Er : 

z - ~ (z )  
- , ( x )  :=  ,~(x) + r d(~------~ 

Note that, i f0  < r, A < 2, then 7rrl0-~ : 0Ex --+ 0Er is a smooth diffeomorphism 

between the manifolds aEx and 0Er. 

Throughout the Appendix, we will use the notation 

1 
(105) O(z , r )  := r--~_~d(~rrlov.~), z ~ 0F-x, r,A ~ (0,2], 

where J(zr , . loz  ~ ) denotes the Jacobian of the map 7frieze, so that 

(106) f v = f vo~r , (~)O(~,r) r  k - '  dax(~), Vv e LI(OEr) ,  
J# ~. Jo=x 
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or equivalently, by the coarea formula, 

(107) v = voTr , (~) |  k-1 dax(~)ds, Vv e L l (ar ) .  

We should remark at this point that the choice of  the normalization factor 1/r  k-  x 

comes from the degeneracy rate of  J(Tr, ]0=-4 ) as r $ 0, as we shall see in Lemma 12. 

In the next lemma, we present some properties of  this function, which were used 

in some of  the main results in this paper. We handle only the case of  codimension 

k >_ 2. Since we are mostly interested in the limiting behavior of  19(.,r) as r $ 0, 

we consider 19 as a function defined on 0El x (0, 2], i.e., we take A = I in equations 

(106) and (107). 

L e m m a  12. Suppose M C R N is a compact  manifold without boundary o f  

codimension k > 2. Then 19 E C~176 x [0, 2]) and satisfies: 

(i) there exists a > 0 such that 19 > a > 0 on 0El x [0, 2]; 

(ii) there exist smooth functions a, 13 defined on 0El such that 

(108) 19(~, r) -- ot(~) + rk13(~), V(~, r) E 0,-~1 x [0, 2]. 

P roo f .  Instead of  computing J(Trslozl) directly in (105) to get the desired 

properties of  19, we try to find another representation for the function 19. We 

proceed as follows. 

Given a small geodesic neighborhood U C M, let h : U x B~ ~ 7r -x (U) x int E2 

be a diffeomorphism such that h(zl,0) = Zl, rr(h(Zl, .)) = zl, and h(zl , . )  is an 

affine linear isometry for each zl E U. 

Using the parametrization of  E, induced by h and the coarea formula, we have 

.n~r-l(U) 

fo'f f  = v o h Jh  dcrsdzldS 

/o'lA = v(h(zl ,  sr Jh(z l ,  sr ~-1 da(;)dz l  ds 
16--1 

/o'/A = v o h o j . ( z l ,  ~) gh o j . ( z l ,  i f )8  k - 1  da(ff)dzldS, 
k--1 

where js(Zl, ~) :-- (zl, 8~). 
Therefore, we get the following expression for the integral of  v on Er N 7r-1 (U): 

f---.n~r-' (u) v 
(109) 

--.,n~-'(U) 
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where we have used the fact that, by our very choice of  h, we must have 

7rs =- h o j s  o h -1 o n  0"~-.1 . If  we compare the identifies (107) and (109), we then 

conclude that 

(110) O = J h o j r o h - l j ( h - l l o z l )  on(0E1Nrr-X(U))  x(0,2].  

Since U was an arbitrary small geodesic neighborhood of  M and h was a 

diffeomorphism, (110) immediately implies that O E C~176 x [0, 2]) and O > 0 

on 0El x [0, 2], so that (i) must hold. 

In order to prove (ii), we first rewrite (110) as 

O(h(z),,9 = Jh(zl,,'z2) J(h 
(111) V(z,r) e (U • S k-x) x [0,2]. 

By choosing a smaller open subset of  U if  necessary, we may assume we 

have a parametrization p : R N-~ ~ U. Next, define h : ~N-k x B~ --r =2 by 

h(yl,y2) := h(p(yl),y2), so that 

(112) Jh(yl, Y2) = Jh(p(yl), Y2) JP(Yl). 

In view of  (111) and (112), in order to show that 0 may be written as (108), it 

suffices to prove the following decomposition for Jh:  

(113) Jh(y)=&(yl)+~(y),  Yy=(yl,y2) e N  N-k • 

where &,/~ are smooth and ~(yl,  y2) is a homogeneous polynomial of  order k with 

respect to the y2-variable, for each yl �9 R N-k �9 

From the properties of  h, we may write it more explicitly as 

h(zl,z2) = zi + T(zl)z2, Y(Zl,Zz) �9 U • B~, 

for some linear isometry T(zl) : IRk ~ R N-k, zx �9 U, so that 

h(yl, y2) = p(yl) + T(p(yl))y2 =: p(yl) + T(yl)y2, 

which implies 

Jh(yl,y2) = det (Dp(yl) + DT(yl)Y2,T(yl)) 

= det (Dp(yl),T(yl)) + det (DT(yl)y2,T(yl)). 

Now (113) follows if  we take 

&(Yl) := det (Dp(yl),~'(yl)), 

Z(Yl,YZ) := det (DT(yl)Y2,~'(yl)). 
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In particular, note that ~(yl, -) is a homogeneous polynomial of  order k. As we 

have already remarked, (111), (112) and (113) imply (ii). This concludes the proof 

of the lemma. [] 

The following corollary gives some estimates we needed in the proof of 

Theorem 8. 

C o r o l l a r y  13. For any j > 0 and x �9 E1 \ M, 

[OiO ] = , /O(d  k-i-j) i f l < i < k ,  
(114) D~ -~ri(Trl(x),d(x)) [0  /fi  > k. 

In particular, estimates (86) and (87) hold. 

Proof .  First, we see from (108) that we only need to prove (114) for I < i < k. 

If we differentiate (108) with respect to r and evaluate the resulting expression at 

the point (~, r) = (7rl (x), d(x)), for some x �9 E9 \ M, we get 

(115) 
0 iO.  k! �9 

(Tq (x), d(x)) = -------~,d(x)k-'fl(Tr, (x)). -z),.(k 

In particular, (114) with j = 0 (and any i < k) follows from the expression above. 

Next, assume j > 1. Instead of differentiating (115) directly with respect to 

x, we write it in terms of  conveniently chosen local coordinates, as we did in the 

proof of Lemma 12. 

For a sufficiently small geodesic neighborhood U C M, we can find a parametriza- 

tion p : R N-k ~ U and a diffeomorphism h : U x B~ ~ lr-t (U) n intE2 such that 

h(zl ,  O) = zl,  lr(h(Zl, .)) = zt,  and h(zl ,  .) is an affine linear isometry for each 

zl EU.  

Define h(y) := h(p(yl),y2), y E B ~  -k  • B~, so that h is a diffeomorphism 

between B ~  -k • B~ and rr -x (p(B~-k)) N int E2 =: V; moreover, the derivatives of 

and ~-1 are bounded (which explains why we defined h using B ~  -k, instead of  
l N-k). 

Given x �9 V \ M, let y �9 B ~  -k • B2 k \ {0} be such that h(y) = x. Using the 

properties of h (or rather of h), we may write (115) as 

(116) 

0~0 k! k-~ 7r h 
o r i  = (k-i)!ly21 B( 1((y))) 

k v �9 - Y2 
= (k -" i)! lY~lk-'/~(h(Yl'/y-~)) 

- "  ) = :  fdy). 



178 J. D/~VILA AND A. C. PONCE 

One can now check that the derivatives of F satisfy 

IDJFi(y)l <_ C,,ly=l Vy E B N-k  x B k \ {0}, Vj > 1. 

If we now apply the chain rule to (116), then the estimates above and the 

boundedness of the derivatives of h -t  imply that (114) holds for j > 1. 

Finally, estimates are readily checked using (114) and the fact that 0 > a > 0 
on 0_=t x [0, 1]. V1 
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