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Abstract .  The equation 

(1 0 
--Au=X{u>0 } --~+Af(x,u 

in [2 with Dirichlet boundary condition on a[2 has a maximal solution u;~ > 0 for 
every A > 0. For A less than a constant A*, the solution vanishes inside the domain; 
and for A > A*, the solution is positive. We obtain optimal regularity of ux even 
in the presence of the free boundary. 

1 I n t r o d u c t i o n  

T h e  ell iptic p r o b l e m  

f - A u  = 9A(x,u) in f~ (1) 
u = 0 o n 0 f ~  

wi th  a s ingu la r  non l inea r i t y  gx ar ises  as l imi t  o f  s o m e  equa t ions  m o d e l l i n g  ca ta ly t ic  

and  e n z y m a t i c  r eac t ions ;  see [1] and  [9] fo r  an account .  T h e  d o m a i n  f~ C R n is 

s m o o t h  and  b o u n d e d .  W e  are in te res ted  in s tudy ing  (1) wi th  

[ 1 \ 
(2)  ga(x,u) = X{,,>0} ( - ~-~ + A.f(x,u)), 

b y  conven t ion  gx(x,O) = 0, w h e r e  /3 > 0 is a cons tan t  and  the  func t ion  f : 

f~ x [0, to )  + [0, oo) is m e a s u r a b l e  in x, f ~ 0, and is n o n d e c r e a s i n g ,  c o n c a v e  and  

sub l inea r  in the s e c o n d  var iab le  u; the la t ter  r e q u i r e m e n t  is equ iva l en t  to 

lira f (x, u) _ 0 u n i f o r m l y  fo r  x E f L  
u--+oo 
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In addition, we assume that fu (z ,  ") is continuous on (0, oo) for a.e. x E f L  We say 

u > 0 is a weak solution o f ( I )  i f u  E L1 (f/), 

1 u ) )6  E ( - + L X{u>o} 

where  a(x) = dist(x, Of~), and for all qo e C2(~) with ~o = 0 on Off, we  have 

By  a positive classical solution we mean a function u E C(~)  Cl C2(f~) which is 

positive in f~ and satisfies (1) in the usual sense. 

The distance function to the boundary ~(x) = dist(x, 0~)  plays an important 

role in our arguments because  of  the interplay o f  the singular term 1/u  ~ and the zero 

Dirichlet boundary condition. I f  we drop the function f from the expression (2), 

in dimension n = 1 the equation (1) reduces to the ordinary differential equation 

u" = 1/u ~ and the function u(t) = t 2/(1+r is a positive solution defined in (0, ~ )  

with u(0) = 0. Intuitively, this suggests that in higher dimensions there may 

exist positive solutions u of  (1) whose behavior near the boundary is like ~2/(x+~). 

Therefore,  looking at the principal part o f  the linearized operator o f  (1) at such a 

solution, one finds 
1 

- 

for some constant c > 0. In fact, the singular potential c~ -2 plays a crucial role in 

the stability of  such a solution and is related to the Hardy inequality 

~2 
/ f - ~ - < C ~ l V q ~  2, 

which is valid for all qo E C ~  (f~); see [4]. This is similar to what happens to the 

minimal solution in some semilinear elliptic equations with a convex nonlinearity 

gx(z,u) = Af(u). Standard examples are f(u) = e ~' and ](u) = (1 + u) ~' f o r p  > 1; 

see [12, 11, 15, 7, 3, 5, 14]. One of  the main features is that classical solutions 

exist for 0 < )~ < A. A result in [14] states that when ), = ),, there is a unique weak 

solution fi, which may  be singular and which is called the extremal solution. For 

A > A, there is no weak  solution; see [3]. If, for instance, f(u) = e ~' and 12 is the 

unit ball B1 (0) in ~'~ with n > 10, then the extremal solution is known explicitly 

by  the formula 5(x) = - 2  log(lx[); see [13]. So the linearized operator at fi is 

1 
- z x  - c l z  P . 
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The linearized stability of this solution is then related to another Hardy inequality, 

namely 
~2 

for all q0 E C~(12); see [5]. 

In the present work, we determine a constant ,~* > 0 such that problem (1) 

admits a positive solution for )~ > )r and no positive weak solution exists if 

0 < )~ < )r (see Theorem 2.1 below). But, in contrast to the above mentioned 

convex nonlinearity, if 0 < )~ < )r problem (1) has solutions which vanish on a 

set of positive measure, exhibiting a free boundary. 

Let us mention some already known results for particular cases of equation (1). 

In [10] and [6], the authors studied the problem where f is bounded and depends 

only on x. They proved some results on existence, uniqueness and stability of 

solutions. A variational approach was carded out in [ 16] in order to obtain optimal 

regularity cX'(1-1~)/(l+l~)(~'~) for minimizers of the energy f x 2 51Vul + (u+)l-~ in loc 

the convex set {u E H 1 (~) : u = 1 on 0f~}. One of the ideas behind the proof is 

that minimizers are preserved under certain scaling. This is not exactly the case 

for our problem (1); see Theorem 2.1. In [17], they studied the equation with 

gx(x, u) = - K ( x ) / u  ~ + )~u p with 0 < p < 1, but only considered positive solutions. 

The weight K could change sign; but when inf~ K > 0, they found results similar 

to ours. Problems involving singular functions with different behavior from gx 

were addressed in [8] and [15]. 

2 Main  results  

We are in position to state our main results. By means of an approximation 

procedure, we construct the maximal solution ux of( l ) .  The difficulty in obtaining 

its regularity is the presence of a free boundary for 0 < ), < )r 

T h e o r e m  2.1. Assume 0 < 8 < 1. Then there is a unique maximal weak 

solution u x to (1 ) for  any A > O. Moreover, there exists A* E (0, c~) such that for  

A > A*, the maximal solution ux is positive in f~ and belongs to C(-~) Iq C~o~c(fl) 

for all 0 < # < 1. Moreover, a~ < ux < b~ in f~, where a, b are positive constants 

depending only on f~, ~ > 0 and f .  I f  f E C 1 (~ x [0, or then actually ux is a 

classical solution. 

For 0 < ~ < )r , the maximal solution u x has optimal regularity C (-O) n C~o~c ( f~ ) 

with 7 = (1 - 8) / (1 + 8); and for  0 < )~ < )~*, the set {ux = O} has positive measure. 

The maximal solution ux is obtained as the (decreasing) limit of the maximal 
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solutions ux,e to 

u 
--AU+ (u+e)  I+~ --)~.f(x,u) inf~ 

(3) 
u = 0  o n 0 f l  

as r -~ 0. This approach is inspired by the work in [9]. We also prove that 

ux,e --+ ux uniformly as r ~ 0; see Proposition 3.9. First we show that ue 

converges pointwisely to the maximal subsolution u of  the problem 

{ 1 
(4) --Au + X{,,>0}~--~ = Af(x ,u)  in t ,  

u = 0  on0f l .  

We progressively regularize this maximal subsolution, obtaining precise estimates 

of  its derivatives, similarly to [16]. These estimates allow us to verify that the 

subsolution u satisfies (1). Our problem (1) can be viewed as a perturbation by ),f 

of  the minimization studied in [16], because for parameter values 0 < ), < ),* the 

maximal  solution ux possesses a free boundary, so it vanishes on a set of  positive 

measure. But u~ > 0 for A > A*; see the proof of  Lemma 3.11. The borderline is 

for A = A*, where ux. > 0 a.e., but it could be positive (not only a.e.) according to 

Theorem 2.4; see also Remark 2.2 (C). Therefore, every solution of  (1) vanishes 

on a set for )~ _< )r Nothing prevents us f rom having a solution of  (1) different 

f rom ux for )~ > )r and vanishing somewhere, but the maximal one is positive. 

R e m a r k  2.2. (A) The weak solutions of  (1) belong to H~(f~); see [10] and 

[6] for alternative proofs. 

(B) Any weak solution u satisfies u-~X(,,>o} r L 1 (f~) (and not just u-~X{,~>o}~ 
E L1 (f~)). 

(C) We define the extremal solution as u* = ux..  As we shall see, u* is positive 

a.e. in fL although it can vanish at some points in fl (this makes sense because 

it is continuous). We make this more precise in terms of  ~ in Theorem 2A and 

show that in some circumstances u* > 0 in fL The optimality of  this situation is 

discussed in Example 2.5. 

(D) The extremal solution u* is unique in the class of  weak solutions which are 

positive a.e. in ft. A similar result in [14] deals with convex nonlinearities. 

(E) For/3 >__ 1 and any )~ >_ 0, there is no weak solution of (1) which is positive 

a.e. in ft. This statement was already proved in less generality in [6]. 

For the sake of  completeness, we give a proof  of  the above statements in 

Section 4. 
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The question of  stability of  the maximal solution u:~ for  A _> A* leads us to 

define, for a function u E L~oc(f~), u > 0 a.e. in ft, the expression 

f 

(5) A(u) = inf Jft [Vq~ - ~-~-~ (x, 
U)~O 2 

~c~(n) ~ ~2 

Note that --~-x (x, u) contains the t e r m  u - l - / 3 ;  thus for a general u > 0 a.e. A(u) 

makes sense, but can be -oo .  This is the first eigenvalue o f  the linearization of  

problem (1). 

T h e o r e m  2.3.  Assume 0 < ~ < 1. For A > A*, the maximal solution ux o f ( l )  

is stable, that is, A(ux) > 0. For A = A*, the extremal solution u* is weakly stable, 

in the sense that A(u*) > 0. Conversely, i f  u is a weak solution o f  (1) for  some 

A > A* such that u is positive a.e. and A(u) > 0, then u coincides with the maximal 

solution (i.e., u = ux). 

The stability property allow us to obtain the positivity for  the extremal solution 

u* under some restrictions on /L  

T h e o r e m  2.4.  Let ~ E (0, 1). There exists c > 0 such that u* >_ c52/(1+~) i f  

one assumes 

3~ + 1 + 2V/-~ +/~ n 
(6) ~ + 1 > 2" 

In particular, u* is positive in f~ (and not only a.e.). 

Our result appears to be close to optimal regarding the behavior  o f  u* near the 

boundary in view of  the example that follows. 

E x a m p l e  2.S. There  exists a function f = f ( x )  such that problem 

- A u + u - ~  = f ( x )  i n A = { r  : R < r <  1} 

u = 0 on OB1 

u = c ( 1 - R )  ~ o n 0 B R  

has a solution u ,,~ (~2/(l+Z) near OB1. More  details are given in Section 6. 

Theorem 2.4 also sheds some light on the problem we explain in the sequel. 

It is natural to ask whether or not there is a characterization for the maximal 

solution ux in terms o f  stability similar to Theorem 2.3 when 0 < A < A*. The 

situation in the range 0 < A < A* is more  delicate, because the maximal solution 
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ua vanishes in parts of  the domain, and therefore any solution to (1) vanishes on a 

set of  positive measure. In the same spirit, whenever  ~ > ~* one may ask whether 

the characterization of  the maximal solution given in Theorem 2.3 is valid for  any 

solution (not known a priori to be positive a.e.). One possible approach would be 

to say that a solution u E C(f~) to (1) is weakly stable if 

(7) L O"g-~(x'u)q~ f~ [V~12' q0E C~(w), 

where w is the open set 

w = { z  e f~ : u ( z )  > 0}. 

Assume now that u E C(f~) is a weakly stable solution o f  (1) in the sense o f  (7). Is 

it true that it has to be the maximal solution? It turns out that the answer is negative 

in general. 

E x a m p l e  2.6.  Let  f~ be the interval ( - 2 ,  2). There  exists a smooth function 

f = f (x )  and a continuous solution u to (1) in f~ with ~ = 1, such that u > 0 

in ( - 2 ,  0) U (0, 2), but u(0) = 0. Moreover  u satisfies the condition (7), but u is 

not the maximal solution. Indeed, first note that )r < 1 because u > 0 a.e. If  

)r = 1, then by Remark 2.2 (D) (uniqueness of  u*) we would infer that u* = u, 

which is not possible by Theorem 2.4. Hence ~* < 1; and then u cannot  be the 

maximal solution ux, because u(0) = 0 and ux > a~ (with a > 0). See the explicit 

computations in Section 6. 

R e m a r k  2.7. The stability of  the maximal solution for ~ > )J implies that 

the map )~ ~ ux is continuous for ,~ > )r considered as a map from (0, ~ )  C II~ to 

LX(fl). 

It is natural then to ask whether A ~ ux is continuous for all A > 0. We can 

easily show that ux is continuous from the right. This conclusion follows f rom the 

characterization of  ux as the unique maximal subsolution to (4); see Corollary 3.8. 

On the other hand, if Ak /~ A with )~k < A, the increasing limit u = limx~7;~ ux~ 

exists and is a subsolution o f  (4). But is it the maximal one? The answer is 

negative in general, and examples can be easily constructed by applying the next 

proposition. For instance, take 12 to be the interval (0, 1) and f(u) = 1. F rom the 

proposit ion below, one concludes that u~ - 0 for  all 0 < A < ,~"; but Theorem 2.4 

says that u* > 0 in fL Hence  the branch A ~ ux of  maximal solutions has a 

discontinuity at A*. In addition, it is easy to deduce f rom the iterative scheme of  

L e m m a  3.1 that the branch )~ ~ ux is nondecreasing. 

P r o p o s i t i o n  2.8.  Assume f~ is an interval in ]R and that f depends only on u. 
Then, for any )~ > O, the maximal solution is either identically zero or positive in 
f~. 
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A similar statement can be found in [10], where they claim that if fl is an 

interval in N and f - 1, any minimizer o f  the corresponding energy is either zero 

or positive in ft. 

3 T h e  m a x i m a l  s o l u t i o n  a n d  its  r e g u l a r i t y  

The proof  of  Theorem 2.1 is divided into a series of  lemmas. We start by 

constructing a maximal  subsolution of  problem (4). It turns out that this maximal 

subsolution is indeed the maximal solution u~ of  (1). 

Throughout  this section,/3 E (0, 1) and a = 2/(1 +/3). 

L e m m a  3.1.  There exists a unique maximal subsolution of  (4). 

P r o o f .  The perturbed problem (3) has a unique maximal solution u~ (we omit 

the dependence on A). First observe that there exists a fixed maximal  supersolution 

U of  (3) ( independent o f  e); just take U = k Y  with k sufficiently large constant, 

where Y denotes the solution to 

(8) ~ - A Y  = 1  inf , ,  

t Y = 0  onOf~. 

The existence of  a solution to (3) is clear; beginning with u0 = U, the sequence un 

o f  solutions o f  

un Af(X, Un-1) in [2 - A u n  + (u,_1+~)1+ a = 

u,~ = 0 on Off 

converges monotonical ly to a solution u~ of  (3). Moreover,  u~ is the maximal 

solution to (3) in [0, U]. Choosing k larger if necessary, any subsolution of_u_ to the 

equation (3) satisfies _u < U; and hence ur is the maximal solution to (3). 

Observe that if  0 < cl < r we have u~ 1 < u~2. Therefore,  the pointwise limit 

u = lira u~ 
e----~O 

exists. We claim that u is a maximal subsolution to (4). Indeed, take 9 E C 2 (~), 

> 0, ~ = 0 on 0fL Then 

(9) 

Observe that 

U~ 

lim inf ue 1 ~-+o (u~ + c)~+n -> ~-~X(,,>o}. 
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Using Fatou's lemma on the left hand side and dominated convergence on the right 

hand side of  (9), we obtain 

+ < 
u>0} 

It is now easy to conclude that u is the maximal subsolution of  (4). Observe that 

any subsolution v of  (4) is also a subsolution of  (3) and therefore v <__ u~ for all 

e > O, implying v < u. [] 

The maximal subsolution u of  (4) is regular. First, we prove that it is continuous 

in ~.  This fact can be derived from the following local estimates of  u. 

L e m m a  3.2. Let u be the maximal subsolution o f  (4). For every ball Br (p) C 

fL there exist constants co, T > 0 depending only on n and ~ such that 

whenever 

u 

re(v) 
a.e. in Br/2 (P) 

fo u >_ 
cor a . 

B~(v) 

We state as a separate result the first step for proving Lemma 3.2; see [16] for 

a proof. 

L e m m a  3.3. Let B = BI(0) be the unit ball in ~" and let fi E H1/2(OB). 

There exist positive constants Co and Cl > 0 (both depending only on n and 8) such 

that i f  

fa f>-Co' 
B 

then there exists a solution w E H 1 (B) of  

(10) 

- A w  + w~- = 0 ])]/a inB ,  

w > c l ( 1 - l x  f inB ,  
B, 

w = f  onOB. 

P r o o f  o f  L e m m a  3.2. We assume that p = 0 and rescale u by defining 

f(u)  = r- u(ry). 

Hence f satisfies the inequality 

1 
- A f t  + X{a>0} ~-~ _< Ar2-af(ry ,  rau(Y)) in B1. 
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Observe that 

~0 /Z = r-a~0 u. B1 By 

By Lemma 3.3, if  

~o a_>co, B1 

there exists w E H ~ (B) satisfying (10). Therefore, the problem 

1 -A~ + ~-~ = g(y, f~) inB1 

~3 = ~ on OB1 

has a maximal solution ~ > w; here we have used the notation 

g(y, v) = Ar2-~f(ry, r~v). 

We rescale back ~, i.e., define 

v(~) = r ~ ( ~ / ~ )  

and set 
S u(x) i f x E l ) \ B r ,  

z(x) v(x) if  x E Br. 

We claim that z is a subsolution of  (4). Indeed, let ~ E C ~  (f~), ~ _> 0. Then 

~ VzV~= L VuV~+ fB V(v-u)V~P 

1 Af(x, u))~ + u)qo = ( - x(u>o~ ~-~ + ~ 
B,. 

+ ( -  +  s(x,v) + - 
r 

1 )~f(x,z))~. < ~ (-xo>o,~ + 

In the previous computation, we have proceeded formally, since at this point it is 

not known whether v - u has a normal derivative on OB,.. But the calculation is 

justified by the lemma below (with w = v - u). Since u is the maximal  subsolution, 

we have u > v on Br,  and therefore 

1 ~0 u > ~ c l  u inB~/2. 
- B ~  [ ]  

The next result completes the proof  of  Lemma 3.2. 
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L e m m a  3.4. Let w E Wl'I(B1) be such that w > 0 a.e. on BI and w = 0 on 

OB1. Suppose that A w  E LI(B1). Then Ow/Ov < 0 in the sense that 

(11) ~ (pAw "3 L VwV~o ~ 0 Vq0 6 cl(B1),qo ~> O. 
J B  1 

Proo f .  Assume for a moment that w is smooth in B1, and let q0 E CI(B1). 

Then for 0 < r < 1, 

c~ fB = r~_1 A(w~) 
r 

Cn 

Integrating over r E (R, 1) with 0 < R < 1 yields 

(12) ~B1 r w~o J~l r 7 - 1  {/B,  f wo-~v } 
WqO - -  J O B R  = 

I n  c~ 0~o qoAw + VwVqo + JoB~ dr. 

By approximation, this relation holds also for a function w as in the statement of 

the lemma. If we assume now that qo _> 0, since w >_ 0, w = 0 on OB1 (12) implies 

that 

/2 /0 (13) ~ qoAw + ~Tw~Yqo + w-~v dr <_ O. 
r S r  

Observe that by the hypotheses on w, the quantity in brackets is continuous in r. 

So, dividing (13) by 1 - R and letting R / ~  1, we conclude that (11) holds. [] 

The continuity of u can now be achieved. 

C o r o l l a r y  3.5. The maximal subsolution u o f  (4) is continuous in ~ (up to 

redefinition on a set o f  measure 0). Moreover, u belongs to CX,~ for  any 0 < lz < 1 

restricted to the open set w = {u > 0} and satisfies 

1 
- A u  + -~  = Af(x,  u) in w. 

Proo f .  We work with the following precise representative of u: 

U(z) = lira ~/ u. 
r~OJoB~(~) 

Since u E H~ (fl), the limit exists a.e. and U = u a.e. in ft. Note that U is upper 

serhicontinuous. Indeed, one can write u = v + w, where w solves 

(14) [ - A w  = Af(x ,u)  inf~ 

t w = 0  on0f~ 
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and therefore 

{ 0 1 (15) - A v  = X{~,>0}~--~ - X{~,=oIAf(x,u) in 12, 

v on 012. 

Since u is bounded,  w E C 1 '" (~) for every 0 < # < 1. Therefore,  

U(x) = w(x)  + lim f v. 
r~~ 

But v is subharmonic,  and thus the previous limit is actually an infimum. Since for 

fixed r the function 

x ---~ fo  v B,(x) 
is continuous, we see that U is upper semicontinuous. 

Let q E 12 be such that U(q) > 0. Then for some r > 0 small enough 

~0 u _> c0r a, 
B,(q) 

and by Lemma 3.2 

f 
u(x)_>7~- u > 0  inBr/2(q).  

Jo B.(q) 

This shows that the set w = {U > 0} is open. Furthermore, by (14) and (15), u 

satisfies 
1 

- A u  + - ~  = Af (x ,  u) in Br/2(q). 

Therefore, it is (up to a representative) C 1," in Br/2(q) for all 0 </~ < 1. 

Finally, we show that U is continuous in ~. We start by showing that U is 

continuous at p E 0w n 12. 

Before proving this, observe that if  a function h E C 1 '" (B1) for some 0 </.t < 1, 

then 

fo h(0) l+u (15) h - <_ [Dh u,Blr , 
B. 

where [.[u,B1 is the H61der semi-norm defined by 

I D h ( x )  - Dh(u)f 
[Dh[u,B1 := sup 

�9 ,ueB1  I x - -  YIu 

This follows easily f rom the fact that for z e OBr one has h(z)  - h(O) = Dh(~)z 

for some ~ in the segment 0--z. Take now ~0B, in the expression 

h(z)  - h(O) - Dh(O)z <_ [(Dh(~) - Dh(O))z[ 

<_ [Dh[,,Blr 1+" 
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to get (16). 

Recall  the decomposi t ion u = v + w, where v is subharmonic and w E C1'~'(~) 

for # E (0, 1). Fix # E (0, 1), let z E f l  with Ix - p [  < dist(p, 0f~)/2, and set 

R = Ix - P]. Then, since v is subharmonic, using (16) we get, for 0 < r < R, 

= v ( x )  + 

/ (v + w) + Cr I+" < 
Jo B,(x) 

= [ u + Cr 1+~. 
Jo B.(x) 

Multiplying the previous relation by r n-1 and integrating over r E (0, R) yields 

(17) u(x)lBR [ < f u + CR '~+I+~' 
JB ~(~) 

< / u cRn+l+t~.  + 
JB ~a(p) 

But, if 

~0 >- c~ u 
B~(r) 

for some r E (0, 2R), then U(p) > 0 by L e m m a  3.2, which is impossible. Hence, 

integrating, we .obtain 

fB < CRY+n; u 
2R(p) 

and combining with (17), we get 

u(x) < CR a + CR l+u < CIx - PI"" 

I f  p E OfL then, since u < C& we have 

sup u < C  sup (f--+O 
B.(p)n~ B.(v)nn 

a s r  ~ 0 .  [] 

We need better local estimates on the derivatives of  u in order to obtain the 

precise regularity. 

L e m m a  3.6. Let u be the maximal subsolution o f  (4). Then for  all f~ C C ~, 
we have 

IDul < Cu (1-~)/2 in 12', 

where C depends only on dist(fl ', 012), n, 8, sup~ u and supa f ( x, u( x) ). 
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Moreover,/ff E C 1 (~ x [0, co)) then 

ID2ul < Cu -~ in f~' 

and C depends also on f .  

P r o o f .  We write u = v + w, 

subharmonic,  as in Corollary 3.5. 

Let p C fY and assume p = 0, u(p) > 0. For  s > 0, define 

u~(u) = s - % ( s y )  

and define w~, Vs accordingly. Note that 

Du, (y )  = s l- '~Du(sy) .  

Let us fix s > 0 so that 

u,(o)  = ~ - % ( o )  = 2co, 

where w is the solution o f  (14) and v is 

For  ws we then have 

IDwl.,a <_ C. 

(18) 

and (16), 

SOB,. Us 

IDw~l.,~/~ <~ sl--~ C 

(note that the domain  of  w. is f~/s). 

Let 

r0 = min(dist(f~', 0f~), 1) 

and consider some 0 < r < r0, which will be fixed later, depending only on 

dist(fY,0f~), n, 8, supa u, supn f ( x , u ( x ) ) .  Then,  using the subharmonici ty  o f  v 

s 
> v.(O) + w.(O) - [Dw, l . ,a / .r  1+" 

= u,(O) - IOwlu,a s 1-~+" r l+u 

> 2co - IDwlu,a Soa-,~+. ,-1+" 

> cor~(2  IDwlu,a ( sor ) l -=+. ) .  
Co 

where Co is the constant  f rom L e m m a  3.2. Note that s < So, where So = 

(u(0)/2c0) 1/~ depends only on Co and IlullL~(a,). 
Recall that we have a bound Ilwllc,,.(~) < c for any 0 < / ~  < 1. We fix here 

some/z  E (a - 1, 1). In particular (see analogous notation (16)), 
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Now fix r so small that 

2 IDwl.,n (s0r)l_ci+tl > 1; 
Co 

we see that this choice depends only on the quantities as claimed. 

Lemma 3.2, we have 

us>rL us inB,./2. 
B,. 

(19) 

Define h by 

Ah = 0 in B,/2, 
h = u s  on0B,/2.  

We claim that 

Brl2 Brl2 
Indeed, similarly to (18), we have 

fo > vs(O) + w,(O) - IDwl~,,n sl+"-~(r/2)  1+" Us 
B,.12 

> us(O) --ID.'I . , .  s~+"-~'(r/2) x+" 

1 (~sor))'-'~+" >_ co(,-/2)<'(2 - ~ lDw l , , , .  - ) 

> co(rl2)", 

by our choice of r. Hence, by Lemma 3.2, 

2co = us(O) >_ 7 i Us. 
d o  B./2 

Since r has been fixed, we obtain the bound 

LB,./ h = LB,./2 us ~ C" 

Then, by standard properties of harmonic functions, 

(20) IDhhlO2hl < C in Brl,. 

Let now z be the solution of 

__Z 
(21) - A z  - u~ s + As2-~f(sy, s~us(y)) in B~I~, 

z = 0  onOB~/2. 

Then by 
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By (18) and (19), the right hand side of  (21) is bounded in L ~ by a constant. 

Hence, by Schauder estimates, 

[Dz[ < C in BrI2. 

If, moreover, f E C 1 (~ x [0, ~ ) ) ,  we have a bound for the first derivatives of  the 

right hand side of  (21), i.e., 

(22) 

and then 

< C; 

lD2zl <_ C in BrI2. 

Combining (20) and (22), we see that 

(23) lDu, l < C in Br/4; 

and if  f E C 1 (~  x I~ + ), then 

ID2usl < C in Br/4. 

In particular, IDus(0)l < C and i f f  E C 1 also ID2u,(0)l < C. By the definition of  

us, this yields the result. [] 

Putting the previous estimates together, we obtain the best regularity. 

L e m m a  3.7. The maximal subsolution u of  (4) belongs to C~o~c(f~) where 
7 = (1 - ~ ) / ( 1  + /~ ) .  

P r o o f .  Let  fF C C fL We use notation similar to that of  the previous lemma, 

i.e., fix/~ E (a - 1, 1), set 

r0 = min (dist(12', af t) /8,  1), 

{ maxf~ u) 1/a 
So = \ 2Co 

and fix 0 < r < ro so that 

2 -  l lDwlt , ,~  (sor) l+u-a > 1. 

Pick x, y E fl', x ~ y, and let us show that 

IDu(x) - Du(y)l < CIx - yl% 

There are two cases to consider. 
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C a s e  1. For either x or y, and to fix the notat ion say for x, we have  

(24) u(x) >_ 2co(81x - yl) ~. 

By translating, we can assume that x = 0. Le t  s = (u(O)/2Co) 1/~ and define us as 

in L e m m a  3.6. In that l emma  we showed (23), but Schauder  est imates also imply 

(25) 

where  C is a constant only 

max=en f (x,  u(x)). 
Observe  that by (24) we have 

IDusl,,B,/, < C, 

depending on n, ~, dist(f~',0f~), m a x n u  and 

(u(o) l/o 
s =  \ 2c0 / > Ix-  yl; 

and since x = 0 by our translation, we have 

(26) ly/s[ < r/8. 

We can thus apply (25) to the points 0 = x/s  and y/s to conclude that 

IDu,(0)  - Du,(y/s)l < Cly/sl" 

and hence  

IDu(0) - Du(y)l <_ Clyl~-l(lyl/s) ~-~+" 

By using (26) in the previous estimate,  and observ ing  that a -  1 = 3' and 1 - c~+#  > 0, 

we  arr ive at 

]Ou(O) - Du(y)l <_ ClYl ~. 

C a s e  2. We have 

Then by  L e m m a  3.6, 

u(x), u(y) < 2Co(81x - yO ~ 

[Du(x)[ < < - 

and for  Du(y) in a similar manner.  

The  maximal  subsolution o f  (4) is indeed a solution o f  (1). 

C o r o l l a r y  3.8.  The maximal subsolution u of  (4) satisfies (1). 

[] 
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P r o o f .  We know that u E Hl(f~) n C~o'c~(f~) with 7 = (1 - / ~ ) / ( 1  +/~) and 

also that u satisfies the equation (4) in the open set w = {u > 0}. If  w had a 

smooth boundary, then the statement o f  this lemma would be equivalent  to saying 

that Ou/Ou = 0 on Ow fq f~, with v the unit outward normal vector  to 0w. This is 

indeed the case by continuity o f  Du. Since 0w may not be smooth,  we argue by 

approximation. Our aim is to show that 

1 

for all ~ E C ~  (f~). Since Vu = 0 a.e. on the set f~ \ w, this is equivalent  to showing 

that 
1 

Take ~ E C~(f~) and 7/E C~(w). Then, using the equation in w, we have 

1 Af(x,u))qorl" 

This is valid for  all 7/E C~(w);  by approximation,  it is also valid for  rl0 = u ~ Let 
us verify that 

f VuVrlo~-~O a s O ~ O .  

Indeed, we have Vrl e = Ou~ Therefore ,  

VuV~?o~ f~ < Ollqo[[~176 f~ns uo-l[Vu[2' 

where S = supp(~) C f~. Using Lemma  3.6, we obtain 

IVul _ Cu 

on S with C independent  o f  O. Hence 

f~ VuVoo~ < C01[~1Jr162 f~ns u~ 

Letting 0 ~ 0 and recalling that X(~,>0}u -~  E L~oc(f~ ), we obtain the result. [] 

A consequence o f  the above estimates is that we have nice convergence o f  the 

sequence u~ defined as the maximal solution o f  (3) to u, the maximal  solution o f  

(1). 

Proposition 3.9.  Let u~ denote the maximal solution of (3) and u the maximal 
solution of(l). Then ue -+ u uniformly in f~ as e -+ O. 
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P r o o f .  By  the construct ion o f  u in L e m m a  3.1, we know that ue ~ u 

pointwise;  moreover ,  u = infe>0 ue. Fur thermore ,  

(27) u~ -+ u in H~ (f~). 

Indeed,  [lu~IIH~ < C for  some  constant  independent  o f  e > 0. Hence ,  for  a 

sequence ,  we have u~ ~ u weakly  in H~ (f~). To conclude (27), we only need  to 

ver i fy  that Ilu~llHg ~ IlullHg. Multiplying (3) by  u~ and integrating on f~, we  find 

Af(x, u~)ue 2 U~ 1 1 1 1 2  

Recal l  that the sequence u~ is uniformly bounded  (by a fixed supersolution) and 

that  
2 

Ue U I-~. 
(u~ + ~)*+~ < 

Thus ,  by  dominated convergence ,  

II',.,,ell~,~ -, ~ ~fC~,ulu - u i - ~  = Ilull~,~. 
We write u~ = ve + w~, where  we is the solution to 

{ --Aw~ =Af(x,u~) i n f , ,  

we = 0 on 012, 

so that we  have a un i form bound Ilwdlc,,.(~) < c ,  and ve is subharmonic.  

Le t  r > 0 and K = {x 6 f~ I dist(x, 01~) > 2r}. Then  

sup [ue - u[ = sup uE - u 
K K 

= sup ~,e(~) + ~0e(z) - u (~)  
zE/f  

< su.[ +Crl+ , 
z6KJOB~(z) 

where  we  have used that v is subharmonic,  fo rmula  (16) for  w~ and u, the bound 

_ ~ l ,T t f~  with 7 = (1 - 8 ) / (1  + 8). Let t ing e ~ 0 and IIw~llo,,.(~) < C and u 6 '-'lot t , 
using (27), we see that 

lim sup sup lue - u[ < Cr l+'r. 
e----~0 K 

On the other hand, recal l  that there exists C > 0 such that ue < C6 in ft. Therefore,  

sup ue - u < sup C6 < Cr;  
n \K n \K 
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and hence 

l imsupsup [u~ - u  I < Cr 1+~ + Cr. 
e-~0 f2 

Since r was arbitrary, we conclude that 

limsup sup [u~ - u[ = O. 
e ~ 0  f~ [ ]  

The next lemmas complete the proof o f  Theorem 2.1. 

L e m m a  3.10.  Problem (1) has no positive weak solution for  A > 0 small. 

P r o o f .  Let  ~1 be the first eigenfunction of  the Laplacian with zero Dirichlet 

boundary data. Multiplying (1) by ~1 and integrating, we find 

A f (z ,  u)~ox = Alu~ol + u~ 

(28) 

where c > 0 is a constant such that 

1 
A l u + - ~ > c  for all u > 0. 

But all solutions u remain bounded as A --r 0; therefore, if  they exist for all A > 0, 

we get a contradiction from (28). [] 

We establish next the existence of  a positive maximal solution which must 

coincide with the maximal  solution ux found in Corollary 3.8. 

L e m m a  3.11.  Set 

A* = inf { A > 0 : (1) has apositive a.e. solution}. 

Then A* < oo; and for  all A ___ A*, (1 )has  a positive a.e. weak solution. 

P r o o f .  The method of  sub- and supersolutions in the L 1 (ft) setting (see [3]) 

is well-suited to obtain the conclusions. We shall establish two claims: 

(a) for A > 0 large enough, there is a positive subsolution U; and 

(b) for any A > 0, there is a supersolution U (with U > U__). 

To establish (a), note that f (x ,  $~(z)) > 0 and is not identically zero in ft. Solve 

- A l l  = f ( z , ~ c ' )  in f , ,  
G = 0 on Off. 
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Then, for some constant co > 0, we have 

~1 > 2coY, 

where Y is the solution to (8). Take 

( = ( 1 - C O Y  and U__=k(, 

where k is to be chosen below. Then 

1 
-AU__. + ~ = k a ~ a - i ( f ( x , ~  a) - Co) + ~ a - 2 ( k - a  - ka(a  - 1)1~7~12). 

Using that IVr 2 is bounded from below near Of~ and choosing k large enough, we 

have 

k - ~ -  k a ( a -  1)lV(l 2 < 0 

near 0f~. In the interior of the domain, for k large enough, one obtains 

-kCoa~ ~-1 + k - ~  ~-2 < O. 

We only need to achieve 

(29) ka~- l f ( z ,  ~a) <_ Af(z, U) = Af(a~, kfa). 

Using that ~ < C( for some C > 0, once k has been fixed we can choose A large to 

obtain (29). 

To prove (b), it suffices to find a supersolution U of (1) with 6 < CU for 

some large C. Consider U = M Y ,  where Y is the solution to (8). Then U is a 

supersolution of (I) provided 

(30) Af(z, M Y )  < M. 

But f is sublinear (uniformly in z), so (30) holds for sufficiently large M. The 

rest of the proof follows by an iterative scheme similar to that in the proof of 

Lemma 3.1. [] 

L e m m a  3.12. For all A > ),*, there are constants a, b > 0 (depending on A) 

such that 

(31)- a6 < ux < bL 

Proof .  To prove the first inequality in (31), consider A' E (A*,),). Let ux, 

denote the maximal solution of (1) with parameter A'. We claim that for e > 0 
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small enough, w = u;~, + e~ is a subsolution of  (1) with parameter  A, where ff is the 

solution of  

(32) [ - A f t  = f(x, ux,) in ft, 

/ = 0 on OfL 

Note that f(x, ux,) >_ 0 and f(x,u~,,) ~ 0 (otherwise, ux, _< 0 by the max imum 

principle). Hence  ff > c5 for some e > 0. 

We compute  

1 
- A w  + 

w E 
1 1 

u~, + (u~, -t- :~")~ + A'f (x ,  u~,) + of(x, u~,) 

S A'f(x,u~,) q-:f(x,u~,) 
= Af(x,w) + (A' - A + e)f(x,u~,) + A(f(x, uA,) - f(x,w)) 

Af(x, w) 

for  : > 0 small enough.  

Let  us establish the other estimate. Since f is sublinear in u, we can find C > 0 

so that 

Af(u) < 2 u-I- C for all u > O, 

where A: is the first eigenvalue o f  the Laplacian with zero Dirichlet  boundary 

condition. Therefore ,  any solution u o f  (1) also satisfies 

{ - A u - ~ - u  <_C in f , ,  

u = 0 on Of~. 

Take Z to be the solution of  

{ - A Z - ~ Z  : C  inO,  

Z = 0 on Off. 

Then u < Z by the m a x i m u m  principle, and Z < C~ by elliptic regularity. [] 

4 Proofs  o f  the  s ta tements  in R e m a r k  2.2 

(A) A weak solution of(I) belongs to H~ (~). 
P r o o f .  Let  u be a weak solution of  (1), and for j > 0 let 

1 Fj(x)=max(-j, XN>o}(-~+ Af(x, u))), 
Let uj denote the solution of 

- A u j  = Fj i n f , ,  

u s = 0 on OfL 
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Note that Fj E L~176 (because u < C~), and so u s E Cl'~ Observe also that 

uj > u > 0. Multiplying the previous equation by uj,  we get 

~ 'Vuj'2 = ~ Fjuj 

<_ A ./o f(u)uj 

(33) < ,~ f~ f(uj)u3. 

But, using the sublinearity o f  f ,  we have 

(34) f(u)u < eu 2 + C for all u > 0. 

Therefore, combining (33) with (34) we obtain 

~ IVujl 2 _< C. 

Up to a subsequence u s converges weakly in H d (ll), and the limit must be u. [] 

(B) For any weak solution u, we have 

(35) Ilu-ax{.>0) IlLl(n) < CAII/(z, U(X))IIL~*(.), 

where C depends only on 12. 

P r o o f .  We take as test function in the definition of  weak solution (qOl + e )  "r - e  "r, 

where qOl is the first eigenfunction for - A  with zero Dirichlet boundary condition 

and 0 < 7,  e < 1. Observe that this function belongs to C 2 (fl), vanishes on all ,  and 

satisfies 

-A((qoa + e) "r - e "r) = "/Aa (qOl -I- e)'r-lqoa - 7(7 - X)(qoa + e)'/-2[VqOll 2 > 0. 

Therefore,  

f{ 1 s u>0) ((q0x - t -e ) ' : -  e'r) u-/~ <_ /X f (x ,u )  ((q01 + e )  "y - e  "y) < CA[If(x, u(x))llL~(~). 

Taking e ~ 0 and then 7 -~ 0, and using Fatou 's  lemma, we obtain (35) .  []  

(C) The extremal solution u* is positive a.e. in II. 

- P r o o f .  For A > A*, we have ux > 0 i n l l b y L e m m a 3 . 1 2 .  Thus, b y i t e m ( B ) ,  

s177 u~ _<C 
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with C independent  o f  A (for A near A*). Letting A ~ A*, we see that 

f~  1 u~--~- < ~ ;  

and therefore u* = ua. > 0 a.e. in [2. [] 

(D) Uniqueness o f  u* in the class o f  solutions which are positive a.e. 

P r o o f .  We just  sketch the main points. The argument is an adaptation o f  the 

analogous result proved in [ 14] for convex nonlinearities. 

(i) I f  there are two different solutions ul and u2 of  (1) for  A = A* which are 

positive a.e., then a convex combination o f  them is a strict subsolution which is 

positive a.e. 

(ii) Assume that u is a strict subsolution of  (1) which is positive a.e. Let  v be 

the solution o f  
{ 1 

- A v  = u~ + A * f ( x ' u )  i n f l  

v = 0 on 0f~ 

and take the solution Y of  (8). Then for e > 0 small enough,  we have v - e Y  >_ e5 

and v - eY > u and 

1 
- A ( v - e Y )  < (v - eY)~ + A* f ( v  - eY)  - e i n f , ,  

v - e Y  = 0 onO~q. 

(iii) By item (ii), there exists a positive weak solution w to 

1 
--Aw = --~--~ + A*f(w) -- e in [2, 

w = 0 o n 0 f L  

(iv) We now consider A' < A* but very close to A*, and the function 

A I 
W = -fZw + e'Y. 

We first choose 0 < e' < e and then A' E (0, A*) so close to A* as to have e' < eA'/A* 

and 
A' A' /A  t , \ - ~  

w <_ - - f : w + e ' Y  and - - ~ w - z  <_ - [ - f T w + e  Y )  . 

This is possible because w _< C6 for some constant C > O. Then W satisfies 

1 
- A W  < -W---~ + A ' f ( W )  i n ~ ,  

W = 0 onOf~; 
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and so (1) has a positive solution for a parameter A' < A*, which contradicts the 

minimality of A*. [] 

(E) We show that for fl >__ 1 there is no weak solution o f ( l )  which is positive 
a.e., for any A >_ O. 

Proof ,  Suppose there is a weak solution u, positive a.e. Then by Lemma 3.12, 

u < C6. Therefore, by (B) we conclude that 

1 f ~ _ . ~ < s  1 
- g a  < oo, 

which is impossible for ~ _> 1. [] 

5 Stabi l i ty  a n d  the  e x t r e m a l  s o l u t i o n  

P r o o f  o f  T h e o r e m  2.3. Let A > A* and let ux denote the maximal solution. 

S t e p  1. For ), > A* the maximal solution u = ux (we drop the dependence on 

)0 is weakly stable, that is 

(36) A(u) >_ 0, 

where A(u) was defined in (5). 

We prove (36) by using the perturbation (4) used in Lemma 3.1. Omitting the 

dependence on ),, recall that u~ ---} u uniformly in ~.  Note that since u~ is the 

maximal solution to (4), it satisfies a corresponding stability inequality 

/o( (37) (u~+e)=+ ~ +,~L,(x,u~) < IV~ol 2, ~ocC~( f i ) .  

By Lemma 3.12, u~ > u > a~ for some a > 0; hence one can let e -~ 0 in (37) and 
obtain (36). 

S t e p  2. Let us show that 

(38) A(u) > 0. 

We consider a variation of  problem (1). Recall that A > )r is fixed. We introduce 

a new parameter 0 and consider the singular elliptic equation 

- A u  = XO,>o}(--~-~+ Af (x ,u )+O ) infl ,  

(39) u >_ 0 in t ,  

u = 0 on 0~2. 

We recover (1) when 0 = 0. 

An analysis similar to that in the proof of  Theorem 2.1 and in Step 1 above can 

be done for this equation; we summarize the properties as follows: 
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(40) 

and 

(41) 

(i) (39) has a supersolution U = K Y ,  where K is a large constant and Y is the 

solution to (8); 

(ii) if (39) has bounded positive subsolution, then it has a maximal positive 

solution ~0; 

(iii) the same proof as in Step 1 above applies and shows that 

A(~0) = inf f~ IV~I2 - (3(~~ + "~fu(x'u~176 > O. 
~ec~(f~) ff~ qo 2 

The main observations needed to conclude (38) are 

there exists 00 < 0 such that (39) has a positive subsolution for O >/9o 

A(~0) is strictly increasing with/9. 

Indeed, assuming (40) and (41), we have a maximal solution ~0 for some 0 < 0. 

But then 

0 _< A(~o) < A(~0), 

and ~0 is just the maximal solution of (1). 

P r o o f  o f  (40). This proof is similar to that of Lemma 3.12. Fix ~' E ()r ~) 

and let u~, denote the maximal solution of (1) with parameter )t and Y denote the 

solution to (8). Let ( be the solution to 

- A r  = f ( x ,  ux,) inf , ,  

r = 0 on0fL 

Now choose e E (0, ~ - )~') and then 0o < 0 with I/9ol small enough so that 

For/9 >/90, set 

Observe that 

We compute 

I/9olY ~ �89 

w = u;,, + e ~ + / g Y .  

w > _ e ( + O Y > O .  

1 1 1 

< ~ f ( x , w )  + (~' - )~ + e ) f ( x , u ~ , )  -t-0 

~f(z, w) + e. 
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This proves the claim. 

P r o o f  o f  (41). Let 0o < 0x < 02 and let ~01, ~02 denote the maximal solution 

of  (39) with parameters 01 and 02. Note that 

(42) ~01 < ~e=. 

Let r and r denote the first eigenfunctions, i.e., 

--Ar -- /3(~0,)-~-1r  -- A fu (X ,  UO,)r = A ( u o , ) r  in f~, 

r = 0 on 0f~, 

i = 1, 2, normalized so that [[r = 1 (note that (~0,) - a -a  _< Ca -a-1  and therefore 

the existence of these eigenfunctions in H~ (fl) can be obtained using, e.g., Hardy's 

inequality). Then 

A(~o,) = s [veil  2 - (~(~0,) -~-1 + ~A(x,~0,))r 

-< s Ivv'21 = - (/~(~0,)-~ -1 + ~A(x,~0~))r = 

= A(~e,), 

where the last inequality is strict because r > 0 and (42). 

S t e p  3. Let us prove the converse, that is: assume u is a positive weak solution 

o f ( l )  and that A(u) > 0; then u = ux. 

P r o o f .  Since A(u) > 0, we have 

(43) L -~u x, u 2 )~ < s Iv~~ v~, c n~(fl). 

Subtracting the equations for u, ux, multiplying by ~o and integrating by parts yields 

s < s ~e ~o~(a). 

Taking ~o = (ua - u) + in the previous relation, we obtain 

(44) s ' < 

andusing (43) with the same ~o yields 

(45) L ~u (X, u)(u:~ - u)+2 <_ L [V(u:~ - u)+,'. 
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Combining (44) and (45), we obtain 

~Og~'(x,u)(u;,- u)+2 <_ ~ [V(u~-  u)+12 <_ ~(gx(x,u;,)-gx(x,u))(u~,-u)+; 

and therefore 

f{{~,j,>~, (u~,-u) (gx(x,u) + ~u (X,u)(ux-u)-gx(x, ux)) <_0. 

But gx is strictly concave on (0, oo); and therefore I{ux > u}l = 0, which proves 

the claim. [] 

P r o o f  o f  T h e o r e m  2.4. We work always with A > A*, and obtain estimates 

that are independent of A. Then we let A ~ A*. Denote by u = ux the maximal 

solution of (1) (dropping the parameter A for convenience). 

S tep  1. We first prove that for any 

(46) 1 _< p < 3/~ + 1 + 2 ~//~2 + 

and any ball BR(x) such that B2R(x) C f~, we have 

1 z/p _ CR_2/(I+B) ' 
(47) (I--~RI fBRu -p) < 

where C is independent of A and R. 

Proof .  We multiply the equation (1) by ~2u-2~-1, where j > 0 and ~7 E 

C~(B2n) and is such that 

0_<7/<1 and ~ 7 = l o n B .  

Using that Af(x, u) > O, we obtain 

(48) -(2j q- l) ~ u-2J-2lVul2~2 + 2 ~ u-2j-lrlVuVrl + ~ u-~-2J-lrl~ > O. 

We rewrite (48) as 

2 ~ u-2j-17lVuVr}--l-- ~'l~-~-2j-l~ 2 
(49) 

But 

_> (2j + 1 - e) f~ "/s 

[~7(~]~--J)[ 2 ~--- j 2~ - -2 j - -2 [~ [2T]2  -- 2 j u - - 2 j - - I ~ } ~ }  Jr u--2J[~T][ 2, 
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that is, 

(50) 

u-2J-21Vul2v2 = ~lV(ou-J)12j2u-2~-21Vul2w 2 + 2---71s -- j---~ul --2"31V,ll 2. 

Combining (49) and (50), we find 

(51, 2 j + l - e ~  ,2 ~ j5 IV(,Tu -j) < c  u-2JlVvl 2 + u-~-2J-1, 2, 

where the constant C depends on e and j (we are not interested in taking j very 

large, so we omit the explicit dependence here). 

We now use the weak stability of the maximal solution u, that is, A(u) _> 0, 

where A(u) is defined in (5). We take qo = flu - j  to obtain 

~ IV(ou--J)[2 ~ fl ~ ~2U -~-2j-1. 

The last inequality and (51) yield 

( f l 2 j + l - e j 2  1) fBRu- -2J-a < C f.u-2JIV'T'2 (52) 

If 

/~2j + 1 - e (53) > 1, j2 

we deduce from (52) that 

B u -~-2j-1 < C, 

which is (47) with p = ~ + 2j + 1 (where C is independent of A.) Finally note that 

(53) can be satisfied for some e > 0 if 

j < f i + v / ~ + Z .  

In terms of p = fl + 2j + 1, this is exactly the same as (46). 

To get the dependence on R as stated in (47), we use a scaling argument. Assume 

that the ball BR is centered at the origin and define f(y) = R-2/(l+~)u(Ry). Then 

f satisfies 

1 1 
(54) -Af t  + ~-~ > 0 in ~f~ 

and is still weakly stable. Then apply the preceding computation to f .  

S t e p  2. There exists c > 0 independent of  A such that if the assumption (6) 

holds, then 
u~_>c~ 2/(1+~), A>A*.  
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P r o o f .  

satisfies 

(55)  

and f rom (47) 

We still work with ~2(y) = R-2/('+O)u(Ry). Set v = ~ - 1 ;  then v 

- A v  < v  2+z i n B , ,  

v > 0 in B1, 

f vP<_C 
1 

for p satisfying (46). Using (55) and an iteration argument,  it is easy  to show that 

if  

(56) p > (8 + 1) 2 ,  

then 

v < C on B1/2. 

But the inequalities (46) and (56) are compat ib le  only when 

38 + 1 + 2X/~-2+ 8 n 

8+1 > 2 '  

which is the same as (6).  [] 

6 Examples 

P r o o f  o f  E x a m p l e  2.5.  Consider  the annulus A = {r : R < r < 1} C ~n, 

r = Ixl, 0 < R < 1. Given 0 < 8 < 1, let a = 2/(1 + 8) and choose  c > 0 such that 

c - z - 1  = a ( a  - 1). The  function u = c(1 - r) ~ is a solution o f  the equation 

(57)  

where 

-Au+l/u ~ =f  i nA,  

u = 0 on OB1, 
u = c ( 1 - R )  ~ o n 0 B n ,  

I ( z )  = f ( r )  = cc~(1 - r)  ~-1  > 0. 

We claim that the first eigenvalue o f  the linearized operator  is positive, that is, 

(58) inf ff~ I~Tq~ - 8u-~-lqv2 > 0. 
~6c~(f~) ff~ qo 2 
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Indeed, 

= f~c -1-~ s  - r)-~(-1-~)~o2 

= /~a (a  - 1) s - r)%0  

Observe that ~3a(a - 1) < �88 (with equality only i f a  = 3/2, i.e.,/~ = 1/3). But the 

Hardy inequality states that 

1 ~ -  < IWpl 2 for all ~ �9 C~(B1),  
1 

where the distance function to the boundary for B1 is ~(r) = 1 - r. Moreover, it is 

known from [4] that 

- ~ f a  ~2 /62  > o, (59) inf fa  IX7~12 1 
~ec~ (a) fn  ~2 

when f~ = B1; therefore (58) follows. 

It is worth mentioning that the methods applied for ( l )  can be used for (57). 

This indicates that the extremal function u* cannot satisfy an estimate of  the form 

u* > c~ ~' 

for an exponent 3' smaller than 2/(1 +/3).  In this sense, the conclusion of  

Theorem 2.4 is optimal. V1 

P r o o f  o f  E x a m p l e  2.6. We start by constructing a one-dimensional variation 

of  the previous example. 

Let w, : tl~ ~ I~ + be a family of  smooth convex functions such that 

w~(z) = Izl for Izl > e, 
O<w~(x)<e for  Ixl _< e , 
Iw'(x)l < 1 for all x �9 IlL 

Let  

u ~ ( x ) = c ( 1 - w ~ )  '~, x E ( - 1 , 1 ) ,  

where (as before) a = 2/(1 + f~) and c > 0 is defined by c -~-1 = a ( a  - 1). A 

computation similar to the one in the previous example shows that 

1 H -u~ + u~ = fE in ( -1 ,  1), 
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where 

(60) f~ = c-fl(1 - w,) - ~  (1 - c f l q - l o ~ ( o ~  - 1)(w',) 2) + ca(1 - w~)'~-lw'~'. 

We claim that for e > 0 sufficiently small u~ is weakly stable in (-1,1) in the 

sense of relation (7), i.e., 

(61) ~ u21-~o 2 ___ ~'~ v~o e C ~ ( - 1 , 1 ) .  
1 1 

Indeed, 

= ~ c - ~ - 1 ( 1  - w~) -~ -- ~ ( ~  - 1)(1 - w~)-~ <_ �88 - ~ ) - 2 .  

Therefore, 

1 r 
Z/_1u;-1-a~2 < 1 / _ :  (1 - ~,,)2 

l f__" ~p2 1 S  -- ~ ~ (1 --i-~1) 2 + ~ ~ ((1 - w~) -2 - (1 - I~l) -2) ~ 

1 f" ~2 1 [ e  ( 1 -  we) (1-  Ixl) 
Izl)~ ~ = ~ ]_~ (1 - i -z l )  2 + 4 ]__, (i  - - w , - S ~  Izl) 2 

1f_1 ~ 2 f_" <--- 4 1 (1 --Izl)  2 + C t  1 ~2. 

Using the inequality of [4] given by (59), one concludes that for t small enough 

(61) holds. From now on, wef i r  this ~ > 0. 

We remark that by Theorems 2.1 and 2.3, for the problem 

{ " (5  ') -u~ = X{u,>0} - + Af~(x in (-1,1) ,  

ue = 0  a t x = - l , 1 ,  

we have A* = 1 and u* = u~. 

Define 
u(x) = ~ ue(x-1) f o r x e ( 0 , 2 ) ,  

t u , ( x + l )  for x e (-2,  0), 

and 
f , ( x -1 )  f o r x e ( 0 , 2 ) ,  

f ( x ) =  f~(x + 1) for x E (-2,0).  

Then u is continuous (even C1.'r((-2, 2)), 7 = (1 - 8)/(1 +/~)) and is a solution of 

(1 ) 
- u "  = X{u>o} - ~  + Af(x) in (-2,  2), 

u 0 at  x = - 2 ,  2,  
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and satisfies the condition (7). [] 

Proof  of  Proposit ion 2.8. Recall that we assume that f~ is an interval in 

say f~ = (A,B). Let u~ be the maximal solution of  (1), and suppose that ux ~ 0 

but that ux vanishes at a point in ft. Let  I denote a connected component  of  the 

open set {ux > 0}. Then I ~ ft. 

We want to consider ux restricted to I and also translated. For this purpose, we 

introduce some notation; for T E I~ such that I + r C f~, we define 

{ U~(X--T) i f x E I + T ,  
Vr(Z) = 0 i f z  E f~ \ (I + r). 

.We claim that for every r such that I + r C f~, Vr is a subsolution of  (1). 

In fact, suppose 1 = (a, b). If  a, b E f~, then actually u'~(a) = u'x(b ) = 0 (the 

derivatives exist), and hence vr is not just a subsolution, but also a solution of  (1). 

Suppose t h a t a  e f t ,  i . e . , l =  (a,b)  C fl = ( a , B ) ,  b < B .  Letq0 E C2(f~) with 

~o(a) = ~0(B) = 0 and ~o > 0. The following formal computation can be justified 

using Lemma 3.4: 

f ~'v'T = f f  u'~,'(. + r) 

: - u " ~ ( .  + ~)  - ~o(a + ~ )uS , (a )  

fa b 1 
<- - ue + ~f(u) 

- v ~  + ~y(v~). 

I f  Vl, v 2 are two subsolutions of  (1), then max(v1, v2) is also a subsolution. This 

statement is standard, and we omit its proof. 

It is possible to find v l , . . . ,  r,n such that I + Ti C f~ and [,J~=l ( I  + ri) = fL Then 

v = m a x  Vrl 
i:1,...,m 

is a subsolution of  (1) which is positive in ft. Since ux is the maximal subsolution 

of  (1), it follows that ux is positive in fl, in contradiction with our assumptions. [] 
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