# Hölder Estimates for Solutions to a Singular Nonlinear Neumann Problem 

Juan Dávila and Marcelo Montenegro


#### Abstract

We consider the elliptic equation $-\Delta u+u=0$ in a bounded, smooth domain $\Omega$ in $\mathbb{R}^{n}$ subject to the nonlinear singular Neumann condition $\frac{\partial u}{\partial \nu}=-u^{-\beta}+f(x, u)$. Here $0<\beta<1$ and $f \geq 0$ is $C^{1}$. We prove estimates for solutions to the same equation with $\frac{\partial u_{\varepsilon}}{\partial \nu}=-\frac{u_{\varepsilon}}{\left(u_{\varepsilon}+\varepsilon\right)^{1+\beta}}+f\left(x, u_{\varepsilon}\right)$ on the boundary, uniformly in $\varepsilon$.


## 1. Introduction

This note is intended as a complement of previous work by the authors [2]. We study the regularity of solutions of the following nonlinear boundary value problem

$$
\left\{\begin{align*}
-\Delta u+u & =0 & & \text { in } \Omega  \tag{1}\\
u & \geq 0 & & \text { in } \Omega \\
\frac{\partial u}{\partial \nu} & =-u^{-\beta}+f(x, u) & & \text { on } \partial \Omega \cap\{u>0\}
\end{align*}\right.
$$

where $\Omega \subset \mathbb{R}^{n}, n \geq 2$, is a bounded domain with smooth boundary, $0<\beta<1$ and $\nu$ is the exterior unit normal vector to $\partial \Omega$. We assume that

$$
\begin{equation*}
f: \partial \Omega \times \mathbb{R} \rightarrow \mathbb{R} \text { is } C^{1} \text { and } f \geq 0 \tag{2}
\end{equation*}
$$

By a solution of (1) we mean a function $u \in H^{1}(\Omega) \cap C(\bar{\Omega})$ satisfying

$$
\begin{equation*}
\int_{\Omega} \nabla u \cdot \nabla \varphi+u \varphi=\int_{\partial \Omega \cap\{u>0\}}\left(-u^{-\beta}+f(x, u)\right) \varphi, \quad \forall \varphi \in C_{0}^{1}(\Omega \cup(\partial \Omega \cap\{u>0\})) . \tag{3}
\end{equation*}
$$

One natural approach to prove existence of solutions of (1) is the following: take $\varepsilon>0$ and consider

$$
\left\{\begin{align*}
-\Delta u+u & =0 & & \text { in } \Omega  \tag{4}\\
\frac{\partial u}{\partial \nu} & =-\frac{u}{(u+\varepsilon)^{1+\beta}}+f(x, u) & & \text { on } \partial \Omega
\end{align*}\right.
$$

It is not difficult to show that under the additional assumption

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \frac{f(x, u)}{u}=0 \quad \text { uniformly for } x \in \Omega \tag{5}
\end{equation*}
$$

(4) has a maximal solution $\bar{u}^{\varepsilon}$. In [2] we proved that this maximal solution satisfies an estimate of the form

$$
\left|\nabla \bar{u}^{\varepsilon}\right| \leq C\left(\bar{u}^{\varepsilon}\right)^{-\beta} \quad \text { in } \Omega,
$$

with $C$ independent of $\varepsilon$. This was an essential step in proving that the limit $\lim _{\varepsilon \rightarrow 0} u^{\varepsilon}$ exists and is a solution of (1). Nevertheless there could exist other solutions of (4). For instance assuming (2) and (5) problem (4) admits also a minimal nonnegative solution $\underline{u}^{\varepsilon}$ (it could be zero but assuming $f(\cdot, 0) \not \equiv 0$ guarantees $\underline{u}^{\varepsilon} \not \equiv 0$ ). Assuming some growth conditions on $f$, any critical point of $\Phi_{\varepsilon}$ is also a solution with

$$
\begin{equation*}
\Phi_{\varepsilon}(u)=\frac{1}{2} \int_{\Omega}\left(|\nabla u|^{2}+u^{2}\right)-\int_{\partial \Omega} G^{\varepsilon}(x, u), \tag{6}
\end{equation*}
$$

where

$$
G^{\varepsilon}(x, u)=\int_{0}^{u} g^{\varepsilon}(x, t) d t, \quad \text { and } g^{\varepsilon}(x, u)=-\frac{u}{(u+\varepsilon)^{1+\beta}}+f(x, u)
$$

In this note we prove the following result concerning any kind of solution to (4).

Theorem 1.1. Suppose $f$ satisfies (2). Then for any bounded solution $u$ of (4) we have

$$
|\nabla u| \leq C u^{-\beta} \quad \text { in } \Omega,
$$

where $C$ is independent of $\varepsilon$, and depends on $\Omega, n, \beta, f$ and $\|u\|_{L^{\infty}(\Omega)}$.
A consequence of the previous gradient estimate is the following convergence result (the proof is exactly as in [2]).
Corollary 1.2. Assume (2) and let $\varepsilon_{k} \rightarrow 0$ and $u^{\varepsilon_{k}}$ be a sequence of solutions of (4) with

$$
\left\|u^{\varepsilon_{k}}\right\|_{L^{\infty}(\Omega)} \leq C,
$$

where $C$ is independent of $k$. Then up to a subsequence $u^{\varepsilon_{k}} \rightarrow u$ in $C^{\mu}(\bar{\Omega})$ for any $0<\mu<\frac{1}{1+\beta}$ and $u$ is a solution of (1).

This result enables us to consider other type of nonlinearities than in [2]. For example
Theorem 1.3. Assume that $n \geq 3$ and $1<p<\frac{n}{n-2}$. Then there exists a nontrivial solution to

$$
\left\{\begin{align*}
-\Delta u+u & =0 & & \text { in } \Omega  \tag{7}\\
u & \geq 0 & & \text { in } \Omega \\
\frac{\partial u}{\partial \nu} & =-u^{-\beta}+u^{p} & & \text { on } \partial \Omega \cap\{u>0\} .
\end{align*}\right.
$$

By Theorem 1.1 this solution is $C^{\frac{1}{1+\beta}}(\bar{\Omega})$.

Previous work with a singular Neumann condition include [3] where the authors study the evolution equation $u_{t}=u_{x x}$ in $(0,1)$ with Neumann conditions $u_{x}(0, t)=0, u_{x}(1, t)=-u(1, t)^{-\beta}$. The initial condition is $u(x, 0)=u_{0}(x)>0$ and sufficiently smooth. They prove that the solution exists up to a quenching time $0<T<\infty$ with $\lim _{t \nearrow T} u(1, t)=0$ and they provide estimates of the type $C_{1} \leq(1-x)^{\frac{1}{\beta+1}} u(x, T) \leq C_{2}$.

In higher dimensions a similar evolution problem was addressed in [6] with a positive unbounded nonlinearity such as $1 /(1-u)$, but the authors only work with a time interval $[0, T)$ where $0 \leq u(t)<1$.

As mentioned earlier this work is a continuation of previous work of the authors. For this reason not all proofs are supplied here and we refer to [2].

## 2. Preliminaries

There are two important key points in the proof of Theorem 1.1. First there is a construction of a local subsolution. The second ingredient is a Hardy type inequality, which roughly speaking asserts that a solution that stays above the local subsolution is locally a minimum of the related energy. To make this more precise we rescale the problem to a small ball. It is convenient at this point to introduce some notation. Let $\tau_{0}>0$ be small enough to be fixed in Proposition 2.1 below. For $0<\tau<\tau_{0}$ and $x_{0} \in \partial \Omega$ let us write $\partial\left(B_{\tau}\left(x_{0}\right) \cap \Omega\right)=\Gamma^{e} \cup \Gamma^{i}$ where

$$
\Gamma^{i}=\partial B_{\tau}\left(x_{0}\right) \cap \Omega, \quad \Gamma^{e}=B_{\tau}\left(x_{0}\right) \cap \partial \Omega
$$

are the internal and external boundaries. We also decompose $\Gamma^{e}=\Gamma^{1} \cup \Gamma^{2}$ with

$$
\begin{equation*}
\Gamma^{1}=\varphi^{-1}\left(B_{\tau / 2}(0)\right) \cap \partial \Omega, \quad \Gamma^{2}=\Gamma^{e} \backslash \Gamma^{1} \tag{8}
\end{equation*}
$$

where $\varphi$ is a smooth diffeomorphism which flattens the boundary of $\Omega$ near $x_{0}$. This means that $\varphi: W \subset \mathbb{R}^{n} \rightarrow B_{\tau_{0}}(0)$ is smooth with $W$ an open set containing the ball $B_{\tau_{0}}\left(x_{0}\right)$ and $\varphi(W \cap \Omega)=B_{\tau_{0}}(0) \cap H, \varphi(W \cap \partial \Omega)=B_{\tau_{0}}(0) \cap \partial H, \varphi(W \backslash \bar{\Omega})=$ $B_{\tau_{0}}(0) \backslash \bar{H}$, where

$$
H=\left\{\left(x^{\prime}, x_{n}\right): x^{\prime} \in \mathbb{R}^{n-1}, x_{n}>0\right\} .
$$

Let us introduce the rescaled domains which allow us to work in balls of unit size:

$$
\begin{align*}
& B_{\tau}^{+}=\frac{1}{\tau}\left(B_{\tau}\left(x_{0}\right) \cap \Omega-x_{0}\right)=B_{1}(0) \cap \frac{1}{\tau}\left(\Omega-x_{0}\right), \quad \Omega_{\tau}=\frac{1}{\tau}\left(\Omega-x_{0}\right)  \tag{9}\\
& \Gamma_{\tau}^{i}=\frac{1}{\tau}\left(\Gamma^{i}-x_{0}\right), \quad \Gamma_{\tau}^{e}=\frac{1}{\tau}\left(\Gamma^{e}-x_{0}\right), \quad \Gamma_{\tau}^{k}=\frac{1}{\tau}\left(\Gamma^{k}-x_{0}\right), \quad k=1,2
\end{align*}
$$

Given $x_{0} \in \partial \Omega$ and $0<\tau<\tau_{0}$ we let $v_{\tau}$ be the solution of the linear equation

$$
\left\{\begin{align*}
-\Delta v_{\tau}+\tau^{2} v_{\tau} & =0 & & \text { in } B_{\tau}^{+}  \tag{10}\\
\frac{\partial v_{\tau}}{\partial \nu}(y) & =-\operatorname{dist}\left(y, \Gamma_{\tau}^{2}\right)^{-\frac{\beta}{1+\beta}} & & y \in \Gamma_{\tau}^{1} \\
v_{\tau}(y) & =0 & & y \in \Gamma_{\tau}^{2} \\
v_{\tau}(y) & =s \operatorname{dist}\left(y, \partial \Omega_{\tau}\right) & & y \in \Gamma_{\tau}^{i}
\end{align*}\right.
$$

For large $s$ its solution will be called a local subsolution because of the next lemma.
Proposition 2.1. There exist $\tau_{0}>0$ and $s_{0}>0$ such that if $0<\tau<\tau_{0}$ and $s \geq s_{0}$ the solution of (10) is positive in $B_{\tau}^{+}$and satisfies

$$
\begin{equation*}
v_{\tau}(y) \geq c s \operatorname{dist}\left(y, \Gamma_{\tau}^{2}\right)^{\frac{1}{1+\beta}}, \quad \forall y \in \Gamma_{\tau}^{1} \tag{11}
\end{equation*}
$$

where $c>0$ is independent of $x_{0}, \tau$ and $s$ ( $c$ depends only on $\Omega, n, \beta$ ). In particular, choosing $s_{0}$ larger if necessary

$$
\begin{equation*}
\frac{\partial v_{\tau}}{\partial \nu} \leq-v_{\tau}^{-\beta} \quad \text { on } \Gamma_{\tau}^{1} \tag{12}
\end{equation*}
$$

We will not include the proof of the statements in this section. They can be found in [2].

Next we state a Hardy type inequality.
Proposition 2.2. There exists a constant $C_{h}$ such that

$$
\begin{equation*}
\int_{\Gamma_{\tau}^{1}} \frac{\varphi^{2}}{\operatorname{dist}\left(y, \Gamma_{\tau}^{2}\right)} \leq C_{h} \int_{B_{\tau}^{+}}|\nabla \varphi|^{2}, \quad \forall \varphi \in C_{0}^{\infty}\left(B_{\tau}^{+} \cup \Gamma_{\tau}^{1}\right) . \tag{13}
\end{equation*}
$$

The constant $C_{h}$ can be taken independent of $\tau$ and $x_{0} \in \partial \Omega$ if $0<\tau<\tau_{0}$.
Finally we mention some lemmas on linear equations with a Neumann boundary condition. Again, the proofs can be found in [2].

This is a sort of Harnack inequality.
Lemma 2.3. Let $a \in L^{\infty}\left(\Omega_{\tau} \cap B_{3}\right), a \geq 0$ and suppose that $u \in H^{1}\left(\Omega_{\tau} \cap B_{3}\right), u \geq 0$ satisfies

$$
\left\{\begin{aligned}
-\Delta u+a(y) u & =0 & & \text { in } \Omega_{\tau} \cap B_{3} \\
\frac{\partial u}{\partial \nu} & \leq N & & \text { on } \Gamma_{\tau}^{e},
\end{aligned}\right.
$$

where $N$ is a constant. Then there is a constant $c_{k}>0$ such that

$$
u(y) \geq c_{k} \operatorname{dist}\left(y, \Gamma_{\tau}^{e}\right)\left(c_{k} u\left(y_{1}\right)-N\right), \quad \forall y \in B_{\tau}^{+} \text {and } \forall y_{1} \in B_{\tau}^{+} \cap B_{1 / 2} .
$$

The constant $c_{k}$ can be chosen independent of $x_{0} \in \partial \Omega$ and of $0<\tau<\tau_{0}$.
These last two estimates are standard in the theory of $L^{p}$ regularity theory, see for instance [9].
Lemma 2.4. Let $a \in L^{\infty}\left(B_{\tau}^{+}\right)$. Suppose $u \in H^{1}\left(B_{\tau}^{+}\right)$satisfies

$$
\left\{\begin{aligned}
-\Delta u+a(x) u & =0 & & \text { in } B_{\tau}^{+} \\
\frac{\partial u}{\partial \nu} & =g & & \text { on } \Gamma_{\tau}^{e}
\end{aligned}\right.
$$

where $g \in L^{p}\left(\Gamma_{\tau}^{e}\right)$ and $p \geq 1$. Let $1 \leq r<\frac{n p}{n-1}$. Then there exists $C$ independent of $g$ and $u$ such that

$$
\|u\|_{W^{1, r}\left(\Omega_{\tau} \cap B_{3 / 4}\right)} \leq C\left(\|g\|_{L^{p}\left(\Gamma_{\tau}^{e}\right)}+\|u\|_{L^{1}\left(B_{\tau}^{+}\right)}\right) .
$$

Lemma 2.5. Let $a \in L^{\infty}\left(B_{\tau}^{+}\right)$and suppose that $u \in H^{1}\left(B_{\tau}^{+}\right), u \geq 0$ satisfies

$$
\left\{\begin{aligned}
-\Delta u+a(x) u & \geq 0 & & \text { in } B_{\tau}^{+} \\
\frac{\partial u}{\partial \nu} & \geq-N & & \text { on } \Gamma_{\tau}^{e}
\end{aligned}\right.
$$

where $N$ is a constant. Then there is a constant $C>0$ independent of $u, N$ such that

$$
\int_{B_{3 / 4} \cap B_{\tau}^{+}} u \leq C(u(x)+N) \quad \forall x \in B_{1 / 2} \cap B_{\tau}^{+} .
$$

## 3. Proof of Theorem 1.1

Let $u$ be a bounded nontrivial solution of equation (4) and write

$$
M=\max \left(\sup _{x \in \partial \Omega} f(x, u(x)), \max _{\bar{\Omega}} u\right) .
$$

Let $\tau_{0}$ and $s_{0}$ be the constants in Proposition 2.1 and fix $\widetilde{C}>0$ such that

$$
\begin{align*}
s_{0} & <\frac{1}{2} c_{k}^{2} \widetilde{C}  \tag{14}\\
M^{1+\beta} & <\tau_{0} \widetilde{C}^{1+\beta}  \tag{15}\\
M^{1+\beta} & <\frac{1}{2} c_{k} \widetilde{C}^{1+\beta} \tag{16}
\end{align*}
$$

Next we fix $C_{0}$ large enough such that

$$
\begin{equation*}
\left(\frac{C_{0}}{\widetilde{C}}\right)^{1+\beta} \geq 6 \tag{17}
\end{equation*}
$$

Let $x_{1}$ be a point in $\Omega$. We distinguish two cases.
Case 1. Assume $u\left(x_{1}\right) \leq C_{0} \operatorname{dist}\left(x_{1}, \partial \Omega\right)^{\frac{1}{1+\beta}}$. Consider the scaling about the point $x_{1}$ given by $\tilde{u}(y)=\tau^{-\frac{1}{1+\beta}} u\left(\tau y+x_{1}\right)$, with $\tau=\frac{1}{2} \operatorname{dist}\left(x_{1}, \partial \Omega\right)$. Then $-\Delta \tilde{u}+\tau^{2} \tilde{u}=0$ in $B_{1}(0), \tilde{u} \geq 0$ in $B_{1}(0)$ and $\tilde{u}(0) \leq 2^{\frac{1}{1+\beta}} C_{0}$. Since $\tilde{u} \geq 0$, by elliptic estimates we have $|\nabla \tilde{u}(0)| \leq C(n, \beta) C_{0}$, where $C(n, \beta)$ depends only on $n, \beta$. This implies $\left|\nabla u\left(x_{1}\right)\right| \leq C(n, \beta) C_{0} \tau^{-\frac{\beta}{1+\beta}} \leq C(n, \beta) C_{0}^{1-\beta} u\left(x_{1}\right)^{-\beta}$. Thus

$$
\begin{equation*}
\left|\nabla u\left(x_{1}\right)\right| \leq C(n, \beta) C_{0}^{1-\beta} u\left(x_{1}\right)^{-\beta} . \tag{18}
\end{equation*}
$$

We keep the explicit dependence on $C_{0}$ for future reference.
Case 2. Assume

$$
\begin{equation*}
u\left(x_{1}\right)>C_{0} \operatorname{dist}\left(x_{1}, \partial \Omega\right)^{\frac{1}{1+\beta}} . \tag{19}
\end{equation*}
$$

Let

$$
\begin{equation*}
x_{0} \in \partial \Omega, \quad \operatorname{dist}\left(x_{1}, \partial \Omega\right)=\left|x_{0}-x_{1}\right| . \tag{20}
\end{equation*}
$$

Our first task is to show that $u$ satisfies an inequality such as (19) on all points on the line segment

$$
\left[x_{0}, x_{1}\right]=\left\{x_{0}+t \frac{x_{1}-x_{0}}{\left|x_{1}-x_{0}\right|}: 0 \leq t \leq \bar{t}\right\}
$$

where $\bar{t}=\left|x_{1}-x_{0}\right|$.
Lemma 3.1. Choosing $C_{0}$ larger if necessary (only depending on $n, \beta$ and $\widetilde{C}$ as in (17)) we have

$$
\begin{equation*}
u(x) \geq C_{0} \operatorname{dist}(x, \partial \Omega)^{\frac{1}{1+\beta}} \quad \forall x \in\left[x_{0}, x_{1}\right] \tag{21}
\end{equation*}
$$

Proof. For the sake of notation we write

$$
x_{t}=x_{0}+t \frac{x_{1}-x_{0}}{\left|x_{1}-x_{0}\right|} \quad 0 \leq t \leq \bar{t}
$$

and observe that $\operatorname{dist}\left(x_{t}, \partial \Omega\right)=\left|x_{t}-x_{0}\right|=t$. Suppose that (21) fails. Then

$$
t_{0}=\sup \left\{t \in[0, \bar{t}]: u\left(x_{t}\right) \leq C_{0} t^{\frac{1}{1+\beta}}\right\}
$$

is well defined, $t_{0}>0$ and by (19) we have $t_{0}<\bar{t}$. Define $g(t)=u\left(x_{t}\right)$. Using the same argument as in case 1 , see (18), we have that

$$
\begin{equation*}
g^{\prime}(t) \leq C(n, \beta) C_{0}^{1-\beta} g(t)^{-\beta} \quad \text { whenever } g(t) \leq C_{0} t^{\frac{1}{1+\beta}} \tag{22}
\end{equation*}
$$

Let $h(t)=C_{0} t^{\frac{1}{1+\beta}}$, so that $h^{\prime}(t)=\frac{C_{0}^{1+\beta}}{1+\beta} h(t)^{-\beta}$. Then we have $g\left(t_{0}\right)=h\left(t_{0}\right)$ and by (22)

$$
g^{\prime}\left(t_{0}\right) \leq C(n, \beta) C_{0}^{1-\beta} g\left(t_{0}\right)^{-\beta}=C(n, \beta) \frac{1+\beta}{C_{0}^{2 \beta}} h^{\prime}\left(t_{0}\right)
$$

Choose $C_{0}$ larger so that $C(n, \beta) \frac{1+\beta}{C_{0}^{2 \beta}}<\frac{1}{2}$. Then $g(t)>h(t)$ for $t \in\left(t_{0}-\sigma, t_{0}\right)$ for some $\sigma>0$. This is impossible.

Define $\tau_{1}$ by

$$
\begin{equation*}
\tau_{1}=\left(\frac{u\left(x_{1}\right)}{\widetilde{C}}\right)^{1+\beta} \tag{23}
\end{equation*}
$$

and observe that by (15) we have

$$
\tau_{1}<\tau_{0}
$$

We look now at the rescaled function $u$ around the point $x_{0} \in \partial \Omega$ given by (20): for $0<\tau<\tau_{0}$ and $x_{0} \in \partial \Omega$ define

$$
\begin{equation*}
u_{\tau}(y)=\tau^{-\frac{1}{1+\beta}} u\left(\tau y+x_{0}\right), \quad y \in \Omega_{\tau}=\frac{1}{\tau}\left(\Omega-x_{0}\right) \tag{24}
\end{equation*}
$$

At this point it is convenient to replace $f$ with a $C^{1}$ function $\bar{f}: \partial \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ with $\bar{f} \geq 0$ and $f, \frac{\partial f}{\partial u}$ bounded, and such that $f(x, u)=\bar{f}(x, u)$ for all $x \in \partial \Omega$ and
$0 \leq u \leq M$. Then $u$ solves (4) with $f$ replaced by $\bar{f}$ and therefore $u_{\tau}$ is a solution of

$$
\left\{\begin{align*}
-\Delta u_{\tau}+\tau^{2} u_{\tau} & =0 & & \text { in } \Omega_{\tau}  \tag{25}\\
\frac{\partial u_{\tau}}{\partial \nu} & =g_{\tau}^{\varepsilon}\left(y, u_{\tau}\right) & & \text { on } \partial \Omega_{\tau}
\end{align*}\right.
$$

where $g_{\tau}^{\varepsilon}$ is given by

$$
\begin{equation*}
g_{\tau}^{\varepsilon}(y, w)=\tau^{\frac{\beta}{1+\beta}} g^{\varepsilon}\left(\tau y+x_{0}, \tau^{\frac{1}{1+\beta}} w\right), \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
g^{\varepsilon}(x, u)=-\frac{u}{(u+\varepsilon)^{1+\beta}}+\bar{f}(x, u) . \tag{27}
\end{equation*}
$$

Observe that we have changed the definition of $g^{\varepsilon}$ and $g_{\tau}^{\varepsilon}$ from the one given in the introduction replacing $f$ by $\bar{f}$.

We will see that as a consequence of (21) $u_{\tau}$ has to be suitably large on the internal boundary $\Gamma_{\tau}^{i}$.

Lemma 3.2. For $0<\tau \leq \tau_{1}$ we have

$$
u_{\tau}(y) \geq s_{0} \operatorname{dist}\left(y, \partial \Omega_{\tau}\right) \quad \forall y \in \Gamma_{\tau}^{i} .
$$

Proof. Let $z_{\tau}=\frac{1}{2} \frac{x_{1}-x_{0}}{\left|x_{1}-x_{0}\right|} \in B_{\tau}^{+} \cap B_{1 / 2}$. By (21) and the definition of $u_{\tau}$ we have

$$
\begin{equation*}
u_{\tau}\left(z_{\tau}\right)=\tau^{-\frac{1}{1+\beta}} u\left(\tau z_{\tau}+x_{0}\right) \geq \frac{C_{0}}{2} \geq \widetilde{C} \tag{28}
\end{equation*}
$$

where the last inequality is a consequence of (17). Using Harnack's Lemma 2.3 and (28) we obtain

$$
\begin{equation*}
u_{\tau}(y) \geq c_{k} \operatorname{dist}\left(y, \partial \Omega_{\tau}\right)\left(c_{k} \widetilde{C}-\sup _{\Gamma_{\tau}^{e}} \frac{\partial u_{\tau}}{\partial \nu}\right), \quad \forall y \in B_{\tau}^{+} \tag{29}
\end{equation*}
$$

From the boundary condition in (25) and the definition of $M$

$$
\sup _{\Gamma_{\tau}^{e}} \frac{\partial u_{\tau}}{\partial \nu} \leq \tau^{\frac{\beta}{1+\beta}} M
$$

Notice that from (16) we deduce $u\left(x_{1}\right)^{\beta} \leq \frac{c_{k} \widetilde{C}^{1+\beta}}{2 M}$ which is the same as

$$
M\left(\frac{u\left(x_{1}\right)}{\widetilde{C}}\right)^{\beta} \leq \frac{1}{2} c_{k} \widetilde{C}
$$

Thus

$$
\tau^{\frac{\beta}{1+\beta}} M \leq \tau_{1}^{\frac{\beta}{1+\beta}} M=\left(\frac{u\left(x_{1}\right)}{\widetilde{C}}\right)^{\beta} M \leq \frac{1}{2} c_{k} \widetilde{C}
$$

Inserting this in (29) and recalling (14) we find

$$
u_{\tau}(y) \geq \frac{1}{2} c_{k}^{2} \widetilde{C} \operatorname{dist}\left(y, \partial \Omega_{\tau}\right) \geq s_{0} \operatorname{dist}\left(y, \partial \Omega_{\tau}\right) \quad \forall y \in \Gamma_{\tau}^{i} .
$$

The main step that we shall prove in the sequel is the following:
Proposition 3.3. For all $0<\tau \leq \tau_{1}$ we have

$$
\begin{equation*}
u_{\tau} \geq v_{\tau} \quad \text { in } B_{\tau}^{+} . \tag{30}
\end{equation*}
$$

For the proof of Proposition 3.3 we consider the nonlinear problem

$$
\left\{\begin{align*}
-\Delta w+\tau^{2} w & =0 & & \text { in } B_{\tau}^{+}  \tag{31}\\
w & =u_{\tau} & & \text { on } \Gamma_{\tau}^{i} \cup \Gamma_{\tau}^{2} \\
\frac{\partial w}{\partial \nu} & =g_{\tau}^{\varepsilon}(x, w) & & \text { on } \Gamma_{\tau}^{1}
\end{align*}\right.
$$

where we regard $u_{\tau}$ as data and $w$ as the unknown. Observe that $u_{\tau}$ is a solution of (31).

The solutions of (31) are the critical points of the functional

$$
\psi_{\tau}(w)=\frac{1}{2} \int_{B_{\tau}^{+}}\left(|\nabla w|^{2}+\tau^{2} w^{2}\right)-\int_{\Gamma_{\tau}^{1}} G_{\tau}^{\varepsilon}(x, w)
$$

on the set

$$
E_{\tau}=\left\{w \in H^{1}\left(B_{\tau}^{+}\right) \mid w=u_{\tau} \text { on } \Gamma_{\tau}^{i} \cup \Gamma_{\tau}^{2}\right\}
$$

where

$$
G_{\tau}^{\varepsilon}(y, w)=\int_{0}^{w} g_{\tau}^{\varepsilon}(y, r) d r
$$

and $g_{\tau}^{\varepsilon}$ defined in (26).
We remark that any nontrivial solution $u$ of the regularized problem (4) is positive by the strong maximum principle, the fact that $f \geq 0$ and Hopf's lemma. This implies that $u_{\tau} \rightarrow \infty$ in $B_{\tau}^{+}$as $\tau \rightarrow 0$, more precisely $u_{\tau} \sim \tau^{-\frac{1}{1+\beta}} u\left(x_{0}\right)$ in $B_{\tau}^{+}$. As a consequence, for fixed $\varepsilon>0$ as $\tau \rightarrow 0$ problem (31) is less singular and we have

Lemma 3.4. For $\tau>0$ small enough problem (31) has a unique solution.
How small $\tau$ has to be may depend on $\varepsilon$.
Proof. Suppose that there exists a sequence $\tau_{j} \rightarrow 0$ and solutions $w_{j}^{1}, w_{j}^{2} \in H^{1}\left(\Omega_{\tau}\right)$ to equation (31) with $w_{j}^{1} \neq w_{j}^{2}$.

Since $w_{j}^{1}=w_{j}^{2}=u_{\tau_{j}}$ on $\Gamma_{\tau}^{i} \cup \Gamma_{\tau}^{2}$ we have $w_{j}^{i} \leq \tau_{j}^{-\frac{1}{1+\beta}} M$ on $\Gamma_{\tau}^{i} \cup \Gamma_{\tau}^{2}, i=1,2$. Also, $\frac{\partial w_{j}^{i}}{\partial \nu} \leq \bar{f}_{\tau_{j}}\left(y, w_{j}^{i}\right)$ on $\Gamma_{\tau}^{1}$ where

$$
\bar{f}_{\tau_{j}}(y, w)=\tau_{j}^{\frac{\beta}{1+\beta}} \bar{f}\left(\tau_{j} y+x_{0}, \tau_{j}^{\frac{1}{1+\beta}} w\right) \leq C \tau_{j}^{\frac{\beta}{1+\beta}},
$$

since $\bar{f}$ is bounded. By the maximum principle we have

$$
\begin{equation*}
w_{j}^{i} \leq C \tau_{j}^{-\frac{1}{1+\beta}} \quad \text { on } B_{\tau_{j}}^{+} . \tag{32}
\end{equation*}
$$

with $C$ independent of $j$.

Let $w_{j}=w_{j}^{1}-w_{j}^{2}$. Then $w_{j}$ satisfies

$$
\left\{\begin{align*}
-\Delta w_{j}+\tau_{j}^{2} w_{j} & =0 & & \text { in } B_{\tau_{j}}^{+}  \tag{33}\\
w_{j} & =0 & & \text { on } \Gamma_{\tau_{j}}^{i} \cup \Gamma_{\tau_{j}}^{2} \\
\frac{\partial w_{j}}{\partial \nu} & =b_{j}(x) w_{j} & & \text { on } \Gamma_{\tau_{j}}^{1},
\end{align*}\right.
$$

where

$$
b_{j}(x)=\frac{\partial g_{\tau_{j}}^{\varepsilon}}{\partial w}(x, \xi(x))
$$

for some $\xi(x) \in\left[w_{j}^{1}(x), w_{j}^{2}(x)\right]$ (we use the notation $[a, b]=[\min (a, b), \max (a, b)]$ ). Now we estimate

$$
b_{j}(x)=\frac{\partial g_{\tau_{j}}^{\varepsilon}}{\partial w}(x, \xi(x))=\tau_{j}^{\frac{2}{1+\beta}} \frac{\partial g^{\varepsilon}}{\partial w}\left(\tau_{j} x+x_{0}, \tau_{j}^{\frac{1}{1+\beta}} \xi(x)\right),
$$

where $g^{\varepsilon}$ is defined in (27). By (32) we see that $\tau_{j}^{\frac{1}{1+\beta}} \xi(x) \leq C$ and since $g^{\varepsilon}$ is $C^{1}$ we thus conclude that

$$
b_{j} \rightarrow 0 \quad \text { uniformly on } \Gamma_{\tau_{j}}^{1}
$$

Thus, for $j$ large enough the operator in (33) becomes coercive and hence $w_{j}=0$ if $j$ is large. Indeed, multiplying (33) by $w_{j}$ and integrating we find

$$
\int_{B_{\tau_{j}}^{+}}\left|\nabla w_{j}\right|^{2}+\tau_{j}^{2} \int_{B_{\tau_{j}}^{+}} w_{j}^{2}=\int_{\Gamma_{\tau_{j}}^{1}} b_{j} w_{j}^{2}
$$

Since $w_{j}=0$ in $\Gamma_{\tau_{j}}^{2} \cup \Gamma_{\tau_{j}}^{i}$ we have by the Sobolev trace inequality

$$
\int_{B_{\tau_{j}}^{+}}\left|\nabla w_{j}\right|^{2}+\tau_{j}^{2} \int_{B_{\tau_{j}}^{+}} w_{j}^{2} \leq C\left\|b_{j}\right\|_{L^{\infty}\left(\Gamma_{\tau_{j}}^{1}\right)} \int_{B_{\tau_{j}}^{+}}\left|\nabla w_{j}\right|^{2},
$$

which shows that $w_{j} \equiv 0$ for $j$ large enough.
Lemma 3.5. Fix $s=s_{0}$ in Proposition (2.1) and let $v_{\tau}$ be the solution of (10). Assume $w, v \in E_{\tau}$ are subsolutions of (31) such that

$$
v \geq v_{\tau} \quad \text { on } \quad \Gamma_{\tau}^{1}, \quad \text { and } \quad v \leq w \quad \text { on } \quad \Gamma_{\tau}^{i} \cup \Gamma_{\tau}^{2} .
$$

Then

$$
\psi_{\tau}(\max (w, v)) \leq \psi_{\tau}(w)+\left(\frac{C}{s_{0}^{1+\beta}}+C \tau-\frac{1}{2}\right) \int_{B_{\tau}^{+} \cap\{v>w\}}|\nabla(v-w)|^{2}
$$

where $C$ is independent of $\varepsilon, s_{0}, \tau, v$ and $w$.
Proof. We derive first some estimates for the nonlinear terms. The functions $G^{\varepsilon}(x, u), G_{\tau}^{\varepsilon}(x, w)$ are given by

$$
G^{\varepsilon}(x, u)=\int_{0}^{u} g^{\varepsilon}(x, s) d s=\frac{(u+\varepsilon)^{-\beta}(\varepsilon+\beta u)-\varepsilon^{1-\beta}}{\beta(-1+\beta)}+\bar{F}(x, u)
$$

where $\bar{F}(x, u)=\int_{0}^{u} \bar{f}(x, s) d s$, and

$$
G_{\tau}^{\varepsilon}(x, w)=\tau^{\frac{-1+\beta}{1+\beta}} G^{\varepsilon}\left(\tau x+x_{0}, \tau^{\frac{1}{1+\beta}} w\right)
$$

Note that

$$
-u^{-\beta}+\bar{f}(x, u) \leq g^{\varepsilon}(x, u) \leq \bar{f}(x, u)
$$

and hence we have the estimates

$$
-\frac{u^{1-\beta}}{1-\beta}+\bar{F}(x, u) \leq G^{\varepsilon}(x, u) \leq \bar{F}(x, u)
$$

and

$$
-\frac{w^{1-\beta}}{1-\beta}+\tau^{\frac{-1+\beta}{1+\beta}} \bar{F}\left(\tau x+x_{0}, \tau^{\frac{1}{1+\beta}} w\right) \leq G_{\tau}^{\varepsilon}(x, w) \leq \tau^{\frac{-1+\beta}{1+\beta}} \bar{F}\left(\tau x+x_{0}, \tau^{\frac{1}{1+\beta}} w\right)
$$

Let $W=\max (w, v)$. Then $W$ satisfies

$$
\left\{\begin{align*}
-\Delta W+\tau^{2} W & \leq 0 & & \text { in } B_{\tau}^{+},  \tag{34}\\
W & \leq u_{\tau} & & \text { on } \Gamma_{\tau}^{i} \cup \Gamma_{\tau}^{2} \\
\frac{\partial W}{\partial \nu} & \leq g_{\tau}^{\varepsilon}(x, W) & & \text { on } \Gamma_{\tau}^{1} .
\end{align*}\right.
$$

We have the equality

$$
\begin{align*}
\psi_{\tau}(W)-\psi_{\tau}(w)=- & \frac{1}{2} \int_{B_{\tau}^{+}}\left(|\nabla(W-w)|^{2}+\tau^{2}(W-w)^{2}\right) \\
& +\int_{B_{\tau}^{+}}\left(\nabla W \cdot \nabla(W-w)+\tau^{2} W(W-w)\right)  \tag{35}\\
& -\int_{\Gamma_{\tau}^{1}}\left(G_{\tau}^{\varepsilon}(x, W)-G_{\tau}^{\varepsilon}(x, w)\right) .
\end{align*}
$$

Next we multiply (34) by $W-w \geq 0$ and integrate by parts. Note that $W-w=0$ on $\Gamma_{\tau}^{i} \cup \Gamma_{\tau}^{2}$ so that

$$
\begin{align*}
\int_{B_{\tau}^{+}} \nabla W \cdot \nabla(W-w)+\tau^{2} W(W-w) & \leq \int_{\Gamma_{\tau}^{1}} \frac{\partial W}{\partial \nu}(W-w) \\
& \leq \int_{\Gamma_{\tau}^{1}} g_{\tau}^{\varepsilon}(x, W)(W-w) \tag{36}
\end{align*}
$$

Combining (35) and (36) we obtain

$$
\begin{align*}
\psi_{\tau}(W)-\psi_{\tau}(w) \leq- & \frac{1}{2} \int_{B_{\tau}^{+}}|\nabla(W-w)|^{2} \\
& -\int_{\Gamma_{\tau}^{1}}\left(G_{\tau}^{\varepsilon}(x, W)-G_{\tau}^{\varepsilon}(x, w)-g_{\tau}^{\varepsilon}(x, W)(W-w)\right) \tag{37}
\end{align*}
$$

We claim that

$$
\begin{equation*}
-\left[G_{\tau}^{\varepsilon}(x, W)-G_{\tau}^{\varepsilon}(x, w)-g_{\tau}^{\varepsilon}(x, W)(W-w)\right] \leq C\left(\tau+W^{-1-\beta}\right)(W-w)^{2} \tag{38}
\end{equation*}
$$

where $C$ is a constant independent of $\varepsilon$.

To verify (38) we consider first the case $W \leq 2 w$. By Taylor's theorem

$$
-\left[G_{\tau}^{\varepsilon}(x, W)-G_{\tau}^{\varepsilon}(x, w)-g_{\tau}^{\varepsilon}(x, W)(W-w)\right]=\frac{1}{2} \frac{\partial g_{\tau}^{\varepsilon}}{\partial w}(x, \xi)(W-w)^{2}
$$

for some $w<\xi<W$. A computation shows that

$$
\frac{\partial g_{\tau}^{\varepsilon}}{\partial w}(x, w)=\tau \frac{\beta \tau^{\frac{1}{1+\beta}} w-\varepsilon}{\left(\tau^{\frac{1}{1+\beta}} w+\varepsilon\right)^{2+\beta}}+\tau \bar{f}_{u}\left(\tau x+x_{0}, \tau^{\frac{1}{1+\beta}} w\right)
$$

and therefore

$$
\begin{equation*}
\frac{\partial g_{\tau}^{\varepsilon}}{\partial w}(x, w) \leq \tau \beta\left(\tau^{\frac{1}{1+\beta}} w+\varepsilon\right)^{-1-\beta}+K \tau \leq \beta w^{-1-\beta}+K \tau \tag{39}
\end{equation*}
$$

where $K=\sup _{x, u}\left|\bar{f}_{u}(x, u(x))\right|<\infty$. Hence

$$
-\left[G_{\tau}^{\varepsilon}(x, W)-G_{\tau}^{\varepsilon}(x, w)-g_{\tau}^{\varepsilon}(x, W)(W-w)\right] \leq\left(\beta \xi^{-1-\beta}+K \tau\right)(W-w)^{2}
$$

But $\xi^{-\beta} \leq w^{-\beta} \leq(W / 2)^{-\beta}$ and we obtain

$$
-\left[G_{\tau}^{\varepsilon}(x, W)-G_{\tau}^{\varepsilon}(x, w)-g_{\tau}^{\varepsilon}(x, W)(W-w)\right] \leq C\left(\tau+W^{-1-\beta}\right)(W-w)^{2}
$$

For the case $W>2 w$ observe that

$$
\begin{aligned}
& -\left[G_{\tau}^{\varepsilon}(x, W)-G_{\tau}^{\varepsilon}(x, w)-g_{\tau}^{\varepsilon}(x, W)(W-w)\right] \\
& =-G_{\tau}^{\varepsilon}(x, W)+G_{\tau}^{\varepsilon}(x, w)+g_{\tau}^{\varepsilon}(x, W)(W-w) \\
& \leq \frac{W^{1-\beta}}{1-\beta}+\tau^{\frac{-1+\beta}{1+\beta}}\left[\bar{F}\left(\tau x+x_{0}, \tau^{\frac{1}{1+\beta}} W\right)\right. \\
& \quad \quad-\bar{F}\left(\tau x+x_{0}, \tau^{\frac{1}{1+\beta}} w\right) \\
& \left.\quad \quad+\tau^{\frac{1}{1+\beta}} \bar{f}\left(\tau x+-x_{0}, \tau^{\frac{1}{1+\beta}} W\right)(W-w)\right]
\end{aligned}
$$

But for $W>2 w$ we have

$$
\frac{W^{1-\beta}}{1-\beta}=\frac{1}{1-\beta} W^{-1-\beta} W^{2} \leq \frac{4}{1-\beta} W^{-1-\beta}(W-w)^{2}
$$

and

$$
\begin{array}{r}
\left|\bar{F}\left(\tau x+x_{0}, \tau^{\frac{1}{1+\beta}} W\right)-\bar{F}\left(\tau x+x_{0}, \tau^{\frac{1}{1+\beta}} w\right)+\tau^{\frac{1}{1+\beta}} \bar{f}\left(\tau x+x_{0}, \tau^{\frac{1}{1+\beta}} W\right)(W-w)\right| \\
=\frac{1}{2} \tau^{\frac{2}{1+\beta}}\left|\bar{f}_{u}\left(\tau x+x_{0}, \tau^{\frac{1}{1+\beta}} \xi\right)\right|(W-w)^{2},
\end{array}
$$

for some $\xi$. Thus

$$
-\left[G_{\tau}^{\varepsilon}(x, W)-G_{\tau}^{\varepsilon}(x, w)-g_{\tau}^{\varepsilon}(x, W)(W-w)\right] \leq\left(C W^{-1-\beta}+K \tau\right)(W-w)^{2}
$$

Using estimate (38) in (37) we find

$$
\psi_{\tau}(W)-\psi_{\tau}(w) \leq-\frac{1}{2} \int_{B_{\tau}^{+}}|\nabla(W-w)|^{2}+C \int_{\Gamma_{\tau}^{1}}\left(W^{-1-\beta}+\tau\right)(W-w)^{2}
$$

But $W \geq v_{\tau} \geq c s_{0} \operatorname{dist}\left(y, \Gamma_{\tau}^{2}\right)$ by (11) and therefore

$$
\begin{aligned}
\psi_{\tau}(W)-\psi_{\tau}(w) \leq- & \frac{1}{2} \int_{B_{\tau}^{+}}|\nabla(W-w)|^{2} \\
& +C \int_{\Gamma_{\tau}^{1}}\left(s_{0}^{-1-\beta} \operatorname{dist}\left(\Gamma_{\tau}^{2}\right)^{-1-\beta}+\tau\right)(W-w)^{2}
\end{aligned}
$$

By Hardy's (Proposition 2.2) and Sobolev's inequality

$$
\begin{equation*}
\psi_{\tau}(W)-\psi_{\tau}(w) \leq\left(\frac{C}{s_{0}^{1+\beta}}+C \tau-\frac{1}{2}\right) \int_{B_{\tau}^{+}}|\nabla(W-w)|^{2} \tag{40}
\end{equation*}
$$

Proof of Proposition 3.3. For $\tau>0$ sufficiently small (31) has a unique solution. Therefore for $\tau$ small $u_{\tau}$ is the solution of (31) and the minimizer of $\psi_{\tau}$.

We claim that if $w$ is any minimizer of $\psi_{\tau}$ then $w \geq v_{\tau}$ in $B_{\tau}^{+}$. Indeed take $v=v_{\tau}$ in Lemma 3.5 and observe that since $w=u_{\tau}$ on $\Gamma_{\tau}^{i}$, we have by Lemma 3.2 $w \geq v_{\tau}$ on $\Gamma_{\tau}^{i}$. Thus we can apply Lemma 3.5. Let us look at (40). We can choose $s_{0}$ larger and $\tau_{0}$ smaller if necessary in order to make $\frac{C}{s_{0}^{1+\beta}}+C \tau-\frac{1}{2}<0$. Thus $\psi_{\tau}\left(\max \left(w, v_{\tau}\right)\right)<\psi_{\tau}(w)$ unless $\max \left(w, v_{\tau}\right) \equiv w$, which is equivalent to assert $v_{\tau} \leq w$ in $B_{\tau}^{+}$.

Let us see now that for $0<\tau \leq \tau_{1} \psi_{\tau}$ has a unique minimizer. Indeed, consider $w_{1}, w_{2}$ minimizers of $\psi_{\tau}$. By the previous claim they satisfy $w_{j} \geq v_{\tau}$, $j=1,2$. Then from Lemma 3.5 it follows that $w_{1}=w_{2}$. From now on $w_{\tau}$ denotes the unique minimizer of $\psi_{\tau}$. We claim that the operator $D^{2} \psi_{\tau}\left(w_{\tau}\right)$ is coercive on the space $E_{\tau}=\left\{w \in H^{1}\left(B_{\tau}^{+}\right) \mid w=0\right.$ on $\left.\Gamma^{i} \cup \Gamma^{2}\right\}$ in the sense that

$$
\begin{equation*}
\int_{B_{\tau}^{+}}\left(|\nabla \varphi|^{2}+\tau^{2} \varphi^{2}\right)-\int_{\Gamma_{\tau}^{1}} \frac{\partial g_{\tau}^{\varepsilon}}{\partial u}\left(x, w_{\tau}\right) \varphi^{2} \geq \sigma \int_{B_{\tau}^{+}}|\nabla \varphi|^{2} \tag{41}
\end{equation*}
$$

for some $\sigma>0$ independent of $0<\tau \leq \tau_{1}$ and all $\varphi \in H^{1}\left(B_{\tau}^{+}\right)$with $\varphi=0$ on $\Gamma_{\tau}^{i} \cup \Gamma_{\tau}^{2}$. This follows from the behavior of $\frac{\partial g_{\tau}^{\varepsilon}}{\partial u}$ as given in (39), the estimate $w_{\tau} \geq v_{\tau} \geq c s_{0} \operatorname{dist}\left(y, \Gamma_{\tau}^{2}\right)^{\frac{1}{1+\beta}}$ and Hardy's inequality, Proposition 2.2. We will use this to show that $u_{\tau}$ is the minimizer of $\psi_{\tau}$. We know that this is true for small $\tau>0$. Assume this fails for some $0<\tau<\tau_{1}$ and set

$$
\mu=\inf \left\{\tau \in\left(0, \tau_{1}\right) \mid u_{\tau} \text { is not the minimizer of } \psi_{\tau}\right\}
$$

Then by continuity $u_{\mu}$ is the minimizer of $\psi_{\mu}$. Thus $D^{2} \psi_{\mu}\left(u_{\mu}\right)$ is coercive in the sense above. On the other hand, for a sequence $\left(\tau_{j}\right)$ such that $\mu<\tau_{j}<\tau_{1}$, $\tau_{j} \rightarrow \mu$ there are at least two solutions of (31), one being $u_{\tau}$ and the other one the minimizer $w_{\tau}$ of $\psi_{\tau}$. Both of them are uniformly bounded as $\tau_{j} \rightarrow \mu$. Set

$$
z_{j}=\frac{u_{\tau_{j}}-w_{\tau_{j}}}{\left\|u_{\tau_{j}}-w_{\tau_{j}}\right\|_{L^{2}\left(B_{\tau_{j}}\right)}}
$$

Then

$$
\left\{\begin{aligned}
-\Delta z_{j}+\tau^{2} z_{j} & =0 & & \text { in } B_{\tau_{j}}^{+} \\
z_{j} & =0 & & \text { on } \Gamma_{\tau_{j}}^{i} \cup \Gamma_{\tau_{j}}^{2} \\
\frac{\partial z_{j}}{\partial \nu} & =\frac{\partial g_{\tau_{j}}^{\varepsilon}}{\partial u}\left(y, \xi_{j}(y)\right) z_{j} & & \text { on } \Gamma_{\tau_{j}}^{1}
\end{aligned}\right.
$$

where $\xi_{j}$ is between $u_{\tau_{j}}$ and $w_{\tau_{j}}$. Multiplying by $z_{j}$ and integrating we find

$$
\int_{B_{\tau_{j}}^{+}}\left(\left|\nabla z_{j}\right|^{2}+\tau_{j}^{2} z_{j}^{2}\right)=\int_{\Gamma_{\tau_{j}}^{1}} \frac{\partial g_{\tau_{j}}^{\varepsilon}}{\partial u}\left(y, \xi_{j}(y)\right) z_{j}^{2}
$$

Since $z_{j}$ is bounded in $L^{2}\left(B_{\tau_{j}}^{+}\right)$and for fixed $\varepsilon>0 \frac{\partial g_{\tau_{j}}^{\varepsilon}}{\partial u}\left(y, \xi_{j}(y)\right)$ is continuous and bounded, we see that $z_{j}$ is bounded in $H^{1}\left(B_{\tau_{j}}^{+}\right)$. Thus we can extract a subsequence for which $z_{j} \rightharpoonup z$ weakly in $H^{1}\left(B_{\tau_{j}}^{+}\right)$and strongly in $L^{2}\left(B_{\tau_{j}}^{+}\right)$. In particular $\|z\|_{L^{2}\left(B_{\mu}^{+}\right)}=1$ which shows that $z \not \equiv 0$. Taking $j \rightarrow \infty$ we find

$$
\int_{B_{\mu}^{+}}\left(|\nabla z|^{2}+\mu^{2} z^{2}\right) \leq \int_{\Gamma_{\mu}^{1}} \frac{\partial g_{\mu}^{\varepsilon}}{\partial u}\left(y, u_{\mu}(y)\right) z^{2},
$$

and since $z \not \equiv 0$ we have a contradiction with (41).
Finally let us show that estimate (30) is enough to obtain the desired result.
Proposition 3.6. Let $x_{1} \in \Omega$ and assume we are in Case 2, i.e., (20) holds. Then

$$
\left|\nabla u\left(x_{1}\right)\right| \leq C u\left(x_{1}\right)^{-\beta}
$$

with a constant that depends on $\Omega, n, \beta, f$ and $\|u\|_{L^{\infty}(\Omega)}$.
Proof. Recall $x_{0}$ given by (20), the definition of $\tau_{1}$ in (23) and $u_{\tau_{1}}$, c.f. (24). Let $y_{1}=\frac{1}{\tau_{1}}\left(x_{1}-x_{0}\right)$ which satisfies

$$
\begin{equation*}
\left|y_{1}\right| \leq \frac{1}{6} \tag{42}
\end{equation*}
$$

by (17), (19), (20). A direct calculation shows that it is sufficient to establish

$$
\begin{equation*}
\left|\nabla u_{\tau_{1}}\left(y_{1}\right)\right| \leq C . \tag{43}
\end{equation*}
$$

By (30) and (11) we have the estimate

$$
\begin{equation*}
u_{\tau_{1}}(y) \geq c s_{0} \operatorname{dist}\left(y, \Gamma_{\tau_{1}}^{2}\right)^{\frac{1}{1+\beta}} \quad \forall y \in \Gamma_{\tau_{1}}^{1} \tag{44}
\end{equation*}
$$

Using this in the boundary condition in (31) we deduce that

$$
\begin{equation*}
\left|\frac{\partial u_{\tau_{1}}}{\partial \nu}\right| \leq C \operatorname{dist}\left(y, \Gamma_{\tau_{1}}^{2}\right)^{-\frac{\beta}{1+\beta}}+\tau^{\frac{\beta}{1+\beta}} M \quad \text { on } \Gamma_{\tau_{1}}^{1} \tag{45}
\end{equation*}
$$

and therefore, on a smaller set we obtain an estimate

$$
\begin{equation*}
\left|\frac{\partial u_{\tau_{1}}}{\partial \nu}\right| \leq C \quad \text { on } B_{1 / 3} \cap \partial \Omega_{\tau_{1}} \tag{46}
\end{equation*}
$$

with a constant $C$ independent of $\varepsilon$.

Let us prove (43). For this purpose choose $p>n$ and take $n<r<\frac{n p}{n-1}$. By Lemma 2.4

$$
\left\|u_{\tau_{1}}\right\|_{W^{1, r}\left(B_{1 / 4} \cap \Omega_{\tau_{1}}\right)} \leq C\left(\left\|\frac{\partial u_{\tau_{1}}}{\partial \nu}\right\|_{L^{p}\left(B_{1 / 3} \cap \partial \Omega_{\tau_{1}}\right)}+\left\|u_{\tau_{1}}\right\|_{L^{1}\left(B_{1 / 3} \cap \Omega_{\tau_{1}}\right)}\right),
$$

and by the embedding $W^{1, r} \subset C^{\mu}$ we have for some $0<\mu<1$

$$
\left\|u_{\tau_{1}}\right\|_{C^{\mu}\left(B_{1 / 4} \cap \Omega_{\tau_{1}}\right)} \leq C\left(\left\|\frac{\partial u_{\tau_{1}}}{\partial \nu}\right\|_{L^{p}\left(B_{1 / 3} \cap \partial \Omega_{\tau_{1}}\right)}+\left\|u_{\tau_{1}}\right\|_{L^{1}\left(B_{1 / 3} \cap \Omega_{\tau_{1}}\right)}\right)
$$

By the assumption (2) and the lower bound (44) we see that the right-hand side of the boundary condition in (31) satisfies

$$
\left\|g_{\tau}^{\varepsilon}\left(y, u_{\tau_{1}}\right)\right\|_{C^{\mu}\left(B_{1 / 4} \cap \partial \Omega_{\tau_{1}}\right)} \leq C\left(\left\|\frac{\partial u_{\tau_{1}}}{\partial \nu}\right\|_{L^{p}\left(B_{1 / 3} \cap \partial \Omega_{\tau_{1}}\right)}+\left\|u_{\tau_{1}}\right\|_{L^{1}\left(B_{1 / 3} \cap \Omega_{\tau_{1}}\right)}\right) .
$$

Using Schauder estimates (see, e.g., [8]) we deduce

$$
\left\|u_{\tau_{1}}\right\|_{C^{1, \mu}\left(B_{1 / 5} \cap \Omega_{\tau_{1}}\right)} \leq C\left(\left\|\frac{\partial u_{\tau_{1}}}{\partial \nu_{\tau_{1}}}\right\|_{L^{p}\left(B_{1 / 3} \cap \partial \Omega_{\tau_{1}}\right)}+\left\|u_{\tau_{1}}\right\|_{L^{1}\left(B_{1 / 3} \cap \Omega_{\tau_{1}}\right)}\right) .
$$

Recalling that $\left|y_{1}\right| \leq \frac{1}{6}$ by (42) we obtain

$$
\left|\nabla u_{\tau_{1}}\left(y_{1}\right)\right| \leq C\left(\left\|\frac{\partial u_{\tau_{1}}}{\partial \nu}\right\|_{L^{p}\left(B_{1 / 3} \cap \partial \Omega_{\tau_{1}}\right)}+\left\|u_{\tau_{1}}\right\|_{L^{1}\left(B_{1 / 3} \cap \Omega_{\tau_{1}}\right)}\right) .
$$

By (46) we can assert that

$$
\left\|\frac{\partial u_{\tau_{1}}}{\partial \nu}\right\|_{L^{p}\left(B_{1 / 3} \cap \partial \Omega_{\tau_{1}}\right)} \leq C
$$

with $C$ independent of $\varepsilon$. It suffices then to find an estimate for $\left\|u_{\tau_{1}}\right\|_{L^{1}\left(B_{1 / 3} \cap \Omega_{\tau_{1}}\right)}$. Using (45) we see that

$$
\left|\frac{\partial u_{\tau_{1}}}{\partial \nu}\right| \leq C \quad \text { on } B_{5 / 12} \cap \partial \Omega_{\tau_{1}}
$$

and therefore, using Lemma 2.5 we find

$$
\begin{equation*}
\int_{B_{1 / 3} \cap \Omega_{\tau_{1}}} u_{\tau_{1}} \leq C\left(u_{\tau_{1}}(y)+1\right), \quad \forall y \in B_{1 / 2} \cap \Omega_{\tau_{1}} \tag{47}
\end{equation*}
$$

Remark that by the choice of $\tau_{1}$ (cf. 23) we have

$$
u_{\tau_{1}}\left(y_{1}\right)=\widetilde{C}
$$

Thus, selecting $y=y_{1}$ in (47) (recall (42)) we obtain the desired conclusion.

## 4. Proof of Theorem 1.3

We consider the approximating scheme (4) with $f(x, u)=u^{p}$ and $1<p<\frac{n}{n-2}$ :

$$
\left\{\begin{align*}
-\Delta u+u & =0 & & \text { in } \Omega  \tag{48}\\
\frac{\partial u}{\partial \nu} & =-\frac{u}{(u+\varepsilon)^{1+\beta}}+u^{p} & & \text { on } \partial \Omega
\end{align*}\right.
$$

Let $\Phi_{\varepsilon}$ be defined as in (6) with

$$
g^{\varepsilon}(u)= \begin{cases}-\frac{u}{(u+\varepsilon)^{1+\beta}}+u^{p} & \text { if } u \geq 0 \\ |u|^{p} & \text { if } u<0 .\end{cases}
$$

We will show that for fixed $\varepsilon>0$ (48) has a nontrivial solution, using the mountain pass theorem of Ambrosetti and Rabinowitz [1, 10] in the space $H^{1}(\Omega)$ with the usual norm $\|u\|_{H^{1}}^{2}=\int_{\Omega}|\nabla u|^{2}+u^{2}$. We have

$$
g^{\varepsilon}(u) u \geq \theta G^{\varepsilon}(u) \quad \forall u \geq u_{0}
$$

for some $\theta>2$ and some $u_{0}>0$ and this together with the subcritical exponent $1<p<\frac{n}{n-2}$ implies that the Palais-Smale condition holds for $\Phi_{\varepsilon}$. Also, if $\|u\|_{H^{1}}=$ $\rho$ we have by the trace embedding theorem

$$
\begin{aligned}
\int_{\partial \Omega} G^{\varepsilon}(u) & \leq C \int_{\partial \Omega}|u|^{p+1} \leq a \int_{\partial \Omega} u^{2}+C_{a} \int_{\partial \Omega}|u|^{\frac{2(n-1)}{n-2}} \\
& \leq C a\|u\|_{H^{1}}^{2}+C_{a}\|u\|_{H^{1}}^{p+1}
\end{aligned}
$$

with $a>0$ as small as we like. Thus if $\|u\|_{H^{1}}=\rho$ then

$$
\Phi_{\varepsilon}(u) \geq \frac{1}{2} \rho^{2}-C a \rho^{2}-C_{a} \rho^{p+1} \geq \alpha>0
$$

choosing $\rho>$ small. Notice that $\rho$ and $\alpha>0$ are independent of $\varepsilon$. Let $u_{\varepsilon}$ denote the mountain pass solution to (48). We will show that $\left\|u_{\varepsilon}\right\|_{L^{\infty}(\Omega)} \leq C$ for some $C$ independent of $\varepsilon$ employing the blow-up method of [4]. Suppose that for a sequence $\varepsilon \rightarrow 0$ we have $m_{\varepsilon} \equiv\left\|u_{\varepsilon}\right\|_{L^{\infty}(\Omega)} \rightarrow \infty$ and let $x_{\varepsilon}$ be a point where the maximum of $u_{\varepsilon}$ in $\bar{\Omega}$ is attained. Then necessarily $x_{\varepsilon} \in \partial \Omega$ and we can assume that $x_{\varepsilon} \rightarrow x_{0} \in \partial \Omega$. Define

$$
v_{\varepsilon}(y)=\frac{1}{m_{\varepsilon}} u\left(m_{\varepsilon}^{1-p} y+x_{\varepsilon}\right) .
$$

Then $\Delta v_{\varepsilon}+m_{\varepsilon}^{2(1-p)} v_{\varepsilon}=0$ in the domain $\Omega_{\varepsilon} \equiv\left(\Omega-x_{\varepsilon}\right) / m_{\varepsilon}^{1-p}$ and

$$
\frac{\partial v_{\varepsilon}}{\partial \nu}=-m_{\varepsilon}^{-p-\beta} v_{\varepsilon}^{-\beta}+v_{\varepsilon}^{p} \quad \text { on } \partial \Omega_{\varepsilon} .
$$

The proof of Theorem 1.1 can be adapted to yield a uniform Hölder estimate locally for $v_{\varepsilon}$ :

$$
\left\|v_{\varepsilon}\right\|_{C^{\gamma}\left(\bar{\Omega}_{\varepsilon} \cap B_{R}\right)} \leq C \quad \forall \varepsilon>0
$$

for some constant $C$ depending on $R$ but independent of $\varepsilon$. For a subsequence we find that $v_{\varepsilon} \rightarrow v$ uniformly on compact sets with $v$ a nontrivial, nonnegative solution to the problem

$$
\begin{cases}\Delta v=0 & \text { in } \mathbb{R}_{+}^{n} \\ \frac{\partial v}{\partial \nu}=v^{p} & \text { on } \partial \mathbb{R}_{+}^{n}\end{cases}
$$

where $\mathbb{R}_{+}^{n}$ is a half-space. But this is impossible, see, e.g., [5] and also [7]. This shows that $u_{\varepsilon}$ is uniformly bounded in $L^{\infty}(\Omega)$. Corollary 1.2 implies that $u=\lim _{\varepsilon \rightarrow 0} u_{\varepsilon}$ is a solution to (7). This solution is nontrivial because $\Phi_{\varepsilon}\left(u_{\varepsilon}\right) \geq \alpha>0$ for all $\varepsilon>0$.

## Acknowledgement

J. Dávila was partially supported by Fondecyt 1020815. He would like also to thank H. Brezis and the organizers of the Fifth European Conference on Elliptic and Parabolic Problems: A special tribute to the work of Haim Brezis for the kind invitation to participate in this event.

## References

[1] A. Ambrosettiy, P.H. Rabinowitz, Dual variational methods in critical point theory and applications. J. Functional Analysis 14 (1973), 349-381.
[2] J. Dávila, M. Montenegro, Nonlinear problems with solutions exhibiting a free boundary on the boundary. To appear in Ann. Inst. H. Poincaré Anal. Non Linéaire.
[3] M. Fila, H.A. Levine, Quenching on the boundary. Nonlinear Anal. 21 (1993), 795802.
[4] B. Gidas, J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations. Comm. Partial Differential Equations 6 (1981), 883-901.
[5] B. Hu, Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition. Differential Integral Equations 7 (1994), 301-313.
[6] H.A. Levine, G.M. Lieberman, Quenching of solutions of parabolic equations with nonlinear boundary conditions in several dimensions. J. Reine Angew. Math. 345 (1983), 23-38.
[7] Y. Li, M. Zhu, Uniqueness theorems through the method of moving spheres. Duke Math. J. 80 (1995), 383-417.
[8] G.M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12 (1988), 1203-1219.
[9] J.L. Lions and E. Magenes, Problemi ai limiti non omogenei. V. Ann. Scuola Norm Sup. Pisa 16 (1962), 1-44.
[10] P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations. American Mathematical Society, Providence, RI, 1986.

```
Juan Dávila
Departamento de Ingeniería Matemática
CMM (UMR CNRS)
Universidad de Chile
Casilla 170/3, Correo 3
Santiago, Chile
e-mail: jdavila@dim.uchile.cl
Marcelo Montenegro
Universidade Estadual de Campinas IMECC
Departamento de Matemática,
Caixa Postal 6065, CEP 13083-970
Campinas, SP, Brasil
e-mail: msm@ime.unicamp.br
```

