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Holder Estimates for Solutions to a
Singular Nonlinear Neumann Problem

Juan Davila and Marcelo Montenegro

Abstract. We consider the elliptic equation —Awu + v = 0 in a bounded,
smooth domain € in R™ subject to the nonlinear singular Neumann condition
g:f =—u P+ f(zx,u). Here 0 < 8 < 1 and f > 0 is C*. We prove estimates
for solutions to the same equation with 9'c = — (wetyi+s T f(z,uc) on the
boundary, uniformly in e.

1. Introduction

This note is intended as a complement of previous work by the authors [2]. We
study the regularity of solutions of the following nonlinear boundary value problem

—Au+u=0 in Q
u>0 in Q
- (1)
ou

= —u P+ f(z,u) ondN{u>0},

where 2 C R™, n > 2, is a bounded domain with smooth boundary, 0 < 8 < 1
and v is the exterior unit normal vector to 0€2. We assume that

f:00xR—Ris C' and f > 0. (2)
By a solution of (1) we mean a function u € H(Q) N C(Q) satisfying
Vu-Vo+up = / (—u™P + flz,u))p, Ve Cy(QUOQN{u>0})).
Q oQN{u>0}
(3)

One natural approach to prove existence of solutions of (1) is the following:
take € > 0 and consider
—Aut+u=0 in Q
ou u (4)

oy = (uteys T on o
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It is not difficult to show that under the additional assumption

lim f@,u) =0 uniformly for z € Q (5)
U—00 u
(4) has a maximal solution u°. In [2] we proved that this maximal solution satisfies
an estimate of the form
|Vuf| < C(uf)™P in Q,

with C' independent of . This was an essential step in proving that the limit
lim._,p u® exists and is a solution of (1). Nevertheless there could exist other solu-
tions of (4). For instance assuming (2) and (5) problem (4) admits also a minimal
nonnegative solution u° (it could be zero but assuming f(-,0) #Z 0 guarantees
u® Z 0). Assuming some growth conditions on f, any critical point of ®. is also a
solution with

1 2 2\ (. u
B) =y (V0P 407 = [ G ) (6)

where
v U
G*(z,u) = ®(x,t) dt, d ¢ (z,u) = —
(z,u) /Og(w) and ¢°(z, u) (ute

In this note we prove the following result concerning any kind of solution
to (4).

Theorem 1.1. Suppose f satisfies (2). Then for any bounded solution u of (4) we
have

148 + f(z,u).

|Vu| < Cu™" in Q,
where C' is independent of €, and depends on Q, n, 3, f and |[ul| = (q)-

A consequence of the previous gradient estimate is the following convergence
result (the proof is exactly as in [2]).

Corollary 1.2. Assume (2) and let e, — 0 and u®* be a sequence of solutions of
(4) with
[u* ]| oo () < C,
where C is independent of k. Then up to a subsequence us* — u in C*(Q) for any
0<pu< 1-11-ﬁ and u is a solution of (1).
This result enables us to consider other type of nonlinearities than in [2]. For
example

Theorem 1.3. Assume thatn >3 and 1 <p < n:‘Q. Then there exists a nontrivial
solution to

—Au+u=0 mn
u>0 in Q
- (7)
ou

oy = —u P 4 uP on QN {u>0}.

By Theorem 1.1 this solution is C'1+5 ().
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Previous work with a singular Neumann condition include [3] where the au-
thors study the evolution equation u; = g, in (0,1) with Neumann conditions
u,(0,t) = 0, uy(1,t) = —u(1,t)~". The initial condition is u(z,0) = ug(z) > 0
and sufficiently smooth. They prove that the solution exists up to a quenching
time 0 < T < oo with lim; ~p u(1,¢) = 0 and they provide estimates of the type
Ci<(1—2x) 1 u(z,T) < Cs.

In higher dimensions a similar evolution problem was addressed in [6] with
a positive unbounded nonlinearity such as 1/(1 — u), but the authors only work
with a time interval [0,T) where 0 < u(t) < 1.

As mentioned earlier this work is a continuation of previous work of the
authors. For this reason not all proofs are supplied here and we refer to [2].

2. Preliminaries

There are two important key points in the proof of Theorem 1.1. First there
is a construction of a local subsolution. The second ingredient is a Hardy type
inequality, which roughly speaking asserts that a solution that stays above the
local subsolution is locally a minimum of the related energy. To make this more
precise we rescale the problem to a small ball. It is convenient at this point to
introduce some notation. Let 75 > 0 be small enough to be fixed in Proposition 2.1
below. For 0 < 7 < 79 and xo € 99 let us write 9(B,(z0) N Q) = I'* UT? where

I = 0B, (z0)NQ, T°= B, (x0) NN
are the internal and external boundaries. We also decompose I'® = I'! UT? with
I = ¢ (B, 2(0)NOQ, I?=T°\T, (8)

where ¢ is a smooth diffeomorphism which flattens the boundary of €2 near zg.
This means that ¢ : W C R™ — B, (0) is smooth with W an open set containing
the ball B, (x0) and o(WNQ) = B, (0)NH, o(WNIN) = B, (0)NOH, p(W\Q) =
B.,(0) \ H, where

H={( z,):2 eR" 2, >0}

Let us introduce the rescaled domains which allow us to work in balls of unit size:

1 1 1
B;r = (B‘,—(Io)ﬂgfl’o) :Bl(O)ﬂ (Q*l’o), QT = (Q*l’o)
T T T
9)
1 1 1 (
I”T:T(I”—xo), Fi:T(Fe—xo), Fﬁ:T(F’uxo), k=12
Given zg € 00 and 0 < 7 < 79 we let v, be the solution of the linear equation
—Av; + 720, =0 in B,
ov s
T(y) = —dist(y,[2)"1+s ye L,
o, W) ist(y, I'7) yel; (10)
vr(y) =0 yers,

vr(y) = sdist(y, 09Q,) yeTL.
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For large s its solution will be called a local subsolution because of the next lemma.

Proposition 2.1. There exist 1o > 0 and sg > 0 such that if 0 <7 < 79 and s > sg
the solution of (10) is positive in B and satisfies
vr(y) > esdist(y, T2) 145, Wy e I'L, (11)
where ¢ > 0 is independent of xo, 7 and s (c depends only on Q, n, 8). In partic-
ular, choosing sg larger if necessary
v _

o, <7V

We will not include the proof of the statements in this section. They can be
found in [2].

Next we state a Hardy type inequality.

on T'L. (12)

Proposition 2.2. There exists a constant C, such that

2
¥ 0o
L asizy <60 [ [96P Woecr@rum. )

The constant C, can be taken independent of T and xg € 02 if 0 < T < 7.

Finally we mention some lemmas on linear equations with a Neumann bound-
ary condition. Again, the proofs can be found in [2].
This is a sort of Harnack inequality.

Lemma 2.3. Let a € L*°(Q2,NBs), a > 0 and suppose that u € H' (Q,NB3), u >0
satisfies
—Au+a(y)u=0 in Q. N Bs
0
0

where N is a constant. Then there is a constant ¢ > 0 such that

u(y) > ep dist(y, T%)(cew(yr) — N), Yy € B and Vyi € BY 0 By)s.

u
<N onl¢,
v

The constant c can be chosen independent of xg € 0Q and of 0 < 7 < T79.

These last two estimates are standard in the theory of LP regularity theory,
see for instance [9].

Lemma 2.4. Let a € L>°(BF). Suppose u € H'(BF) satisfies
—Au+a(z)u=0 in Bf
ou
o7
where g € LP(I'S) and p > 1. Let 1 <r < " . Then there exists C independent
of g and u such that

€
on I'Z,

lullws .y, < € (lgllzore) + lull 1 s )
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Lemma 2.5. Let a € L>®(B) and suppose that w € H'(BY), u > 0 satisfies

—Au+a(z)u >0 in B
ou
ov

where N is a constant. Then there is a constant C' > 0 independent of u, N such
that

>—-N onl¢

/ u < C(u(xz)+ N) Va € Bypn B
By aNBF

3. Proof of Theorem 1.1

Let u be a bounded nontrivial solution of equation (4) and write

M = max < sup f(z,u(x)), maxu) .
e Q

Let 79 and sg be the constants in Proposition 2.1 and fix C > 0 such that

50 < ;cié, (14)
MY < 7, CHP, (15)
M*P < ;cké”ﬁ. (16)
Next we fix Cy large enough such that
(%))Hﬁ > 6. (17)

Let 21 be a point in 2. We distinguish two cases.

Case 1. Assume u(x1) < Cy dist(z1,090) 145, Consider the scaling about the point
x1 given by u(y) =7~ 148 u(ry+m1), with 7 = } dist(z1, Q). Then —Ad+721 =0
in B1(0), @ > 0 in B1(0) and @(0) < 2145 Cp. Since @ > 0, by elliptic estimates
we have |Va(0)| < C(n, 8)Cy, where C(n, ) depends only on n, 5. This implies
\Vu(zy)| < C(n, B)Cor™ 158 < C(n, B)CL u(zy)~?. Thus

Vu(a:)| < C(n, B)Co~Pular) 7. (18)
We keep the explicit dependence on Cy for future reference.

Case 2. Assume
u(z1) > Codist(zy, 0Q) 145 . (19)
Let
xo € 0Q, dist(z1,00) = |zo — 21| (20)
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Our first task is to show that w satisfies an inequality such as (19) on all points
on the line segment

Lo ~0§t§t},

[1’0,131] = {l’o +t N
|71 — o

where ¢ = |21 — 9.
Lemma 3.1. Choosing Cy larger if necessary (only depending on n, 8 and C as in

(17)) we have
u(z) > Codist(z, 0Q) 145 Va € [xo, 71). (21)

Proof. For the sake of notation we write

1 — To

Ty =10+t 0<t<t,

|1 — o
and observe that dist(x, 02) = |z — xo| = t. Suppose that (21) fails. Then
to = sup{t € [0,] : u(z;) < Cot1+o}

is well defined, to > 0 and by (19) we have ¢y < t. Define g(t) = u(z;). Using the
same argument as in case 1, see (18), we have that

g'(t) < C(n,B)CEPg(t)"F  whenever g(t) < Cot1+6. (22)
1 B
Let A(t) = Cot1+#, so that #'(t) = §% h(t)=. Then we have g(to) = h(to) and
by (22)
_ _ 1+
(1) < Cln,B)CY Pglte) = Cln,B) ) M o).
0
Choose Cy larger so that C'(n, 3) 104(%5 < 4. Then g(t) > h(t) for t € (tg — o,10) for
some ¢ > (0. This is impossible. O
Define 7 by
1+
n = (“(f1>> (23)
C
and observe that by (15) we have
1 < T0.

We look now at the rescaled function u around the point zg € 9 given by (20):
for 0 < 7 < 79 and x¢ € 9 define

1
ur(y) =77 Hau(ry +w0), Y€ = _(Q-a0). (24)

At this point it is convenient to replace f with a Cct function f:00xR =R
with f > 0 and f, gz bounded, and such that f(z,u) = f(z,u) for all 2 € 9Q and
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0 < u < M. Then u solves (4) with f replaced byf and therefore u, is a solution
of

—Auy + 72U, =0 in Q-,
o, (25)
(;f/ =g:(y,ur;) on Q.
where ¢Z is given by
g2y, w) = 7150 g7 (ry + a0, 71 w), (26)
and
u _
o)==+ T, n)

Observe that we have changed the definition of ¢* and g% from the one given in
the introduction replacing f by f.

We will see that as a consequence of (21) u, has to be suitably large on the
internal boundary I'C.

Lemma 3.2. For 0 < 7 <711 we have
ur(y) > sodist(y,0Q,) VyeTL.

Proof. Let z = ) “'~™ € BY N Bys. By (21) and the definition of u, we have

2 |x1—xo|
pee (28)

where the last inequality is a consequence of (17). Using Harnack’s Lemma 2.3
and (28) we obtain

Ur(z7) =77 145 u(Tzr + ) >

ur(y) > e dist(y, Q) (cké — sup Our

u au)’ Vy € B (29)

From the boundary condition in (25) and the definition of M

ou B
sup . <7148 M.
re ov

Notice that from (16) we deduce u(x;)? < C’”‘S;B which is the same as

() < o

Thus
B B8 ~
s M < M = (“(fl)) M< el
C 2
Inserting this in (29) and recalling (14) we find

1 .~ ,
ur(y) > 20%0 dist(y, 9Q,) > so dist(y,0Q,) Vy e T, O
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The main step that we shall prove in the sequel is the following:
Proposition 3.3. For all 0 < 7 < 71 we have
ur >v, in B} (30)

For the proof of Proposition 3.3 we consider the nonlinear problem

—Aw+ 7w =0 in B
W= Ur on L UT? (31)
0
81;/] =gS(z,w) onT}!
where we regard u, as data and w as the unknown. Observe that u, is a solution
of (31).
The solutions of (31) are the critical points of the functional
1
wrlw) =, [ (VP ety - [ Giew)
2 B re
on the set
E, ={we H B) | w=u, on T2 UT?2},
where

Gy, w) = / G (y,r) dr,
0

and g2 defined in (26).

We remark that any nontrivial solution u of the regularized problem (4) is
positive by the strong maximum principle, the fact that f > 0 and Hopf’s lemma.
This implies that u, — oo in B as 7 — 0, more precisely u, ~ 7~ 115 u(zp) in
BF. As a consequence, for fixed ¢ > 0 as 7 — 0 problem (31) is less singular and
we have

Lemma 3.4. For 7 > 0 small enough problem (31) has a unique solution.
How small 7 has to be may depend on ¢.

Proof. Suppose that there exists a sequence 7; — 0 and solutions w]l7 w]2 € HY(Q,)
to equation (31) with w; # w?.

_ 1 ‘
Since wj = w? = u,; on T, UT2 we have w} <7; """ M on T, UTZ, i =1,2.
w’ = 2

Also, "7 < fr;(y,w}) on 'L where

3 o F 145 1Yo

ij(y?w) :Tj f(ij“i’mO,Tj w) SCTJ )
since f is bounded. By the maximum principle we have

1
i T 148 +
w; < CTj on BTj. (32)

with C' independent of j.
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Let w; = wj1 — wj2 Then w; satisfies

—Aw; + Tjij =0 in Bjj
w; =0 on Fij U Ffj (33)
6wj

= bj(m)wj on Fl

Tj )
where

g3,

i) = 7 (@ €())

for some £(x) € [w;(x), w;(z)] (we use the notation [a,b] = [min(a, b), max(a, b)]).
Now we estimate

bi(x) = 99, _ 097 148

) = o €)= 77 O (e, (),

1
where ¢° is defined in (27). By (32) we see that 7" ¢(z) < C and since ¢° is C"
we thus conclude that

bj — 0 uniformly on F,lrj.

Thus, for j large enough the operator in (33) becomes coercive and hence w; =0
if j is large. Indeed, multiplying (33) by w; and integrating we find

Vw'2+7'«2/ w?:/ bjw?
/Bj.' J‘ ’ Bf / rt I
J J J
Since w; = 0 in sz u Fij we have by the Sobolev trace inequality
2, 2 2 2
/+ |Vw;|* + 7; /B+ w; §C||bj||L°o(r1j)/B+ [Vw; |7,
which shows that w; = 0 for j large enough. O

Lemma 3.5. Fiz s = so in Proposition (2.1) and let v, be the solution of (10).
Assume w,v € E; are subsolutions of (31) such that

v>v, on TL and v<w on TLUTZ

Then
C 1 5
P (max(w,v)) < ¥, (w) + 148 +Ct — V(v —w)|?,
So 2 Bfn{v>w}

where C' is independent of €, sg, T, v and w.

Proof. We derive first some estimates for the nonlinear terms. The functions
G¢(z,u), GE(z,w) are given by
(u+e)Pe + pu) —e'=F

G*(z,u) = /Ougs(at, s)ds = 8 (=1+ ) + F(x,u),
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where F(z,u) = fou f(z,s)ds, and

Gi(z,w) =T v G*(tx + x0, T 148 w).
Note that
—u P4 flz,u) < ¢°(z,u) < flz,u)
and hence we have the estimates

ul=h
. ﬁJrF(x,u)gGE(x,u)gF(x,u)
and
wl=P —148 1 E —148 1
g +7 48 F(1 + xo, 74P w) < GL(z,w) <7 146 F(1x + 20, T1+P W).

Let W = max(w,v). Then W satisfies

—AW 4+ 72W <0 in B,

W <u, on 'L UT? (34)
ow

Py <g(z,W) onTL

We have the equality
1
0 W) =) == [ (VW = w)P 4 7208 — wp)

n / (VW - V(W —w)+7*W(W —w)  (35)
Bt

- [ (esww) - G aw).
ri

Next we multiply (34) by W —w > 0 and integrate by parts. Note that W —w =0

on I'" UT? so that

/+VW~V(W—w)+72W(W—w) g/ %T(wa)
v o (36)
< / 62, W)W = w).
Combining (35) and (36) we obtain
UrW) = rw) < =) [ VOV —w)P
v (37)

- [ (G - G w) - g2 W - w)

We claim that '
—[G5(2, W) = G, w) — g2 (a2, W)(W —w)] < C(r + W) (W —w)?, (38)

where C' is a constant independent of .
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To verify (38) we counsider first the case W < 2w. By Taylor’s theorem

_10g:

- 2 dw (m,{)(W - w)27

— G5 (2, W) = GZ (2, w) — g7 (2, W)(W — w)]

for some w < £ < W. A computation shows that

. Lo )
agT(a?,w):T ﬁ? v 2€+B —&—Tfu(mc—&—mon'liﬁw)
w (T +5w + 5)
and therefore
dg; ! -1-8 “1-p
(z,w) < TB(THHew +€) + K71 < pw + KT, (39)

ow
where K = sup, ,, | fu(z,u(z))| < co. Hence
(G5, W) — G () — g2, W)W — w)] < (86717 + Kr)(W — w)?
But 8 <w™? < (W/2)7# and we obtain
(G5 W) — G, w) — g2 (@, W)W — w)] < Clr + WI8)(W = w)?.
For the case W > 2w observe that
~ (G5 @, W) =G (2, w) = g2, W)W = w)]
= _G'Er(m’ W) + G (z, w) + gf—(m’ W)(W - w)
Wi-p
<
S1-3

7F(TI+I0,T1}43U/)

yor e [F(Ta? Tz, T8 w)

4 74s flrz + — 2o, 7148 WHY(W — w)]

But for W > 2w we have
wi-8

1 B 4 ~1-8 2
< _
- 175W W_liﬂw (W —w)
and

F(rz + zg, 7146 W) — F(rz + a?077'1iﬁw) +riis flrz + o, 7148 W)W — w)
1 =2 = 1
= rds Fulre 4 a0, | (W - w)?,
for some &. Thus
—[GH (@, W) = GZ(2,w) = g7 (x, W)(W —w)] < (CWIF + K1)(W — w)?.
Using estimate (38) in (37) we find

— w —1 —w)|? =547 —w)?
60— vrl) < = [ OV~ [ V) v -y

1
)
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But W > v, > esodist(y,['2) by (11) and therefore

1 2
6elW) ) < = [ 190V <)

e[
r

By Hardy’s (Proposition 2.2) and Sobolev’s inequality

(sglfﬁ dist(D2)~175 + 7) (W — w)2.

1
=

Ur () — () < ( S vor- ;) [ovav—wp. o
S0 BT
g

Proof of Proposition 3.3. For 7 > 0 sufficiently small (31) has a unique solution.
Therefore for 7 small u, is the solution of (31) and the minimizer of ..

We claim that if w is any minimizer of 1, then w > v, in BY. Indeed take
v = v, in Lemma 3.5 and observe that since w = u, on 1"37 we have by Lemma 3.2
w > v, on I'. Thus we can apply Lemma 3.5. Let us look at (40). We can choose

so larger and 7y smaller if necessary in order to make &, + Cr1 — 3 < 0. Thus
So

Y (max(w, v,)) < ¥ (w) unless max(w,v,) = w, which is equivalent to assert
vy <w in B,,J.r .

Let us see now that for 0 < 7 < 71 ¥, has a unique minimizer. Indeed,
consider w;, wp minimizers of .. By the previous claim they satisfy w; > v,,
j = 1,2. Then from Lemma 3.5 it follows that w; = wy. From now on w, denotes
the unique minimizer of ¢,. We claim that the operator D?w, (w,) is coercive on
the space E, = {w € H'(B}) | w =0 on I'" UT?} in the sense that

€

0

[aweterey - [ Praungzo [ vepr @
BF re ou BF

for some o > 0 independent of 0 < 7 < 71 and all p € HY(B}) with ¢ = 0

on I' UTZ. This follows from the behavior of %QJ as given in (39), the estimate

wy > v, > csodist(y, [2) 146 and Hardy’s inequality, Proposition 2.2. We will use
this to show that w, is the minimizer of 1,. We know that this is true for small
7 > 0. Assume this fails for some 0 < 7 < 71 and set

p=inf{r € (0,71) | u, is not the minimizer of 4, }.

Then by continuity u,, is the minimizer of 1,,. Thus D%y, (u,,) is coercive in the
sense above. On the other hand, for a sequence (7;) such that p < 7; < 7,
7; — 4 there are at least two solutions of (31), one being w, and the other one
the minimizer w, of 1. Both of them are uniformly bounded as 7; — p. Set

U,

. — Wy,

zZ; = ! .
Tl *w‘Fj”L?(Bij)
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Then
—Az; + 7'sz =0 in B;C_
z; =0 on I} UTY
E)zj o agf—j

. , 1
v ou (& (y))z on e,

where &; is between u,; and w,;. Multiplying by z; and integrating we find

ags.
2, .22 T 2
/Bi.(VZj +752;) = /F;‘ ou (Y, & (y))z; -

€

99
Since z; is bounded in LZ(B;C_) and for fixed ¢ > 0 ;;J (y,&;(y)) is continuous
and bounded, we see that z; is bounded in H 1(Bjj ). Thus we can extract a subse-
quence for which z; — z weakly in H'(B} ) and strongly in L*(B). In particular
||z||L2(B‘+) = 1 which shows that z # 0. Taking j — oo we find

€
2, 2.2y < 2
[ et < [ e
and since z # 0 we have a contradiction with (41). O

Finally let us show that estimate (30) is enough to obtain the desired result.

Proposition 3.6. Let 1 € Q and assume we are in Case 2, i.e., (20) holds. Then
[Vu(ar)| < Culz1) ™7,
with a constant that depends on Q, n, B, f and ||ul| = (q)-

Proof. Recall zg given by (20), the definition of 71 in (23) and u,,, c.f. (24). Let
y1 =} (21 — o) which satisfies
1

lyr| < 6 (42)
by (17), (19), (20). A direct calculation shows that it is sufficient to establish
[Vur, (y1)| < C. (43)

By (30) and (11) we have the estimate
ur (y) > cso dist(yJ"El)liﬁ vy eTs . (44)
Using this in the boundary condition in (31) we deduce that

ou, . _
gyl < Cdist(y,T2) O A I, (45)
and therefore, on a smaller set we obtain an estimate
ou,
ayl S C' on B1/3 n 697-1, (46)

with a constant C' independent of €.
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Let us prove (43). For this purpose choose p > n and take n <r < " . By
Lemma 2.4

our,
||UT1||W”(31/4HQ*1) =¢ (H 6V1

Lr( Bl/maﬂ,l) + ||uTl||L1(Bl/3ﬁQﬁ)> R

and by the embedding W' C C* we have for some 0 < p < 1

ou,
||U71||C“(Bl/4m9ﬁ) =C (H 31/1

LP(B1,3N0Q+,) ||uTl||L1(Bl/3ﬁQﬁ)> .

By the assumption (2) and the lower bound (44) we see that the right-hand side
of the boundary condition in (31) satisfies

Our,
||gi(y7uT1)||CH(Bl/4ﬁaQT1) <C (H o

LP(By3N08,) + [lur, ”Ll(Bl/stTl)) .

Using Schauder estimates (see, e.g., [8]) we deduce

Our,
||u71||Cl,;L(Bl/5ﬁ52.,-1 = Hay‘rl

Recalling that [y1| < § by (42) we obtain

LP(By/3Nn00,) + HUTIHLI(Bl/mQ,l)) .

ou
Vu, <C H n - )
Vi ()] < < v lLr(By5n09,,) +llumllzr e, sn0n)
By (46) we can assert that
15 D o =€
Ov IL?(By,3n89,,)

with C' independent of e. It suffices then to find an estimate for |ur,[|r1(B, 5n0
Using (45) we see that

7'1)'

O,
‘ U SC onB5/1gﬂaQTl

ov

and therefore, using Lemma 2.5 we find
/ ur, < Clurn (y)+1), Vye€ BipnQ,. (47)
By/3M8ry

Remark that by the choice of 71 (cf. 23) we have

Ury (yl) =C.

Thus, selecting y = y1 in (47) (recall (42)) we obtain the desired conclusion. O
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4. Proof of Theorem 1.3
We consider the approximating scheme (4) with f(z,u) =u? and 1 <p < ",:

—Au+u=0 in
ou u (48)

—— P o0f.
v (ugepts TUOM

Let ®. be defined as in (6) with

) = [t 0z 0
g |u|P ifu <0.

We will show that for fixed £ > 0 (48) has a nontrivial solution, using the mountain
pass theorem of Ambrosetti and Rabinowitz [1, 10] in the space H'({2) with the
usual norm ||ul|3, = [, [Vul* + u?. We have

9 (u)u > 0G*(u) Yu > ug
for some 6 > 2 and some ug > 0 and this together with the subcritical exponent

1 <p< ", implies that the Palais-Smale condition holds for ®.. Also, if [|u[| g1 =
p we have by the trace embedding theorem

G(w)<C [ |uftt < a/ WGy [ Ju =
oN o0

o0 o0

< CallullF + Callullfi

with a > 0 as small as we like. Thus if ||u||z1 = p then
1
O (u) > 2p2 —Cap? = CopP™ >a >0

choosing p > small. Notice that p and o > 0 are independent of €. Let u. denote
the mountain pass solution to (48). We will show that ||uc||~o) < C for some
C' independent of ¢ employing the blow-up method of [4]. Suppose that for a
sequence € — 0 we have m. = [Juc||p~(q) — 00 and let z. be a point where the

maximum of u. in Q is attained. Then necessarily . € Q0 and we can assume
that . — ¢ € 0. Define

1 _
ve(y) = u(ml Py +x).

€
Then Av. + mg(l_p)vE =0 in the domain Q. = (Q — z.)/m!™? and
dv.
v

The proof of Theorem 1.1 can be adapted to yield a uniform Hoélder estimate
locally for v:

= fm;p_ﬁvg_ﬁ +f on 0.

||U8||CW(Q€mBR) <cC Ve>0
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for some constant C' depending on R but independent of €. For a subsequence
we find that v. — v uniformly on compact sets with v a nontrivial, nonnegative
solution to the problem

Av=0 in R}

ov

ov
where R”} is a half-space. But this is impossible, see, e.g., [5] and also [7]. This shows
that u. is uniformly bounded in L*(2). Corollary 1.2 implies that u = lim._,¢ .
is a solution to (7). This solution is nontrivial because ®.(us) > o > 0 for all
e >0.

v?  on ORY,
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