
MODULI SPACE THEORY FOR THE ALLEN-CAHN EQUATION

IN THE PLANE

MANUEL DEL PINO, MICHA L KOWALCZYK, AND FRANK PACARD

1. Introduction

In this paper, we are interested in the space of solutions of some class of semilinear
elliptic equations which are defined in the plane R2 (i.e. entire solutions) and whose
prototype is the Allen-Cahn equation

(1.1) ∆u+ u− u3 = 0.

Since we are in dimension 2, an entire solution of (1.1) which is strictly monotone
in one direction is known to depend only on one variable and, after a suitable rigid
motion, it has the form

u0(x, y) := tanh

(
x√
2

)
.

This result, originally conjectured by de Giorgi, was proven in [9] by Ghoussoub
and Gui. In particular, the nodal set of a solution which is strictly monotone in
one direction is given by a straight line.

In [8], the authors of the present paper, together with J. Wei, have constructed
new examples of entire solutions of (1.1). Let us recall this result in more details
since it serves as a motivation for the present paper. For any k ≥ 2, it is proven in
[8] that there exist solutions of (1.1) whose nodal sets are, away from a compact,
asymptotic at infinity to 2k-oriented half affine lines. Moreover, it follows from the
construction in [8] that these solutions are not isolated and in fact that they depend
on a finite number of continuous parameters. Beside these, other entire solutions
of (1.1) are known to exist. For example, solutions with dihedral symmetry have
been constructed in [7] (see also [2], [10] and [5]).

All these solutions share the same structure at infinity, namely, their nodal set
is, away from a compact, asymptotic to a finite number of oriented half affine lines.
Moreover, they tend to either ±1 at infinity, away from a neighborhood of the nodal
set where they are asymptotic to suitable translated and rotated copies of ±u0. In
the present paper, we analyze the structure of the space of all entire solutions of
(1.1) which, at infinity, are asymptotic to 2k copies of ±u0 (modulo the action of
some rigid motion). We show that, under some nondegeneracy assumption, this
space is a smooth manifold whose dimension is equal to 2k, in agreement with the
number of degrees of freedom which are available in the construction proposed in
[8]. We also prove that the solutions constructed in [8] are smooth points in this
space.

1.1. The heteroclinic solution. We start with a brief review of the material
which is necessary both for our analysis and for a precise statement of our results.
We assume that we are given a double well potential F . Namely, a function F which
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is even, at least of class C2, is positive and which has only two zeros at the points
±1. We further assume that the zeros of F are nondegenerate minima. Hence,

(1.2)
F (t) > 0 for all t 6= ±1, F (±1) = 0,

F ′′(±1) 6= 0 and F (t) = F (−t) for all t ∈ R.
It is convenient to define

α :=
√
F ′′(±1).

The unique solution of

(1.3) ü0 − F ′(u0) = 0,

which tends to −1 as x tends to −∞, tends to +1 as x tends to +∞, and which is
equal to 0 when x = 0, is called the heteroclinic solution (here · denotes differenti-
ation with respect to the variable x). It is given implicitly by the identity

x =

∫ u0(x)

0

ds√
2F (s)

,

which follows from the fact that

(1.4) u̇2
0 − 2F (u0) = 0.

Observe that this last equality also implies that the function u0 is strictly increasing.

Example 1.1. A typical (or classical) example is the one where the function F is
given by

(1.5) F (t) =
1

4
(1− t2)2,

in which case we have explicitly

u0(x) = tanh

(
x√
2

)
.

Remark 1.1. For the sake of simplicity, we have assumed that the function F
is even. Most of the results and technics of the present paper do not require this
assumption but, since notations become quite involved in the general case, we have
chosen to restrict our attention to the case where the potential F is an even function.

We collect some basic information about the spectrum of the operator

L := −∂2
x + F ′′(u0),

which arises as the linearized operator of (1.3) about u0 and which is acting on
functions defined on R. All the information we need is included in the :

Lemma 1.1. The spectrum of the operator L is the union of a finite or possibly
infinite number of eigenvalues (µj)j≥0

µ0 = 0 < µ1 < . . . < µn < · · · < α2 := F ′′(±1),

and the continuous spectrum which is given by [α2,∞).

Proof. The fact that the continuous spectrum is equal to [α2,∞) is standard. The
fact that the bottom eigenvalue is 0 follows directly from the fact that the equation
for u0 is autonomous and hence the function ∂xu0 is in the L2- kernel of L. Since
this function is positive, it has to be the eigenfunction associated to the lowest
eigenvalue of L. Finally, the operator L is of limit-point type from which it follows
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that the sequence of eigenvalues is strictly increasing (we refer to [6], [3] or [23] for
more details). �

Remark 1.2. The number of eigenvalues of L included in [0, α2) might be finite or
infinite. For notational convenience, in the case where the sequence of the eigen-
values of the operator L included in [0, α2) is finite equal to µ0 < µ1 . . . < µn, we
agree that µj := α2, for all j ≥ n+1. With such a convention, the sequence (µj)j≥0

is defined for all j ≥ 0 and, if we define the Rayleigh quotient

R(v) :=

∫
R

(
|∂xv|2 + F ′′(u0) v2

)
dx∫

R
v2 dx

,

the values of the sequence (µj)j≥0 coincide with the values of

sup
dimE=i

inf
v∈H1(R)

{R(v) : v ⊥L2 w, ∀w ∈ E} ,

as i ≥ 0 varies.

Example 1.2. In the case where the nonlinearity is given by (1.5), the spectrum
of L is explicitly known. The eigenvalues are given by

µ0 = 0, with associated eigenfunction w0(x) =
1

cosh2( x√
2
)
,

and

µ1 =
3

2
, with associated eigenfunction w1(x) =

sinh( x√
2
)

cosh2( x√
2
)
,

while the bottom of the continuous spectrum is α2 = 2. For a proof of this fact, we
refer to [20].

We denote by Πj the L2(R)-orthogonal projection over the j−th eigenspace of
L. Since the eigenspace associated to the eigenvalue 0 is spanned by the function
∂xu0, we have the explicit formula

(1.6) Π0(w) =
1

‖∂xu0‖2L2

(∫
R
∂xu0 w dx

)
∂xu0.

2. Statement of the result

In this paper, we are interested in the space of a special class of solutions of the
equation

(2.1) ∆u− F ′(u) = 0,

which are defined in R2. For example, given r ∈ R and a unit vector e ∈ S1, we
can define

u(x) := u0(x · e⊥ − r),
where ⊥ denotes the rotation of angle π/2 in R2. Clearly u is a solution of (2.1) and
this reflects the invariance of (2.1) under the action of the group of rigid motions
of R2. We say that ±u are the model solutions whose nodal set is the affine line

s 7−→ r e⊥ + s e.



4 MANUEL DEL PINO, MICHA L KOWALCZYK, AND FRANK PACARD

The class of solutions we are interested in are solutions of (2.1) which are defined
in the entire space and whose nodal set is, away from some compact, the union
of 2k curves which are asymptotic to 2k-oriented half affine lines. Moreover, as
one goes to infinity along one of these half affine lines, the solution converges to
one of the two model solutions with this affine line as nodal set. We make this
definition quantitatively precise in the next paragraph. In any case, the set of
all such solutions is denoted by M2k and the main result of this paper asserts
that, under some nondegeneracy assumption, the set M2k is a smooth manifold of
dimension 2k. This is a nontrivial fact : observe that in principle each of those
half-lines are determined by 2 parameters, thus yielding a total of 4k parameters.

2.1. Geometric description of the solutions. As promised, we give a precise
description of the solutions we are interested in. This requires some preliminary
definitions. At the heart of the description of the nodal set of the solutions is the
set Λ of oriented affine lines in R2. Any element λ ∈ Λ can be uniquely written as

λ := r e⊥ + R e,

for some r ∈ R and some unit vector e ∈ S1, which defines the orientation of the
line. Recall that we denote by ⊥ the rotation of angle π/2 in R2. Clearly, Λ is
diffeomorphic to R×S1 and writing e = (cos θ, sin θ), we get local coordinates (r, θ)
in Λ. Observe that the affine lines are oriented and hence we do not identify the
line corresponding to (r, θ) and the line corresponding to (−r, θ+ π). There is also
a natural symplectic structure on Λ which, in these local coordinates, is given by

ω := dr ∧ dθ.
Note that the map J defined by

J ∂θ = −∂r and J ∂r = ∂θ,

(which corresponds to the rotation by π/2 in the tangent space) induces an almost
complex structure on Λ. This map, together with the 2-form ω induces the natural
metric on Λ

g = dr2 + dθ2.

More generally, for all k′ ≥ 1, let us denote by Λk
′

the set of k′-tuples of ori-
ented affine lines in R2. This set is clearly diffeomorphic to Rk′ × (S1)k

′
and,

again, there exists a natural symplectic structure on Λk
′

which, in local coordinates
(r1, . . . , rk′ , θ1, . . . , θk′), can be written as

(2.2) ωk′ := dr1 ∧ dθ1 + . . .+ drk′ ∧ dθk′ .

The almost complex structure and the metric on Λk
′

can be introduced in the same
way this was done for Λ.

We have the definition :

Definition 2.1. A k′-tuple of oriented affine lines λ = (λ1, . . . , λk′) ∈ Λk
′

is said
to be ordered if each λj can be written as

(2.3) λj := rj e
⊥
j + R ej ,

for some rj ∈ R and some unit vector ej ∈ S1 which can be written as ej =
(cos θj , sin θj) with

θ1 < θ2 < . . . < θk′ < 2π + θ1.
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We denote by Λk
′

ord the set of k′-tuples of ordered, oriented affine lines and we denote
by

θλ :=
1

2
min{θ2 − θ1, . . . , θk′ − θk′−1, 2π + θ1 − θk′},

the half of the minimum of the angles between any two consecutive oriented affine
lines λ1, . . . , λk′ .

Assume that we are given a k′-tuple of oriented affine lines λ = (λ1, . . . , λk′) as
in (2.3). It is easy to check that for all R > 0 large enough and for all j = 1, . . . , k′,
there exists sj ∈ R such that :

(i) The point xj := rj e
⊥
j + sj ej belongs to the circle ∂BR, with R > 0.

(ii) The half lines

(2.4) λ+
j := xj + R+ ej ,

are disjoint and included in R2 \BR.

(iii) The minimum of the distance between two distinct half lines λ+
i and λ+

j is
larger than 4.

The set of half affine lines λ+
1 , . . . , λ

+
k′ together with the circle ∂BR induce a

decomposition of R2 into k′ + 1 slightly overlapping connected components

R2 = Ω0 ∪ Ω1 ∪ . . . ∪ Ωk′ ,

where

Ω0 := BR+1,

and where, for j = 1, . . . , k′,

Ωj :=
{
x ∈ R2 : |x| > R− 1 and dist(x, λ+

j ) < dist(x, λ+
i ) + 2, ∀i 6= j

}
,

(2.5)

where dist(x, λj) denotes the distance to λ+
j . Observe that, for all j = 1, . . . , k′,

the set Ωj contains the half line λ+
j .

We define I0, I1, . . . , Ik′ , a smooth partition of unity of R2 which is subordinate
to the above decomposition of R2. Hence

k′∑
j=0

Ij ≡ 1,

and the support of Ij is included in Ωj , for j = 0, . . . , k′. Without loss of generality,
we can also assume that I0 ≡ 1 in

Ω′0 := BR−1,

and Ij ≡ 1 in

Ω′j :=
{
x ∈ R2 : |x| > R+ 1 and dist(x, λ+

j ) < dist(x, λ+
i )− 2, ∀i 6= j

}
,

for j = 1, . . . , k′. Finally, we assume that

‖Ij‖C2(R2) ≤ C.

We now take k′ = 2k, for some k ≥ 1 and

λ = (λ1, . . . , λ2k) ∈ Λ2k
ord,
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we write λ+
j = xj + R+ ej and we define

uλ :=

2k∑
j=1

(−1)j Ij u0(dists( ·, λj)),(2.6)

where

(2.7) dists(x, λj) := (x− xj) · e⊥j ,

denotes the signed distance from a point x ∈ R2 to λj .
Observe that, by construction, the function uλ is, away from a compact, as-

ymptotic to copies of the model solutions whose nodal set are the half affine lines
λ+

1 , . . . , λ
+
2k. A simple computation shows that uλ is not far from being a solution

of (2.1) in the sense that ∆uλ − F ′(uλ) is a function which decays exponentially
to 0 at infinity (this uses the fact that θλ > 0).

We are interested in solutions of (2.1) which are asymptotic to a function uλ for
some choice of λ ∈ Λ2k

ord. More precisely, we have the :

Definition 2.2. Let S2k denote the set of functions u which are defined in R2 and
which satisfy

(2.8) u− uλ ∈W 2,2 (R2),

for some λ ∈ Λ2k
ord. We also define the decomposition operator J by

J : S2k −→ W 2,2(R2)× Λ2k
ord

u 7−→ (u− uλ, λ) .

The topology on S2k is the one for which the operator J is continuous (the target
space being endowed with the product topology). We define M2k to be the set of
solutions u of (2.1) which belong to S2k.

The existence of the heteroclinic solution u0 shows that M2 is non empty. In-
deed, it is enough to consider

u(x) = u0(x · e⊥ − r),
for any unit vector e and any r ∈ R. As we already discussed in the introduction, the
result of [8] provides infinitely many solutions of (2.1) whose nodal set decomposes
into 2k nearly parallel half lines in the case where the potential F is given by (1.5).
This result, together with the results in [7] and [2], imply that M2k 6= ∅ for any
k ≥ 1. Investigation of the structure of M2k is then a natural question. In our
opinion, the questions which are relevant are the following :

(1) Is the spaceM2k a smooth submanifold of S2k ? If so, what is the dimension
of M2k ?

(2) There exists a natural map

P :M2k −→ Λ2k
ord,

defined by

(2.9) P(u) := λ,

if u− uλ ∈ W 2,2 (R2). What can be said about this map ? Is it surjective
? If not, can one characterize its image ? In other words, what sets of half
affine lines are asymptotic to nodal sets of solutions of (2.1) ?
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2.2. The results. We keep the notations introduced above. Given k ≥ 1 and

λ = (λ1, . . . , λ2k) ∈ Λ2k
ord,

we write λ+
j = xj +R+ ej as in (2.4). We denote by Ω0, . . . ,Ω2k the decomposition

of R2 associated to this 2k-tuple of half affine lines and I0, . . . , I2k the partition of
unity subordinate to this partition. Given γ, δ ∈ R, we define a weight function
Γγ,δ such that

Γγ,δ(x) ∼ 1 ,

in Ω0 and, for j = 1, . . . , 2k,

Γγ,δ(x) ∼ eγs (cosh r)δ.

in Ωj , where we have writen

x = xj + r e⊥j + s ej ,

for some r ∈ R and s > 0 (observe that (r, s) are local coordinates which are well
defined in each Ωj). As usual, the notation f ∼ g means that there exists some
constant C > 1 such that

1

C
|g| ≤ |f | ≤ C |g|.

The explicit definition of the weight function Γγ,δ is given by

(2.10) Γγ,δ(x) := I0(x) +

2k∑
j=1

Ij(x) eγ (x−xj)·ej
(
cosh((x− xj) · e⊥j )

)δ
,

so that, by construction, γ is the rate of decay or blow up along the half lines λ+
j

and δ is the rate of decay or blow up in the direction orthogonal to λ+
j .

With this definition in mind, we define the weighted Lebesgue space

(2.11) L2
γ,δ(R2) := Γγ,δ L

2(R2),

and the weighted Sobolev space

(2.12) W 2,2
γ,δ (R2) := Γγ,δW

2,2(R2).

Observe that, even though this does not appear in the notations, the partition of
unity, the weight function and the induced weighted spaces all depend on the choice
of λ ∈ Λ2k

ord.
Our first result shows that, if u is a solution of (2.1) which is close to uλ (in

W 2,2 topology) then u− uλ tends to 0 exponentially fast at infinity.

Theorem 2.1 (Refined Asymptotics). Assume that u ∈ S2k is a solution of (2.1)
and define λ = P(u) ∈ Λ2k

ord, so that

u− uλ ∈W 2,2(R2).

Then, there exist δ ∈ (0, α) and γ > 0 such that

(2.13) u− uλ ∈W 2,2
−γ,−δ(R

2).

More precisely, δ > 0 and γ > 0 can be chosen so that

γ ∈ (0,
√
µ1), γ2 + δ2 < α2 and α > δ + γ cot θλ,(2.14)

where θλ is equal to the half of the minimum of the angles between two consecutive
oriented affine lines λ1, . . . , λ2k (see Definition 2.1).
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In particular, this implies that, given u ∈M2k, there exists δ̄ > 0 such that

J (u) ∈ e−δ̄|x|
2

W 2,2(R2)× Λ2k
ord.

It will be clear from the proof of this result that more is true. Namely, the choice
of δ̄ can be made uniform in any neighborhood of u ∈M2k in S2k. More, precisely,
given u ∈ M2k, there exists δu > 0 and there exists a neighborhood U of u in S2k

such that
J : U ∩M2k −→ e−δu|x|

2

W 2,2(R2)× Λ2k
ord

ū 7−→ J ū,
,

is well defined and continuous (observe that continuity of this mapping is not a
straightforward consequence of the definition of J ).

Before we state the next result, we have to introduce the notion of nondegeneracy
in this context.

Definition 2.3. A function u ∈ M2k is said to be nondegenerate if the linearized
operator

−∆ + F ′′(u),

is injective in the space L2
−γ,δ(R2), for some γ ∈ (0,

√
µ

1
) and some δ ∈ R satisfying

γ2 + δ2 < α2.

As already mentioned, the existence of a family of solutions of (2.1) which belongs
to M2k is guarantied by the result in [8], for the equation

∆u+ u− u3 = 0.(2.15)

We prove in §9 that the solutions obtained in [8] are nondegenerate, this implies
that :

Proposition 2.1. In the case where the nonlinearity is given by F (u) = 1
4 (1−u2)2

(and the equation is given by (2.15)), for each k ≥ 1, M2k contains nondegenerate
elements.

For the sake of simplicity, when proving Proposition 2.1, we restrict our attention
to the special nonlinearity

F (u) =
1

4
(1− u2)2,

since the existence of solutions is proven for this special nonlinearity in (2.15). The
method used in [8] extends in a straightforward manner to nonlinear equations of
the type (2.1) and hence, it can be shown that for general nonlinearities,M2k also
contains nondegenerate elements.

Checking whether a given solution is nondegenerate or not is a hard problem.
For example, in [7], a solution that belongs toM4 is built for the nonlinearity (1.5).
Since its nodal set is the union of two perpendicular lines it is known as the saddle
solution. The proof of the fact that this solution is nondegenerate is given in [14].

The second result of this paper is the following :

Theorem 2.2 (Dimension of the moduli space). Assume that u ∈ M2k is nonde-
generate. Then, in a neighborhood of u in S2k, the set of solutions of (2.1) is a
smooth manifold of dimension 2k.

Near any nondegenerate elements ofM2k, we also have some information about
the mapping P.
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Theorem 2.3. Assume that u ∈ M2k is nondegenerate. Then, there exists an
open neighborhood of u in S2k whose image by P is a Lagrangian submanifold of
Λ2k for the symplectic structure defined in (2.2).

Geometrically the meaning of the mapping P is clear : Given any solution
u ∈ M2k, P(u) ∈ Λ2k corresponds to the choice of 2k oriented affine lines which
determine the asymptotics of the nodal set of u at infinity. Theorem 2.2 and The-
orem 2.3 show that there is in reality less freedom than what might be initially
expected in selecting the half lines which are the asymptotes of the nodal sets
of the solutions of (2.1). Indeed, at regular points of M2k, the image of P is a
2k-dimensional submanifold of Λ2k which is 4k-dimensional.

Observe that the image of P is naturally constrained. In fact, if u ∈M2k and

P(u) = (λ1, . . . , λ2k),

with

λj = rj e
⊥
j + R ej ,

it follows from [10] that

(2.16)

2k∑
j=1

ej = 0.

Moreover, pushing further the analysis in [10], we can also prove that

(2.17)

2k∑
j=1

rj = 0.

We refer to these equalities as the balancing formulæ for the Allen-Cahn equation
and, for the sake of completeness, we give a simple proof of these equalities in
Appendix A. Observe that (2.16) implies that the angle between two consecutive
half lines is always less than or equal to π and that it can only be equal to π when
k = 1. Therefore, if u ∈M2k and λ = P(u), we always have

0 ≤ θλ ≤ π/2.

The proofs of our results follow from the application of the implicit function
theorem in a suitably designed weighted function space. The results and the argu-
ments are very much in the spirit of what has already been done in the study of the
moduli spaces of complete non compact constant mean curvatures surfaces in Eu-
clidean space or complete constant scalar curvature metrics in conformal geometry
[15], [18] and [17].

2.3. Comments and open problems. The previous results raise some interesting
questions and comments. The barrier construction in [7] generalizes to yield, for
each k ≥ 2, a solution with dihedral symmetry whose nodal set is given by the
union of the oriented half lines

λ+
j = R+ (cos(jπ/k), sin(jπ/k)),

for j = 1, . . . , 2k. These solutions whose existence is proven in [2], [10] and [5], are
referred to as k-th saddle solutions. In [14], it is proven that the saddle solution is
nondegenerate when k = 1. Is it true that, for each k ≥ 2, the k-th saddle solutions
are nondegenerate in the sense of Definition 2.3 ?
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Proving this type of result would provide a strong evidence that, given k ≥ 2, the
solutions with k nearly parallel nodal lines constructed in [8], and the k-th saddle
solutions belong to the same connected component of M2k.

Obviously, (2.1) is invariant under the action of translations and rotations of
the plane. When k = 2, Theorem 2.3 implies that, near any nondegenerate ele-
ment, M2k is 4-dimensional, but rigid motions already yield 3 degrees of freedom,
therefore, there is only one free parameter which does not come from the action of
rigid motions. This is in agreement with the result in [8], where solutions of (2.1)
which are even under both the symmetry with respect to both the x-axis and the
y-axis are constructed. It is proven in [11] that all elements of M4 are even with
respect to two perpendicular lines. When k = 2 one should be able to prove that
M4 has only one connected component (we agree that we identify the components
corresponding to u and −u). Let us mention that, when k ≥ 3, solutions without
any symmetries have been constructed in [8].

There are no example of two distinct solutions of (2.1) whose nodal sets are
asymptotic to the same set of half affine lines at infinity. Is it true that the mapping
P is injective ? Assuming that any element of M2k is nondegenerate, the image
ofM2k by the mapping P would then be an embedded Lagrangian submanifold in
Λ2k.

Finally, to end this introduction, we briefly describe the plan of the paper. We
start in §3 with the analysis of the mapping properties of family of second order
linear operator

Lζ := −∂2
x + F ′′(u0)− ζ2,

which depend on a complex parameter ζ ∈ C. Here −∂2
x + F ′′(u0) is the lin-

earized operator about the heteroclinic solution u0. This analysis reduces to the
analysis of a second order linear ordinary differential equation which is standard.
However, the original feature is that this operator is acting on weighted spaces
(coshx)δW 2,2(R,C). Depending on ζ ∈ C and δ ∈ R, we study the surjectivity
and injectivity properties of Lζ . We also provide some estimates for the inverse of
this operator (when it is well defined).

The analysis of §3 together with Fourier analysis, allows us to derive in §4 the
mapping properties of

L := −∆ + F ′′(u0),

which is the linearized operator about the model solution. Again, we are inter-
ested in the mapping properties of L when it is acting on the weighted space
eγy (coshx)δW 2,2(R2), where δ, γ ∈ R. The main result is the selection of the
range of weights δ and γ for which the operator is an isomorphism. This section is
concluded by what is usually referred to as the Linear Decomposition Lemma. In
essence, it states that, if Lw = v where both w and v belong to weighted spaces
and if v belongs to a smaller weighted space then, the function w as a nice decom-
position at infinity. This section parallels the corresponding analysis for some class
of elliptic operators defined on manifolds with cylindrical ends which is done in [16]
(see also [22] for a concise exposition of some of these ideas).

In §5, we use the results of the previous section to extend this analysis to the
analysis of the operator

L := −∆ + F ′′(u),

where u is any element of M2k. Again we define appropriate weighted space and
study the mapping properties of the operator L acting on these spaces. Roughly
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speaking the weighted spaces are obtained by gluing together the weighted spaces
defined in §3 along each end of u. Again, we identify the range of weights for which
L is Fredholm. In the next section, §6, we derive a Linear Decomposition Lemma
for the operator L.

In §7, we prove the Refined Asymptotics Theorem (Theorem 2.1). The proof
makes extensive use of the Linear Decomposition Lemma together with a scaling
argument which is originally due to L. Simon in a different context and which was
used in [12].

Finally, in §8, we set up the correct framework in which the implicit function
theorem can be applied to prove Theorem 2.2. Again, the linear analysis of §5
and the Linear Decomposition Lemma in §6 are crucial ingredients of the proof.
This part borrows ideas which have been used for example in [15] and which are
by now classical. Section §9, is devoted to the proof of Proposition 2.1 and, in
the last section §10, we give a proof of Theorem 2.3 which roughly speaking is a
consequence of the Linear Decomposition Lemma and an integration by parts.

3. The linearized operator about the heteroclinic solution

We consider the heteroclinic solution u0 which has been defined in §1 and we
recall that we have already defined the operator

L := −∂2
x + F ′′(u0).

To simplify notations, we set

(3.1) S :=
{
±√µj : j ∈ N

}
,

where the (µj)j≥0 are the eigenvalues of L (which form a finite or infinite sequence)
and where we recall that we have defined

α :=
√
F ′′(±1).

Given any complex number ζ := γ + i ξ ∈ C, with γ, ξ ∈ R, we define

Lζ := L− ζ2,

and we define the complex number η := δ + i µ ∈ C, with δ ≥ 0 by the identity

η2 = α2 − ζ2.

Observe that we have

(3.2) δ2 = α2 − γ2 + ξ2 + µ2 ≥ α2 − γ2.

The following result classifies the behavior of the solutions of the homogeneous
problem LζW = 0 at ±∞.

Lemma 3.1. There exist two linearly independent (complex valued) functions W±ζ ,

which are solutions of LζW
±
ζ = 0 in R, such that :

(i) If ζ 6= ±α, then W±ζ (x) ∼ e±η x, as x tends to +∞.

(ii) If ζ = ±α, then W+
ζ (x) ∼ 1 and W−ζ (x) ∼ x, as x tends to +∞.
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Proof. We give the proof of the result when ζ 6= ±α, the other case can be treated
using similar arguments. When ζ 6= ±α, one simply uses the fact that

(∂2
x − α2 + ζ2) e± η x = 0,

together with the fact that u0 tends to 1 exponentially fast at +∞. The existence of
W±ζ follows at once from a standard perturbation argument for ordinary differential
equations. �

Thanks to the previous result, we can define the indicial roots of the operator Lζ
which characterize the asymptotic behavior of solutions of the homogenous problem
Lζ w = 0.

Definition 3.1. The indicial roots of Lζ are the real numbers defined by

±δζ := ±<
√
α2 − ζ2.

Observe that

δζ̄ = δζ .

The following simple observation is crucial :

Lemma 3.2. The following properties hold :

(i) Assume that γ ∈ [−α, α], then

min
ξ∈R

δγ+iξ =
√
α2 − γ2.

(ii) Assume that |γ| ≥ α, then

min
ξ∈R

δγ+iξ = 0.

Proof. This easily follows from (3.2). �

Given δ ∈ R, we define the weighted space

L̃2
δ(R,C) := (coshx)δ L2(R,C),

which is equipped with the natural norm

‖W‖L̃2
δ(R,C) := ‖(coshx)−δW‖L2(R,C).

We consider the unbounded operator

Aζ,δ : L̃2
δ(R,C) 7−→ L̃2

δ(R,C),

W 7−→ LζW.

The subscripts ζ, δ keep track of the weights δ and the complex number ζ which
appears in Lζ and the parameter δ which appears in the definition of L̃2

δ(R,C). It is
easy to check that the operator Aζ,δ is an unbounded operator with dense domain
equal to

W̃ 2,2
δ (R,C) := (coshx)δW 2,2(R,C),

and also that it has closed graph. The following result is by now well known and
follows for example from [16] (see also [22]) :

Proposition 3.1. Assume that δζ > 0 and further assume that the operator Aζ,δ is
injective for some δ ∈ (−δζ , δζ), then Aζ,δ is an isomorphism for any δ ∈ (−δζ , δζ).
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Proof. As mentioned, the proof of this result follows from the general theory de-
veloped in [16] or also in [22]. Since we are dealing with a second order ordinary
differential equation, a direct proof is also available. We give here the two proofs.

First proof. Using the standard Hermitian product on L2(R,C), we can identify

the dual of L̃2
δ(R,C) with L̃2

−δ(R,C). With this identification, the adjoint of Aζ,δ
can be identified with Aζ̄,−δ, since∫

R
LζW V̄ dx =

∫
R
W Lζ̄V dx,

for all smooth, complex valued functions V and W having compact support. Let us
assume δ is not an indicial root of Lζ (namely δ 6= ±δζ). In this case, it follows from
[16] or [22] that the operator Aζ,δ is Fredholm and has closed range. Moreover, this
operator is injective if and only if Aζ̄,−δ is surjective.

Now, let us assume that δ < δζ . Using Lemma 3.1, we check that any solution of
LζW = 0 which is bounded by (coshx)δ is in fact bounded by (coshx)−δζ . Hence,
if the operator Aζ,δ is injective for some δ ∈ (−δζ , δζ), it is then injective for any
δ ∈ (−δζ , δζ). Finally, assume that δ ∈ (−δζ , δζ) and that Aζ,δ is injective. Then,
Aζ̄,−δ is also injective and, by the above duality argument, Aζ,δ is also surjective.
This completes the proof of the result.

Second proof. We assume that δζ > 0 (otherwise there is nothing to prove) and we
choose δ ∈ (−δζ , δζ). The space of solutions of the homogeneous problem LζW = 0
is spanned by the two functions W±ζ which have been defined in Lemma 3.1. By

construction W−ζ (x) ∼ e−ηx at +∞ and hence it is bounded by a constant times

(coshx)δ at +∞. Since we assume that Aζ,δ is injective, then necessarily we also
have W−ζ (x) ∼ e−ηx at −∞. Without loss of generality, we can assume that W+

ζ

is constructed in such a way that W+
ζ (x) ∼ eηx at ±∞.

Let us denote by Wζ the Wronskian of W±ζ . Namely

Wζ := W+
ζ ∂xW

−
ζ −W

−
ζ ∂xW

+
ζ .

Given V ∈ L̃2
δ(R,C), it is easy to check that

W (x) :=
1

Wζ

(
W−ζ (x)

∫ x

−∞
W+
ζ V dx+W+

ζ (x)

∫ +∞

x

W−ζ V dx

)
,

is well defined (this uses the fact that δ < δζ) and is a solution of LζW = V .

Moreover, direct estimates imply that W ∈ L̃2
δ(R,C) and also that

‖W‖L̃2
δ(R,C) ≤ C ‖V ‖L̃2

δ(R,C),

for some constant C > 0 independent of V . Details of the derivation of this estimate
are postponed to Appendix B. This completes the proof of the result. �

The main result of this section is the following :

Proposition 3.2. Assume that γ ∈ R \ S and δ ∈ R are chosen so that

γ2 + δ2 < α2.

Then, for all ξ ∈ R, the operator

Aγ+i ξ,δ : L̃2
δ(R,C) −→ L̃2

δ(R,C),

W 7−→ Lγ+iξW,
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is an isomorphism. Moreover, there exists a constant C > 0 (depending on γ and
δ) such that

‖W‖L̃2
δ(R,C) ≤

C

1 + |ξ|2
‖Lγ+iξW‖L̃2

δ(R,C),

for all W ∈ W̃ 2,2
δ (R,C).

Proof. We assume that γ ∈ R \ S and we choose δ′ ∈ (−δζ , 0]. We argue by con-
tradiction. Assume that Aζ,δ′ is not injective. Then, there would exist a nontrivial

solution of LζW = 0 which belongs to L̃2
δ′(R,C) ⊂ L2(R,C) and hence W would

be an eigenfunction of L. Indeed

LW = ζ2W.

But the operator L being real and self adjoint, we find that necessarily ζ2 ∈ R.
This implies that γ ∈ S, which is in contradiction with our hypothesis. Therefore,
Aζ,δ′ is injective and by the previous Proposition, we conclude that Aζ,δ′ is an
isomorphism for any δ′ ∈ (−δζ , δζ).

We assume that γ ∈ R \ S and δ ∈ R are chosen so that γ2 + δ2 < α2. In
particular γ ∈ (−α, α) and it follows from (3.2) and Lemma 3.2 that

δ ∈ (−δζ , δζ),

for all ξ ∈ R, where ζ = γ+ iξ. Therefore, we conclude that Aζ,δ is an isomorphism
and this property holds independently of ξ ∈ R. It remains to estimate the norm
of the inverse of Aζ,δ.

First observe that γ and δ are fixed and hence ξ is the only parameter allowed
to vary. Clearly, the inverse of Aζ,δ is bounded uniformly in ξ provided |ξ| stays in
some compact subset. Therefore, we just have to estimate the norm of the inverse
of Aζ,δ when |ξ| is large. To achieve this, we consider the equation

LζW = V,

which we integrate against (coshx)−2δ Ū . Since we are working with complex valued
functions, we have to consider the scalar product

〈a, b〉 =
1

2
(ab̄+ āb).

After an integration by parts, we obtain∫
R

(
|∂xW |2 − δ ∂x|W |2 tanhx+ (F ′′(u0)− γ2 + ξ2) |W |2

)
(coshx)−2δdx

=

∫
R
〈W,V 〉 (coshx)−2δ dx .

A second integration by parts yields∫
R

(
|∂xW |2 + (ξ2 +B) |W |2

)
(coshx)−2δdx =

∫
R
〈W,V 〉 (coshx)−2δ dx,

where we have defined for short

B(x) := F ′′(u0(x))− γ2 + δ − δ(2δ + 1) (tanhx)2 .

Now assume that ξ2 > ‖B‖L∞ and use Cauchy-Schwarz inequality to conclude that

(ξ2 − ‖B‖L∞)2

∫
R
|W |2 (coshx)−2δdx ≤

∫
R
|V |2 (coshx)−2δ dx,
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which provides the relevant estimate for |ξ| large enough. This completes the proof
of the Proposition. �

Remark 3.1. Observe that, given j ≥ 0, the assumption γ ∈ R \S can be replaced
by the assumption γ 6= ±√µi for all i ≥ j + 1, but then the operator Aγ+i ξ,δ has

to be restricted to the closed subspace of W̃ 2,2
δ (R,C), which consists of functions w

that satisfy the orthogonality condition

Πi(w) = 0, for i = 0, . . . , j,

where Πi is the projection onto the i-th eigenspace of the operator L.

4. The linearized operator about the model solution

We define

L := −∂2
y + L = −∆ + F ′′(u0),

which is, in dimension 2, the linearized equation (2.1) about the solution u0 which is
trivially extended in the y variable. We denote by (x, y) the coordinates of x ∈ R2.
Given γ, δ ∈ R, we define the weighted space

L̃2
γ,δ(R2) := eγ y (coshx)δ L2(R2),

and similarly, we define

W̃ 2,2
γ,δ (R2) := eγ y (coshx)δW 2,2(R2).

Remark 4.1. From now on all functions spaces considered are spaces of real valued
functions.

These spaces are equipped with the natural norm induced by the weight eγ y (coshx)δ.
For example

‖w‖L̃2
γ,δ(R2) := ‖e−γ y (coshx)−δ w‖L2(R2),

and so on.

4.1. Global invertibility. Given γ, δ ∈ R, we define the operator

Aγ,δ : L̃2
γ,δ(R2) −→ L̃2

γ,δ(R2),

w 7−→ Lw,

which is an unbounded operator with closed graph and dense domain given by
W̃ 2,2
γ,δ (R2) (this fact follows easily from standard elliptic estimates). Building on

the analysis of the previous section and using Fourier analysis in the y variable, we
prove that Aγ,δ is an isomorphism (from its domain into its range) provided the
weights γ and δ are carefully chosen. More precisely, when γ does not belong to S,
which has been defined in (3.1) and which is the set of indicial roots of the operator
L. This is the content of the following proposition which borrows arguments from
[16] :

Proposition 4.1. Assume that γ ∈ R \ S and δ ∈ R satisfy

γ2 + δ2 < α2.

Then, the operator Aγ,δ is an isomorphism.
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Proof. The proof is based on Fourier transform in the y variable. We want to solve
the equation Lw = v when v ∈ L̃2

γ,δ(R2). We write

w = eγyW and v = eγy V,

so that the equation we need to solve transforms into

(L− γ2 − 2 γ ∂y − ∂2
y)W = V.

Now, we perform the Fourier decomposition of W and V in the y variable. Let us
denote by Ŵ (·, x) and V̂ (·, x) the Fourier transforms of W (·, x) and V (·, x). Our
problem then reduces to solving

Lζ Ŵ (·, ξ) = V̂ (·, ξ),

which is a family of equations depending on the parameter ζ = γ + iξ. To solve
this equation, we use the result of Proposition 3.2 and then take the inverse Fourier
transform. Using Plancherel’s theorem, we can write

‖w‖2
L̃2
γ,δ(R2)

=

∫
R2

(coshx)−2δ |W |2 dx dy =

∫
R2

(coshx)−2δ |Ŵ |2 dx dξ.

The result of Proposition 3.2 then implies that

‖w‖2
L̃2
γ,δ(R2)

≤ C
∫
R2

(coshx)−2δ |V̂ |2 dx dξ .

Using once more Plancherel’s theorem, we conclude that

‖w‖2
L̃2
γ,δ(R2)

≤ C
∫
R2

(coshx)−2δ |V |2 dx dy = C ‖v‖2
L̃2
γ,δ(R2)

,

and this completes the proof of the result. �

Observe that, as a byproduct, we have the inequality

‖w‖L̃2
γ,δ(R2) ≤ C ‖Lw‖L̃2

γ,δ(R2),(4.1)

for some constant C > 0 only depending on γ and δ.

Remark 4.2. As in Remark 3.1, given j ≥ 0, we can modify the hypotheses of the
above Proposition assuming only that γ 6= ±√µi, for all i ≥ j+1, but then we have

to consider the operator Aδ,γ restricted to the closed subspace of W̃γ,δ(R2) which
consists of functions w satisfying

Πi(w(·, y)) = 0, i = 0, . . . , j,

for almost all y ∈ R, where Πi is the projection onto the i-th eigenspace of L.

Let Gζ,δ denote the inverse of Aζ,δ which is provided by Proposition 3.2. It is
interesting to observe that the previous proof yields a representation formula for
the solution of Lw = v which can be formally written as the integral over some
contour in C, namely

(4.2) w(x, y) =
1

2π

∫
< ζ=γ

eζ y Gζ,δ

(∫
R
e−ζ y

′
v(x, y′) dy′

)
dζ.

The estimate in Proposition 3.2 shows that the integral over < ζ = γ is well defined.
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4.2. A priori estimates. In this section we explain how a priori estimates can be
obtained for solutions of the equation

−(∆− Φ)w = v,

whose potential Φ is a smooth function such that

Φ ≥ α2 − ε2 > 0,(4.3)

in R2, for some ε ∈ (0, ε). These estimates are used in the subsequent proofs. Their
derivation, which relies on suitable integration by parts, is quite flexible so that it
can be easily adapted in different context.

We also assume that we are given a function Γ which is smooth, positive and for
which

(4.4) |∇Γ|2 ≤ β2 Γ2,

with β2 < α2 − ε2.
Typical examples of weight functions we consider in applications are of the form

Γ(x, y) := eδx eγy, Γ(x, y) := eδx (cosh y)γ

or
Γ(x, y) := (coshx)δ (cosh y)γ ,

where γ and δ are chosen so that

δ2 + γ2 < α2 − ε2.

It is straightforward to check that these functions satisfy (4.4) with β2 = δ2 + γ2

(observe that | sinh y| ≤ cosh y).
Let us now explain how a priori estimates can be obtained in this context. We

assume that we are given functions w and v satisfying

−(∆− Φ)w = v,

in R2. We further assume that w, |∇w|, |∇2w| ∈ Γ−1L2(R2) and also that v ∈
Γ−1L2(R2) . We compute

−
∫
w Γ2 (∆− Φ)w dx =

∫
w v Γ2 dx,

where all integrations are understood over R2. Integration by parts yields∫
w2 Φ Γ2 dx +

∫
|∇w|2 Γ2 dx =

∫
w v Γ2 dx− 2

∫
w Γ∇w∇Γ dx.

Using (4.3) together with the inequality 2ab ≤ a2 + b2, we can estimate the last
term and get

(α2−ε2)

∫
w2 Γ2 dx+

∫
|∇w|2 Γ2 dx ≤

∫
w v Γ2 dx+

∫
|∇Γ|2 w2 dx+

∫
|∇w|2 Γ2 dx.

Thanks to (4.4) we obtain

(α2 − ε2 − β2)

∫
w2 Γ2 dx ≤

∫
w v Γ2 dx,

and, using Cauchy-Schwarz inequality, we conclude that we have the a priori esti-
mate

(α2 − ε2 − β2)2

∫
w2 Γ2 dx ≤

∫
v2 Γ2 dx.(4.5)
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Naturally, this argument require some care since all integrations by parts have to
be justified but, in the case under study, this is standard and left to the reader.

Observe that this argument is quite flexible and can also be used when R2 is
replaced by a half space or a wedge, provided we control the function w on the
boundary of the domain (for example if w vanishes on this boundary).

4.3. Linear Decomposition Lemma for L. We obtain some information about
the solution of the equation Lw = v which is provided by the result of Proposi-
tion 4.1.

The first result we prove is concerned with the asymptotic behavior of the solu-
tion w in the x variable when the function v belongs to a function space which is
smaller than the function space L̃2

γ,δ(R2) which is used for the inversion of L. Here
is the precise statement :

Lemma 4.1. Assume that w ∈ L̃2
γ,δ(R2) and v ∈ L̃2

γ,δ̄
(R2) satisfy Lw = v with

δ̄ < δ. Further assume that

δ2 + γ2 < α2 and δ̄2 + γ2 < α2.

Then, w ∈ L̃2
γ,δ̄

(R2).

Proof. To prove the Lemma we choose x0 > 0 and ε > 0 such that

inf
|x|≥x0

F ′′(u0) ≥ α2 − ε2 > δ2 + γ2.

Next, we define some cutoff function χ which is identically equal to 0 for x < x0

and identically equal to 1 for x > x0 + 1. We compute

L (χw) = χ v + [∂2
x, χ]w,

where by definition
[∂2
x, χ]w := ∂2

x (χw)− χ∂2
xw.

We set
R2
x0

= {x = (x, y) ∈ R2 : x ≥ x0}.
Elliptic estimates imply that

‖w‖eγy eδxW 2,2(R2
x0

) ≤ C (‖v‖L̃2
γ,δ̄

(R2) + ‖w‖L̃2
γ,δ(R2)),

and hence, we conclude that

‖χ v + [∂2
x, χ]w‖eγy eδ̄xL2(R2

x0
) ≤ C (‖v‖L̃2

γ,δ̄
(R2) + ‖w‖L̃2

γ,δ(R2)).

for some constant C > 0 (depending on x0).

We claim that there exists a function w̄ ∈ eγy eδ̄xL2(R2
x0
,R) such that

(4.6) L w̄ = L (χw),

in R2
x0

and w̄ = 0 on ∂R2
x0

. To prove the claim, we first solve the equation in
[x0, x1] × [−y0, y0] under homogeneous Dirichlet boundary conditions, denote this
solution by w̄x1,y0

, and then let x1 and y0 tend to infinity. To pass to the limit, we
use the a priori estimate of the previous section to get

‖w̄x1,y0‖eγy eδ̄xL2([x0,x1]×[−y0,y0]) ≤ C ‖L (χw)‖eγy eδ̄xL2(R2
x0

),

where the constant C > 0 depends neither on x1 > x0 + 1 nor on y0 > 1. Elliptic
estimate together with this a priori estimate allows to pass to the limit as x1 and
y0 tend to infinity. This completes the proof of the claim.
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Finally, we use once more the a priori estimate to show that χw = w̄ in R2
x0

.

Indeed, by construction L(w̄ − χw) = 0 in R2
x0

, vanishes on the boundary of this

set and w̄ − χw ∈ eγy eδxL2(R2
x0

). The a priori estimate of the previous section
implies that

‖w̄ − χw‖eγy eδxL2(R2
x0

) ≤ C ‖L(w̄ − χw)‖eγy eδxL2(R2
x0

) = 0.

Therefore, we conclude that w ∈ eγy eδ̄xL2(R2
x0

). A similar argument applies in

R2
−x0

= {x = (x, y) ∈ R2 : x ≤ −x0},

thus ending the proof. �

We define the function space

L2
γ,δ(R2) := (cosh y)γ (coshx)δ L2(R2).

Observe that when γ ≥ 0

L2
−γ,δ(R2) ⊂ L̃2

γ,δ(R2).

We are now concerned with the behavior of the solution w in the y variable when
the function v belongs to L2

−γ,δ(R2) which is a smaller space than the function space

L̃2
γ,δ(R2) which is used for the inversion of L. To state the relevant result we let χ

be a cutoff function which is identically 0 in (−∞,−1) and identically 1 in (1,+∞).
With this notation the following holds :

Lemma 4.2 (Linear Decomposition Lemma). Let µj < µj+1 be two consecutive
eigenvalues of the operator L := −∂2

x + F ′′(u0). We assume that
√
µj < γ <

√
µj+1,

and also that

γ2 + δ2 < α2.

We further assume that w ∈ L̃2
γ,δ(R2) and

Lw = v ∈ L2
−γ,δ(R2).

Then, for i = 0, . . . , j, there exist wi, w̄i in the i-th eigenspace of L and w̄ ∈
L2
−γ,δ(R2) such that

w(x, y) = w̄(x, y) + χ(y) (w0(x) + y w̄0(x)) +

j∑
i=1

χ(y) (wi(x) e
√
µ
i
y + w̄i(x) e−

√
µ
i
y),

(we agree that the last sum is not present when j = 0). Moreover,

j∑
i=0

(‖wi‖L2(R) + ‖w̄i‖L2(R)) + ‖w̄‖L2
−γ,δ(R2) ≤ C ‖v‖L2

−γ,δ(R2),

for some constant C > 0 only depending on γ and δ.

Proof. Recall that Πi is the L2-orthogonal projection over the i−th eigenspace of
L. We decompose

w = w⊥ +

j∑
i=0

w
‖
i and v = v⊥ +

j∑
i=0

v
‖
i
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where, for all i = 0, . . . , j

Πi(w
⊥) = 0, Πi(v

⊥) = 0,

and
w
‖
i = Πi(w), v

‖
i = Πi(v),

for almost every y ∈ R.
Recall that, mutatis mutandis, the result of Proposition 4.1 holds when we re-

strict our attention to the space of functions w satisfying

(4.7) Πi(w) = 0 for almost every y ∈ R and i = 0, . . . , j,

(see Remark 4.2). The only difference being that the restriction on γ is now given
by γ 6= ±√µ

i+1
for all i ≥ j.

Thanks to the analysis of the previous section, we can write

w⊥(x, y) =
1

2π

∫
<ζ=γ

e−ζ y Gζ,δ

(∫
R
eζ y

′
v⊥(x, y′) dy′

)
dζ.

Let us assume that, in addition, v⊥ has compact support (the general result follows
by density). The integrand depends analytically on ζ in the set

{ζ ∈ C : < ζ ∈ (−√µj+1,
√
µj+1)},

since we are working under the assumption that all functions do satisfy (4.7). There-
fore, Cauchy formula implies that

1

2π

∫
<ζ=γ

e−ζ y Gζ,δ

(∫
R
eζ y

′
v⊥(x, y′) dy′

)
dζ,

does not depend on γ ∈ (−√µj+1,
√
µj+1). Consequently, we have

w⊥(x, y) =
1

2π

∫
<ζ=−γ

e−ζ y Gζ,δ

(∫
R
eζ y

′
v⊥(x, y′) dy′

)
dζ,

which implies that

w⊥ ∈ L̃2
−γ,δ(R2) ∩ L̃2

γ,δ(R2) = L2
−γ,δ(R2).

It remains to prove the result for w
‖
i . Observe that, this time, the problem

reduces to solving an ordinary differential equation

(−∂2
y + µi)w

‖
i = v

‖
i .

It is easy to check that the solution is explicitly given by
(4.8)

w
‖
i (x, y) =


−
∫ y

−∞

∫ y′

−∞
v
‖
i (x, y′′) dy′′ dy′, when i = 0,

1

2
√
µi

∫ y

−∞

(
e
√
µi(y

′−y) − e
√
µi(y−y′)

)
v
‖
i (x, y′) dy′, when 0 < i ≤ j.

Moreover, when 0 < i ≤ j, the function w
‖
i can be decomposed as

w
‖
i = w̄

‖
i + χ(y) (wi e

√
µiy + w̄i e

−√µiy),

where w̄
‖
i ∈ L2

−γ,δ(R2,R) and wi, w̄i belong to the i−th eigenspace of L. A similar
decomposition can be done when i = 0. The estimate in the statement of the result
follows at once from the proof and is left to the reader. �
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Since we will only use this result in the case where γ ∈ (0,
√
µ1), namely when

j = 0, let us examine this case more closely, giving at the same time another
consequence of the Linear Decomposition Lemma. Keeping in mind the applications
we are interested in, we fix γ ∈ (0,

√
µ

1
) and δ ∈ R such that δ2 + γ2 < α2. It is

useful to introduce the operator A−γ,δ, defined by

(4.9)
A−γ,δ : L2

−γ,δ(R2)⊕ D −→ L2
−γ,δ(R2),

w 7−→ Lw,

where D is the finite dimensional space defined by

D := Span

{
(x, y) 7−→ χ(y) ∂xu0(x), (x, y) 7−→ (1− χ(y)) ∂xu0(x),

(x, y) 7−→ χ(y) y ∂xu0(x), (x, y) 7−→ (1− χ(y)) y ∂xu0(x)

}
.

Usually, D is referred to as the deficiency space.
We now prove that the operator A−γ,δ is surjective and that it has a two dimen-

sional kernel. Notice that the deficiency space is 4 dimensional and that it can be
decomposed into

D = K⊕ E,

where

K = Span {(x, y) 7−→ ∂xu0(x), (x, y) 7−→ y ∂xu0(x)} ,
and

E = Span {(x, y) 7−→ χ(y) ∂xu0(x), (x, y) 7−→ χ(y) y ∂xu0(x)}.
We claim that the Linear Decomposition Lemma implies that the unbounded

operator

Ā−γ,δ : L2
−γ,δ(R2)⊕ E −→ L2

−γ,δ(R2),

w 7−→ Lw,
is an isomorphism. Indeed, if v ∈ L2

−γ,δ(R2), Proposition 4.1 provides the existence

of a solution w of Lw = v with w ∈ L̃2
γ,δ(R2). The Linear Decomposition Lemma

then implies that w ∈ L2
−γ,δ(R2) ⊕ E and this proves that the operator Ā−γ,δ is

surjective. Clearly K contains the kernel of A−γ,δ, and it suffices to show that
this set is precisely equal to the kernel of A−γ,δ. To proceed, we assume that

w ∈ L2
−γ,δ(R2) ⊕ E satisfies Lw = 0. Then, w ∈ L̃2

γ,δ(R2) and Proposition 4.1
implies that w ≡ 0, which completes the proof of the claim. As a by product, we
have shown that the operator A−γ,δ is surjective and has a 2-dimensional kernel
equal to K.

All the above results can be extended, with obvious modifications, to handle the
case where γ is chosen between two consecutive indicial roots of L, namely when√
µj < γ <

√
µj+1.

5. The linearized operator about an element of M2k

In this section, we first explain how the previous results can be put together to
obtain similar results for the linearized operator about the function uλ which was
defined in (2.6), where λ := (λ1, . . . , λ2k) ∈ Λ2k

ord. We then show that these results
extend to the operator linearized about any element of M2k.
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To begin with, we assume that λ ∈ Λ2k
ord is fixed and we denote by Lλ the

linearized operator about uλ, namely

Lλ = −∆ + F ′′(uλ),

and we derive an a priori estimate for this operator in the space L2
γ,δ(R2). Recall

that this space is defined in (2.11). In this analysis, we also need to consider the

weighted space W 2,2
γ,δ (R2) which was defined in (2.12). The following result follows

from the previous analysis together with a careful use of cutoff functions. It shows
the crucial role played by S, the set of indicial roots of L, in our analysis :

Proposition 5.1. Assume that γ ∈ R \ S, and

δ2 + γ2 < α2.

Then, there exist R̄ ≥ R and C > 0 such that, for all w, v ∈ L2
γ,δ(R2), satisfying

Lλ w = v,

we have

‖w‖L2
γ,δ(R2) ≤ C

(
‖v‖L2

γ,δ(R2) + ‖w‖L2(BR̄)

)
.

Proof. First of all, observe that elliptic estimates immediately imply that

(5.1) ‖w‖W 2,2
γ,δ (R2) ≤ C

(
‖v‖L2

γ,δ(R2) + ‖w‖L2
γ,δ(R2)

)
.

To proceed, we keep the notation of § 2.1. In particular, the oriented half lines
λ+
j , which correspond to the asymptotes of the nodal curves of uλ, are parameterized

by

(0,∞) 3 s 7−→ xj + s ej ∈ R2.

For notational purposes, it is convenient to extend the sequence of oriented half
lines λ+

1 , . . . , λ
+
2k periodically by setting λ+

j+2k := λ+
j , xj+2k := xj and ej+2k = ej

for any j ∈ Z.
We denote by λ+

j+ 1
2

the oriented half line bisecting the lines containing λ+
j and

λ+
j+1 parameterized by

s ∈ (0,∞) 7−→ xj+ 1
2

+ s ej+ 1
2
∈ R2,

where

ej+ 1
2

:=
ej + ej+1

2
,

and xj+ 1
2
∈ ∂BR. This point is contained in the angular arc of ∂BR (assuming its

positive orientation) starting at xj and ending at xj+1.
Recall that we have defined Ωj in (2.5) which is a connected component of R2

which contains λ+
j . Similarly, we define the angular sector Ωj+ 1

2
which is the

connected component of R2 \ (λ+
j ∪ λ

+
j+1 ∪ ∂BR) containing λ+

j+ 1
2

.

We need to introduce two more angular sectors

Ω′′j+1/2 ⊂ Ω′j+1/2 ⊂ Ωj+1/2,

which are both included in the connected component of R2 \ (λ+
j ∪ λ

+
j+1 ∪ ∂BR)

which contains λ+
j+ 1

2

. The sector Ω′j+1/2 is limited by ∂BR and the two half-lines

λ+
j+1/4 and λ+

j+3/4 respectively bisecting λ+
j and λ+

j+1/2 for the former and λ+
j+1/2
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and λ+
j+1 for the latter. The sector Ω′′j+1/2 is limited by ∂BR and the two half-

lines λ+
j+3/8 and λ+

j+5/8 respectively bisecting λ+
j+1/4 and λ+

j+1/2 for the former and

λ+
j+1/2 and λ+

j+3/4 for the latter.

Finally, for all j = 1, . . . , 2k, we define the cutoff function Ij+ 1
2

such that :

(i) Ij+ 1
2
≡ 0 in the set R2 \ Ω′j+1/2,

(ii) Ij+ 1
2
≡ 1 in the sector Ω′′j+1/2,

(iii) |∇`Ij+ 1
2
(x)| ≤ C (1 + |x|)−`, for ` = 0, 1, 2.

Observe that (i)-(iii) imply that the support of Ij+ 1
2

is an expanding, wedge-like

set centered around λ+
j+ 1

2

and which is contained in Ω′j+1/2.

We write

γ ej + δ e⊥j = γ̃j+ 1
2
ej+ 1

2
+ δ̃j+ 1

2
e⊥j+ 1

2
,

where γ̃2
j+ 1

2

+ δ̃2
j+ 1

2

= γ2 + δ2. Elementary geometry implies that

γ ej+1 − δ e⊥j+1 = γ̃j+ 1
2
ej+ 1

2
− δ̃j+ 1

2
e⊥j+ 1

2
,

since ej+1 and ej are symmetric with respect to the reflection leaving ej+ 1
2

fixed.

We set

Γγ̃
j+ 1

2
,δ̃
j+ 1

2

(x) := e
γ̃
j+ 1

2
(x·e

j+ 1
2

)
(

cosh (x · e⊥j+ 1
2
)
)δ̃

j+ 1
2 .(5.2)

Observe that the weights Γγ,δ and Γγ̃
j+ 1

2
,δ̃
j+ 1

2

are equivalent in the sector Ωj+ 1
2
.

Namely, there exists C > 1 such that

1

C
Γγ,δ ≤ Γγ̃

j+ 1
2
,δ̃
j+ 1

2

≤ C Γγ,δ,

in Ωj+ 1
2
.

Now, if Lλ w = v then

Lλ(Ij+ 1
2
w) = Ij+ 1

2
v + [Lλ, Ij+ 1

2
]w,

where, as usual,

[Lλ, Ij+ 1
2
]w := Lλ(Ij+ 1

2
w)− Ij+ 1

2
(Lλ w).

Given ε > 0 small enough, there exists R̄ ≥ R > 0 such that

F ′′(uλ) ≥ α2 − ε2,

in the support of Ij+ 1
2

and away from BR̄. Making use of an argument similar to

the one we used to obtain (4.5), we get

(5.3)

(α2 − ε2 − β̃2
j+1/2)2

∫
R2\BR̄

Γ2
−γ̃

j+ 1
2
,−δ̃

j+ 1
2

|Ij+ 1
2
w|2 dx

≤ C
(∫

R2\BR̄
Γ2
−γ̃

j+ 1
2
,−δ̃

j+ 1
2

|Ij+ 1
2
v|2 dx

+

∫
R2\BR̄

Γ2
−γ̃

j+ 1
2
,−δ̃

j+ 1
2

|[Lλ, Ij+ 1
2
]w|2 dx

+

∫
∂BR̄

Γ2
−γ̃

j+ 1
2
,−δ̃

j+ 1
2

∣∣∣∂r(Ij+ 1
2
w)
∣∣∣ Ij+ 1

2
w dx

)
,
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where β̃2
j+1/2 := δ̃2

j+ 1
2

+γ̃2
j+ 1

2

. Since Γγ,δ and Γγ̃
j+ 1

2
,δ̃
j+ 1

2

are equivalent in Ωj+ 1
2
, the

first term on the right hand side can be estimated by a constant (independent of R̄)
times ‖v‖L2

γ,δ(R2). Using the fact that Ij+ 1
2

satisfies property (iii), we conclude that

the second term on the right hand side is bounded by a constant (independent of
R̄) times R̄−1 ‖w‖L2

γ,δ(R2). Finally, using standard elliptic estimates together with

a trace embedding, one can check that the third term on the right hand side can
be estimated by a constant (depending on R̄) times ‖w‖L2(BR̄+1). Using once more
the fact that the weights Γγ,δ and Γγ̃

j+ 1
2
,δ̃
j+ 1

2

are equivalent in the sector we are

working in, we conclude that

(5.4) ‖Ij+ 1
2
w‖L2

γ,δ(R2) ≤ C ‖v‖L2
γ,δ(R2) + CR̄ ‖w‖L2(BR̄+1) + C R̄−1 ‖w‖L2

γ,δ(R2),

where CR̄ > 0 depends on R̄ but C > 0 does not.
Given j = 1, . . . , 2k, we now estimate the function Ijw. Applying some rigid

motion and changing the sign of uλ if this is necessary, we can assume that λj is
the y-axis and that uλ = u0 near λ+

j . In particular, Lλ coincides with the operator
L defined in §4 close to λj . The function Ij w satisfies

L (Ij w) = Ij v + [Lλ, Ij ]w + (L − Lλ) (Ij w).(5.5)

We can then apply the result of Proposition 4.1 and in particular we can make use
of (4.1). To estimate the second term in (5.5), we use the definition of the Ij (see
section 2.1), together with elliptic estimates to get

‖[Lλ, Ij ]w‖L2
γ,δ(R2) ≤ C ‖Ij+ 1

2
w‖L2

γ,δ(R2) + CR̄ ‖w‖L2(BR̄+1),

where, as usual, CR̄ > 0 depends on R̄ while C > 0 does not.
Using the definition of uλ given in (2.6), one can check that there exists γ0 > 0

such that

|F ′′(uλ)− F ′′(u0)| ≤ C |uλ − u0| ≤ C e−γ0R̄,

in the set where Ij > 0 and |x| > R̄. Therefore, we get

‖(L − Lλ) (Ij w)‖L2
γ,δ(R2) ≤ CR̄ ‖w‖L2(BR̄+1) + C e−γ0 R̄ ‖w‖L2

γ,δ(R2).

Collecting these estimates, we conclude that

(5.6)
‖Ij w‖L2

γ,δ(R2) ≤ C ‖v‖L2
γ,δ(R2) + CR̄ ‖w‖L2(BR̄+1)

+ C ‖Ij+ 1
2
w‖L2

γ,δ(R2) + C e−γ0 R̄ ‖w‖L2
γ,δ(R2).

When j = 0, the corresponding estimate for I0 w is straightforward and left to
the reader. In any case, (5.4) and (5.6) imply that

‖w‖L2
γ,δ(R2) ≤ C ‖v‖L2

γ,δ(R2) + CR̄ ‖w‖L2(BR̄+1)) + C (e−γ0 R̄ + R̄−1) ‖w‖L2
γ,δ(R2),

where CR̄ > 0 depends on R̄ while C > 0 does not. The proof of the main estimate
then follows by taking R̄ large enough. �

As a Corollary of the previous Proposition, we obtain some a priori estimate for
solutions of Lw = v, for any u ∈M2k :

Corollary 5.1. Assume that u ∈M2k and let

L := −∆ + F ′′(u),



MODULI SPACE FOR ALLEN-CAHN 25

be the linearized operator about u. Let γ, δ be chosen so that they satisfy the
hypothesis of Proposition 5.1. Then, there exist R̄ ≥ R and C > 0 such that, for
all w, v ∈ L2

γ,δ(R2), satisfying

Lw = v,

the following inequality holds

‖w‖L2
γ,δ(R2) ≤ C

(
‖v‖L2

γ,δ(R2) + ‖w‖L2(BR̄)

)
.

Proof. The proof is a simple consequence of a classical perturbation argument.
Indeed, by definition, if u ∈M2k, there exists λ ∈ Λ such that u− uλ ∈W 2,2(R2).
Thanks to Sobolev embedding, for any ε, there exists R̄ε ≥ R̄ such that

‖F ′′(u)− F ′′(uλ)‖L∞(R2\BRε ) ≤ ε.

Hence

‖(F ′′(u)− F ′′(uλ))w‖L2
γ,δ(R2) ≤ Cε ‖w‖L2(BR̄ε ) + ε ‖w‖L2

γ,δ(R2),

for some constant Cε > 0 (depending on ε). Since Lλ w = v+ (F ′′(uλ)−F ′′(u))w,
it follows from Proposition 5.1, that

‖w‖L2
γ,δ(R2) ≤ C ‖v‖L2

γ,δ(R2) + C ε ‖w‖L2
γ,δ(R2) + Cε ‖w‖L2(BR̄ε ),

where C > 0 does not depend on ε. The result then follows at once, choosing ε
small enough so that C ε ≤ 1/2. �

Thanks to the previous Corollary, we are now in a position to prove the following
key result which is also the main result of this section. It again enlightens the role
of S, the set of indicial roots of L :

Proposition 5.2. Assume that γ ∈ R \ S and

δ2 + γ2 < α2.

Then, the operator

Aγ,δ : L2
γ,δ(R2) −→ L2

γ,δ(R2),

w 7−→ Lw,

is Fredholm. In addition Aγ,δ is injective if and only if A−γ,−δ is surjective.

Proof. These are classical results of Fredlhom theory and their proofs follow those
of analogous statements in in the compact setting, together with intensive use of
Corollary 5.1. For example, to prove that the kernel of Aγ,δ is finite dimensional,
we consider

B1 := {w ∈ KerAγ,δ : ‖w‖L2(BR̄) ≤ 1},
the unit ball of KerAγ,δ using the norm of L2(BR̄). Making use of the result of
Corollary 5.1 together with elliptic estimates, we see that this set is also bounded
in W 2,2

γ,δ (R2) and Sobolev embedding implies that it is compact in L2(BR̄). In
particular, this implies that KerAγ,δ is finite dimensional.

The proof that Aγ,δ is closed is again based on Corollary 5.1 using similar argu-
ments. For details, we refer the reader to [22]. Finally, the last statement follows
from standard results on unbounded operators (see for example [4]) together with
the natural identification of the dual of L2

γ,δ(R2) with L2
−γ,−δ(R2). �
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6. Linear Decomposition Lemma for L

In this section, we pursue our investigations of the properties of the operator
Aγ,δ. We assume that L is the linearized operator about an element u ∈M2k such

that u− uλ ∈W 2,2

−γ̄,−δ̄(R
2), for some γ̄, δ̄ > 0 satisfying (2.14).

First, we derive a Linear Decomposition Lemma for the operator L in the spirit
of the one we have obtained in § 4.3 for the operator L and we use this result to
compute the dimension of the kernel of the operator Aγ,δ.

For j = 1, . . . , 2k, it is convenient to define the vector fields

Xj(x) := Ij(x) e⊥j ,(6.1)

and

Yj(x) := Ij(x)
(
ej · (x− xj) e

⊥
j − e⊥j · (x− xj) ej

)
.(6.2)

To have a better understanding of these two vector fields, observe that the vector
fields

X̊j(x) := e⊥j ,

and

Y̊j(x) := ej · (x− xj) e
⊥
j − e⊥j · (x− xj) ej ,

are the Killing vector fields associated, respectively, to translations in the direction
of the vector e⊥j and rotation about xj, expressed in terms of the orthonormal basis

{e⊥j , ej}.
Finally, we define the deficiency space

D := Span {du(Xj),du(Yj) : j = 1, . . . , 2k} .

Since we assume that u− uλ ∈W 2,2

−γ̄,−δ̄(R
2), we have

du(Xj)(x)− ∂xu0

(
(x− xj) · e⊥j

)
∈W 1,2

−γ,−δ(R
2),

du(Yj)− ej · (x− xj) ∂xu0

(
(x− xj) · e⊥j

)
∈W 1,2

−γ,−δ(R
2),

(6.3)

for any γ ∈ (0, γ̄) and δ ∈ (0, δ̄).
The following result is a consequence of the result of Lemma 4.2.

Proposition 6.1. Assume that γ ∈ (0,
√
µ1) and δ > 0 are fixed so that

γ2 + δ2 < α2,

and δ ∈ (0, δ̄), γ ∈ (0, γ̄). We further assume that v ∈ L2
−γ,−δ(R2) and w ∈

L2
γ,δ(R2) are solutions of

Lw = v.(6.4)

Then

w ∈ L2
−γ,−δ(R2)⊕D,(6.5)

and

‖w‖L2
−γ,−δ(R2)⊕D ≤ C

(
‖v‖L2

−γ,−δ(R2) + ‖w‖L2
γ,δ(R2)

)
,

for some constant C > 0 only depending on δ and γ.
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Proof. The proof is decomposed into two steps.
Step 1. We begin by showing that in the angular sectors which do not contain

the ends λ+
j , the function w grows exponentially at a slightly slower rate then

suggested by the fact that it belongs to L2
γ,δ(R2). This uses the fact that, away

from the λ+
j , the linearized operator L is strongly coercive. To state this precisely

we use the notations introduced in the proof of Proposition 5.1.
Since we work with one sector at a time, we may well assume that

λ+
j+ 1

2

∩ (R2 \BR) = {x = (0, y) : y ≥ R},

(this can always be achieved after a suitable rigid motion) and that the image of
the angular sector Ωj+ 1

2
∩ (R2 \BR) under this rigid motion is the angular sector

KR,β := {x = (x, y) : β |x| ≤ y} ∩ (R2 \BR),

for some β > 0. Likewise the image of Ω′
j+ 1

2

∩ (R2 \BR) is the sector KR,β/2. Note

that if θj+1 − θj is the oriented angle between λ+
j and λ+

j+1 then

cot

(
θj+1 − θj

2

)
=

1

β
.

We define

e±β :=
(1,±β)√

1 + β2
, e⊥±β :=

(∓β, 1)√
1 + β2

.

and we let x±R be the points of intersection of the nodal lines y = ±βx with BR.
Consider the functions G±ε defined by

G±ε (x) := (cosh(e±β · (x− x±R)))γ (cosh(e⊥±β · (x− x±R)))δ−ε.

Choosing M > 0 large enough and ε > 0 sufficiently small (so that α2 − γ2 − (δ −
ε)2 > 0), we find that the function

wM,ε = M (G+
ε +G−ε ),

is a positive supersolution for the equation Lw = v in the sector KR,β . Then, by
the maximum principle and elementary geometric manipulations, we see that there
exist M > 0 and ε′ ∈ (0, ε) such that

(6.6)
|w(x)| ≤M (cosh(e+β · (x− x+

R)))γ−ε
′
(cosh(e⊥+β · (x− x+

R)))δ−ε
′

+M (cosh(e−β · (x− x−R)))γ−ε
′
(cosh(e⊥−β · (x− x−R)))δ−ε

′
.

in the sector KR,β/2. Thus, at least as far as the sector KR,β/2 is concerned, the
function w is in a better space then the one predicted initially by the fact that we
know that w ∈ L2

γ,δ(R2).
Step 2. Again, applying a suitable rigid motion, we may assume that the nodal

line λ+
j is contained in the y-axis, y > 0. In this case, the lines bisecting the angles

between λ+
j and λ+

j+1 and λ+
j and λ+

j−1 become respectively

L1 := {(x, y) : y = −β1x, x < 0} and L2 := {(x, y) : y = β2 x, x > 0},

where β1, β2 > 0. We denote by ÃR the sector which is outside BR and bounded
by these lines. We consider a smooth cutoff functions Ĩ whose support is equal to
ÃR and such that :
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(i) Ĩ(x, y) = 1 whenever y < max(−β1x, β2x) ,

(ii) Ĩ(x, y) = 0, whenever y > max(−2β1x, 2β2x).

The function w̃ := Ĩw solves the equation

(−∆ + F ′′(u0)) w̃ = Ĩ v − [∆, Ĩ]w + (F ′′(u0)− F ′′(u)) Ĩw.

This equation can now be considered as an equation in the whole R2 whose right
hand side belongs to L2

γ−ε′′,δ−ε′′(R2), for some ε′′ > 0. This latter fact follows from

(6.6) together with elliptic estimates. Therefore, Lemma 4.2 and the discussion at
the end of §4 can be used to prove that

w̃ ∈ L2
γ−ε′′,δ−ε′′(R2)⊕ D.

From this and considering all other ends in a similar manner, we get the existence
of ε̄ > 0 such that

w ∈ L2
γ−ε̄,δ−ε̄(R2)⊕D.

This argument can be now iterated to conclude, after finitely many steps, that (6.5)
holds and the proof is complete. �

We introduce the following :

Definition 6.1. A solution u ∈ M2k is said to be nondegenerate if the linear
operator A−γ,δ, associated to −∆ + F ′′(u), is injective for some γ ∈ (0,

√
µ

1
) and

some γ ∈ R satisfying γ2 + δ2 < α2.

Before, we proceed, there is a very important remark which is due. Following
the proof of Proposition 6.1, one checks that, if the operator A−γ,δ is injective for
some δ ∈ (0,

√
µ

1
) and some δ ∈ R satisfying γ2 + δ2 < α2, then it is injective for

any δ ∈ (0,
√
µ

1
) and any δ ∈ R such that γ2 + δ2 < α2.

For all γ, δ > 0, we define the operator

(6.7)
Ã−γ,−δ : L2

−γ,−δ(R2)⊕D −→ L2
−γ,−δ(R2),

u 7−→ Lu.

Now, as we have already done at the end of §4, we compute the dimension of the
kernel of the operator Ã−γ,−δ, using Proposition 6.1 in the same way we have used

Lemma 4.2 to compute the dimension of the kernel of the operator Ã−γ,δ.

Proposition 6.2. Assume that u ∈M2k is nondegenerate and further assume that
γ and δ are fixed as in Proposition 6.1. Then the operator Ã−γ,−δ is surjective and
has a 2k dimensional kernel.

Proof. As already mentioned, the proof is very close to the one already outlined
at the end of §4. Since u is nondegenerate and in view of the above remark,
the operator A−γ,−δ is injective. Thanks to Proposition 5.2, its adjoint Aγ,δ is
surjective. In particular, for all v ∈ L2

−γ,−δ(R2) ⊂ L2
γ,δ(R2), we get the existence of

w ∈ L2
γ,δ(R2) solution of Lw = v. Then, the result of Proposition 6.1 implies that

w ∈ L2
−γ,−δ(R2)⊕D and this proves the surjectivity of Ã−γ,−δ.

We now compute the dimension of the kernel of Ã−γ,−δ. As a starting point,
onserve that Proposition 6.1 also implies that

Ker (Aγ,δ) = Ker (Ã−γ,−δ),
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and, by duality, we have

dim Ker(Aγ,δ) = codim Im(A−γ,−δ).

We claim that standard arguments in linear algebra together with the result of
Proposition 6.1, imply that

dimD = dim Ker (Aγ,δ) + codim Im(A−γ,−δ).

Indeed, the operator L acting on L2
−γ,−δ(R2) is injective and is not surjective, the

codimension of its image is, by definition, equal to the codimension of Im(A−γ,−δ).
Adding to the function space L2

−γ,−δ(R2) the deficiency space D makes this oper-
ator L surjective but creates a kernel whose dimension is equal to the dimension
of Ker (Aγ,δ). Therefore the dimension of D is the sum of the codimension of
Im(A−γ,−δ) and the dimension of Ker (Aγ,δ). The proof of the claim is complete.

From this it follows that

dim Ker (Ã−γ,−δ) = codim Im (A−γ,−δ) =
1

2
dimD = 2k,(6.8)

as claimed, since dimD = 4k. �

The formula (6.8) is usually reffered to as the relative index formula.

7. Refined asymptotics, the proof of Theorem 2.1

We use the results of the previous sections, and in particular Proposition 5.1 to
prove Theorem 2.1. Thus, we assume that u = uλ + v ∈M2k, where v ∈W 2,2(R2)
and where λ = (λ1, . . . , λ2k). Let us denote

N(u) := −∆u+ F ′(u).(7.1)

Obviously, we can expand

N(u) = N(uλ) + Lλ v +Q(v),

where the linear operator

Lλ := −∆ + F ′′(uλ),

is the one which has already been defined in §5 and where the nonlinear operator

Q(v) := F ′(uλ + v)− F ′(uλ)− F ′′(uλ) v,

collects the nonlinear terms.
Now, if N(u) = 0 then, we find that the function v solves

Lλ v = −N(uλ)−Q(v).(7.2)

As we will see later, the function N(uλ) belongs to L2
−γ,−δ(R2) for some γ, δ > 0

close enough to 0. This, together with the Linear Decomposition Lemma and the
quadratic nature of the term Q(v) strongly suggests that we should be able to prove

that the function v belongs to
(
W 2,2
−γ,−δ(R2) ⊕ D

)
∩W 2,2(R2). And the fact that

the elements of the deficiency space D do not belong to W 2,2(R2) then implies

that v ∈ W 2,2
−γ,−δ(R2). Unfortunately, the situation turns out to be slightly more

complicated since, to begin with, the only information we have to start the process
is that v ∈ W 2,2(R2) and hence we do not have any exponential decay for the
function v and as a consequence, we do not have any decay property for the term
Q(v). In summary, a simple minded bootstrap argument cannot apply be applied
to carry out the above scheme.
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On the other hand, if we knew that v had some exponential decay at infinity,
then right away a bootstrap argument would give us the optimal exponential decay
for the function v, comparable with the one of the term N(uλ). So the main issue
is to be able to start the bootstrap process. To this end, we use a scaling argument
inspired by an idea of L. Simon. In [12] a similar argument was used to derive some
refined asymptotics for constant scalar curvature metrics with isolated singularities.
One of the crucial ingredients in the proof is the balancing formula (11.1) which is
used to derive (2.16) and (2.17).

Lemma 7.1. Assume that γ̄ > 0 and δ̄ > 0 are fixed such that γ̄2 + δ̄2 < α2 and

γ̄ cot

(
θj+1 − θj

2

)
+ δ̄ < α,(7.3)

for j = 1, . . . , 2k (recall that θj is the angle which defines the oriented half line λ+
j ).

Then,

|N(uλ)| ≤ C Γ−γ,−δ,

for any γ ∈ (0, γ̄) and δ ∈ (0, δ̄), where Γ−γ,−δ is the weight function defined in
(2.10).

Proof. We denote for the sake of brevity u0,j := (−1)j u0(dists(·, λj)). To begin
with, we write

N(uλ) =

2k∑
j=1

[−∆, Ij ]u0,j + F ′(uλ)−
2k∑
j=1

Ij F ′(u0,j).(7.4)

To estimate the first of the terms on the right hand side, we consider the set

O` := {x ∈ R2 : (I` + I`+1)(x) = 1},

for some 1 ≤ ` ≤ 2k. Then, using the fact that I` + I`+1 ≡ 1 in O`, we can write

2k∑
j=1

[−∆, (−1)jIj ]u0,j = −2∇
(
u0,` + u0,`+1

)
· ∇I` − (u0,` + u0,`+1) ∆I`,

in O`. We recall now that the heteroclinic solution u0, which is odd, satisfies

0 ≤ 1− u0(x) ≤ C (coshx)−α,

for some constant C > 0, with similar estimates for the derivatives of u0. Thus, we
get

|(u0,j + u0,j+1)(x)| ≤ C
∑
`=0,1

e−γ̄(x−xj+`)·ej+`
(
cosh((x− xj+`) · e⊥j+`)

)−δ̄
,

for x ∈ O`, provided γ̄ > 0 and δ̄ > 0 satisfy (7.3). Since analogous estimates hold
for the term involving the gradient of u0,j + u0,j+1, we conclude that,∣∣∣∣∣∣

2k∑
j=1

[−∆, Ij ]u0,j

∣∣∣∣∣∣ ≤ C Γ−γ,−δ,

for γ ∈ (0, γ̄), δ ∈ (0, δ̄). The estimates of the other term in (7.4) can be obtained
using similar arguments. This completes the proof of the result. �
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For further use, we assume that the constant γ which appears in Lemma 7.1 and
which is used below, is also chosen so that γ ∈ (0,

√
µ1). For all R > 0, we define

E(R) := max
(
e−aR, ‖u− uλ‖L∞(R2\BR)

)
,(7.5)

where the constant a > 0 is chosen close enough to 0. We now state the main result
of this section.

Proposition 7.1. There exist R̄ > 0 and r∗ > 0 such that for all R > R̄, we have

E(R+ r∗) ≤
1

2
E(R).(7.6)

Before we proceed with the proof of this Proposition, let us explain how Theorem
2.1 follows easily from it. Indeed, assuming we have already proven this Proposition,
we define

ā :=
1

2 r∗
log 2 > 0,

and, using (7.6), we get for any R > R̄,

E(R) ≤ E(R̄) e−ā (R−R̄).(7.7)

This readily implies that

‖u− uλ‖L∞(R2\BR) ≤ E(R̄) e−ā (R−R̄),

from which we get that u − uλ ∈ L2
−γ,−δ(R2) for some δ, γ > 0 close enough to 0.

As we have pointed out, a bootstrap argument gives now the required result.
The proof of Proposition 7.1 involves several steps. Using appropriate barrier

functions, we show that in the angular sectors which do not contain the ends
λ+

1 , . . . , λ
+
2k, the function v := u− uλ decays exponentially. To state this precisely,

we use once again the notations used in the proof of Proposition 5.1.

Lemma 7.2. There exist constants a0 > 0, δ0 > 0, C > 0 and R̄0 > 0 such that,
for all R > R̄0, we have

|u− uλ| ≤ C
(
e−a0 |x| + (e−a0 (|x|−R) + Γ0,−δ0) ‖u− uλ‖L∞(R2\BR)

)
,(7.8)

in R2 \BR, where Γ0,−δ0 is the weight function defined in (2.10).

Proof. It is enough to work in one sector at a time, say for example Ωj+ 1
2
. After a

rigid motion (and a possible change of the origin), we may assume that

λ+
j+ 1

2

∩ (R2 \BR) = {x = (0, y) : y ≥ R},

and that the image of the angular sector Ωj+ 1
2
∩ (R2 \BR) under this rigid motion

is the angular sector

KR,β := {x = (x, y) : β |x| ≤ y} ∩ (R2 \BR),

where β > 0.
We define the function

Gσ,τ (x) :=
(
ε eσ(|x|−R) + e−σ(|x|−R) + e−τ(y−βx) + e−τ(y+βx)

)
‖u− uλ‖L∞(R2\BR)

+
(
ε eσ |x| + e−σ |x|

)
,
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where σ, τ > 0 are chosen close enough to 0. Observe that Gσ,τ > 0 in KR,β and

Gσ,τ (x) ≥ ‖u− uλ‖L∞(R2\BR),(7.9)

on ∂KR,β . Moreover, we have(
−∆ +

α2

2

)
Gσ,τ ≥

α2

4
e−σ |x|,(7.10)

in KR,β provided R is chosen large enough and σ, τ > 0 are chosen close enough to
0. We set v := u− uλ. Observe that the function v satisfies the equation

(7.11) (−∆ + Φ) v +N(uλ) = 0,

where by definition the potential Φ is given by

Φ :=
F ′(u)− F ′(uλ)

u− uλ
,

whenever u− uλ 6= 0 and

Φ := F ′′(uλ),

whenever u = uλ. Now, choosing R̄ large enough, we can ensure that Φ ≥ α2/4 in
the subset of K̄R,β defined by

K̄R,β := {x ∈ KR,β : dist(x, ∂KR,β) ≥ R̄},

for all R ≥ R̄. This follows at once from the fact that uλ converges uniformly to
±1 away from the λ+

j and the fact that the function u − uλ tends uniformly to 0
at infinity.

Using the result of Lemma 7.1, we find that, for each ε > 0, a multiple of Gσ,τ is
a positive supersolution for problem (7.11) in the sector KR,β provided R is chosen
large enough and σ, τ > 0 close enough to 0. Therefore, we conclude that

|v| ≤ C Gσ,τ ,(7.12)

in KR,β . The assertion of the Lemma follows at once from letting ε tend to 0 in
this pointwise estimate. �

Next, we estimate the function v near the half line λ+
j . As already mentioned,

there is no loss of generality in assuming that the half line λ+
j coincides with the

y axis, if this is not the case, this can be achieved using some appropriate rigid
motion.

So, we fix j and R > 0 large enough. We define Ωj,R to be the connected
component of R2 which contains the half line λ+

j ∩ (R2 \BR) and which is bounded

by the half lines lines λ+
j− 1

2

∩ (R2 \ BR), λ+
j+ 1

2

∩ (R2 \ BR) and ∂BR. The angle

between two consecutive ends is strictly less than π and hence Ωj,R ⊂ R× (0,∞).
Observe that Ωj,R is close to the set Ωj which has been defined in (2.5) but is not
exactly equal to it. Moreover, the subscript R in Ωj,R is here to emphasize the role
of R in what follows.

We define Ǐj,R to be a cutoff function such that

(i) Ǐj,R ≡ 1 in the subset of Ωj,R such that dist(x, ∂Ωj,R) ≥ 1,

(ii) Ǐj,R ≡ 0 in R2 \ Ωj,R ,

(iii) |∇`Ǐj,R| ≤ C, for ` = 0, 1 and 2.
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Again, Ǐj,R is close to Ij , which has been defined in §2.1 but is not equal to it.
Finally, we define the function

vj,R := Ǐj,R (u− uλ).

Before proceeding further we state the following Corollary of Lemma 7.2. From
now on, we assume that the constant a > 0 which appears in the definition of E
given in (7.5) is chosen so that a < a0 where a0 is the constant given in Lemma 7.2.

Corollary 7.1. There exist R̄ > 0 and r∗ > 0 such that for each R > R̄

|(u− uλ)(x)| ≤ 1

8
E(R),

for all x ∈ R2 such that dist(x, λ+
j ) ≥ R̄ for all j = 1, . . . , 2k, and |x| ≥ R+ r∗.

Since u is a solution of (2.1), one can check that the function vj,R is a solution
of

(7.13)
(−∆ + F ′′(uλ)) vj,R = Ǐj,R N(uλ)− [∆, Ǐj,R] (u− uλ)

− Ǐj,R (F ′(u)− F ′(uλ)− F ′′(uλ)(u− uλ)) .

Since F is even, so is F ′′, and hence, close to λ+
j , F ′′(u0) is equal to F ′′(uλ).

Therefore, we can rewrite (7.13) as

(7.14)

(−∆ + F ′′(u0)) vj,R = Ǐj,R N(uλ)− [∆, Ǐj,R] (u− uλ)

+ (F ′′(u0)− F ′′(uλ)) vj,R

− Ǐj,R (F ′(u)− F ′(uλ)− F ′′(uλ)(u− uλ)) .

We denote for short

h1
j,R := Ǐj,R N(uλ),

h2
j,R := −[∆, Ǐj,R] (u− uλ) + (F ′′(u0)− F ′′(uλ)) vj,R,

and

h3
j,R := −Ǐj,R (F ′(u)− F ′(uλ)− F ′′(uλ)(u− uλ)) .

So that (7.14) becomes

(7.15) (−∆ + F ′′(u0)) vj,R = h1
j,R + h2

j,R + h3
j,R.

We decompose any function f defined in R2 into

f = f‖ + f⊥,

where f‖ := Π0(f) (recall that Π0 has been defined in (1.6)) and f⊥ is L2(R)-
orthogonal to ∂xu0(x) for all y ∈ R. Starting from (7.15), we decompose vj,R =

v
‖
j,R + v⊥j,R, and using natural notations, we obtain the system of two equations

(−∆ + F ′′(u0)) v
‖
j,R = h

1,‖
j,R + h

2,‖
j,R + h

3,‖
j,R,

and

(−∆ + F ′′(u0)) v⊥j,R = h1,⊥
j,R + h2,⊥

j,R + h3,⊥
j,R .

We now estimate each term in the decomposition of vj,R. First, we have the :
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Lemma 7.3. There exist constants a1 > 0, C > 0 and δ1 > 0 such that, the
following pointwise estimate holds

|v⊥j,R| ≤ C (e−a1 |x| + e−a1 (|x|−R) ‖u− uλ‖L∞(R2\BR) + Γ0,−δ1 ‖u− uλ‖2L∞(R2\BR)).

Proof. This estimate follows at once from Remark 4.2 which ensures that, since we
are working in the L2-orthogonal complement of the space of functions of the form
f(y) ∂xu0(x), we can choose γ ∈ (−√µ1,

√
µ1) in Proposition 4.1 to estimate v⊥j,R

in terms of the norm of h1,⊥
j,R , h2,⊥

j,R and h3,⊥
j,R .

To estimate the first term h1,⊥
j,R , we make use of Lemma 7.1 and, applying Propo-

sition 4.1 with δ = −δ̂, γ = −γ̂ we get a contribution to the estimate of v⊥j,R which

is bounded by a constant times e−a1 |x| provided a1 > 0 is chosen close enough to 0

(the constants δ̂ and γ̂ are the constants satisfying the hypothesis of Lemma 7.1 and

γ̂ ∈ (0,
√
µ

1
)). To estimate the second term h2,⊥

j,R , we use the result of Lemma 7.2

which ensures that u − uλ and uλ − u0, restricted to the support of h2,⊥
j,R , decay

exponentially at infinity. Then, applying Proposition 4.1 with some γ < 0 close
enough to 0 and δ = 0, we obtain that this term contributes to the estimate of v⊥j,R
by a constant times e−γR Γ−γ,0 ‖u − uλ‖2L∞(R2\BR). Observe that the main error

comes from the action of the cutoff function when x ∈ Ωj,R satisfies |x| ∈ [R,R+1].

Finally, to estimate the third term h3,⊥
j,R , we apply Proposition 4.1 with γ = 0 and

δ < 0 close enough to 0. Details are left to the reader. �

Assuming that a > 0, the constant which appears in the definition of E which is
given in (7.5), is chosen so that a < a1 where a1 is the constant given in Lemma 7.3,
the last Lemma implies that :

Corollary 7.2. There exist r∗ > 0, R̄ > 0 and ζ > 0 such that

sup
|x|>R+r∗

|v⊥j,R| ≤
1

8
E(R),

provided E(R) ≤ ζ and R ≥ R̄.

The next step is understand the solution of

(−∆ + F ′′(u0)) v
‖
j,R = h

1,‖
j,R + h

2,‖
j,R + h

3,‖
j,R.

If we write

v
‖
j,R(x, y) = φj,R(y) ∂xu0(x), and h

`,‖
j,R(x, y) = ψ`j,R(y) ∂xu0(x),

for ` = 1, 2, 3, we find that φj,R is a solution of

−∂2
yφj,R = ψ1

j,R + ψ2
j,R + ψ3

j,R.

Since vj,R has support in R× (R,∞), we conclude that φj,R has support in (R,∞).
In particular,

φj,R(y) = κ[+κ] (y−R)−
∫ +∞

y

∫ +∞

t

(ψ1
j,R(s)+ψ2

j,R(s)) ds dt−
∫ y

0

∫ t

0

ψ3
j,R(s) ds dt,

for some κ[, κ] ∈ R.
We have the following :
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Lemma 7.4. There exist constants a2 > 0 and C > 0 such that∣∣∣∣∫ +∞

y

∫ +∞

t

(ψ1
j,R(s) + ψ2

j,R(s)) ds dt

∣∣∣∣ ≤ C (e−a2y + e−a2 (y−R) ‖u− uλ‖L∞(R2\BR)

)
and ∣∣∣∣∫ y

0

∫ t

0

ψ3
j,R(s) ds dt

∣∣∣∣ ≤ C ‖u− uλ‖2L∞(R2\BR)

(
1 + (max{0, y −R})2

)
,

for all y ≥ 0.

Proof. The proof is a simple consequence of Lemma 7.1 and Lemma 7.2. �

We now estimate the parameters κ[ and κ]. We start with the :

Lemma 7.5. There exist a constant C > 0 such that the following estimates hold

|κ]| ≤ C
(
e−a2 R + ‖u− uλ‖L∞(R2\BR)

)1/2 ‖u− uλ‖L∞(R2\BR),

provided ‖u− uλ‖L∞(R2\BR) ≤ 1.

Proof. Using the fact that v
‖
j,R is bounded by a constant times ‖u− uλ‖L∞(R2\BR)

together with the result of Lemma 7.4, we find

|κ[| ≤ C
(
e−a2 R + ‖u− uλ‖L∞(R2\BR)

)
,

provided ‖u − uλ‖L∞(R2\BR) ≤ 1. Once this crude estimate is obtained, we can

obtain some precise estimate for κ]. To this aim, we again use the fact that v
‖
j,R is

bounded by a constant times ‖u−uλ‖L∞(R2\BR) and using the result of Lemma 7.4,
we get

(y −R) |κ]| ≤ C
(
e−a2R + ‖u− uλ‖L∞(R2\BR) + (y −R)2 ‖u− uλ‖2L∞(R2\BR)

)
,

for all y ≥ R (here we also use the fact that we assume that ‖u−uλ‖L∞(R2\BR) ≤ 1).
In other words, for all X ≥ 0 we have

C ‖u− uλ‖2L∞(R2\BR)X
2 − |κ]|X − C

(
e−a2R + ‖u− uλ‖L∞(R2\BR)

)
≥ 0.

Thus the discriminant of the quadratic polynomial must be non positive. In par-
ticular, this implies that

|κ]| ≤ C
(
e−a2 R + ‖u− uλ‖L∞(R2\BR)

)1/2 ‖u− uλ‖L∞(R2\BR),

and this completes the proof of the estimate. �

In order to derive an estimate for κ[, we invoke the balancing formula (11.1)
which follows from Lemma 11.1. Given any Killing vector field X and any compact
Ω ⊂ R2, this balancing formula reads∫

∂Ω

((
1

2
|∇u|2 + F (u)

)
X −X(u)∇u

)
· ν ds = 0,(7.16)

where ν is a outward pointing unit normal vector field to ∂Ω. Of interest is the
case where X is the vector field

Xτ := x ∂y − y ∂x,

which is the vector field which generates the group of rotations centered at the
origin.
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Let us briefly digress and consider the case where the function u, solution of
(2.1), is defined on R× (0,∞) and can be expanded as

u(x, y) = u0(x) + κ ∂xu0(x) + v(x, y),

where κ ∈ R is a small constant and where the function v is also small (in a sense
to be made precise). Then, (7.16) implies that∫

y=y0

((
1

2
|∇u|2 + F (u)

)
X −X(u)∇u

)
· ν ds,

does not depend on y0. On the one hand, when u is replaced by u0, this quantity
is equal to 0, hence, assuming that u converges fast enough to u0 as y tends to
infinity and letting y0 tend to ∞, we find that∫

y=y0

((
1

2
|∇u|2 + F (u)

)
X −X(u)∇u

)
· ν ds = 0.

On the other hand, inserting u = u0 + κ ∂xu0 + v in this equality and assuming
that κ and v are small, we get∫
y=y0

((
1

2
|∇u|2 + F (u)

)
X −X(u)∇u

)
· νds = κ

∫
R

(
1

2
|∂xu0|2 + F (u0)

)
dx

+ O(κ2) +O(‖v‖).
Hence, we conclude that

κ

∫
R

(
1

2
|∂xu0|2 + F (u0)

)
dx+O(κ2) +O(‖v‖) = 0,

and this immediately implies that κ = O(‖v‖). This is this idea that we will
implement to derive a precise estimate for the constant κ[.

Lemma 7.6. For all ε > 0, there exists a3 > 0 and there exist ζε > 0 and R̄ε > 0
such that

|κ[| ≤ C e−a3 R + ε ‖u− uλ‖L∞(R2\BR),

provided R ≥ R̄ε and ‖u− uλ‖L∞(R2\BR) ≤ ζε.

Proof. Since we have assumed that the half line λ+
j coincide with half of the y-axis,

we have uλ = ±u0 close to this axis and to fix the ideas, we can assume that
uλ = u0. Now, we define

uj,R := uλ + vj,R = u+ (1− Ǐj,R) (uλ − u).

We set

hj,R := −∆uj,R + F ′(uj,R) = −∆(u− uj,R) + (F ′(uj,R)− F ′(u)).

In this case, (7.16) has to be replaced by∫
∂Ω

((
1

2
|∇uj,R|2 + F (uj,R)

)
X −X(uj,R)∇uj,R

)
· ν ds =

∫
Ω

hj,RX(uj,R) dx.

Writing uj,R = u0 + w, using the fact that u0 satisfies (7.16) and substracting the
two equations, we obtain∫

∂Ω

(1

2
(|∇(u0 + w)|2 − |∇u0|2 + F (u0 + w)− F (u0))X

−(X(u0 + w)∇(u0 + w)−X(u0)∇u0)
)
· ν ds =

∫
Ω

hj,RX(uj,R) dx.
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We specialize this analysis to the case where the vector field X is given by X =
x ∂y − y ∂x and where Ω := R× [y0, y1]. Letting y1 tend to ∞, we get∫

y=y0

(∂xu0(∂xw − ∂yw) + (F (u0 + w)− F (u0))) dx =

∫
y≥y0

hj,RX(uj,R) dx.

We decompose

uj,R = u0 + κ[ ∂xu0 + w̃

and chose y0 ≥ R+ 1. Thanks to the estimates already derived, we conclude, with
little work, that there exists a3 > 0 such that

|κ[| ≤ C
(
e−a3R + e−a3(y0−R) ‖u− uλ‖L∞(R2\BR) + (y0 −R)2 ‖u− uλ‖2L∞(R2\BR)

+ (y0 −R) ‖u− uλ‖L∞(R2\BR)

(
e−a2R + ‖u− uλ‖L∞(R2\BR)

)1/2 )
,

provided (y0 − R) ‖u − uλ‖L∞(R2\BR) ≤ 1. At this stage, in order to derive the
estimate, it is enough to choose r0 := y0 −R large enough so that

C e−a3(y0−R) ≤ ε

2
,

and, once this is done, we choose R̄ε > 0 large enough and ζε > 0 small enough so
that

C

(
r2
0 ζε + r0

(
e−a2R̄ε + ζε

)1/2
)
≤ ε

2
.

The proof of the result is then complete. �

Assuming that the constant a > 0 which appears in the definition of E given
in (7.5) is chosen so that a < min(a2, a3) where a2, a3 are the constants given in
Lemma 7.4 and Lemma 7.6, we get :

Corollary 7.3. There exist r∗ > 0, R̄ > 0 and ζ > 0 such that

sup
|x|>R+r∗

|v‖j,R| ≤
1

8
E(R),

provided E(R) ≤ ζ and R ≥ R̄.

The result of Proposition 7.1 follows from Corollary 7.1, Corollary 7.2 and Corol-
lary 7.3. Observe that one can always choose R̄ > 0 large enough so that E(R̄) ≤ ζ
where ζ is the least of the two constants ζ which appear in the statements of
Corollary 7.2 and Corollary 7.3.

8. The implicit function theorem

We now are in a position to prove Theorem 2.2. To this end, we apply the
implicit function theorem using the linear analysis derived in the previous sections.
By now, this argument is rather standard and hence, we only outline the main
points of the proof, leaving the details to the reader.

We start by defining a smooth family of diffeomorphisms of R2 as follows : Given
a = (a1, . . . , a2k) ∈ R2k and b = (b1, . . . , b2k) ∈ R2k, we define Φa,b to be the value,
at time 1, of the flow associated to the vector field

Ξa,b :=

2k∑
j=1

(aj Xj + bj Yj).
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Here Xj , Yj are the vector fields defined in (6.1) and (6.2). Recall that, Xj generates
translations in a direction which is transversal to the j-th end while Yj generates a
rotation of the j-th end. Clearly, the map Φa,b is clearly a diffeomorphism provided
all coefficients aj and bj are small enough. Also, observe that, in most of the sector
where Ij ≡ 1, the map Φa,b is equal to a rigid motion and hence it commutes with
the Laplacian ∆ in the sense that

∆(w ◦ Φa,b) = (∆w) ◦ Φa,b.

We choose γ, δ > 0 close enough to 0. Given a function v ∈ W 2,2
−γ,−δ(R2), given

a ∈ R2k and b ∈ R2k, we define

N(v, a, b) :=
(
−∆((u+ v) ◦ Φa,b)) + F ′((u+ v) ◦ Φa,b)

)
◦ Φ−a,−b,

where u ∈M2k is fixed. It is easy to check that the nonlinear map N is well defined
and smooth from a neighborhood of 0 in W 2,2

−γ,−δ(R2) × R2k × R2k into L2
γ,δ(R2).

This follows from the fact that Φa,b is a rigid motion in the regions Ij ≡ 1, and in
the regions where it is not, the functions involved are in L2

−γ,−δ(R2).
Since Φ0,0 = Id, we check directly that

DvN(0,0,0) = L.(8.1)

Moreover, we have

∂ajN(0,0,0) = L (du(Xj)), and ∂bjN(0,0,0) = L (du(Yj)).

If we assume that u ∈ M2k is nondegenerate, the result of Proposition 6.2
implies that the full differential DN(0,0,0) (which can be naturally identified with

the operator Ã−γ,−δ) is surjective and has a kernel whose dimension is 2k. The
implicit function theorem then implies that, close to v = 0, a = b = 0, the set
of zeros of N is a smooth 2k dimensional manifold. This completes the proof of
Theorem 2.2.

9. Nondegeneracy of solutions with nodal set with nearly parallel
components.

In this section, we check that, given k ≥ 1, the set M2k contains at least one
nondegenerate element, thus proving Proposition 2.1. We recall that for simplicity
we assume here that

F (u) =
1

4
(1− u2)2,

however all the results needed to prove the proposition generalize directly to the
case of a general, smooth even nonlinearity as described in (1.2). Consequently, we
expect that the assertion of Proposition 2.1 holds in this more general framework
as well.

The result in [8] implies the existence of a family of solutions {uε}ε∈(0,ε0) ⊂M2k

whose ends are nearly parallel, and are graphs over the y-axis for some function
whose derivative is bounded by a constant times ε. What is more, the construction
shows that {x ∈ R2 : uε(x) = 0}, the nodal set of uε, decomposes into exactly k
disjoint curves whose mutual distances tends to ∞ as ε tends to 0.

To state our result in precise way, we assume that we are given q := (q1, . . . , qk),
a solution of the Toda system

(9.1) c̄0 q
′′
j = e

√
2(qj−1−qj) − e

√
2(qj−qj+1),
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for j = 1, . . . , k, where c̄0 :=
√

2
24 and where we agree that

q0 ≡ −∞ and qk+1 ≡ +∞.

The Toda system (9.1) is a classical example of integrable system which has
been extensively studied. It models the dynamics of finitely many mass points on
the line under the influence of an exponential potential. We recall some of the
results which are concerned with the solvability of (9.1) and which is needed for
our purposes. We refer to [13] and [19] for the complete description of the theory
(see also [21], [24], [1]). Of importance for us is the fact that solutions of (9.1)
can be described (almost explicitly) in terms of 2k parameters. Moreover, if q is
a solution of (9.1), then the long term behavior (i.e. long term scattering) of the
qj at ±∞ is well understood and it is known that, for all j = 1, . . . , k, there exist
a+
j , b

+
j ∈ R, a−j , b

−
j ∈ R and τ0 > 0, all depending on the solution q, such that

(9.2) qj(t) = a±j |t|+ b±j +OC∞(R)(e
−τ0 |t|),

as t tends to ±∞. Finally, a±j+1 > a±j for all j = 1, . . . , k − 1.
Given ε > 0, we define the vector valued function qε, whose components are

given by

(9.3) qj,ε(x) := qj(ε x)−
√

2
(
j − k + 1

2

)
log ε.

It is easy to check that the qj,ε are again solutions of (9.1).
Observe that, according to the description of the asymptotics of the functions qj ,

the graphs of the functions qj,ε are asymptotic to a set of 2k oriented half lines. In
addition, for ε > 0 small enough, these graphs are disjoint and in fact their mutual
distance is given by −

√
2 log ε+O(1) as ε tends to 0.

It is convenient to agree that χ+ (resp. χ−) is a smooth cutoff function defined
on R which is identically equal to 1 for x > 1 (resp. for x < −1) and identically
equal to 0 for x < −1 (resp. for x > 1) and additionally χ− + χ+ ≡ 1. With these
cutoff functions at hand, we define the 4-dimensional space

(9.4) D̂ := Span {x 7−→ χ±(x), x 7−→ xχ±(x)},

and, for all µ ∈ (0, 1) and all τ ∈ R, we define the space C2,µ
τ (R) of C2,µ functions

h which satisfy

‖h‖C2,µ
τ (R) := ‖(coshx)τ h‖C2,µ(R) <∞.

Keeping the above notations in mind, the following is proven in [8]:

Theorem 9.1. For all ε > 0 sufficiently small, there exists an entire solution
uε ∈M2k of the Allen-Cahn equation

∆u+ u− u3 = 0,(9.5)

in R2, whose nodal set is the union of k disjoint curves C1,ε, . . . , Ck,ε. These curves
are the graphs of the functions

x 7−→ qj,ε(x) + hj,ε(ε x),

where the functions hj,ε belong to C2,µ
τ (R)⊕ D̂ and satisfy

‖hj,ε‖C2,µ
τ (R)⊕D̂ ≤ C ε

a.

Here the constants C, a, τ, µ > 0 are all independent of ε > 0.
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In other words, given a solution of the Toda system, we can find a one parameter
family of 2k-ended solutions of (9.5) which depend on a small parameter ε > 0. As
ε tends to 0, the nodal sets of the solutions become close to the graphs of the
functions qj,ε.

Furthermore, using Proposition 1.1 and Proposition 5.4 in [8], one can be more
precise about the description of the solution uε. If λε := (λ+

1,ε, . . . , λ
+
2k,ε) denotes

the half affine lines associated to the ends of uε and if uλε denotes the associated

function defined in (2.6), we know that uε = uλε + vε, where vε ∈W 2,2
−γε,−δ(R2) for

some δ, γ > 0 such that δ2 + γ2ε2 < α2. In addition, we have

‖vε‖W 2,2
−γε,−δ(R2) ≤ C ε

ā,(9.6)

for some ā > 0.

Proof of Proposition 2.1. Our goal is to show that there exists ε0 > 0 such that for
all ε ∈ (0, ε0) the solution uε of (9.5) which is given by Theorem 9.1 is nondegener-
ate. We fix γ̄, δ > 0 such that δ2 < α2. We claim that, for ε > 0 sufficiently small,
the unique solution of the equation

−(∆− F ′′(uε))w = 0,

which belongs to L2
−γ̄ε,−δ(R2), is w ≡ 0 (observe that ε2 γ̄2 + δ2 < α2 for ε > 0

close enough to 0). To prove the claim, we use an argument similar to the one used
in the proof of the Linear Decomposition Lemma (i.e. Lemma 4.2).

To begin with, since the problem is linear, we may as well assume that

‖w‖L2
−γ̄ε,−δ(R2) = 1.(9.7)

Then, elliptic estimates imply that u ∈W 2,2
−γ̄ε,−δ(R2) and

‖w‖W 2,2
−γ̄ε,−δ(R2) ≤ C ‖w‖L2

−γ̄ε,−δ(R2).

For j = 1, . . . , k, we define Îj to be a smooth cutoff functions such that

supp Îj ⊂

{
x ∈ R2 : dist (x, Cj,ε) ≤ dist (x, Ci,ε)−

√
2

4
log ε, ∀i 6= j

}
,

and Îj(x) ≡ 1 when dist (x, Cj,ε) ≤ dist (x, Ci,ε) for i 6= j. Thanks to (9.7), we know
that

‖Îj0 w‖L2
−γ̄ε,−δ(R2) ≥

1

2k
,(9.8)

for some j0 ∈ {1, . . . , k}. We define w0 := Îj0 w. Observe that

Lε w0 = [∆, Îj0 ]w.

where Lε := −∆ + F ′′(uε).
Let (t, s) be Fermi coordinates associated to Cj0,ε, so that s is the arc length on

Cj0,ε and t(x) := dists (x, Cj0,ε) denotes the signed distance to Cj0,ε. We change the
coordinates from (x, y) to Fermi coordinates (t, s) (this change of variables is quite
standard and for details, we refer the reader to calculations in Section 5 of [8]).

Using (9.3), (9.6) together with the assumption on the function w, we check that

hε := −
(
∂2
s + ∂2

t − F ′′(u0(t))
)
w0,
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satisfies

‖hε‖L2
−γ̄ε,−δ(R2) ≤ C

(
ετ − 1

log ε

)
‖w‖L2

−γ̄ε,−δ(R2),(9.9)

for some τ > 0. Thanks to the Linear Decomposition Lemma (Lemma 4.2), we
know that w0 ∈ L2

−γ̄ε,−δ(R2) and also that

‖w0‖L2
−γ̄ε,−δ(R2) ≤ C

(
ετ − 1

log ε

)
‖w‖L2

−γ̄ε,−δ(R2).

For ε small enough this inequality is not compatible with (9.8) and (9.7). Having
reached a contradiction, we conclude that w0 ≡ 0 and hence w ≡ 0. This completes
the proof of the result. �

10. The Lagrangian structure and the proof of Theorem 2.3

We assume that we are given a function u ∈ M2k which is nondegenerate. The
tangent space TuM2k is spanned by the functions w which satisfy

Lw = 0,

where L is the linearized operator about u. According to the result of Proposition6.1
and Proposition 6.2, we know that such a function w can be decomposed into

w =

2k∑
j=1

aj du(Xj) + bj du(Yj) + w̄,(10.1)

where aj , bj ∈ R and w̄ ∈ W 2,2
−γ,−δ(R2) for some γ, δ > 0. Let us consider two such

functions w(1), w(2) ∈ TuM2k (the coefficients and functions in the corresponding
decompositions are adorned with superscripts (1) and (2)). For all R > 0, we
integrate (w(1) Lw(2) − w(2) Lw(1)) over the ball of radius R to get

0 =

∫
BR

(w(1) Lw(2) − w(2) Lw(1)) dx =

∫
∂BR

(w(1) ∂rw
(2) − w(2) ∂rw

(1)) ds

But, using (10.1) and letting R −→∞, we conclude without any difficulty that

2k∑
j=1

(
a

(1)
j b

(2)
j − a

(2)
j b

(1)
j

)
= 0.

This completes the proof of Theorem 2.3.

11. Appendix A

Assume that u is a solution of (2.1) which is defined in R2. Assume that X and
Y are two vector fields also defined in R2. In coordinates, we can write

X =
∑
j

Xj∂xj , Y =
∑
j

Y j∂xj ,

and, if f is a smooth function, we use the following notations

X(f) :=
∑
j

Xj ∂xjf, ∇f :=
∑
j

∂xjf ∂xj ,

divX :=
∑
i

∂xiX
i,
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and

d∗X :=
1

2

∑
i,j

(∂xiX
j + ∂xjX

i) dxi ⊗ dxj ,

so that

d∗X (Y, Y ) =
∑
i,j

∂xiX
j Y i Y j .

We claim that :

Lemma 11.1 (Balancing formula). The following identity holds

div

((
1

2
|∇u|2 + F (u)

)
X −X(u)∇u

)
=

(
1

2
|∇u|2 + F (u)

)
divX − d∗X(∇u,∇u).

Proof. This follows from direct computation. �

Translations of R2 correspond to the constant vector field

X := X0

where X0 is a fixed vector, while rotations correspond to the vector field

X := x ∂y − y ∂x.

In either case, we have divX = 0 and d∗X = 0. Therefore, we conclude that

div

((
1

2
|∇u|2 + F (u)

)
X −X(u)∇u

)
= 0,

for these two vector fields. The divergence theorem implies that

(11.1)

∫
∂Ω

((
1

2
|∇u|2 + F (u)

)
X −X(u)∇u

)
· ν ds = 0,

where ν is the (outward pointing) unit normal vector field to ∂Ω.
We define

c0 :=

∫ +∞

−∞

(
1

2
(∂xu0)2 + F (u0)

)
dx.

which only depend on the potential F . We now assume that u ∈M2k and we keep
the notations introduced in §2. We use (11.1) with Ω which is equal to the ball of
radius R centered at the origin and then, we let R tend to ∞. Taking X = X0 and
using (1.4), we find with little work

c0

2k∑
j=1

ej ·X0 = 0.

Taking X = x ∂y − y ∂x, we find

c0

2k∑
j=1

rj = 0.

This completes the proof of (2.16) and (2.17).

Remark 11.1. These conservation laws steam from the fact that (2.1) is invariant
under the action of isometries of R2.
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12. Appendix B

We keep the notations introduced in the proof of Proposition 3.1 and we define

Ŵ (x) :=
1

Wζ
W−ζ (x)

∫ x

−∞
W+
ζ (y)V (y) dy.

Since |W±ζ | ≤ C e±δζx, we can write

|Ŵ (x)| ≤ C W̃ (x),

where

W̃ (x) := e−δζx
∫ x

−∞
eδζy|V (y)| dy.

Obviously, it is enough to prove that

(12.1) ‖W̃‖L̃2
δ(R,C) ≤ C ‖V ‖L̃2

δ(R,C),

since this immediately implies that

‖Ŵ‖L̃2
δ(R,C) ≤ C ‖V ‖L̃2

δ(R,C).

The result then follows from this estimate, together with a similar estimate for the
function

W̌ (x) :=
1

Wζ
W+
ζ (x)

∫ +∞

x

W−ζ (y)V (y) dy.

To prove (12.1), we argue as follows. First, the following pointwise estimate
follows from Cauchy-Schwarz inequality

(12.2) |(cosh y)−δ W̃ (y)| ≤ c ‖V ‖L̃2
δ(R,C),

for all y ∈ R. Next, we estimate∫ 0

−∞
e2δx W̃ 2(x) dx =

∫ 0

−∞
e2(δ−δζ)x

(∫ x

−∞
eδζy|V (y)| dy

)2

dx

= lim
s→−∞

[
1

2(δ − δζ)
e2δx W̃ 2(y)

]0

s

− 1

δ − δζ

∫ 0

−∞
e2δx V (x) W̃ (x) dx

≤ C (‖V ‖2
L̃2
δ(R,C)

+ ‖W̃‖L̃2
δ(R,C)) ‖V ‖L̃2

δ(R,C),

where we have used (12.2) together with Cauchy-Schwarz inequality in order to
obtain the last estimate. Using similar arguments, we also get∫ +∞

0

e−2δx W̃ 2(x) dx ≤ C
(
‖V ‖2

L̃2
δ(R,C)

+ ‖W̃‖L̃2
δ(R,C) ‖V ‖L̃2

δ(R,C)

)
.

Hence, we conclude that

‖W̃‖2
L̃2
δ(R,C)

≤ C
(
‖V ‖2

L̃2
δ(R,C)

+ ‖W̃‖L̃2
δ(R,C) ‖V ‖L̃2

δ(R,C)

)
,

which implies that
‖W̃‖2

L̃2
δ(R,C)

≤ C ‖V ‖2
L̃2
δ(R,C)

.

This completes the proof of the estimate.
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