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Abstract. — We construct sequences of sign changing solutions for some confor-

mally invariant semilinear elliptic equation which is defined in Sn, when n ≥ 4. The

solutions we obtain have large energy and concentrate along some special submani-
folds of Sn. For example, when n ≥ 4, we obtain sequences of solutions whose energy

concentrates along one great circle or finitely many great circles which are linked
(they correspond to Hopf links embedded in S3 × {0} ⊂ Sn). In dimension n ≥ 5,

we obtain sequences of solutions whose energy concentrates along a two dimensional

torus (which corresponds to a Clifford torus embedded in S3 × {0} ⊂ Sn).

1. Introduction and statement of the result

1.1. Introduction. — We are interested in the existence of sign changing solutions
for the Yamabe type equation

(1.1) ∆g̊u− n (n−2)
4 (1− |u|

4
n−2 )u = 0,

in Sn, where g̊ denotes the standard metric on Sn and n ≥ 3. Obviously u1 ≡ 1 is
a solution of (1.1). The classification of solutions of (1.1) which do not change sign
goes back to the result of M. Obata [7] which states that all positive solutions of (1.1)
arise as the functions u which appear in the identity

K∗g̊ = u
4

n−2 g̊,

where K is a conformal transformation of the sphere Sn. As far as sign changing
solutions are concerned, we recall the result of W. Ding [5] (see also [3] and [4] for
related results) on the existence of solutions which are invariant under the action of
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the Lie group O(k)×O(n+1−k), for k = 2, . . . , n−1. There is also a vast literature
about the existence of sign-changing solutions using variational methods, we refer to
[2] and [1] for references. It is known that (1.1) has infinitely many sign-changing
solutions however the structure of these solutions is not well understood.

Equation (1.1) has a variational structure and the associated energy reads

E(u) :=

∫
Sn
e(u) dvol̊g,

where the energy density is defined by

e(u) := 1
2 |∇u|

2
g̊ + n(n−2)

8 |u|2 − (n−2)2

8 |u|
2n
n−2 .

We introduce the constant

E1 := n−2
4 Vol (Sn),

which corresponds to the energy of the solution u1 ≡ 1.
In this paper, we provide a wealth of sign changing solutions of (1.1). To state

precisely our result, we need to introduce some notations and definitions. We will
then give the statement of a rather general result and we will provide many examples
which explain how this general result can be applied. In contrast with pervious
existence results, we have a rather precise description of the solutions we obtain :
they can be described as the superposition of the constant solution u1 ≡ 1 with a
large number of copies of negative solutions of (1.1) which are highly concentrated at
points which in turn are evenly arranged along some special submanifolds of Sn.

As a byproduct of the main result in this paper, we have the :

Theorem 1.1. — Assume that 1 ≤ d ≤ n− 3 satisfy

n+ 1 ≥ 2d.

Then, there exists a d-dimensional flat torus Td embedded in Sn, a sequence uk of
sign changing solutions of (1.1) and constants c1 > c2 > 0 and c3 > 0 such that, the
following holds :

(a) The function uk is positive away from a tubular neighborhood of radius c1/k
around Td and negative in a tubular neighborhood of radius c2/k around Td.

(b) As k tends to infinity, uk converges uniformly on compact subsets of of Sn−Td
to the constant function u1 ≡ 1.

(c) As k tends to infinity, the renormalized energy density

1

kd
e(uk) dvol̊g ⇀ c3Hd xTd,

in the sense of measures.

Here, if Λ is a smooth d-dimensional embedded submanifold of Rn, HdxΛ denotes
the d-dimensional Hausdorff measure restricted to Λ, namely

Hd xΛ(Ω) := Hd(Λ ∩ Ω).



SIGN CHANGING SOLUTIONS FOR CONFORMALLY INVARIANT EQUATIONS 3

1.2. Notations. — To state the general result, we need to fix the notations and
digress slightly. We assume that we are given integers m,n ≥ 1 satisfying

n+ 1 ≥ 2m.

The integer n corresponds to the dimension of the sphere Sn over which (1.1) is de-
fined. It will be convenient to identify the Euclidean space Rn+1 with Cm×Rn+1−2m,
in which case, we agree that the coordinates of a point x ∈ Rn+1 are given by
(z1, . . . , zm, x̂) where z1, . . . , zm ∈ C and x̂ ∈ Rn+1−2m. In terms of these coordi-
nates, we define the point

(1.2) p := 1√
m

(
1, . . . , 1, 0̂

)
∈ Sn ⊂ Cm × Rn+1−2m,

where 0̂ := (0, . . . , 0) ∈ Rn+1−2m. Let G ⊂ O(n + 1) be the finite subgroup of
isometries of Sn which is generated by the symmetries

s(z1, . . . , zm, x̂) := (z1, . . . , zm,−x̂), s̄(z1, . . . , zm, x̂) := (z̄1, . . . , z̄m, x̂),

and

c(z1, z2, . . . , zm−1, zm, x̂) := (z2, z3, . . . , zm, z1, x̂),

which corresponds to a cyclic permutation of the first m-th complex coordinates. To
begin with, observe that the point p is fixed under the action of any element of the
group G, but the choice of the finite group G is really motivated by the following
elementary but key result :

Proposition 1.1. — Any linear form defined on Rn+1 which is invariant under the
action of G is collinear to

Rn+1 3 x 7−→ p · x ∈ R,

where · denotes the scalar product in Rn+1.

Proof. — Given the identification of Rn+1 with Cm × Rn+1−2m, any (real valued)
linear form ϕ on Rn+1 can be written as

ϕ(z1, . . . , zm, x̂) = < (a1 z1 + . . .+ am zm) + â · x̂,

for some a1, . . . , am ∈ C and â ∈ Rn+1−2m.
The fact that ϕ is invariant under the action of s implies immediately that â = 0.

Next, ϕ is also assumed to be invariant under the action of c, and hence we find that
all the aj have to be equal (say to a ∈ C). Therefore, we can write

ϕ(z1, . . . , zm, x̂) = <(a (z1 + . . .+ zm)).

Finally, since ϕ is assumed to be invariant under the action of s̄ we conclude that
a ∈ R and hence

ϕ(z1, . . . , zm, x̂) = a<(z1 + . . .+ zm) = a
√
mp · x.

This completes the proof of the result.
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We denote by

Tm := 1√
m

(S1 × . . .× S1)× {0̂} ⊂ Sn ⊂ Cm × Rn+1−2m,

the m-dimensional torus embedded in Sn which is also the orbit of p through the
action of the elements of the m-dimensional Lie group

T := (O(2)× . . .×O(2))× {In+1−2m} ⊂ O(n+ 1),

where, for q ≥ 1, Iq denotes the identity in Rq. Observe that, Tm, equipped with the
metric induced by g̊, is a flat m-dimensional torus.

It is probably worth saying a word about the terminology we will use. When m = 1,
T1 is usually referred to as a great circle of Sn and, when m = 2 and n = 3, T2 is
usually referred to as a Clifford torus. When, n ≥ 3, T2 is a Clifford torus embedded
in S3 × {0̂} ⊂ Sn and, with slight abuse of terminology, we shall again refer to it as
a Clifford torus.

1.3. The assumptions. — We now describe the assumptions needed in the state-
ment of the general result and we also provide some basic examples.

(H1) We fix 1 ≤ d ≤ m, and assume that we are given a d-dimensional flat torus
Λ ⊂ Tm which is the orbit of p under the action of a d- dimensional Lie group

L ⊂ T.

(H2) We assume that we are given a finite subgroup

H0 ⊂ T,

such that, the cyclic permutation c leave the group H0 invariant in the sense
that

c H0 = H0 c.

Moreover, we require that, for all h ∈ H0, either Λ ∩ hΛ = ∅ or h = Id.

(H3) For all k ≥ 1, we assume that we are given a finite subgroup

Hk ⊂ L,

which commutes with H0 and such that, the cyclic permutation c leaves the
group Hk invariant in the sense that

c Hk = Hk c.

Moreover, we require that Λ0 := Λ/Hk, equipped with the metric induced by
k g̊ is a d-dimensional flat torus which does not depend on k.

We will denote by Γ0 the lattice associated to Λ0. We will denote by H the group
generated by H0 and Hk and we will denote by Ok the orbit of p under the action of
the elements of H, namely

Ok := {h(p) : h ∈ H}.
Observe for all h ∈ T we have

s̄ ◦ h ◦ s̄ = h−1,

and hence Op is invariant under the action of the elements of H. Also observe that,
for all h ∈ Hk, we have hΛ = Λ.
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We will always assume that Ok contains at least two points. Let us now briefly
comment on these assumptions. Property (H3) implies that Ok ∩ Λ is uniformly
distributed at the vertices of a regular lattice in Λ and, as k tends to infinity, these
points becomes denser in Λ. Property (H2) implies that the elements of H0 transport
Λ, and hence the points of Ok ∩ Λ, to CardH0 disjoint isometric copies of Λ in the
m-dimensional torus Tm.

It also follows from properties (H2) and (H3) that the cardinal of Ok can be com-
puted in terms of k, the ratio between the volume of Λ and Λ0 and the cardinal of
H0. More precisely, we have

CardOk =
Hd(Λ̂)

Hd(Λ0)
kd,

where
Λ̂ :=

⋃
h∈H0

hΛ ⊂ Tm,

corresponds to the submanifold of Sn over which the renormalized energy density of
our solutions will concentrate.

1.4. Examples. — We now illustrate this set of assumptions by giving some key
examples. This will be the opportunity to become more familiar with our notations.
It will be convenient to agree that, for all n+ 1 ≥ 2M and for all α := (α1, . . . , αm) ∈
S1 × . . . × S1, tα ∈ (O(2) × . . . × O(2)) × {In+1−2m}, denotes the isometry of Sn

defined by
tα(z1, . . . , zm, x̂) := (α1 z1, . . . , αm zm, x̂) .

1.4.1. The case where H0 = {In+1}. — The simplest examples correspond to the
case where H0 reduces to the identity. Observe that, in this case, m = d.

Example 1.1. — The simplest example is probably the one where

Λ̂ = Λ = T1 = S1 × {0̂} ⊂ Sn,
is a great circle of Sn, for n ≥ 1. According to our notations, we have identified Rn+1

with C × Rn−1 and we have defined 0̂ := (0, . . . , 0) ∈ Rn−1. In terms of Lie groups,
this situation corresponds to m = d = 1 and to the choice

L = T := O(2)× {In−1} ⊂ O(n+ 1).

In this case,
p = (1, 0̂) ∈ Sn ⊂ C× Rn−1,

and, for all k ≥ 1, we can choose Hk ⊂ O(2)×O(n− 1) to be the group generated by
tα, where

α = e
2iπ
k .

Therefore, the points of

Ok =
{

(e
2ijπ
k , 0̂) ∈ Sn : j ∈ Z

}
,

are regularly distributed along a great circle of Sn. It is an easy exercise to check that
(H1), (H2) and (H3) are satisfied. This example corresponds to the case where d = 1
in Theorem 1.1.
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Example 1.2. — The previous example generalizes easily to the case where

Λ̂ = Λ = Td = 1√
d

(
S1 × . . .× S1

)
× {0̂} ⊂ Sn,

is a d-dimensional flat torus in Sn, for n+1 ≥ 2d. According to our notations, we have
identified Rn+1 with Cd×Rn+1−2d and we have defined 0̂ := (0, . . . , 0) ∈ Rn+1−2d. In
terms of the Lie groups, this situation corresponds to m = d and to the choice

L = T := (O(2)× . . .×O(2))× {In+1−2d} ⊂ O(n+ 1).

In this case,

p = 1√
d
(1, . . . , 1, 0̂) ∈ Sn ⊂ Cd × Rn+1−2d,

and, for all k ≥ 1, we can choose Hk ⊂ (O(2)× . . .×O(2))×O(n+ 1− 2d) to be the
group generated by tα and c, where

α := (e
2iπ
k , 1, . . . , 1).

Then, the orbit of the point p under the action of Hk

Ok =
{

(e
2ij1π
k , . . . , e

2ijdπ

k , 0̂) ∈ Sn : j1, . . . , jd ∈ Z
}
,

are points regularly distributed on Td. Again, it is an easy exercise to check that (H1),
(H2) and (H3) are satisfied. This example corresponds to the case where d ≥ 2 in
Theorem 1.1.

In the last example, the orbit of p under the action of Hk forms a regular square
lattice on the torus Td but other lattices can be obtained. In other words, once the
submanifod Λ is chosen, there might be many different groups Hk leading to non
congruent configurations of points in Sn.

Example 1.3. — Keeping the notations used in Example 1.2, one can also consider
Hk ⊂ (O(2)× . . .×O(2))×O(n+ 1−2d) to be the group generated by tα and c, where

α := (e
2iπ
q1k , e

2iπ
q2k , . . . , e

2iπ
qdk ),

for some q1, . . . , qd ∈ Z− {0}. We require that the integers qj are chosen so that the
matrix whose rows are ( 1

q1
, . . . , 1

qd
) and its cyclic permutations is invertible (this will

guaranty that the associated lattice in Td is d-dimensional). Different choices of qj
will, in general, lead to non-congruent solutions of (1.1).

Many more examples leading to non-congruent solutions can be found by studying
the sub- lattices of Td which contain p and are invariant under the action of c and s̄.
Let us just mention a few examples in low dimensions.

Example 1.4. — Keeping the notations used in Example 1.2, when d = 2 and n+1 ≥
2 d = 4 one can consider Hk ⊂ (O(2)×O(2))×O(n− 3) to be the group generated by
tα and tα̃, where

α := (e
2iπ
k , e

2iπ
k ) and α̃ := (e

2iπ
qk , e−

2iπ
qk ),
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for some q ≥ 1. While, when d = 4 and n + 1 ≥ 2 d = 8 one can consider Hk ⊂
(O(2)× . . .×O(2))×O(n− 7) to be the group generated by tα, tα̃, tα̌ and c, where

α := (e
2iπ
k , e

2iπ
k , e

2iπ
k , e

2iπ
k ), α̃ := (e

2iπ
qk , e−

2iπ
qk , e

2iπ
qk , e−

2iπ
qk ),

and

α̌ := (e
2iπ
q′k , e

2iπ
q′k , e

− 2iπ
q′k , e

− 2iπ
q′k ),

for some q, q′ ≥ 1. Different choices of q and q′ will lead to non-congruent solutions
of (1.1).

This last example generalizes in any dimension d = 2q and n+ 1 ≥ d.

1.4.2. The case where H0 6= {In+1}. — The examples corresponding to the case
where H0 is not reduced to the identity can be constructed using similar ideas. How-
ever their geometry are slightly more complicated to grasp.

To understand some nontrivial examples, let us recall the definition of the Hopf
map

H : S3 −→ S2,

which can be defined as follows

H(z1, z2) :=
(
2 z1 z̄2, |z1|2 − |z2|2

)
∈ C× R,

if we identify R4 with C2 and R3 with C×R. It is easy to check that the preimage of
any point of S2 by H is a great circle of S3. Conversely, given any (z1, z2) ∈ S3 ⊂ C2,
the image of the great circle

µ 7−→ (eiµz1, e
iµ z2) ∈ C2,

by H is a point in S2. Also, the preimage of two distinct points of S2 by H is
the disjoint union of two great circles which are linked. For example, the preimage
of (0, 1) ∈ S2 ⊂ C × R is the great circle S1 × {0} of S3 while the preimage of
(0,−1) ∈ S2 ⊂ C×R is the great circle {0}×S1 of S3 and these two circles are easily
seen to be linked (this is what is usually called a Hopf link).

Example 1.5. — To begin with, let us consider the case where n = 3 and m = 2
and d = 1. We define

Λ :=
{

1√
2
(eiθ, eiθ) ∈ S3 : θ ∈ R

}
⊂ T2,

which is a the great circle of S3 associated to the one dimensional Lie group

L := {tα ∈ O(2)×O(2) : α := (eiθ, eiθ), θ ∈ R}.

Observe that the image of Λ by H is equal to (1, 0) ∈ S3 ⊂ C× R. We set

T := (O(2)×O(2)) ⊂ O(4).

We choose H0 ⊂ O(2)×O(2) to be the group generated by tα̃ ∈ O(2)×O(2) where

α̃ := (e
iπ
q , e−

iπ
q ),
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for some q ≥ 2. Observe that, for j = 0, . . . , q − 1, tjα̃(Λ) is again a great circle of S3

and its image by H is given by (e
2ijπ
q , 0) ∈ S3. In particular, Λ, tα̃(Λ), . . . tq−1

α̃ (Λ) are
all disjoint and in fact are linked. In this case

Λ̂ :=

q−1⋃
j=0

tjα̃(Λ),

is the disjoint union of q great circles of S3 which are linked.
Finally, given k ≥ 1, we define Hk ⊂ O(2) × O(2) to be the group generated by

tα̌ ∈ O(2)×O(2) where

α̌ := (e
2iπ
k , e

2iπ
k ).

It is easy to check that (H1), (H2) and (H3) are fulfilled.
This example generalizes trivially in higher dimensions. When n ≥ 3, we just

identify S3 with S3×{0̂} where 0̂ = (0, . . . , 0) ∈ Rn−3. Therefore, we can consider that

Λ is embedded in S3×{0̂} ⊂ Sn and we can extend trivially any group B ⊂ O(2)×O(2)

by B× {In−3} ⊂ (O(2)×O(2))×O(n− 3). This leads to examples for which Λ̂ has
q different connected components which are all great circles of Sn, two of which are
linked. In any case, this provides examples for which d = 1 and m = 2.

We complete this list of examples with a last example for which d = 2 and m = 4,
to show the flexibility of our construction.

Example 1.6. — To begin with, we assume that n = 7, m = 4 and d = 2 and we
identify R8 with C4, so that m = 4. We define

Λ :=
{

1√
4
(eiθ, eiµ, eiθ, eiµ) ∈ S7 : θ, µ ∈ R

}
,

which is a flat 2-torus in S7 associated to the 2-dimensional Lie group

L := {tα ∈ O(2)×O(2) : α := (eiθ, eiµ, eiθ, eiµ) θ, µ ∈ R}.
We set

T := (O(2)× . . .×O(2)) ⊂ O(8).

Given q ≥ 2, we choose H0 ⊂ (O(2)× . . .×O(2)) ⊂ O(8) to be the group generated
by tα and tα̃, where

α := (e
iπ
q , 1, e−

iπ
q , 1), and α̃ := (1, e

iπ
q , 1, e−

iπ
q ).

It is easy to check that the images of Λ by to different elements of H0 are disjoint.
Therefore,

Λ̂ :=
⋃

h∈H0

h(Λ),

is the disjoint union of q2 congruent copies of a 2-dimensional flat torus in S7.
Then, for all k ≥ 1, we denote by Hk ⊂ (O(2) × . . . × O(2)) ⊂ O(8) the group

generated by tα̂ and tα̌, where

α̂ := (e
iπ
k , 1, e

iπ
k , 1) and α̃ := (1, e

iπ
k , 1, e

iπ
k ).

Again (H1), (H2) and (H3) are fulfilled.
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Again, this example also generalizes trivially in higher dimensions as in Exam-
ple 1.5, namely, when n ≥ 7, we just identify S7 with S7×{0̂} where 0̂ = (0, . . . , 0) ∈
Rn−7. This leads to examples for which Λ̂ has q2 different connected components
which are congruent copies of a flat 2-dimensional torus of Sn. This is an example
for which d = 2 and m = 4.

1.5. The main result. — Having given many examples, we can now state our
main result. Keeping the notations introduced in Section 1.3, we have the :

Theorem 1.2. — Assume that 1 ≤ d ≤ n − 3 and further assume that (H1), (H2)
and (H3) are fulfilled. Then, there exists k0 ≥ 1, c1, c2 > 0 such that, for all k ≥ k0

there exists uk, a solution of (1.1) satisfying the following properties :

(a) The function uk is invariant under the action of the elements of G, H0 and Hk
but is not invariant under the action of L.

(b) The function uk is positive away from a tubular neighborhood of radius c1/k

around Λ̂ and is negative inside a tubular neighborhood of radius c2/k around Λ̂.

(c) As k tends to infinity, uk converges, uniformly on compact subsets of of Sn− Λ̂,
to the constant function u1 ≡ 1.

(d) As k tends to +∞, the renormalized energy density

(1.3)
1

kd
e(uk) dvol̊g ⇀

E1

Hd(Λ0)
Hd x Λ̂,

in the sense of measures.

Properties a) to d) will be consequences of the construction of the solutions and
we shall not comment further on them.

The measure
1

kd
e(uk) dvol̊g,

is called the renormalized energy density of the function uk. Observe that (1.3) implies
that

E(uk) = kd

(
Hd(Λ̂)

Hd(Λ0)
E1 + o(1)

)
.

Also observe that the restriction n− 3 ≥ d only plays a role in dimension n = 5 since,
in higher dimensions, it is a consequence of the inequalities 2m ≤ n+ 1 and d ≤ m.

Our result is closely related to a recent result of J. Wei and S. Yan [10] where
sequences of solutions to the prescribed scalar curvature problem which concentrate
along a circle are found. Also, we should mention the work of H.Y. Wang on the
construction of sequence of Yang-Mills connections whose energy concentrates along
a geodesic in S2 × S2 or S1 × S3. However, to our knowledge our result is the first
of the kind where sequences of solutions which concentrate along higher dimensional
submanifolds or disjoint union of submanifolds are exhibited.
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1.6. Applications. — All the examples given in Section 1.4 yield the existence of
sequences of non-congruent sign changing solutions of (1.1). For example, in dimen-
sion n ≥ 4, Theorem 1.2 applies to Example 1.1 and this yields, for k large enough, the
existence of a solution uk of (1.1), which is invariant under the action of Dk×O(n−1)
where Dk is the dihedral group in R2 but which is not invariant under the action of
O(2)×O(n−1). Moreover, as k tends to infinity, uk converges uniformly on compact
subsets of Sn − Λ to u1 ≡ 1 and the renormalized energy density of uk concentrates
uniformly along a great circle of Sn. This completes the proof of Theorem 1.1 when
d = 1.

In dimension n ≥ 2d+ 1 with d ≥ 2, Theorem 1.2 applies to Example 1.2, Exam-
ple 1.3 and Example 1.4. In particilar, for all k large enough, we obtain the existence
of a solution uk of (1.1) whose zero set is homeomorphic to Td×Sn−1−2d. Moreover,
as k tends to infinity, the sequence uk converges uniformly to u1 ≡ 1 on compact
subsets of Sn−Td and the renormalized energy density of uk concentrates uniformly
along Td. In particular, this completes the proof of Theorem 1.1 when d ≥ 2.

In dimension n ≥ 4, given q ≥ 2 we can apply Theorem 1.2 to Example 1.5 and
get solutions uk of (1.1), whose renormalized energy density concentrates uniformly
along the q disjoint great circles of Sn, as k tends to infinity.

Finally, in dimension n ≥ 7, given q ≥ 2 we can apply Theorem 1.2 to Example 1.6
and get the existence of solutionq uk of (1.1) whose renormalized energy density
concentrates uniformly along q2 disjoint flat 2-tori of Sn, as k tends to infinity.

2. Plan of the paper

In section 3, we recall some well known properties of the conformal Laplacian and
the conformal invariance of our problem. In particular, we use these results to describe
uε, a one parameter family of positive solutions of (1.1) which concentrate at one point
(the north pole of Sn when ε tends to 0 and the south pole when ε tends to infinity)
and for which u1 ≡ 1. The next section is devoted to the definition of the approximate
solutions and the derivation of precise asymptotics. We then study the linear problem
associated to the linearization of (1.1) about the approximate solution. Finally, in the
last section, we prove that, provided k is large enough, these approximate solutions
can be perturbed into genuine solutions of (1.1) using some variant of the Liapunov-
Schmidt reduction argument.

3. Conformal invariance

The conformal Laplacian on a Riemannian manifold (Mm, g) is defined by

Lg := ∆g − n−2
4(n−1) Rg,

where Rg denotes the scalar curvature of the metric g. In this section, we recall some
well known properties of Lg. The following result can be found for example in [8],
[6] :
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Proposition 3.1. — Assume that f : (Mn, g) −→ (M̄n, ḡ) is a (local) conformal
diffeomorphism, namely

f∗ḡ = φ
4

n−2 g,

for some function φ > 0 defined on M . Then, the following formula holds

f∗(Lḡ v) = φ−
n+2
n−2 Lg (φ f∗v),

for any function v defined on M̄ .

Remark 3.1. — We agree that f∗g denotes the pullback of the metric g defined on
TM by f and, given a function v defined on M , we agree that f∗v denotes v ◦ f .

In the particular case where the manifold is (Sn, g̊), the unit sphere with the
standard metric, the conformal Laplacian is given by

Lg̊ = ∆g̊ − n(n−2)
4 ,

since the scalar curvature is given by Rg̊ = n(n− 1) in this case.
We will now make an intensive use of the conformal invariance of the conformal

Laplacian. First of all, let S◦ := (0, . . . , 0,−1) ∈ Rn+1 denote the south pole of Sn.
The inverse of the stereographic projection π : Rn −→ Sn − {S◦} given explicitly by

π(y) :=

(
2y

1 + |y|2
,

1− |y|2

1 + |y|2

)
,

is a conformal map and we have

π∗g̊ = φ
4

n−2 dy2,

where dy2 is the Euclidean metric in Rn and where

φ(y) :=

(
2

1 + |y|2

)n−2
2

.

In Euclidean space, the conformal Laplacian reduces to the standard Laplacian and
applying Proposition 3.1 we get

π∗(Lg̊ v) = φ−
n+2
n−2 ∆ (φπ∗v),

for any function v defined on the sphere Sn. Therefore, we conclude that u is a
solution of (1.1) if and only if

w := φπ∗u,

is an entire solution of

(3.4) ∆w + n (n−2)
4 |w|

4
n−2 w = 0,

in Rn. In particular, the solution u1 ≡ 1 of (1.1) is associated to the solution of (3.4),
given by

w1(y) :=

(
2

1 + |y|2

)n−2
2

= φ(y).
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There is yet another application of this conformal invariance which we will exploit.
Recall that the group of conformal diffeomorphisms of the sphere is generated by the
rotations of Rn+1 and, for all ε > 0, the Moebius transformations

Kε : (Sn, g̊) −→ (Sn, g̊),

which, given the above notations, can be defined by the identity

π∗Kε(y) = π(y/ε).

We define the function uε > 0 by

K∗ε g̊ = u
4

n−2
ε g̊.

Using the result of Proposition 3.1, we conclude that

(3.5) K∗ε (Lg̊ v) = u
− n+2
n−2

ε Lg̊(uεK
∗
ε v),

for any function v defined on the sphere. Using this equality with v ≡ 1, we get

(3.6) u
− n+2
n−2

ε Lg̊ uε = −n(n−2)
4 ,

and hence uε is a solution of (1.1). As already mentioned in the introduction, the
classification of solutions of (1.1) which do not change sign goes back to the result of
M. Obata [7] which states that, up to the action of rotations, all positive solutions of
(1.1) are given by the functions uε defined above.

Using the conformal map π, we can translate this information to Rn and we con-
clude that the function

wε(y) := ε
2−n
2

(
2ε2

ε2 + |y|2

)n−2
2

,

is a solution of (3.4) and that all solutions of (3.4) are translations of wε. Moreover,
we get an explicit formula for the function uε given by

(3.7) π∗uε(y) :=
wε(y)

φ(y)
= ε

n−2
2

(
1 + |y|2

ε2 + |y|2

)n−2
2

.

Observe that the sequence uε concentrates at S◦ the north pole of Sn as ε tends to 0,
while it concentrates at S◦ the south pole of Sn as ε tends to infinity. Finally, u1 ≡ 1
when ε = 1. Differentiating (3.6) with respect to ε, we find that the function ∂εuε
satisfies

Lε (∂εuε) = 0,

where

Lε := Lg̊ + n(n+2)
4 u

4
n−2
ε .

Similarly, wε is a solution of (3.4) for all ε and differentiation with respect to ε at
ε = 1, implies that (

∆ + n(n+2)
2 w

4
n−2

1

)
Z = 0,
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where

(3.8) Z(y) :=

(
2

1 + |y|2

)n−2
2
(

1− |y|2

1 + |y|2

)
.

We end this section by the following observation : the conformal invariance of
our problem implies that all our existence results for sign changing solutions of (1.1)
translate into existence results for sign changing, entire solutions of (3.4). The reason
why we have chosen to concentrate on (1.1) is simply because the description of the
groups associated to our construction becomes very involved in Rn.

4. Building the approximate solution

We use the notations introduced in Section 1.2 and Section 1.3. Let us denote by
r a rotation which sends the point p defined in (1.2) to S◦, the north pole of Sn. The
approximate solution Uk,ε we consider depends on a continuous parameter ε > 0 as
well as the discrete parameter k which appears in Hk. It can be described as

Uk,ε := 1−
∑
h∈H

h∗ (r∗uε).

As will become apparent soon, we will assume that the parameter ε > 0 is chosen so
that

(4.9) 1/C ≤ k2 ε ≤ C ,

for some constant C > 1 which will be fixed large enough later on. Observe that,
by construction, Uk,ε is invariant under the action of the elements of both G and H.
The fact that Uε,k is invariant under the action of the elements of H is standard and
follows at once from the fact that H is a group. Now, since uε is invariant under the
action of isometries preserving the axis going through S◦ and S◦, we find that r∗uε is
invariant under the action of isometries preserving the axis going through p and −p.
In particular, g∗(r∗uε) = r∗uε, for all g ∈ G. We have

g∗Uk,ε = 1−
∑
h∈H

(h ◦ g)∗(r∗uε).

But, for g ∈ G, we have assumed that gH = Hg. And hence

g∗Uk,ε = 1−
∑
h∈H

(h ◦ g)∗(r∗uε)

= 1−
∑
h′∈H

(g ◦ h′)∗(r∗uε)

= 1−
∑
h′∈H

h′ ∗(g∗(r∗uε))

= 1−
∑
h′∈H

h′ ∗(r∗uε) = Uk,ε.

We agree that π̃ : Rn −→ Sn − {−p} denotes the inverse of the stereographic
projection which satisfies π̃(0) = p. The expression of π̃ can be derived from π using
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the rotation r introduced above. Indeed, we can define π̃ by

r ◦ π̃ = π.

We now obtain some important asymptotic expansion for Uk,ε near p (and hence,
using the action of the elements of H, near any point of Ok). This result strongly uses
the assumption d ≤ n− 3.

Lemma 4.1. — Assume that n ≥ 4 and 1 ≤ d ≤ n − 3. Then, there exists a
constant γ̄ > 0 (depending on n, d, Λ and Λ0) and, for all k large enough, there
exists a constant γk,ε > 0 (depending on k, n, d, Λ and Λ0) such that

(4.10) π̃∗(Uk,ε − r∗uε)(y) = 1− ε
n−2
2 γk,ε +O(k2 |y|2),

in the ball of center 0 and radius c/k in Rn, where c > 0 is a constant independent
of k which is fixed small enough, and

lim
k→∞

γk,ε
kn−2

= γ̄.

Finally, γk,ε depends continuously (and in fact smoothly) on ε.

Proof. — We first analyze a model problem. We consider Γ0 to be a d-dimensional
regular lattice in Rd × {0} ⊂ Rn, which contains the origin. In particular Γ0 = −Γ0.
For all k ≥ 1, we consider the function

Wk(x) =
∑
x̄∈Γ0

∣∣∣x− x̄

k

∣∣∣2−n .
Then, near 0, the function Wk can be expanded as

Wk(x) = |x|2−n+kn−2
∑

x̄∈Γ0−{0}

|x̄|2−n+(n−2) kn−1

 ∑
x̄∈Γ0−{0}

x̄

|x̄|n

·x+O(kn |x|2),

since all series converge precisely when n−d ≥ 3. Thanks to the symmetries (namely
Γ0 = −Γ0), we have Wk(−x) = Wk(x) and hence, in the above expansion, the term
which is linear in x vanishes. Therefore, we conclude that

(4.11) Wk(x) = |x|2−n + kn−2 γ̄ +O(kn |x|2).

And this estimate holds in a ball of radius c/k centered at 0, provided c > 0 is fixed
small enough, depending on the lattice Γ0. Similar estimates can be derived for the
partial derivatives of Wk.

Now, property (H3) can be used to prove that similar computations can also be
performed for the function 1 − Uk,ε. Indeed, it is easy to check that the following
expansion

π̃∗(r∗uε)(y) = ε
n−2
2 |y|2−n

(
1 +O(|y|2) +O(ε2 |y|−2)

)
,

is valid provided |y| ≥ ε. Using this and the analysis of the model problem, we claim
that

(4.12) π̃∗

 ∑
h∈H−{Id}

h∗(r∗ uε)

 (y) = ε
n−2
2 γk,ε +O(k2 |y|2),
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in the ball of radius c/k centered at 0 in Rn, provided c > 0 is fixed small enough.
This is nothing but Taylor’s expansion of the function

Vk,ε := π̃∗

 ∑
h∈H−{Id}

h∗(r∗ uε)

 ,

at order 2 at the origin. The constant γk,ε ∈ R is simply given by

(4.13) ε
n−2
2 γk,ε =

∑
h∈H−{Id}

h∗(r∗ uε)(p).

Now, the function Vk,ε being invariant under the action of the elements of G, its
gradient vanishes at the origin. This follows at once from Proposition 1.1 together
with the fact that the tangent space at p can be identified with the space of vectors
x ∈ Rn+1 satisfying p · x = 0. This explains why there is no linear term in y in
the expansion (4.12). Finally, it is easy to check that the norm of the second order

differential of Vk,ε can be estimated by a constant times ε
n−2
2 kn ∼ k2 in a ball of

radius c/k centered at p, with c > 0 fixed small enough (recall that k−2 ∼ ε).
Finally, we claim that∑

h∈H−{Id}

h∗(r∗ uε)(p) = ε
n−2
2 kn−2 γ̄ +O(k−2),

when d < n − 4 (the O(k−2) has to be replaced by O(k−2 log k) when d = n − 4
and by O(k−1) when d = n− 3). The idea is to decompose the sum of the left hand
side into two parts. The first part is the sum over elements h ∈ H − {Id} such that
the distance from p to h(p) is larger than some constant c > 0 which is fixed small
enough. Let us denote by H> this set. For any element h ∈ H>, we can estimate

h∗(r∗ uε)(p) = O(ε
n−2
2 ).

Since there are at most a constant times kd elements in H>, summation over all
h ∈ H> yields ∑

h∈H>
h∗(r∗ uε)(p) = O(ε

n−2
2 kd) = O(kd−2−n).

Since k2 ∼ ε−1, we conclude that∑
h∈H>

h∗(r∗ uε)(p) = O(kd−2−n).

Let us denote by H< the set of elements h ∈ H− {Id} such that the distance from
p to h(p) is less than some constant c > 0 which is fixed small enough. If sh denotes
the distance from p to h(p), we can estimate

h∗(r∗ uε)(p) = ε
n−2
2 s2−n

h (1 +O(s2
h) +O(ε2 s−2

h )).

Recall that the points of Ok are arranged at the vertices of a d-dimensional regular
lattice k−1 Γ0. Summation over all h ∈ H< yields∑

h∈H<
ε
n−2
2 s2−n

h = ε
n−2
2 kn−2 γ̄ +O(ε

n−2
2 kd),
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where the constant γ̄ corresponds to the constant which appears in (4.11). Moreover,∑
h∈H<

ε
n+2
2 s−nh = O(ε

n+2
2 kn)).

Finally, ∑
h∈H<

ε
n−2
2 s4−n

h = O(ε
n−2
2 kn−4)),

when 4 − n + d < 0 (the right had side has to be replaced by O(ε
n−2
2 kn−4 log k))

when 4 − n + d = 0 and by O(ε
n−2
2 kn−3)) when 4 − n + d = 1). In any case, the

result follows at once by collecting these estimates and using the fact that ε ∼ k−2.
This completes the proof of the result.

Using similar arguments, we can also prove the weaker result which also strongly
uses the assumption n− d ≥ 3 :

Lemma 4.2. — Assume that n ≥ 4 and 1 ≤ d ≤ n − 3. Then, for all c > 0, there
exists a constant C > 0 such that, for all x ∈ Sn satisfying dist(x,Λ) ≥ c/k, we have∣∣∣∣∣∣

∑
h∈H−{Id}

h∗ r∗ uε (x)

∣∣∣∣∣∣ ≤ C (k dist(x,Λ))
2−n+d

.

Proof. — We follow the arguments developed in the proof of Lemma 4.1. We consider
Γ0 to be a d-dimensional regular lattice in Rd × {0} ⊂ Rn which contains the origin.
For all k ≥ 1, we consider the function

Wk(x) =
∑
x̄∈Γ0

∣∣∣x− x̄

k

∣∣∣2−n .
We denote by s := dist(x,Rd × {0}). Then, we can estimate∣∣∣∣∣∣

∑
x̄∈Γ0 : |x̄|≤k s

∣∣∣x− x̄

k

∣∣∣2−n
∣∣∣∣∣∣ ≤ c

∣∣∣∣∣∣
∑

x̄∈Γ0 : |x̄|≤k s

s2−n

∣∣∣∣∣∣ ≤ c s2−n+d kd,

and ∣∣∣∣∣∣
∑

x̄∈Γ0 : |x̄|≥k s

∣∣∣x− x̄

k

∣∣∣2−n
∣∣∣∣∣∣ ≤ c

∣∣∣∣∣∣
∑

x̄∈Γ0 : |x̄|≥k s

∣∣∣ x̄
k

∣∣∣2−n
∣∣∣∣∣∣ ≤ c s2−n+d kd.

This implies the pointwise estimate

|Wk(x)| ≤ c kd dist(x,Rd × {0})2−n+d.

Now that the estimate is proven in this model situation, the estimate in the statement
of the result follows from the arguments which were developed in the proof of the
previous Lemma.
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5. Linear analysis

We fix a constant c0 > 0 small enough so that the geodesic ball of radius 4 rk,
centered at the points of Ok are mutually disjoint, when

rk :=
c0
k
.

We also assume that c0 is chosen small enough so that Uk,ε ≤ −1/2 in the geodesic
balls of radius 2 rk, centered at the points of Ok. We define a cutoff function χk
such that χk ≡ 1 in each geodesic ball of radius rk/2 centered at p and χk ≡ 0 away
from the the geodesic ball of radius 2 rk centered at p. Finally, we assume that χk is
invariant under the action of the elements of G.

From now on, we assume that we are working with functions which are invariant
under the action of the elements of the groups H and G. For all δ ∈ R, we define the
weighted norm

‖w‖L∞δ (Sn) := sup
Sn−Ok

(
(max(ε,dist(·, Ok))

−δ |w|
)
,

and we define the operator

Lk,ε := ∆g̊ − n(n−2)
4 + n(n+2)

4 U
4

n−2

k,ε ,

which is the linearized operator about the approximate solution Uk,ε. Our construc-
tion relies on the following result which, once again, uses in a crucial way the fact
that n− d ≥ 3 :

Proposition 5.1. — Assume that n ≥ 4 and δ ∈ (2 − n + d, 0) are fixed. For all
f ∈ L∞(Sn) which is invariant under the action of both G and H, there exists a
unique w ∈ L∞(Sn) and λ ∈ R solutions of

(5.14)



Lk,ε w + λ
∑
h∈H

h∗ r∗ (χk u
4

n−2
ε ∂εuε) = f,

λ

∫
Sn
χ2
k u

4
n−2
ε (∂εuε)

2 dvol̊g =

∫
Sn

r∗ (χk ∂εuε) f dvol̊g

−
∫
Sn
wLk,εr∗ (χk ∂εuε) dvol̊g,∫

Sn
r∗ (χk u

4
n−2
ε ∂εuε)w dvol̊g = 0.

Moreover, we have the estimate

(5.15) ‖w‖L∞δ (Sn) ≤ c ‖f‖L∞δ−2(Sn) ,

for some constant c > 0 independent of f .

Proof. — We first prove some a priori estimates for the solutions of Lk,ε w = f .

Lemma 5.1. — Assume that δ ∈ (2 − n + d, 0), then there exists k0 > 0 such that,
for all k ≥ k0, the following a priori estimate holds

‖w‖L∞δ (Sn) ≤ c ‖Lk,ε w‖L∞δ−2(Sn),
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provided

(5.16)

∫
Sn

r∗ (χk u
4

n−2
ε ∂εuε)w dvol̊g = 0.

Proof. — The proof is by contradiction. We assume that there exists a sequence of
kj tending to infinity and εj tending to 0 for which the result is not true (recall that

k2
j ∼ ε

−1
j ). In particular, there exists wj such that

(5.17) ‖wj‖L∞δ (Sn) = 1,

and

lim
j→∞

‖Lkj ,εj wj‖L∞δ−2(Sn).

We denote by pj ∈ Sn a point where (5.17) is achieved. We now distinguish different
cases according to the behavior of

`j := max
(
dist(pj , Okj ), εj

)
.

In each case, we rescale coordinates (using the exponential map) by 1/`j and use el-
liptic estimates together Ascoli-Arzela’s theorem to extract convergent subsequences.
If, for some subsequence, `j remains bounded away from 0, we get in the limit a non
trivial solution of

(∆g̊ + n)w = 0,

in Sn − Λ. Moreover, w is bounded by a constant times (dist(p,Λ))δ and, wj being
invariant under the action of H, we conclude that w is invariant under the action
of L and hence it does not depend on the coordinates on Λ, in other words w is
invariant under the torus action associated to Λ. Since δ > 2 − n + d and since w
does not depend on the coordinates in Λ, it is easy to check that the singularities of
w are removable and hence w has to be a smooth solution in the kernel of ∆g̊ + n.
But w is invariant under the action of G and does not depend on the coordinates on
Λ, it is easy to conclude that w achieves its maximum at more than one point and
hence it cannot be an element of the kernel of ∆g̊ + n, therefore w ≡ 0. Which is a
contradiction.

The second case we have to consider is the case where limj→∞ `j = 0 and where
limj→∞ kj `j = +∞. In this case, we obtain a nontrivial solution of

∆w = 0,

in Rn−{0}×Rd which is bounded by a constant times (dist(·, {0}×Rd))δ and which
does not depend on the coordinates in {0}×Rd. Again, using the fact that δ > 2−n+d
we conclude that the singularities of w are removable and then it is easy to check that
w ≡ 0 since δ < 0, which is a contradiction.

Next, we consider the case where limj→∞ kj `j exists and is not equal to 0. In this
case, we obtain a nontrivial solution of

∆w = 0,

in Rn − {0} × Γ0, where Γ0 is a regular d-dimensional lattice in Rd. Moreover, we
know that this solution is bounded by a constant times (dist(·,Γ0))δ and is periodic
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(with period corresponding to the lattice). It is easy to check that the singularities
are removable since δ > 2−n. We therefore conclude that w ≡ 0 since w is harmonic
and δ < 0. Again a contradiction.

The fourth case we have to consider is the case where limj→∞ kj `j = 0 and
limj→∞ k2

j `j = +∞. In this case, we obtain a nontrivial solution of

∆w = 0,

in Rn − {0}. Moreover, this solution is bounded by a constant times (dist(·, 0))δ. It
is easy to check that the singularities are removable since δ > 2 − n. We therefore
conclude that w ≡ 0 since w is harmonic and δ < 0, which is again a contradiction.

Finally, the last case we have to consider is the case where limj→∞ k2
j `j exists. In

this last case, there exists ε̄ > 0 such that w is a solution of(
∆ + n(n+2)

4 w
4

n−2

ε̄

)
w = 0,

in Rn which is bounded by a constant times (1 + |y|)δ, for δ < 0. Now, the L∞-

bounded kernel of the operator ∆+ n(n+2)
4 w

4
n−2

ε̄ is explicitly known and it is spanned
by the functions

ψj :=

(
2

ε̄2 + |y|2

)n−2
2 2 ε̄ yj

ε̄2 + |y|2
,

for all j = 1, . . . , n, and

ψn+1 :=

(
2

ε̄2 + |y|2

)n−2
2 ε̄2 − |y|2

ε̄2 + |y|2
.

Passing to the limit in (5.16), we find that w is L2-orthogonal to w
4

n−2

ε̄ ψn+1 and
hence it cannot contain any component over ψn+1. Finally, wj being invariant under
the action of the elements of G, the function w inherits some invariance which we
now describe. We identify the tangent space of Sn at p with

{(z1, . . . , zm, x̃) ∈ Cm × Rn+1−2m : <(z1 + . . .+ zm) = 0},

and find that the function w is invariant under the action of s, s̄ and c. Using this, we
conclude (as in the proof of Proposition 1.1) that w ≡ 0, which a again a contradiction.
Having reached a contradiction in each case, this completes the proof of the result.

Let us briefly comment on this result. The key idea is that, as k tends to infinity,
the operator Lk,ε has an eigenvalue tending to 0 and this eigenvalue is associated to
an eigenfunction which is close to the function

φk,ε :=
∑
h∈H

h∗(r∗ (χk ∂εuε)).

In particular this implies that, working orthogonally to this eigenfunction, the inverse
of the operator Lk,ε is well behaved. Therefore, it should be natural to work orthog-
onally to this function and this is in essence what we will do. Now, from a technical
point of view it turns out that the function r∗(∂εuε) does not decay fast enough to 0
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when going away from p and it turns out that it is convenient to work orthogonally
to the function

φ̃k,ε :=
∑
h∈H

h∗(r∗ (χk u
4

n−2
ε ∂εuε)),

which has a better decay properties and which is not orthogonal to φk,ε.
Using the above result, we can prove, for all f ∈ L∞δ−2(Sn), the existence of w ∈

L∞δ−2(Sn) and λ ∈ R solutions of (5.14) provided k is chosen large enough.

Lemma 5.2. — Assume that δ ∈ (2− n+ d, 0), then there exists k0 > 0 and, for all
k ≥ k0, there exists a unique solution of (5.14).

Proof. — The idea is to consider the space of functions which are invariant un-
der the action of the elements of G and H and which are also L2-orthogonal to

r∗ (χk u
4

n−2
ε ∂εuε). On this space, we define the operator L̃k,ε which is obtained by

projecting Lk,ε w on the L2-orthogonal complement of r∗ (χk u
4

n−2
ε ∂εuε). This is a self

adjoint elliptic operator and surjectivity boils down to injectivity. And, for k large
enough, injectivity will be guarantied by the result of Lemma 5.1.

Assume that we are given w, f ∈ L∞(Sn) and λ ∈ R solution of

Lk,ε w + λ
∑
h∈H

h∗ r∗ (χk u
4

n−2
ε ∂εuε) = f,

with ∫
Sn

r∗ (χk u
4

n−2
ε ∂εuε) v dvol̊g = 0.

Taking the scalar product with r∗ (χk ∂εuε) we find that λ ∈ R is defined by

λ

∫
Sn
χ2
k u

4
n−2
ε (∂εuε)

2 dvol̊g =

∫
Sn

r∗(χk ∂εuε) f dvol̊g −
∫
Sn
wLk,εr∗ (χk ∂εuε) dvol̊g.

It is easy to check that∫
Sn
χ2
k u

4
n−2
ε (∂εuε)

2 dvol̊g ≥ c k4,

for k large enough. Moreover∣∣∣∣∫
Sn

r∗(χk ∂εuε) f dvol̊g

∣∣∣∣ ≤ c k4−n−2δ ‖f‖L∞δ−2(Sn).

Using the fact that Lε ∂εuε = 0, we also get∣∣∣∣∫
Sn
wLk,εr∗ (χk ∂εuε) dvol̊g

∣∣∣∣ ≤ c k4−n−δ ‖w‖L∞δ (Sn).

Observe that this estimate is essentially a consequence of the estimate of Lk,εr∗ (χk ∂εuε)
in the region where the cutoff function χk is acting.

Finally, we have ∥∥∥∥u 4
n−2
ε ∂εuε

∥∥∥∥
L∞δ−2(Sn)

≤ c kn+2 δ.
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Collecting these estimates, we conclude that

|λ|
∥∥∥∥u 4

n−2
ε ∂εuε

∥∥∥∥
L∞δ−2(Sn)

≤ c (‖f‖L∞δ−2(Sn) + kδ ‖w‖L∞δ (Sn)).

Collecting these and using the result of Lemma 5.1, we conclude that

‖w‖L∞δ (Sn) ≤ c (‖f‖L∞δ−2(Sn) + kδ ‖w‖L∞δ (Sn)).

and hence, we conclude that

(5.18) ‖w‖L∞δ (Sn) ≤ 2 c ‖f‖L∞δ−2(Sn),

for all k large enough. This a priori estimate implies immediately the injectivity of
L̃k,ε and hence its surjectivity. In particular, given f ∈ L∞(Sn), there exists a unique
w ∈ L∞(Sn) and λ ∈ R such that

Lk,ε w + λ
∑
h∈H

h∗ r∗ (χk u
4

n−2
ε ∂εuε) = f,

with ∫
Sn

r∗ (χk u
4

n−2
ε ∂εuε) v dvol̊g = 0,

and this, together with (5.18) completes the proof of the result.

The result of the Proposition follows at once from the two Lemma we have just
proved. The first Lemma gives the estimate while the second Lemma yields the
existence of a solution.

6. Fixed point theorems and the resolution of the nonlinear equation

From now on, we assume that the parameter ε > 0 is chosen to fulfill∣∣∣1− εn−2
2 γk,ε

∣∣∣ ≤ 1.

Notice that, according to Lemma 4.1, this implies that (4.9) is satisfied provided C > 1
(the constant which appears in Lemma 4.1) is fixed large enough. We also assume
that the hypothesis in the statement of Theorem 1.2 are satisfied. In particular,
1 ≤ d ≤ n− 3.

Building on the previous analysis, we now apply a fixed point argument for con-
traction mappings to solve the equation

∆g̊(Uk,ε + w)− n (n−2)
4 (1− |Uk,ε + w|

4
n−2 ) (Uk,ε + w) = 0,

where Uk,ε is the approximate solution which has been defined in section 4. Let
us emphasize that, by construction, Uk,ε depends on a discrete parameter k and a
continuous parameter ε. We first rewrite the equation we are trying to solve as

(6.19) Lk,ε w + Ek,ε +Qk,ε(w) = 0,

where

Ek,ε := ∆g̊Uk,ε − n (n−2)
4 (1− |Uk,ε|

4
n−2 )Uk,ε,
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denotes the error we make by considering that Uk,ε is a solution of (1.1),

Lk,ε := ∆g̊ − n(n−2)
4 + n(n+2)

4 U
4

n−2

k,ε ,

is the linearized operator about the approximate solution Uk,ε and

Qk,ε(w) := n(n−2)
4

(
|Uk,ε + w|

4
n−2 (Uk,ε + w)− |Uk,ε|

4
n−2Uk,ε − n+2

n−2 |Uk,ε|
4

n−2 w
)
,

collects the nonlinear terms.
Instead of (6.19) we will first solve the equation

(6.20)



Lk,ε w + λ
∑
h∈H

h∗ r∗ u
4

n−2
ε ∂εuε + Ek,ε +Qk,ε(w) = 0,∫

Sn
wLk,εr∗ (χk ∂εuε) dvol̊g + λ

∫
Sn
χ2
k u

4
n−2
ε (∂εuε)

2 dvol̊g

+

∫
Sn

r∗ (χk ∂εuε) (Ek,ε +Qk,ε(w)) dvol̊g = 0.

The solvability of this nonlinear problem relies on the result of Proposition 5.1 together
with a fixed point theorem for contraction mapping.

Proposition 6.1. — Assume that the assumptions of Theorem 1.2 hold and that
δ ∈ (− 1

2 , 0) is fixed. Further assume that ε > 0 satisfies (4.9). Then, there exist
c0 > 0 and k0 ≥ 0 and, for all k ≥ k0, there exists wk,ε ∈ L∞(Sn) and λk,ε ∈ R
solutions of (6.20) such that

‖wk,ε‖L∞δ (Sn) ≤ c0 k2δ,

In addition, wk,ε and λk,ε depend continuously on the parameter ε satisfying (4.9).

Before we proceed with the proof of this result, let us remark that, for k ≥ k0 and
ε > 0 satisfying (4.9), we have been able to find a function (not identically equal to
0)

uk,ε := Uk,ε + wk,ε,

and λk,ε ∈ R such that

∆g̊uk,ε − n (n−2)
4 (1− |uk,ε|

4
n−2 )uk,ε + λk,ε

∑
h∈H

h∗ r∗ (u
4

n−2
ε ∂εuε) = 0.

Therefore, in order to complete the proof of Theorem 1.2, we will just have to solve
the equation

λk,ε = 0.

The solvability of this equation will be performed right after the proof of Proposi-
tion 6.1.

The proof of Proposition 6.1 is decomposed into two Lemmas. First, we derive all
necessary estimates concerned with the error term Ek,ε :
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Lemma 6.1. — Assume that δ ∈ (− 1
2 , 0) and that the assumptions of Theorem 1.2

hold. Then, there exist constant C0, k0 > 0 such that, for all k ≥ k0, the following
estimates hold

(6.21) ‖Ek,ε‖L∞δ−2(Sn) ≤ C0 k
2δ,

and

(6.22)

∣∣∣∣∫
Sn

r∗(χk ∂εuε) Ek,ε dvol̊g + cn ε
n−4
2 (1− ε

n−2
2 γk,ε)

∣∣∣∣ ≤ C0 k
2−n log k,

where cn > 0 only depends on n.

Proof. — Using the fact that u1 ≡ 1 and h∗ r∗uε, for all h ∈ H, are solutions of (1.1),
we compute

Ek,ε = n(n−2)
4


∣∣∣∣∣∣1−

∑
h∈H

h∗ r∗uε

∣∣∣∣∣∣
4

n−2
1−

∑
h∈H

h∗ r∗uε

− 1 +
∑
h∈H

h∗ r∗u
n+2
n−2
ε

 .

Using Lemma 4.2, we estimate

|Ek,ε| ≤ c
∑
h∈H

h∗ r∗uε ≤ c (k dist (·,Λ))
2−n+d

,

when dist(x,Λ) ≥ rk and, using Lemma 4.1, we get

|Ek,ε| ≤ c r∗u
4

n−2
ε ,

when dist(x, p) ≤ rk. These estimates imply that

‖Ek,ε‖L∞δ (Sn) ≤ c
(
k2−n+d + kδ−2 + ε−δ

)
.

The proof of the first estimate follows at once from the fact that ε−1 ∼ k2 together
with the fact that δ − 2 ≤ 2δ and 2− n+ d ≤ −1 ≤ 2δ since δ ∈ (− 1

2 , 0).
The second estimate follows from Lemma 4.2. Indeed, in the range where

dist(x,Λ) ≤ rk, the result of this Lemma can be restated as

1− Uk,ε = r∗ uε + (1− ε
n−2
2 γk,ε) +O(r∗ u

− 2
n−2

ε )

Taylor’s expansion then implies the refined estimate∣∣∣∣Ek,ε − n(n+2)
4 r∗u

4
n−2
ε (1− ε

n−2
2 γk,ε)

∣∣∣∣ ≤ C (1 + r∗u
2

n−2
ε + r∗u

6−n
n−2
ε ),

in the range where dist(x,Λ) ≤ rk. We leave the details to the reader.

We now derive the necessary estimates concerned with the nonlinear terms Qk,ε.
In this result, we agree that the functions, w,w′ are chosen so that

‖w‖L∞δ (Sn) + ‖w′‖L∞δ (Sn) ≤ C1 k
2δ,

for some constant C1 which will be fixed later on. We have the :
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Lemma 6.2. — Assume that δ ∈ (− 1
2 , 0) and that the assumptions of Theorem 1.2

hold. Further assume that C1 > 0 is fixed. Then, there exists a constant C0 > 0 and
there exists k0 > 0, both depending on C1, such that, for all k ≥ k0, the following
estimates hold

(6.23) ‖Qk,ε(w′)−Qk,ε(w)‖L∞δ−2(Sn) ≤ C0 k
2δ ‖w̄′ − w̄‖L∞δ (Sn),

(6.24)

∣∣∣∣∫
Sn
wLk,εr∗ (χk ∂εuε) dvol̊g

∣∣∣∣ ≤ C0 k
4−n+δ,

and

(6.25)

∣∣∣∣∫
Sn

r∗(χk ∂εuε)Qk,ε(w) dvol̊g

∣∣∣∣ ≤ C0 k
2−n.

Proof. — These estimates are not hard to derive but observe that some care is due

to derive the first estimate since the nonlinearity t 7−→ |t|
4

n−2 t is not C2 at 0 when
n ≥ 7.

Let us explain where the first estimate comes from. In the range where Uk,ε ≥ 1/2
(i.e. when dist(·,Λ) ≥ c rk, for some fixed c > 0 large enough), we get the pointwise
estimate

|Qk,ε(w′)−Qk,ε(w)| ≤ C k2δ(dist(·,Λ))2δ ‖w̄′ − w̄‖L∞δ (Sn)

while, when Uk,ε ≤ −1/2, say for example close to the point p (i.e. when dist(·, p) ≤
c̃ rk, for some fixed c̃ > 0 small enough), we get the pointwise estimate

|Qk,ε(w′)−Qk,ε(w)| ≤ C kn−6+2δ(dist(·, p))n−6+2δ ‖w̄′ − w̄‖L∞δ (Sn)

Finally, in the range where Uk,ε ∈ [−1/2, 1/2], say for example, close to the point p,
we have the pointwise estimate

|Qk,ε(w′)−Qk,ε(w)| ≤ C (dist(·, p))δ ‖w̄′ − w̄‖L∞δ (Sn)

for some constant C > 0 which depends on C1. Collecting these, we conclude that

‖Qk,ε(w′)−Qk,ε(w)‖L∞δ−2(Sn) ≤ C (k2δ + k2−n + kδ−2 + k−2) ‖w̄′ − w̄‖L∞δ (Sn).

The estimate (6.23) then follows at once for the choice δ ∈ (− 1
2 , 0).

The second estimate (6.24) has already been proven in the proof of Lemma 5.2.
The last estimate follows from the pointwise estimate

|r∗(χk ∂εuε)Qk,ε(w)| ≤ C k4δ−2 (dist(·, p))2δ−4

when dist(·, p) ≤ rk. Therefore, we get∣∣∣∣∫
Sn

r∗(χk ∂εuε)Qk,ε(w) dvol̊g

∣∣∣∣ ≤ C k2−n+2δ,

when n ≥ 5, when n = 4, the k2−n+2δ has to be replaced by k−2. This completes the
proof of (??).

We can now complete the proof of Proposition 6.1.
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Proof of Proposition 6.1. — We choose δ ∈ (−1/2, 0). First we apply a fixed point
theorem for contraction mappings to solve (6.20). To this aim, we use the result of
Proposition 5.1 to obtain a right inverse for the operator Lk,ε and rephrase (6.20) as
a fixed point problem. The above estimates (6.21) and (6.23) are precisely the one
which are needed to ensure, for all ε > 0 small enough, the existence of a fixed point
w which belongs to the ball of radius C1 k

2δ in L∞δ (Sn), provided C1 is fixed large
enough. Reducing the range in which ε > 0 is chosen, it is not hard to check that
the solution we obtain depends continuously on ε by taking the difference between
the equations satisfied by the solutions for two different values of ε and using the
contraction property of the nonlinear operator. Since this is rather standard, we
leave the details to the reader. This completes the proof of Proposition 6.1.

It remains to solve the equation λk,ε = 0. Looking at the second equation in (6.20)
we find that the equation λk,ε = 0 reduces to∫

Sn
r∗(χk ∂εuε) (Lk,εwk,ε + Ek,ε +Qk,ε(wk,ε)) dvol̊g = 0.

Using the estimates (6.22), (6.24) and (6.25), we find that this equation is equivalent
to

(6.26) (1− ε
n−2
2 γk,ε) = Vk(ε)

where the function Vk depends continuously on ε. Then, the previous analysis shows
that there exists k0 > 0 such that, for k ≥ k0, we have the estimate |Vk(ε)| ≤ C kδ,
uniformly in ε satisfying (4.9). The existence of a solution of (6.26) then follows from
the intermediate value theorem and this completes the proof of the Theorem 1.2.
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Modelamiento Matemático (UMI 2807 CNRS), Universidad de Chile, Casilla 170 Correo 3,
Santiago, Chile.

Monica Musso, mmusso@mat.puc.cl, Departamento de Matemática, Ponticia Universidad Católica
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