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Abstract

We consider the problem

ε2�u − V (x)u + u p = 0, u > 0, u ∈ H1(R2) ,

where p > 1, ε > 0 is a small parameter, and V is a uniformly positive,

smooth potential. Let � be a closed curve, nondegenerate geodesic relative to

the weighted arc length
∫
� V σ , where σ = (p + 1)/(p − 1) − 1/2. We prove

the existence of a solution uε concentrating along the whole of �, exponentially

small in ε at any positive distance from it, provided that ε is small and away from

certain critical numbers. In particular, this establishes the validity of a conjecture

raised in [3] in the two-dimensional case. c© 2006 Wiley Periodicals, Inc.

1 Introduction and Statement of Main Result

We consider standing waves for a nonlinear Schrödinger equation in R
N of the

form

(1.1) −iε
∂ψ

∂t
= ε2�ψ − Q(y)ψ + |ψ |p−1ψ

where p > 1, namely, solutions of the form ψ(t, y) = exp(iλε−1t)u(y). Assum-

ing that the amplitude u(y) is positive and vanishes at infinity, we see that this ψ

satisfies (1.1) if and only if u solves the nonlinear elliptic problem

(1.2) ε2�u − V (y)u + u p = 0, u > 0, u ∈ H 1(RN ),

where V (y) = Q(y) + λ. In the rest of this paper we will assume that V is a

smooth function with

inf
y∈R2

V (y) > 0.
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Considerable attention has been paid in recent years to the problem of constructing

standing waves in the so-called semiclassical limit of (1.1) ε → 0. In the pioneer-

ing work [14], Floer and Weinstein constructed positive solutions to this problem

when p = 3, N = 1, such that the concentration is taking place near a given non-

degenerate critical point y0 of V (y) and the solutions are exponentially small in ε

outside any neighborhood of y0. More precisely, they established the existence of

a solution uε such that

uε(y) ∼ V (y0)
1

p−1 w(V (y0)
1
2 ε−1(y − y0))

where w is the unique solution of

(1.3) w′′ − w + w p = 0, w > 0, w′(0) = 0, w(±∞) = 0.

Many authors have subsequently extended this result to higher dimensions to the

construction of solutions exhibiting high concentration around one or more points

of space under various assumptions on the potential and nonlinearity. We refer the

reader, for instance, to [2, 4, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 22, 31, 32, 34,

36, 37, 38].

An important question is whether solutions exhibiting concentration on higher-

dimensional sets exist. In [3], Ambrosetti, Malchiodi, and Ni have considered the

case of V = V (|y|), also treated in [5, 6], and constructed radial solutions uε(|y|)
exhibiting concentration on a sphere |y| = r0 in the form

uε(r) ∼ V (r0)
1

p−1 w(V (r0)
1
2 ε−1(r − r0))

under the assumption that r0 > 0 is a nondegenerate critical point of

(1.4) M(r) = r N−1V σ (r)

where

(1.5) σ = p + 1

p − 1
− 1

2
,

and w is again the unique solution of (1.3). The conjecture is raised in [3] that this

type of phenomenon takes place, at least along a sequence ε = εn → 0, whenever

the sphere |y| = r0 is replaced by a closed hypersurface � that is stationary and

nondegenerate for the weighted area functional
∫
�

V σ . In this paper we prove the

validity of this conjecture in dimension N = 2.

For N = 2, the functional above defined on closed Jordan curves � has a simple

geometrical meaning: it corresponds to the arc length of � measured with respect

to the metric V σ ( dy2
1 + dy2

2 ) in R
2. Thus we will establish the concentration

phenomenon on � provided that this curve is a nondegenerate closed geodesic for

this metric in R
2.

We do not prove the result for all small values ε > 0 but only for those which

lie away from certain critical numbers. More precisely, there is an explicit number
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λ∗ > 0 such that given c > 0, if ε is sufficiently small and satisfies the gap

condition

(1.6) |k2ε2 − λ∗| ≥ cε for all k ∈ N,

then a solution uε with the required concentration property indeed exists. In other

words, this will be the case whenever ε is small and away from the critical numbers√
λ∗/k in the sense that for fixed and arbitrarily small c <

√
λ∗,

ε �∈
[√

λ∗
k

− c

k2
,

√
λ∗
k

+ c

k2

]
for all k ∈ N.

To state our main result, we need to make precise the concept of a curve � being

stationary and nondegenerate for the weighted length functional
∫
�

V σ .

Let � be a closed smooth curve in R
2 and 	 = |�| its total length. We consider

the natural parametrization γ (θ) of � with positive orientation, where θ denotes an

arc length parameter measured from a fixed point of �. Let ν(θ) denote the outer

unit normal to �. Points y that are δ0-close to � for sufficiently small δ0 can be

represented in the form

(1.7) y = γ (θ) + tν(θ), |t | < δ0, θ ∈ [0, 	),

where map y �→ (t, θ) is a local diffeomorphism. Any curve sufficiently close to

� can be parametrized as

γg(θ) = γ (θ) + g(θ)ν(θ).

where g is a smooth, l-periodic function with small L∞-norm. Call �g the curve

defined this way. By a slight abuse of notation, we denote V (t, θ) to actually

mean V (y) for y in (1.7). Then the weighted length of this curve is given by the

functional of g

J (g) ≡
∫
�g

V σ =
∫ �

0

V σ (γg(θ))|γ ′
g(θ)|dθ

=
∫ �

0

V σ (g(θ), θ)|γ ′ + gν ′ + g′ν|dθ.

Since |γ ′| = 1 and ν ′ = k(θ)γ ′, where k(θ) denotes the curvature of �, we get that

the above quantity becomes

(1.8) J (g) =
∫ �

0

V σ (g(θ), θ)[(1 + kg)2 + (g′)2] 1
2 dθ.

� is said to be stationary for the weighted length
∫
�

V σ if the first variation of

the functional (1.8) at g = 0 is equal to zero. That is, for any smooth, 	-periodic

function h(θ)

0 = J ′(0)[h] =
∫ �

0

[(V σ )t h + V σ kh]dθ,
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which is equivalent to the relation

(1.9) σ Vt(0, θ) = −k(θ)V (0, θ) for all θ ∈ (0, 	).

We assume the validity of this relation at �.

Let us consider now the second variation quadratic form

J ′′(0)[h, h] = 1

2

∫ �

0

[V σ |h′|2 + [(V σ )t t + 2(V σ )t k]h2]dθ

= 1

2

∫ �

0

[V σ |h′|2 + [(V σ )t t − 2V σ k2]h2]dθ.

We say that � is nondegenerate if this quadratic form is in the space of all func-

tions h ∈ H 1(0, 	) with h(0) = h(	). This is equivalent to the statement that the

differential equation

(V σ h′)′ − [(V σ )t t − 2V σ k2]h = 0

has only the 	-periodic solution h ≡ 0, or using (1.9), that the boundary value

problem

(1.10)
h′′ + σ V −1Vθh′ − [σ V −1Vt t − (σ−1 + 1)k2]h = 0,

h(0) = h(	), h ′(0) = h′(	),

has only the trivial solution.

As an example, let us consider the radial case V = V (r). Then we see that

� = {r = r0} is stationary precisely if M ′(r0) = 0 where M is defined by (1.4).

If in addition M ′′(r0) > 0, namely, if r0 is a nondegenerate local minimizer, we

have that (V σ )t t + 2(V σ )t k > 0. This automatically makes the quadratic form

J ′′(0)[h, h] positive definite, hence nonsingular. A nondegenerate stationary curve

close to � will still be present if the radial potential is modified by small nonra-

dial perturbations. The geometric interpretation allows the construction of other

examples. If V σ (y) ∼ 1/(1 + |y|2)2 up to a large value of |y|, then the metric

V σ dy2 represents approximately that of a sphere embedded in R
3. If eventually

V increases so that V (y) ∼ 1 for very large |y|, the whole metric will resemble

that of a “globe attached to a plane,” the presence of at least two geodesics thus

being clear: one on the globe, the other on the connecting neck. Nondegeneracy of

these geodesics is not true in general, but may be generically expected in a suitably

strong Cm-topology.

We need another element to describe the gap condition (1.6). Let w denote the

unique positive solution of problem (1.3). We consider the associated linearized

eigenvalue problem

(1.11) h
′′ − h + pw p−1h = λh in R, h(±∞) = 0.

It is well-known that this equation possesses a unique positive eigenvalue λ0 in

H 1(R), with associated eigenfunction even and positive Z , which we normalize
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so that
∫

R
Z2 = 1 (this follows, for instance, from the analysis in [30]). In fact, a

simple computation shows that

(1.12) λ0 = 1

4
(p − 1)(p + 3), Z = 1√∫

R
w p+1

w
p+1

2 .

We define the number λ∗ as

(1.13) λ∗ = λ0

1

4π2

( ∫ �

0

V (0, θ)
1
2 dθ

)2

.

Now we can state our main result.

THEOREM 1.1 Let � be a nondegenerate, stationary curve for the weighted length

functional
∫
�

V σ , as described above. Then given c > 0 there exists ε0 > 0 such

that for all ε < ε0 satisfying the gap condition

(1.14) |ε2k2 − λ∗| ≥ cε ∀k ∈ N,

where λ∗ > 0 is the number in (1.13), problem (1.2) has a positive solution uε ,

which near �, for y given by (1.7), takes the form

(1.15) uε(y) = V (0, θ)
1

p−1 w

(
V (0, θ)

1
2

t

ε

)
(1 + o(1)).

For some number c0 > 0, uε satisfies globally

uε(y) ≤ exp(−c0ε
−1dist(y, �)).

To explain in a few words the difficulties encountered in constructing these

solutions, let us assume for the moment that V ≡ 1 on � and that 	 = 2π . Then in

terms of the stretched coordinates (s, z) = ε−1(t, θ), the equation would look near

the curve approximately like

vzz + vss + v p − v = 0, (s, z) ∈ R
2,

where v is 2πε−1-periodic in the z-variable. The effect of curvature and of varia-

tions of V are here neglected. The linearization of this problem around the profile

w(s) thus becomes

φzz + φss + pw p−1φ − φ = 0, (s, z) ∈ R
2,

with φ being 2πε−1-periodic in z. Functions of the form

φ1 = ws(s)[a sin kεz + b cos kεz], φ2 = Z(s)[a sin kεz + b cos kεz],
are eigenfunctions associated to eigenvalues −k2ε2 and λ0 − k2ε2, respectively.

Many of these numbers are small, and “near noninvertibility” of the linear oper-

ator thus occurs. Therefore the use of a fixed-point argument after inverting the

linear operator in the actual nonlinear problem is a very delicate matter. Worse

than this, these two effects combined, in principle orthogonal because of the L 2-

orthogonality of Z and ws , are actually coupled through the smaller-order terms

neglected. In [1, 20, 19, 33] related singular perturbation problems involving the
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Allen-Cahn equation in phase transitions exhibiting only the translation effect φ1

have been successfully treated through successive improvements of the approxima-

tion and fine spectral analysis of the actual linearized operator. The principle is sim-

ple: the better the approximation, the higher the chances of a correct inversion of

the linearized operator to obtain a contraction mapping formulation of the problem.

In [26, 27, 28, 35] resonance phenomena similar to the “φ2 effect” have been faced

in related problems. In [26, 27] a Neumann problem involving whole boundary

concentration, widely treated for point concentration after the works [23, 29, 30],

has been considered. Recently in [24, 25] this boundary concentration on a geo-

desic of the boundary in the three-dimensional case has been treated via arbitrarily

high-order approximations. Our method, closer in spirit to that of Floer and We-

instein, provides substantial simplification and flexibility to deal with larger noise

and coupling of the two effects inherent in this problem.

The solution to the full problem in the above idealized situation is roughly de-

composed in the form

v(s, z) = w(s − f (εz)) + εe(εz)Z(s − f (εz)) + φ̃(s, z)

where f and e are 2π-periodic functions left as parameters, while φ̃(s, z) is L2(ds)-

orthogonal for each z both to ws(s − f (εz)) and to Z(s − f (εz)). Solving first

in φ̃ a natural projected problem where the linear operator is uniformly invert-

ible, the resolution of the full problem becomes reduced to a nonlinear, nonlocal

second-order system of differential equations in ( f, e), which turns out to be di-

rectly solvable thanks to the assumptions made. This approach is familiar when

the parameters ( f, e) lie in a finite-dimensional space, corresponding this time to

adjusting infinitely many parameters. To stress the difference with the radial case:

the parameter e is not present, and f is just a single number. The analysis we make

takes special advantage through Fourier analysis of the fact that the objects to be

adjusted are one-variable functions, while we still believe that the current approach

may be modified to the higher-dimensional case. We also believe the gap condition

may be improved to size sεq for any q > 1.

In the rest of the paper we carry out the program outlined above that leads to

the proof of Theorem 1.1.

2 Setup near the Curve

Let � be the curve in the statement of the theorem. We shall use the notation

introduced in the previous section.

Stretching variables, absorbing ε from Laplace’s operator and replacing u(y)

by u(εy), equation (1.2) becomes

(2.1) �u − V (εy)u + u p = 0, u > 0, u ∈ H 1(R2).
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Let (s, z) = ε−1(t, θ) be natural stretched coordinates associated to the curve �ε =
ε−1�, now defined for

(2.2) z ∈ [0, ε−1	), s ∈ (−ε−1δ0, ε
−1δ0).

Equation (2.1) for u expressed in these coordinates becomes

(2.3) uzz + uss + B1(u) − V (εs, εz)u + u p = 0

in the region (2.2), where

B1(u) = uzz

[
1 − 1

(1 + εk(εz)s)2

]
+ εk(εz)us

1 + εk(εz)s
+ ε2sk ′(εz)uz

(1 + εk(εz)s)3
.

For further reference, it is convenient to expand this operator in the form

(2.4) B1(u) = (εk(εz) − ε2sk2(εz))us + B0(u),

where

(2.5) B0(u) = ε2sa1(εs, εz)uz + εsa2(εs, εz)uzz + ε3s2a3(εs, εz)us

for certain smooth functions aj (t, θ), j = 1, 2, 3. Observe that all terms in the

operator B1 have ε as a common factor.

We now consider a further change of variables in equation (2.3) with the prop-

erty that it replaces at main order the potential V by 1. Let

(2.6) α(θ) = V (0, θ)
1

p−1 , β(θ) = V (0, θ)
1
2 ,

and fix a twice differentiable, 	-periodic function f (θ). We define v(x, z) by the

relation

(2.7) u(s, z) = α(εz)v(x, z), x = β(εz)(s − f (εz)).

We want to express equation (2.3) in terms of these new coordinates. We compute:

us = αβvx , uss = αβ2vxx ,(2.8)

uz = εα′v + αvx(β(s − f ))z + αvz,(2.9)

uzz = ε2α′′v + 2εα′[vx(β(s − f ))z + vz](2.10)

+ α
[
vxx |(β(s − f ))z|2 + 2vxz(β(s − f ))z

+ vx(β(s − f ))zz + vzz

]
.

We also have

(β(s − f ))z = ε[β ′(s − f ) − β f ′],
(β(s − f ))zz = ε2[β ′′(s − f ) − 2β ′ f ′ − β f ′′].

In order to write down the equation, it is also convenient to expand

(2.11) V (εs, εz) = V (0, εz) + Vt(0, εz)εs + 1

2
Vt t(0, εz)ε2s2 + a4(εs, εz)ε3s3
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for a smooth function a4(t, θ). It turns out that u solves (2.3) if and only if v

defined by (2.7) solves

(2.12) S(v) ≡ B3(v) + β−2vzz + vxx + v p − v = 0,

where B3(v) is a linear differential operator defined by

B3(v) = β−1

[
εk − ε2k2

(
x

β
+ f

)]
vx

+ β−2

[
ε2

∣∣∣∣β
′

β
x − β f ′

∣∣∣∣
2

vxx + 2ε

(
β ′

β
x − β f ′

)
vxz

+ ε2

(
β ′′

β
x − 2β ′ f ′ − β f ′′

)
vx

]

+ ε2

αβ2
α′′v + 2εα′

αβ2

[
ε

(
β ′

β
x − β f ′

)
vx + vz

]

−
[
εβ−2Vt

(
x

β
+ f

)
+ ε2

2
β−2Vt t

(
x

β
+ f

)2]
v + B2(v)

and

(2.13) B2(v) = (αβ2)−1 B0(u) + (αβ2)−1a4(εs, εz)ε3s3.

B0(u) is the operator in (2.5) where derivatives are expressed in terms of formulas

(2.8) through (2.10), a4 is given by (2.11), and s is replaced by β−1x + f .

Let w(x) denote the unique positive solution of (1.3). Then, taking w(x) as

a first approximation, the error produced is ε times a function with exponential

decay. Let us be more precise. We need to identify the terms of order ε and those

of order ε2:

S(w) = B3(w) = β−1

[
εk − ε2k2

(
x

β
+ f

)]
wx

+ β−2

[
ε2

∣∣∣∣β
′

β
x − β f ′

∣∣∣∣
2

wxx + ε2

(
β ′′

β
x − 2β ′ f ′ − β f ′′

)
wx

]

+ ε2

αβ2
α′′w + 2εα′

αβ2

[
ε

(
β ′

β
x − β f ′

)
wx

]

−
[
β−2εVt

(
x

β
+ f

)
+ ε2

2
β−2Vt t

(
x

β
+ f

)2]
w + B2(w).
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B2(w) turns out to be of size ε3. Gathering terms of order ε and ε2, we get

S(w) = εβ−1

[
kwx − 1

β2
Vt(0, εz)xw

]
− εβ−2Vt(0, εz) f w

− ε2

[
k2

β
f wx + f ′′

β
wx + 2β ′

β2
f ′wx + 2α

′

αβ
f

′
wx

+ 2β ′

β2
f ′xwxx + Vt t

β3
f xw

]

+ ε2β−2

[
−k2xwx + |β ′|2

β2
x2wxx + β2| f ′|2wxx + β ′′

β
xwx

+ α′′

α
w + 2α′

αβ
xwx − 1

2β2
Vt t x

2w − 1

2
Vt t f 2w

]
+ B2(w)

= εS1 + εS2 + ε2S3 + ε2S4 + B2(w).

Let us observe that grouped this way, the quantities S1 and S3 are odd functions of

x while S2 and S4 are even. We now want to construct a further approximation to a

solution that eliminates the terms of order ε in the error. We see that

S(w + φ) = S(w) + L0(φ) + B3(φ) + N0(φ),

where

(2.14) L0(φ) = β−2φzz + φxx + pw p−1φ − φ

and

(2.15) N0(φ) = (w + φ)p − w p − pw p−1φ.

We write

(2.16)
S(w + φ) = [ε(S1 + S2) + φxx + pw p−1φ − φ] + ε2S3

+ ε2S4 + B2(w) + β−2φzz + B3(φ) + N0(φ).

We choose φ = φ1 in order to eliminate the term between brackets in the above

expression. Namely, for fixed z, we need a solution of

−φxx + φ − pw p−1φ = ε(S1 + S2), φ(±∞) = 0.

As is well-known, this problem is solvable provided that

(2.17)

∫ ∞

−∞
(S1 + S2)wx dx = 0.

Furthermore, the solution is unique under the constraint

(2.18)

∫ ∞

−∞
φwx dx = 0.
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We compute∫ ∞

−∞
(S1 + S2)wx dx =

∫ ∞

−∞
S1wx dx

= β−1

[
k

∫ ∞

−∞
w2

x − V −1Vt

∫ ∞

−∞
xwwx

]
.

The assumption that � is stationary (1.9) amounts to k = −σ V −1Vt where σ is

the constant that makes the amount between brackets identically zero. In fact, we

have the validity of the identity
∫

R
w2 dx = 2σ

∫
R

w2
x . The solution has the form

(2.19) φ1 = φ11 + φ12,

where

(2.20) φ11 = εa11(εz)w1(x), φ12 = ε f (εz)a12(εz)w2,

with

(2.21) a11 = β−1k, a12 = −β−2Vt(0, θ) = σ−1k.

Function w1 is the unique odd function satisfying

(2.22) −w1,xx + w1 − pw p−1w1 = wx + 1

σ
xw,

∫
R

w1wx dx = 0,

and w2 is the unique even solution satisfying

(2.23) −w2,xx + w2 − pw p−1w2 = w.

In fact, we can write

(2.24) w2 = − 1

p − 1
w − 1

2
xwx .

Substituting φ = φ1 into (2.16), we can compute the new error S(w + φ1),

(2.25) S(w + φ1) = ε2S3 + ε2S4 + B2(w) + β−2(φ1)zz + B3(φ1) + N0(φ1).

Observe that since φ1 is of size O(ε), all terms above carry ε2 in front. We compute,

for instance,

(2.26) B3(φ1) = εβ−1[k(φ1)x − β−2Vt(0, εz)xφ1] − εβ−2Vt(0, εz) f φ1 + ε3a6.

Observe that all functions involved are expressed in (x, z)–variables, and the natu-

ral domain for those variables is the infinite strip

S =
{
−∞ < x < ∞, 0 < z <

	

ε

}
.

We now want to measure the size of the error in the L2(S)-norm. A rather del-

icate term in the cubic remainder is the one carrying f ′′, since in reality we shall

only assume a uniform bound on ‖ f ′′‖L2(0,�). Observe that a similar term arises
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from the computation of (φ1)zz . Both of those terms have a similar form. For in-

stance, the one arising from (φ1)zz can be written as R = ε3 f ′′(εz)a12(εz)w2,x(x)

with a12 smooth. Observe that∫
S

|R|2 ≤ Cε6

∫ �
ε

0

| f ′′(εz)|2 dz = ε5‖ f ′′‖L2(0,�).

Hence

‖R‖L2(S) ≤ Cε
5
2 ‖ f ′′‖L2(0,�).

On the other hand, we have

‖B3(φ1)‖L2(S) ≤ Cε
3
2 .

Let us consider the term N0(φ1). Since φ1 can be bounded by Cε|x |2w(x) for

large |x |, we obtain that

|N0(φ1)| = |(w + φ1)
p − w p − pw p−1φ1|

= p(w + tφ1)
p−2|φ1|2 ≤ Cε2(1 + |x |p)w(x)p;

hence

‖N0(φ1)‖L2(S) ≤ Cε
3
2 .

In summary, we have

(2.27) ‖S(w + φ1)‖L2(S) ≤ ε
3
2 .

To improve the approximation for a solution still keeping terms of order ε2,

we need to introduce a new parameter in addition to f . We let Z(x) be the first

eigenfunction of the problem

Z ′′ + pw p−1 Z − Z = λ0 Z , Z(±∞) = 0.

Then, as is well-known, λ0 > 0, and Z(x) is one signed and even in x . We now

consider our basic approximation to a solution to the problem near the curve �ε to

be

(2.28) w = w + φ1 + εe(εz)Z .

In all that follows, we will assume the validity of the following constraints on

the parameters f and e:

‖ f ‖a ≡ ‖ f ‖L∞(0,�) + ‖ f ′‖L∞(0,�) + ‖ f ′′‖L2(0,�) ≤ ε
1
2 ,(2.29)

‖e‖b ≡ ε2‖e′′‖L2(0,�) + ε‖e′‖L2(0,�) + ‖e‖L∞(0,�) ≤ ε
1
2 .(2.30)

In reality, a posteriori, these parameters will turn out to be smaller than stated here.

We set up the full problem in the form S(w + φ) = 0, which can be expanded

in the following way:

S(w+ φ) = β−2φzz + φxx − φ + pwp−1φ

+ S(w) + B3(φ) + (w+ φ)p − w
p − pwp−1φ = 0.
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The new error of approximation is

E1 = S(w) = S(w + φ1) + εL0(eZ)

+ ε[p((w + φ1)
p−1 − w p−1)(eZ) + B3(eZ)]

+ (w + φ1 + εeZ)p − (w + φ1)
p − p(w + φ1)

p−1εeZ

where S(w + φ1) is given at (2.25). We decompose

E1 = E11 + E12

where

(2.31) E11 ≡ εL0(eZ) = β−2ε3e′′ Z + λ0εeZ

and

(2.32) E12 = E1 − E11

In summary, near the curve the problem takes the form

(2.33) L1(φ) + B3(φ) + E1 + N1(φ) = 0

where E1 was just described, and

L1(φ) = β−2φzz + φxx + pwp−1φ − φ,(2.34)

N1(φ) = (w+ φ)p − w
p − pwp−1φ.(2.35)

We recall that the description made here is only local. We will be able however

to reduce the problem to one qualitatively similar to that of the above form in the

infinite strip.

3 The Gluing Procedure

Let w(y) denote the first approximation constructed near the curve in the coor-

dinate y in R
2. Let δ < δ0/100 be a fixed number. We consider a smooth cutoff

function ηδ(t) where t ∈ R such that ηδ(t) = 1 if t < δ and = 0 if t > 2δ. Denote

as well ηε
δ(s) = ηδ(ε|s|), where s is the normal coordinate to �ε. We define our

first global approximation to be simply

w(y) = ηε
3δ(s)w

extended globally as 0 beyond the 6δ/ε-neighborhood of �ε. Denote S(u) = �u −
V (εy)u + u p for u = w + φ̃, now φ̃ globally defined in R

2. Then S(w + φ̃) = 0 if

and only if

(3.1) L̃(φ̃) = Ẽ + Ñ (φ̃),

where

Ẽ = S(w), L̃(φ̃) = �φ̃ + pwp−1φ̃ − V φ̃,

and

Ñ (φ̃) = (w + φ̃)p − wp − pwp−1φ̃.
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We further separate φ̃ in the following form:

φ̃ = ηε
3δφ + ψ

where, in coordinates (x, z), we assume that φ is defined in the whole strip S so

that we want

L̃(ηε
δφ) + L̃(ψ) = Ẽ + Ñ (ηε

δφ).

We achieve this if the pair (ψ, φ) satisfies the following nonlinear coupled system:

L̃(φ) = ηε
δ Ñ (φ + ψ) + ηε

δ Ẽ + ηε
δ pwp−1ψ,(3.2)

�ψ − V ψ + (1 − ηε
δ)pwp−1ψ(3.3)

= (1 − ηε
δ)Ẽ + 2ε∇ηε

3δ∇φ + 2ε2(�ηε
3δ)φ + (1 − ηε

δ)Ñ (ηε
3δφ + ψ).

Notice that the operator L̃ in the strip S may be taken as any compatible extension

outside the 6δ/ε-neighborhood of the curve.

What we want to do next is to reduce the problem to a problem in the strip. To

do this, we solve, given a small φ, problem (3.3) for ψ . This can be done in an

elementary way: Let us observe first that since V is uniformly positive and w is

exponentially small for |s| > δε−1, where s is the normal coordinate to �ε, then

the problem

(3.4) �ψ − (V − (1 − ηε
δ)pwp−1)ψ = h

has a unique bounded solution ψ whenever ‖h‖∞ < +∞. Moreover,

‖ψ‖∞ ≤ C‖h‖∞.

Assume now that φ satisfies the following decay condition:

(3.5) |∇φ(y)| + |φ(y)| ≤ e− γ
ε for |s| >

δ

ε

for a certain constant γ > 0. Since Ñ has a powerlike behavior with power greater

than 1, a direct application of the contraction mapping principle yields that problem

(3.3) has a unique (small) solution ψ = ψ(φ) with

‖ψ(φ)‖∞ ≤ Cε[‖φ‖L∞(|s|>δε−1) + ‖∇φ‖L∞(|s|>δε−1)],
where with some abuse of notation by {|s| > δ/ε} we denote the complement of a

δ/ε-neighborhood of �ε. The nonlinear operator ψ satisfies a Lipschitz condition

of the form

‖ψ(φ1) − ‖ψ(φ2)‖∞ ≤ Cε[‖φ1 − φ2‖L∞(|s|>δε−1) + ‖∇(φ1 − φ2)‖L∞(|s|>δε−1)].
The full problem has been reduced to solving the (nonlocal) problem in the infinite

strip S

(3.6) L2(φ) = ηε
δ Ñ (φ + ψ(φ)) + ηε

δ Ẽ + ηε
δ pwp−1ψ(φ)

for a φ ∈ H 2(S) satisfying condition (3.5). Here L2 denotes a linear operator that

coincides with L̃ on the region |s| < 10δ/ε.
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We shall define this operator next. The operator L̃ for |s| < 10δ/ε is given in

coordinates (x, z) by formula (2.34). We extend it for functions φ defined in the

entire strip S, in terms of (x, z), as follows:

(3.7) L2(φ) = L1(φ) + χ(ε|x |)B3(φ)

where χ (r) is a smooth cutoff function that equals 1 for r < 10δ and vanishes

identically for for r > 20δ, and L1 is the operator defined in (2.34).

Rather than solving problem (3.1) directly, we shall do it in steps. We consider

the following projected problem in H 2(S): given f and e satisfying bounds (2.29)–

(2.30), find functions φ ∈ H 2(S), c, d ∈ L2(0, 	), such that

L2(φ) = χ E1 + N2(φ) + c(εz)χwx + d(εz)χ Z in S,(3.8)

φ(x, 0) = φ(x, 	/ε), φz(x, 0) = φz

(
x,

	

ε

)
, −∞ < x < +∞,(3.9)

∫ ∞

−∞
φ(x, z)wx(x)dx =

∫ ∞

−∞
φ(x, z)Z(x)dx = 0, 0 < z <

	

ε
.(3.10)

Here N2(φ) = ηε
δ Ñ (φ + ψ(φ)) + ηε

δ pwp−1ψ(φ).

We will prove that this problem has a unique solution whose norm is controlled

by the L2-norm, not of the whole E1 but rather that of E12.

After this has been done, our task is to adjust the parameters f and e in such

a way that c and d are identically zero. As we will see, this turns out to be equiv-

alent to solving a nonlocal, nonlinear coupled second-order system of differential

equations for the pair (e, d) under periodic boundary conditions. As we will see,

this system is solvable in a region where the bounds (2.29) and (2.30) hold.

We will carry out this program in the following sections. To solve (3.8)–(3.10),

we need to investigate the invertibility of L2 in an L2-H 2 setting under periodic

boundary and orthogonality conditions.

4 Invertibility of L2

Let L2 be the operator defined in H 2(S) by (3.7). In this section we study the

linear problem

L2(φ) = h + c(εz)χwx + d(εz)χ Z in S,(4.1)

φ(x, 0) = φ

(
x,

	

ε

)
, φz(x, 0) = φz

(
x,

	

ε

)
, −∞ < x < +∞,(4.2)

∫ ∞

−∞
φ(x, z)wx(x)dx =

∫ ∞

−∞
φ(x, z)Z(x)dx = 0, 0 < z <

	

ε
,(4.3)

for given h ∈ L2(S). Here χ(ε|x |) is the cutoff introduced in the definition of L 2

in (3.7). Our main result in this section is the following:
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PROPOSITION 4.1 If δ in the definition of L2 is chosen sufficiently small, then

there exists a constant C > 0, independent of ε, such that for all small ε problem

(4.1)–(4.3) has a unique solution φ = T (h) that satisfies the estimate

‖φ‖H2(S) ≤ C‖h‖L2(S).

For the proof of this result we need to show the validity of the corresponding

assertion for a simpler operator that does not depend on δ. Let us consider the

problem

L(φ) = −�φ + φ − pw p−1φ = h in S,(4.4)

φ(x, 0) = φ

(
x,

	

ε

)
, φz(x, 0) = φz

(
x,

	

ε

)
, −∞ < x < +∞,(4.5)

∫ ∞

−∞
φ(x, z)wx(x)dx =

∫ ∞

−∞
φ(x, z)Z(x)dx = 0, 0 < z <

	

ε
.(4.6)

LEMMA 4.2 There exists a constant C > 0, independent of ε, such that solutions

of (4.4)–(4.6) satisfy the a priori estimate

‖φ‖H2(S) ≤ C‖h‖L2(S).

PROOF: Let us consider Fourier series decompositions for h and φ of the form

φ(x, z) =
∞∑

k=0

[
φ1k(x) cos

(
2πk

	
εz

)
+ φ2k(x) sin

(
2πk

	
εz

)]
,

h(x, z) =
∞∑

k=0

[
h1k(x) cos

(
2πk

	
εz

)
+ h2k(x) sin

(
2πk

	
εz

)]
.

Then we have the validity of the equations

(4.7) k2ε2φlk + L0(φlk) = hlk, x ∈ R,

with orthogonality conditions

(4.8)

∫ ∞

−∞
φlkwx dx =

∫ ∞

−∞
φlk Z dx = 0.

We have denoted here

L0(φlk) = −φlk,xx + φlk − pw p−1φlk .

Let us consider the bilinear form in H 1(R) associated to the operator L0, namely

B(ψ,ψ) =
∫ ∞

−∞
[|ψx |2 + (1 − pw p−1)|ψ |2]dx .

Since (4.8) holds, we conclude that

(4.9) C[‖φlk‖2
L2(R)

+ ‖(φlk)x‖2
L2(R)

] ≤ B(φlk, φlk)
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for a constant C > 0 independent of l and k. Using this fact and equation (4.7), we

conclude the estimate

(1 + k4ε4)‖φlk‖2
L2(R)

+ ‖φlk,x‖2
L2(R)

≤ C‖hlk‖2
L2(R)

.

In particular, we see from (4.7) that φlk satisfies an equation of the form

−φlk,xx + φlk = h̃lk, x ∈ R,

where ‖h̃lk‖L2(R) ≤ C‖hlk‖L2(R). Hence it follows that we have the estimate

(4.10) ‖(φlk,xx‖2
L2(R)

≤ C‖hlk‖2
L2(R)

.

Adding up estimates (4.9) and (4.10) in k and l, we conclude that

‖D2φ‖2
L2(S)

+ ‖Dφ‖2
L2(S)

+ ‖φ‖2
L2(S)

≤ C‖h‖2
L2(S)

,

which ends the proof. �

We consider now the following problem: given h ∈ L 2(S), find functions φ ∈
H 2(S), c, d ∈ L2(0, 	), such that

L(φ) = h + c(εz)wx + d(εz)Z in S,(4.11)

φ(x, 0) = φ

(
x,

	

ε

)
, φz(x, 0) = φz

(
x,

	

ε

)
, −∞ < x < +∞,(4.12)

∫ ∞

−∞
φ(x, z)wx(x)dx =

∫ ∞

−∞
φ(x, z)Z(x)dx = 0, 0 < z <

	

ε
.(4.13)

LEMMA 4.3 Problem (4.11)–(4.13) possesses a unique solution. Moreover,

‖φ‖H2(S) ≤ C‖h‖L2(S).

PROOF: To establish existence, we assume that

h(x, z) =
∞∑

k=0

[
h1k(x) cos

(
2πk

	
εz

)
+ h2k(x) sin

(
2πk

	
εz

)]
,

and consider the problem of finding φlk ∈ H 1(R) and constants clk and dlk such

that

k2ε2φlk + L0(φlk) = hlk + clkwx + dlk Z , x ∈ R,

and ∫ ∞

−∞
φlkwx dx =

∫ ∞

−∞
φlk Z dx = 0.

Fredholm’s alternative yields that this problem is solvable with the choices

clk = −
∫ ∞
−∞ hlkwx dx∫ ∞

−∞ w2
x dx

, dlk = −
∫ ∞
−∞ hlk Z dx∫ ∞
−∞ Z2 dx

.



CONCENTRATION ON CURVES 17

Observe in particular that

(4.14)

∞∑
k=0

|clk |2 + |dlk |2 ≤ Cε‖h‖2
L2(S)

.

Finally, define

φ(x, z) =
∞∑

k=0

[
φ1k(x) cos

(
2πk

	
εz

)
+ φ2k(x) sin

(
2πk

	
εz

)]
,

and correspondingly

c(z) =
∞∑

k=0

[
c1k cos

(
2πk

	
z

)
+ c2k sin

(
2πk

	
z

)]
,

d(z) =
∞∑

k=0

[
d1k cos

(
2πk

	
z

)
+ d2k sin

(
2πk

	
z

)]
.

Estimate (4.14) gives that c(εz)wx and d(εz)Z have their L2(S) norms controlled

by that of h. The a priori estimates of the previous lemma tell us that the series for

φ is convergent in H 2(S) and defines a unique solution for the problem with the

desired bounds. �

PROOF OF PROPOSITION 4.1: We will reduce problem (4.1)–(4.3) to a small

perturbation of a problem of the form (4.4)–(4.6) in which Lemma 4.2 is applicable.

We will achieve this by introducing a change of variables that eliminates the weight

β−2 in front of φzz .

We let

φ(x, z) = ϕ(x, a(z)), a(z) = ε−1

∫ εz

0

β(r)dr.

The map a : [0, 	/ε) → [0, l̂/ε) is a diffeomorphism, where l̂ = ∫ �

0
β(r)dr . We

denote then

φz = βϕz′, φzz = β2(εz)ϕz′z′ + εβ ′(εz)ϕz′,

while differentiation in x does not change. The equation in terms of ϕ now reads

�ϕ − pw p−1ϕ + ϕ + χ B̂3(ϕ) + p(wp−1 − w p−1)ϕ + εβ ′ϕz′

= ĥ + ĉ(εz′)wx + d̂(εz′)Z in Ŝ,

ϕ(x, 0) = ϕ

(
x,

l̂

ε

)
, ϕz′(x, 0) = ϕz′

(
x,

l̂

ε

)
, −∞ < x < +∞,

∫ ∞

−∞
ϕ(x, z′)wx(x)dx =

∫ ∞

−∞
ϕ(x, z′)Z(x)dx = 0, 0 < z ′ <

l̂

ε
.
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Here ĥ(x, z′) = h(x, a−1(z′)) and the operator B̂3 is defined by using the above

formulas to replace the z-derivatives by z ′-derivatives and the variable z by a−1(z′)
in the operator B3. The key point is the following: the operator

B4(ϕ) = χ B̂3(ϕ) + εβ ′ϕz′ + p(wp−1 − w p−1)ϕ

is small in the sense that

‖B4(ϕ)‖
L2(Ŝ)

≤ Cδ‖ϕ‖
H2(Ŝ)

.

This last estimate is a rather straightforward consequence of the fact that |εs| <

20δε−1 wherever the operator B̂3 is supported, and the other terms are even smaller

when ε is small. Thus by reducing δ if necessary, we apply the invertibility result

of Lemma 4.2. The result thus follows by transforming the estimate for ϕ into a

similar one for φ via a change of variables. This concludes the proof. �

5 Solving the Nonlinear Intermediate Problem

In this section we will solve problem (3.8)–(3.10),

L2(φ) + B3(φ) = χ E1 + N2(φ) + c(εz)χwx + d(εz)χ Z ,

under periodic boundary and orthogonality conditions in S. Here

N2(φ) = χ N1(φ + ψ(φ))

whenever this operator is well-defined, namely, for φ satisfying (3.5). A first ele-

mentary but crucial observation is that the term

E11 = [ε3β−2e′′ + ελ0e]Z

in the decomposition of E1, (2.31)–(2.32), has precisely the form d(εz)Z and can

therefore be absorbed for now in that term. Thus, the equivalent problem we will

look at is

L2(φ) + B3(φ) = χ E12 + N2(φ) + c(εz)χ wx + d(εz)χ Z .

The big difference between the terms E11 and E12 is their sizes. Notice that

‖E12‖L2(S) ≤ Cε
3
2 ,

while E11 is a priori only of size O(ε1/2). We call E2 ≡ χ E12.

For further reference, it is useful to point out the Lipschitz dependence of the

term of error E2 on the parameters f and e for the norms defined in (2.29)–(2.30).

We have the validity of the estimate

(5.1) ‖E12( f1, e1) − E12( f2, e2)‖L2(S) ≤ Cε
3
2 [‖ f1 − f2‖a + ‖e1 − e2‖b].

Let T be the operator defined by Proposition 4.1. Then the equation is equiva-

lent to the fixed-point problem

(5.2) φ = T (E2 + N2(φ)) ≡ A(φ).
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The operator T has a useful property: Assume h has support contained in |x | ≤
20δ/ε. Then φ = T (h) satisfies the estimate

(5.3) |φ(x, z)| + |∇φ(x, z)| ≤ ‖φ‖∞e− 2δ
ε for |x | >

40δ

ε
.

In fact, since B3 is supported on |x | < 20δ/ε and so do the terms involving c and

d, then φ satisfies for |x | ≥ 20δ/ε an equation of the form

β−2φzz + φxx − (1 + o(1))φ = 0

with o(1) → 0 uniformly as ε → 0. For |x | ≥ 20δ/ε we can then use a barrier of

the form ϕ(x, z) = ‖φ‖∞e−(1/2)(x−20δ/ε) to conclude that for |x | > 40δ/ε, we have

φ(x, z) ≤ ‖φ‖∞e− 10δ
ε .

The remaining inequalities for φ are found in the same way.

The bound for ∇φ follows simply by local elliptic estimates. Now we recall

that the operator ψ(φ) satisfies, as seen directly from its definition,

(5.4) ‖ψ(φ)‖L∞ ≤ C[‖|∇φ| + |φ|‖L∞(|x |> 20δ
ε

) + e− δ
ε ],

and also the Lipschitz condition

(5.5) ‖ψ(φ1) − ψ(φ2)‖L∞ ≤ C[‖|∇(φ1 − φ2)| + |φ1 − φ2|‖L∞(|x |> 20
ε

)].
These facts will allow us to construct a region where the contraction mapping prin-

ciple applies. As we have said,

‖E2‖L2(S) ≤ C∗ε
3
2

for a certain constant C∗ > 0. We consider the following closed, bounded subset

of H 2(S):

B =
{
φ ∈ H 2(S)

∣∣∣∣ ‖φ‖H2(S) ≤ Dε3/2

|φ| + |∇φ| ‖L∞(|x |>40δ/ε) ≤ ‖φ‖H2(S)e
−δ/ε

}
.

We claim that if the constant D is fixed sufficiently large, then the map A defined

in (5.2) is a contraction from B into itself.

Let us analyze the Lipschitz character of the nonlinear operator involved in A

for functions in B:

N2(φ) = χ N1(φ + ψ(φ))

where

N1(φ) = p[(w+ tφ)p−1 − w
p−1]φ2

for t ∈ (0, 1). From here it follows that

|N1(φ)| ≤ C[|φ|p + |φ|2],
so that denoting Sδ = S ∩ {|x | < 10δ/ε}, we have that for φ ∈ B,

‖N2(φ)‖L2(S) ≤ C[‖φ‖p

L2p(S)
+ ‖φ‖2

L4(S)
+ ‖ψ(φ)‖p

L2p(Sδ)
+ ‖ψ(φ)‖2

L4(Sδ)
].
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Using Sobolev’s embedding we get

‖φ‖p

L2p(S)
+ ‖φ‖2

L4(S)
≤ C [‖φ‖p

H2(S)
+ ‖φ‖2

H2(S)
],

while using estimate (5.4), φ ∈ B, (5.3), the fact that the area of Sδ is of order

O(δ/ε), and Sobolev’s embedding, we get

‖ψ(φ)‖p

L2p(Sδ)
+ ‖ψ(φ)‖2

L4(Sδ)
≤ Ce− δ

4ε [1 + ‖φ‖p

H2(S)
+ ‖φ‖2

H2(S)
].

It thus follows that

(5.6) ‖N2(φ)‖L2(S) ≤ C (ε
3p
2 + ε3).

Besides, as for the Lipschitz condition, we find after a direct estimate,

‖N1(φ1) − N1(φ2)‖L2(S) ≤ [‖φ1‖p−1

L2p(S)
+ ‖φ1‖L4(S) + ‖φ2‖L4(S) + ‖φ2‖p−1

L2p(S)
]

× [‖φ2 − φ1‖L2p(S) + ‖φ2 − φ1‖L4(S)],
with constants C independent of the bound a priori assumed on ‖ f ‖H2(0,�). We

then conclude for N2,

‖N2(φ1) − N2(φ2)‖L2(S)

≤ ‖N1(φ1 + ψ(φ1)) − N1(φ2 + ψ(φ1))‖L2(Sδ)

+ ‖N1(φ2 + ψ(φ1)) − N1(φ2 + ψ(φ2))‖L2(Sδ)

≤ A[‖φ1 − φ2‖L4(Sδ)
+ ‖φ1 − φ2‖L2p(Sδ)

]
+ A[‖ψ(φ1) − ψ(φ2)‖L4(Sδ)

+ ‖ψ(φ1) − ψ(φ2)‖L2p(Sδ)
]

where

A = A1 + A2

with

Al = ‖φl‖p−1

L2p(Sδ)
+ ‖ψ(φl)‖p−1

L2p(Sδ)
+ ‖φl‖p−1

L2p(Sδ)
+ ‖ψ(φl)‖L4(Sδ)

, l = 1, 2.

Arguing as before, the conclusion of these estimates is

(5.7) ‖N2(φ1) − N2(φ2)‖L2(S) ≤ C(ε
3
2 (p−1) + ε

3
2 )‖φ1 − φ2‖H2(S).

Now, let φ ∈ B; then ϕ = A(φ) satisfies, thanks to (5.6),

‖ϕ‖H2(S) ≤ ‖T ‖{C∗ε
3
2 + C D pε

3
2 p}.

Choosing any number D > C∗‖T ‖ we get that for small ε

‖ϕ‖H2(S) ≤ Dε
3
2 .

On the other hand, we have

‖ϕ‖L∞(S) ≤ C‖ϕ‖H2(S).

But ϕ satisfies an equation of the form L2(ϕ) = h with h compactly supported.

Hence ϕ belongs to B thanks to the discussion above. A is clearly a contraction

mapping thanks to (5.7). We conclude that (5.2) has a unique fixed point in B.
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We recall that the error E2 and the operator T itself carry the functions f and

e as parameters. A tedious but straightforward analysis of all terms involved in the

differential operator and in the error yield that this dependence is indeed Lipschitz

with respect to the H 2-norm (for each fixed ε).

In the operator, consider, for instance, the following only term involving f ′′:

B f (φ) = ε2 f ′′(εz)φx .

Then we have

‖B f (φ)‖2
L2(S)

≤ ε3

∫ �

0

| f ′′(θ)|2 dθ

(
sup

z

∫ ∞

−∞
|φx(x, z)|2 dx

)
.

Let ϕ(z) = ∫ ∞
−∞ |φx(x, z)|2 dx . Then

sup
z

ϕ(z) ≤ ε

∫
S

|φx |2 + 2

∫
S

|φx | |φxz| ≤ 1

2
sup

z

ϕ(z) + 4ε−1

∫
S

|φxz|2.

Hence

(5.8) ϕ(z) ≤ Cε−1‖φ‖2
H2(S)

,

so that finally

‖B f (φ)‖L2(S) ≤ ε‖ f ‖a.

For the other terms the analysis follows in a simpler way. Emphasizing the

dependence on f , we find for the linear operator T the Lipschitz dependence

‖Tf1
− Tf2

‖ ≤ Cε‖ f1 − f2‖a.

We recall that we have the Lipschitz dependence (5.1). Moreover, the operator N

also has Lipschitz dependence on ( f, e). It is easily checked that for φ ∈ B we

have, with obvious notation,

‖N( f1,e1)(φ) − N( f2,e2)(φ)‖L2(S) ≤ Cε
5
2 [‖ f1 − f2‖a + ‖e1 − e2‖b].

Hence from the fixed-point characterization we then see that

(5.9) ‖φ( f1,e1) − φ( f2,e2)‖H2(S) ≤ Cε
3
2 [‖ f1 − f2‖a + ‖e1 − e2‖b].

We summarize the result we have obtained in the following:

PROPOSITION 5.1 There is a number D > 0 such that for all sufficiently small ε

and all ( f, e) satisfying (2.29)–(2.30), problem (3.8)–(3.9) has a unique solution

φ = φ( f, e) that satisfies

‖φ‖H2(S) ≤ Dε
3
2 ,

‖|φ| + |∇φ|‖L∞(|x |> 40δ
ε

) ≤ ‖φ‖H2(S)e
− δ

ε .

Besides, φ depends Lipschitz-continuously on f and e in the sense of estimate

(5.9).
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Next we carry out the second part of the program, which is to set up equations

for f and d that are equivalent to making c and d identically zero. These equa-

tions are obtained by simply integrating the equation (only in x) against wx and Z ,

respectively. It is therefore of crucial importance to carry out computations of the

terms
∫

R
E1wx dx and

∫
R

E1 Z dx . We do that in the next section.

6 Estimates for Projections of the Error

In this section we carry out some estimates for the terms
∫

R
E1wx dx and∫

R
E1 Z dx , where E1, we recall, was defined in (2.31)–(2.32) and wx is an odd

function. Integration against all even terms in E1 therefore just vanish. We have∫
R

E1wx =
∫
R

E12wx

=
∫
R

S(w + φ1)wx +
∫
R

wx [εp[(w + φ1)
p−1 − w p−1](eZ) + εB3(eZ)]

+
∫
R

wx [(w + φ1 + εeZ)p − (w + φ1)
p − p(w + φ1)

p−1εeZ ].

We recall

S(w + φ1) = ε2S3 + ε2S4 + B2(w) + B3(φ1)

+ [(w + φ1)
p − w p − pw p−1φ1] + β−2(φ1)zz

where S2 is an odd function, S4 is an even function, and B2(w) is of order ε3. Thus

we see that

(6.1)

∫
R

S(w + φ1)wx

= −ε2

{
β−1 f ′′

∫
R

w2
x + 2 f ′β−2β ′

∫
R

(w2
x + xwxxwx )

+ 2α−1β−1α
′
f

′
∫
R

w2
x + f

(
β−1k2

∫
R

w2
x + β−3Vt t

∫
R

xwwx

)}

+
∫
R

wx [(w + φ1)
p − w p − pw p−1φ1]

+
∫
R

wx B3(φ1) + ε3b1ε f ′′ + ε3b2ε.

Here and below we denote by blε, l = 1, 2, generic, uniformly bounded contin-

uous functions of the form

blε = blε(z, f (εz), e(εz), f ′(εz), εe′(εz))
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where additionally b1ε is uniformly Lipschitz in its four last arguments.

The coefficient in front of f (εz) in (6.1) can be computed as

f

(
β−1k2

∫
R

w2
x + β−3Vt t

∫
R

xwwx

)
= f

(
β−1k2

∫
R

w2
x − σβ−3Vt t

∫
R

w2
x

)

where we have used the fact that
∫

R
xwwx = − 1

2

∫
R

w2 = −σ
∫

R
w2

x .

We see that the term [(w +φ1)
p −w p − pw p−1φ1] is to main order of the form

p(p − 1)

2
w p−2φ2

1,

and it is therefore of the order O(ε2). We have φ1 = φ11 + φ12 where we recall

φ11 is odd and φ12 is even, and with their sizes proportional to ε and ε f , respec-

tively. Thus in the expansion of the square term (p(p − 1)/2)w p−2φ2
1 asymptot-

ically, only the mixed product between φ11 and φ12 gives rise to a nonzero term

after the integration against wx . We have

∫
R

wx [(w + φ1)
p − w p − pw p−1φ1]dx

= p(p − 1)

2

∫
R

wxw
p−2φ2

1 dx + ε3b2ε(6.2)

= ε2a11(εz)a12(εz) f (εz)p(p − 1)

∫
R

wxw
p−2w1w2 dx + ε3b2ε.

Now, let us consider

ϕ(εz) =
∫
R

B3(φ1)wx .

All terms in this expression carry in the L2-norm as functions of θ = εz powers 3

or higher with the exception of the terms of size ε in B3. Thus we find

ϕ(εz) = εβ−1

∫
R

[k(φ1)x − β−2Vt(0, εz)xφ1]wx

− εβ−2Vt(0, εz) f

∫
R

φ1wx + O(ε3).

Since

φ1 = εa11(εz)w1(x) + ε f (εz)a12(εz)w2(x)
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with w1(x) odd and w2(x) even, we obtain

ϕ(εz) = ε2 f (εz)a12(εz)

{
β−1

∫
R

[k(w2)x − β−2Vt(0, εz)xw2]wx

}

− ε2 f (εz)β−2a11(εz)Vt(0, εz)

∫
R

w1wx + O(ε3)(6.3)

= ε2a11(εz)a12(εz) f (εz)

∫
R

[
w2,xwx + 1

σ
xwxw2 + w1wx

]
.

Note that by differentiating equation (2.23) and using equation (2.22), we obtain

(6.4)

∫
R

p(p − 1)w p−2wxw1w2 = −
∫
R

wxw1 +
∫
R

(
wx + 1

σ
xw

)
w2,x .

Adding (6.2) and (6.3) and using (6.4), we have∫
R

wx [(w + φ1)
p − w p − pw p−1φ1] +

∫
R

wx B3(φ1)

= ε2a11(εz)a12(εz) f (εz)

∫
R

[
p(p − 1)w p−2wxw1w2

+ w2,xwx + 1

σ
xwxw2 + w1wx

]
+ ε3[b1ε f ′′ + b2ε]

= ε2β−1σ−1k2 f

∫
R

[2w2,xwx + σ−1x(w2w)x ] + ε3[b1ε f ′′ + b2ε]

= −ε2β−1σ−1k2 f

∫
R

w2
x + ε3[b1ε f ′′ + b2ε](6.5)

where we have used (1.9) and the following integral identities:∫
R

w2,xwx = −
(

2

p − 1
+ 1

2

) ∫
R

w2
x , σ−1

∫
R

w2w =
(

1

2
− 2

p − 1

) ∫
R

w2
x .

In summary, we have established that

(6.6)

∫
R

S(w + φ1)wx dx = ε2[ f ′′(εz) + γ1(εz) f ′ + γ2(εz) f ] + ε3[b1ε f ′′ + b2ε]

where γ1 is given by

(6.7) γ1(θ) = β(β−2β
′ + 2α−1β−1α

′
) = σ V −1Vθ ,

and γ2 is given by

(6.8) γ2(θ) = −σ V −1Vt t + (σ−1 + 1)k2.
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Let us now estimate the term∫
R

wx

[
εp[(w + φ1)

p−1 − w p−1](eZ) + εB3(eZ)
]

∫
R

wx

[
(w + φ1 + εeZ)p − (w + φ1)

p − p(w + φ1)
p−1εeZ

]
.

We find now that

(6.9)

∫
R

wx{εp[(w + φ1)
p−1 − w p−1]}(eZ)

+
∫
R

wx

{
(w + φ1 + εeZ)p − (w + φ1)

p − p(w + φ1)
p−1εeZ ]}

= εp(p − 1)

∫
R

w p−2φ1eZwx + ε2 p(p − 1)

∫
R

w p−2e2 Z2wx

+ ε3b2ε.

The second integral vanishes, while in the first only the term carrying the odd part

of φ1 is nonzero. Thus we find that this term equals

ε2a11(εz)e

∫
R

Zw1wx dx + ε3b2ε.

Let us now compute ε
∫

R
wx B3(eZ)dx . In this term, we have to consider com-

ponents of order O(ε) in the coefficients of B3, which are odd functions. We obtain

ε

∫
R

wx B3(eZ)dx

= ε2ek(εz)

∫
R

wx [Zx + c1x Z ] + 2ε4e′′k(εz)

∫
R

xwx Z

+ ε3[b1
1εe′′ + b2

1ε f ′′ + b2ε].

Summarizing, we have proven that

(6.10)

∫
R

E1wx dx = ε2[ f ′′ + γ1 f ′ + γ2(εz) f ] + ε2[γ3(εz)e + ε2γ4e′′]

+ ε3[b1
1εe′′ + b2

1ε f ′′ + b2ε].
The next computations, which are rather analogous, correspond to the projec-

tion onto Z of the error. We compute now
∫

R
E1 Z . The main component in this
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expression is given by

ε[ε2β−2e′′ + λ0e]
∫
R

Z2.

We also have a term like

ϕ(εz) = εβ−1

∫
R

[k(φ1)x − β−2Vt(0, εz)xφ1]Z + εβ−2Vt(0, εz) f

∫
R

φ1 Z

= ε2kβ−1a11(εz)

∫
R

[(w1)x + c1xw1]Z

+ ε2kβ−2Vt(0, εz) f 2a12(εz)

∫
R

w2 Z

= ε2kβ−1a11(εz)

∫
R

[(w1)x + c1xw1]Z + ε3b2ε

because of the assumption on f .

There are also terms of order ε2 coming from the second-order expansion of

S(w). We recall from the decomposition (2.31)–(2.32) that the error carries either

terms accompanied by ε2 as a factor or by ε3. The terms with ε3 produce functions

of θ = εz with L2(0, 	)–norms of order ε3. The terms of order ε2 in the decom-

position of E1 are either even or odd in the variable x . Those that are odd do not

contribute to the integral since the function Z is even. Taking also into account that

f and f ′ are uniformly controlled by ε1/2, we just need to consider

d4(εz) = εβ−2Vt(0, εz) f (εz)

∫
R

φ1 Z dx,

d5(εz) = ε2a2
11(εz)p(p − 1)

∫
R

[w p−2w2
1]Z dx,

d6(εz) = ε2

∫
R

[
−β−2k2xwx + β−4|β ′|2x2wxx + β−1β ′′xwx

+ α−1β−2α′′w + 2α−1β−3α′xwx − 1

2
β−4Vt t x

2w

]
Z dx .

It is easy to see that also d4 = O(ε3). The common pattern of d5 and d6 is that even

though they have size ε2 in the L2-norm, they define smooth functions of θ = εz,

which is a very important fact to obtain the desired result.

For the term parallel to (6.9), we get

εp(p − 1)

∫
R

w p−2φ1eZ Z dx + ε2 p(p − 1)

∫
R

w p−2e2 Z3 dx + ε3b1ε = ε3b1ε.
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We consider now another component:

ε

∫
R

B3(eZ)Z = −ε2e(εz) f (εz)β−2Vt

∫
R

Z2 + ε3 = O(ε3).

Additionally, we also need to consider some higher-order terms in e. The ones

involving the first derivative are

ε3e′ 2α′

αβ2

∫
R

Z2 + 2ε3e
′ β

′

β3

∫
R

x Zx Z .

Only one term (in B2(eZ)) involving e′′ also contains ε3. But this term is also

accompanied by
∫

R
Z(x)2x dx = 0. There also is a term of the form

ε3[ε fβ−2γ5(εz) + O(ε2)]e′′(εz)

with O(ε2) uniform in ε.

In summary, we have established that, as a function of θ = εz,

(6.11)

∫
R

E1 Z dx = ε3[1 + ε f γ5 + O(ε2)]β−2e′′

+ ε3γ6e′ + ελ0e − ε2γ7(εz) + O(ε3),

where γi , i = 5, . . . , 7, are smooth functions of their argument. An explicit ex-

pression for the coefficient γ6, which we will need later, is

(6.12) γ6 = 2α′

αβ2
− β

′

β3
.

7 Projections of Terms Involving φ

We will estimate next the terms that involve φ in (3.8)–(3.10) integrated against

wx and Z . Concerning wx , we call the sum of them ϕ(φ), which can be decom-

posed as ϕ = ∑3
i=1 ϕi below.

Let ϕ1(εz) = ∫
R

B3(φ)wx . We make the following observation: all terms in

B(φ) carry ε and involve powers of x times derivatives of 0, 1, or two orders of φ.

The conclusion is that since wx has exponential decay then∫ �

0

|ϕ(θ)|2 dθ ≤ Cε3‖φ‖2
H2(S)

.

Hence

‖ϕ1‖L2(0,�) ≤ Cε3.

In B3(φ) we single out two less regular terms. The one whose coefficient depends

on f ′′ explicitly has the form

ϕ1∗ = ε2 f ′′
∫
R

φx Z(1 + kεβ(x − f ))−2
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= −ε2 f ′′
∫
R

φ{Z(1 + kεβ(x − f ))−2}x .

Since φ has Lipschitz dependence on ( f, e) in the form (5.9), we see that this is

transmitted from Sobolev’s embedding into

‖φ( f1,e1) − φ( f2,e2)‖L∞(S) ≤ Cε
3
2 [‖ f1 − f2‖a + ‖e1 − e2‖b],

from where it follows

‖ϕ1∗( f1, e1) − ϕ1∗( f2, e2)‖L2(0,�) ≤ Cε3+ 1
2 [‖ f1 − f2‖a + ‖e1 − e2‖b].

The one arising from a second derivative in z for φ is

ϕ1∗∗ =
∫
R

φzz Z [1 − (1 + kεβ(x − f ))−2]dx .

We readily see that

‖ϕ1∗∗( f1, e1) − ϕ1∗∗( f2, e2)‖L2(0,�) ≤ Cε3[‖ f1 − f2‖a + ‖e1 − e2‖b].
The remainder ϕ1 −ϕ1∗−ϕ1∗∗ actually defines for fixed ε a compact operator of the

pair ( f, e) into L2(0, 	). This is a consequence of the fact that weak convergence

in H 2(S) implies local strong convergence in H 1(S), and the same is the case for

H 2(0, 	) and C1[0, 	]. If f j and ej are weakly convergent sequences in H 2(0, 	),

then clearly the functions φ( f j ,ej ) constitute a bounded sequence in H 1(S). In the

above remainder, one can integrate by parts if necessary once in x . Averaging

against wx , which decays exponentially, localizes the situation and the desired fact

follows. We observe also that ϕ2(εz) = ∫
R

Ñ (φ)wx can be estimated similarly.

Using the definition of Ñ (φ) and the exponential decay of wx , we obtain

‖ϕ2‖L2(0,�) ≤ Cε
1
2 ‖φ‖2

H2(S)
≤ Cε3.

Let us now consider

ϕ3(εz) =
∫
R

p[wp−1 − w p−1]φwx .

Since w = w + φ1 + εeZ and φ1 can be estimated as

ε|eZ(x)| + |φ1(x, z)| ≤ Cε(|x |2 + 1)e−|x |,

we easily see that for some σ > 0, we have the uniform bound

|wp−1 − w p−1| |wx | ≤ Cεe−σ |x |.

From here we readily find that

‖ϕ3‖L2(0,�) ≤ Cε
3
2 ‖φ‖H2(S) ≤ Cε3.

These terms define compact operators similarly as before. We observe that exactly

the same estimates can be carried out in the terms obtained from integration after

multiplying Z .
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8 System for ( f, e): Proof of Theorem

In this section we set up equations relating f and e such that for the solution

φ of (3.8)–(3.9) predicted by Proposition 5.1 one has that the coefficient c(εz) is

identically zero. To achieve this, we first multiply the equation against wx and

integrate only in x . The equation c = 0 is then equivalent to the relation∫
R

E1wx dx +
∫
R

(N2(φ) + B3(φ) + p[wp−1 − w p−1]φ)wx dx = 0.

Similarly, d = 0 if and only if∫
R

E1 Z dx +
∫
R

(N2(φ) + B3(φ) + p[wp−1 − w p−1]φ)Z dx = 0.

Using the estimates in the previous sections, we then find that these relations are

equivalent to the following nonlinear, nonlocal system of differential equations for

the pair ( f, e):

L1( f ) ≡ f ′′ + γ1 f ′ + γ2 f = γ3e + ε2γ4e′′ + εM1ε,(8.1)

L2(e) ≡ ε2(β−2e′′ + γ6e′) + λ0e = ε3 f γ5e′′ + εγ7 + ε2 M2ε.(8.2)

The operators Mlε = Mlε( f, e) can be decomposed into the following form:

Mlε( f, e) = Alε( f, e) + Klε( f, e)

where Klε is uniformly bounded in L2(0, 	) for ( f, ε) satisfying constraints (2.29)–

(2.30) and is also compact. The operator Alε is Lipschitz in this region,

‖Alε( f1, e1) − Alε( f2, e2)‖L2(0,�) ≤ Cε[‖ f1 − f2‖a + ‖e1 − e2‖b].
The functions γi , i = 1, ..., 7, are smooth.

We will now solve system (8.1)–(8.2). The first observation is that the opera-

tor L1 is invertible under 	-periodic boundary conditions. This follows from the

assumed nondegeneracy condition (1.10): if g ∈ L 2(0, 	), then there is a unique

solution f ∈ H 2(0, 	) of L1( f ) = g that is 	-periodic and satisfies

‖ f ′′‖L2(0,�) + ‖ f ′‖L∞(0,�) + ‖ f ‖L∞(0,�) ≤ C‖g‖L2(0,�).

We now use assumption (1.14) to deal with the invertibility of L2. We have the

following:

LEMMA 8.1 Assume that condition (1.14) holds. If d ∈ L 2(0, 	), then there is a

unique solution e ∈ H 2(0, 	) of L2(e) = d that is 	-periodic and satisfies

ε2‖e′′‖L2(0,�) + ε‖e′‖L2(0,�) + ‖e‖L∞(0,�) ≤ Cε−1‖d‖L2(0,�).

Moreover, if d is in H 2(0, 	), then

ε2‖e′′‖L2(0,�) + ‖e′‖L2(0,�) + ‖e‖L∞(0,�)

≤ C[‖d ′′‖L2(0,�) + ‖d ′‖L2(0,�)] + C‖d‖L2(0,�).
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Let us accept for the moment the validity of this result and conclude the proof

of the theorem.

We first solve L2(e0) = εγ7(θ) and replace e = e0 + ẽ. Observe that by Lemma

8.1 we have

ε2‖e′′
0‖L2(0,�) + ‖e0‖L∞(0,�) ≤ Cε.

The system resulting on ( f, ẽ) has the same form as (8.1)–(8.2) except that now

the term εγ7 disappears. Let us observe now that the linear operator

L( f, e) = (L1( f ) − γ3e − ε2γ4e′′, L2(e))

is invertible with bounds for L( f, e) = (g, d) given by

‖ f ‖a + ‖e‖b ≤ C‖g‖2 + ε−1‖d‖2.

It then follows from the contraction mapping principle that the problem

[L + (εA1ε, ε
2 A2ε)]( f, e) = (g, d)

is uniquely solvable for ( f, e) satisfying (2.29)–(2.30) if ‖g‖2 < ε1/2+ρ and ‖d‖2 <

ε3/2+ρ for some ρ > 0. The desired result for the full problem (8.1)–(8.2) then fol-

lows directly from Schauder’s fixed-point theorem. In fact, refining the fixed-point

region, we can actually get ‖e‖b + ‖ f ‖a = O(ε) for the solution. �

PROOF OF LEMMA 8.1: We consider then the boundary value problem

(8.3) L2(e) = d, e(0) = e(	), e′(0) = e′(	).

We make the following Liouville transformation (cf. [21]):

	0 =
∫ �

0

β(θ)dθ, t =
∫ θ

0
β(θ)dθ

	0

π, λ̃0 = 	2
0

π2
λ0

�(θ) = β− 1
2 exp

(
− 1

2

∫ θ

0

β2γ6(θ)dθ

)
,

y(t) = �−1(θ)e(θ), q(t) = 	2
0

π2

�
′′

β2�
.

Observe that � is 	-periodic thanks to the explicit formula (6.12) for the coefficient

γ6. Then (8.3) gets transformed into

(8.4) L̃2(y) = ε2(y′′ + q(t)y) + λ̃0 y = d̃, y(0) = y(π), y ′(0) = y′(π),

and it then suffices to establish the estimates in Lemma 8.1 for the solution of this

problem in terms of the corresponding norms of d̃. It is standard that the eigenvalue

problem

(8.5) y′′ + q(t)y + λy = 0, y(0) = y(π), y ′(0) = y′(π),

has an infinite sequence of eigenvalues λk , k ≥ 0, with an associated orthonormal

basis in L2(0, π), {yk}, constituted by eigenfunctions. A result in [21] provides
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asymptotic expressions as k → +∞ for these eigenvalues and eigenfunctions,

which turn out to correspond to those for q ≡ 0. We have

(8.6)
√

λk = 2k + O

(
1

k3

)
.

Problem (8.4) is then solvable if and only if λkε
2 �= λ̃0 for all k. In such a case, the

solution to (8.3) can then be written as

y(t) =
∞∑

k=0

d̃k

λ̃0 − λkε2
yk(t)

with this series convergent in L2. Hence

‖y‖2
L2(0,π)

=
∞∑

k=0

|d̃k |2
(λ̃0 − λkε2)2

.

We then choose ε such that

(8.7) |4k2ε2 − λ̃0| ≥ cε

for all k, where c is small. This corresponds precisely to the condition (1.14) in the

statement of the theorem. From (8.6) we then find that |λ̃0 − λkε
2| ≥ (c/2)ε if ε is

also sufficiently small. It follows that ‖y‖L2(0,π) ≤ Cε−1‖d̃‖L2(0,π). Observe also

that

‖y′‖2
L2(0,π)

≤ C

∞∑
k=0

|d̃k |2
1 + |λk |

(λ̃0 − λkε2)2
≤ C

∞∑
k=0

(1 + k4)|d̃k |2.

Hence

ε‖y′‖L2(0,π) + ‖y‖L∞(0,π) ≤ Cε−1‖d̃‖L2(0,π).

Besides, if d is in H 2(0, π) with d(0) = d(π) and d ′(0) = d ′(π), then the sum∑
k k4d2

k is finite and bounded by the H 2-norm of d. This automatically implies

ε2‖y′′‖L2(0,π) + ‖y′‖L2(0,π) + ‖y‖L∞(0,π) ≤ C‖d̃‖H2(0,π),

and the proof is complete. �
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