Some extremal singular solutions of a nonlinear elliptic equation

Juan DÁvila ${ }^{1}$

1 Introduction

Let $\Omega \subset \mathbb{R}^{n}$ be a smooth, bounded domain, and let f be a smooth function on $\Omega, f \geq 0, f \not \equiv 0$. Let $p>1$ and consider the semi-linear elliptic equation

$$
\left(P_{t}\right)\left\{\begin{aligned}
-\Delta u & =u^{p}+t f & & \text { in } \Omega \\
u & >0 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}\right.
$$

where $t \geq 0$ is a parameter.
We are concerned with weak solutions of $\left(P_{t}\right)$, and we use the definition introduced in [BCMR]: a weak solution of $\left(P_{t}\right)$ is a function $u \in L^{1}(\Omega), u \geq 0$, such that $u^{p} \delta \in L^{1}(\Omega)$, where $\delta(x)=$ $\operatorname{dist}(x, \partial \Omega)$, and such that

$$
-\int_{\Omega} u \Delta \zeta d x=\int_{\Omega}\left(u^{p}+t f\right) \zeta d x
$$

for all $\zeta \in C^{2}(\bar{\Omega})$ with $\zeta=0$ on $\partial \Omega$.
We start by mentioning some well known facts (see for example [BCMR], [BC], [Ma]).
Theorem 1 There exists $0<t^{*}<\infty$ such that for $0<t<t^{*}\left(P_{t}\right)$ has a unique minimal solution $\underline{u}(\cdot, t)$ (which is smooth), for $t=t^{*}\left(P_{t^{*}}\right)$ has a unique solution u^{*} (possibly unbounded), and for $t>t^{*}$ there is no solution of $\left(P_{t}\right)$ (even in the weak sense). Moreover $\underline{u}(\cdot, t)$ depends smoothly on $t \in\left(0, t^{*}\right)$, increases as t increases, and

$$
\underline{u}(\cdot, t) \nearrow u^{*} \text { a.e. in } \Omega \text {, as } t \nearrow t^{*} \text {. }
$$

We call u^{*} the extremal solution.
An important feature of the minimal solution \underline{u} is that the linearized operator at \underline{u}

$$
-\Delta-p \underline{u}^{p-1}
$$

has a positive first eigenvalue for all $0<t<t^{*}$. This property can be used as in [CR] or [MP], to prove the following

[^0]Theorem 2 If

$$
\begin{equation*}
n<6+\frac{4}{p-1}+4 \sqrt{\frac{p}{p-1}} \tag{1}
\end{equation*}
$$

then there exists a constant C independent of t such that

$$
\|\underline{u}(\cdot, t)\|_{L^{\infty}(\Omega)} \leq C \quad \text { for any } 0<t<t^{*} .
$$

This is equivalent to the statement that the extremal solution u^{*} is bounded.
We note that if the extremal solution u^{*} is bounded, then by elliptic regularity it is also smooth, and in this case the first eigenvalue of $-\Delta-p\left(u^{*}\right)^{p-1}$ is zero.

In the present work we are interested in the case $n \geq 6+\frac{4}{p-1}+4 \sqrt{\frac{p}{p-1}}$. First in Section 2 we show that Theorem 2 is sharp, i.e. assuming $n \geq 6+\frac{4}{p-1}+4 \sqrt{\frac{p}{p-1}}$, for any domain Ω there exists a smooth function $f \geq 0, f \not \equiv 0$ for which the extremal solution u^{*} is unbounded (or singular). Then in Section 3 we study the radially symmetric case with Ω the open unit ball in \mathbb{R}^{n}, and we show that assuming $n \geq 6+\frac{4}{p-1}+4 \sqrt{\frac{p}{p-1}}$ the extremal solution is singular for any smooth radially symmetric function $f, f \geq 0, f \neq 0$. We also give a precise description of the singularity of u^{*} in this case.

A problem related to $\left(P_{t}\right)$ that has received much attention in the literature is the following:

$$
\left\{\begin{align*}
-\Delta u & =\lambda g(u) & & \text { in } \Omega \tag{2}\\
u & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

where $\lambda \geq 0$ is a parameter and $g:[0, \infty) \rightarrow(0, \infty)$ is a C^{1} convex, positive, nondecreasing function with $g(0)>0$ and $g(u) / u \rightarrow \infty$ as $u \rightarrow \infty$. Typical examples are $g(u)=e^{u}$ and $g(u)=(1+u)^{p}, p>1$. For this equation there is again an extremal parameter $\lambda^{*}<\infty$, such that for $0<\lambda<\lambda^{*}$ there is a minimal solution, for $\lambda=\lambda^{*}$ there is a unique weak solution (called the extremal solution), and for $\lambda>\lambda^{*}$ there is no solution (see for example [BCMR],[BV],[MP] and their references for results on this problem).

Several very interesting open problems for (2) were proposed in [BV], and we mention some of them in the context of problem $\left(P_{t}\right)$.

1) Assume $n \geq 6+\frac{4}{p-1}+4 \sqrt{\frac{p}{p-1}}$. If Ω is convex, is it true that for any smooth $f \geq 0, f \not \equiv 0$ the extremal solution is singular? Is it true for $f \equiv 1$? We note that some restriction on Ω has to be imposed, as shown by the example $\Omega=B_{2} \backslash \bar{B}_{1}$ and $f \equiv 1$ (or any radially symmetric positive smooth f). In this case it can be easily shown that the extremal solution is always smooth, without any restriction on n and p. (See Problem 3 in [BV]).
2) Concerning problem (2) in some cases the extremal solution is bounded and in others it is singular (see $[\mathrm{BV}]$). In a recent work, G . Nedev $[\mathrm{Ne}]$ has shown that in dimension 2, for any nonlinearity g satisfying the hypothesis above the extremal solution of (2) is bounded. His argument can be adapted to show that the same is true for a more general version of $\left(P_{t}\right)$, where
the nonlinearity u^{p} is replaced by $g(u)$, and g is a C^{1} positive, convex, increasing function with $g(0)=0$, and $g(u) / u \rightarrow \infty$ as $u \rightarrow \infty$ (we note that Theorem 1 is still true for this more general problem). In dimension 3, it is not known whether or not there exist nonlinearities g for which the extremal solution is singular.

2 Is condition (1) sharp?

Theorem 3 Let $\Omega \subset \mathbb{R}^{n}$ be any bounded, smooth domain. If

$$
\begin{equation*}
n \geq 6+\frac{4}{p-1}+4 \sqrt{\frac{p}{p-1}} \tag{3}
\end{equation*}
$$

then there exists a smooth function $f \geq 0, f \not \equiv 0$ so that the extremal solution u^{*} is singular.
The idea of the construction is the same as in [BV], that is, to find a smooth function $f \geq 0$, $f \not \equiv 0$, a number $0<t<\infty$ and an unbounded function u in $H_{0}^{1}(\Omega)$ which is a weak solution of $\left(P_{t}\right)$, and such that the operator

$$
-\Delta-p u^{p-1}
$$

has a nonnegative first eigenvalue, in the sense that

$$
\begin{equation*}
\int_{\Omega}|\nabla \varphi|^{2} d x \geq p \int_{\Omega} u^{p-1} \varphi^{2} d x \quad \forall \varphi \in C_{0}^{1}(\Omega) \tag{4}
\end{equation*}
$$

Then we can conclude using the following lemma (similar to Theorem 3 in [BV]).
Lemma 4 Suppose that $u \in H_{0}^{1}(\Omega)$ is an unbounded weak solution of $\left(P_{t}\right)$ such that the operator

$$
-\Delta-p u^{p-1}
$$

has a nonnegative first eigenvalue (in the sense of (4). Then $t=t^{*}$ and $u=u^{*}$.
Proof. Since there is no solution for $t>t^{*}$ we must have $t \leq t^{*}$. Let $\underline{u}=\underline{u}(\cdot, t)$ denote the minimal solution of $\left(P_{t}\right)$, and let $g(u)=u^{p}$. The inequality

$$
\int_{\Omega}|\nabla \varphi|^{2} d x \geq \int_{\Omega} g^{\prime}(u) \varphi^{2} d x
$$

holds by assumption for all $\varphi \in C_{0}^{1}(\Omega)$ and by approximation also for $\varphi \in H_{0}^{1}(\Omega)$. We take $\varphi=u-\underline{u} \in H_{0}^{1}(\Omega)$ (note that by assumption $u \in H_{0}^{1}(\Omega)$ and by the estimates in the appendix, $\underline{u} \in H_{0}^{1}(\Omega)$ even for $t=t^{*}$, i.e. $\left.\underline{u}=u^{*}\right)$. We have

$$
\begin{aligned}
\int_{\Omega} g^{\prime}(u)(u-\underline{u})^{2} d x & \leq \int_{\Omega}|\nabla(u-\underline{u})|^{2} d x \\
& =\int_{\Omega}-\Delta(u-\underline{u})(u-\underline{u}) d x \\
& =\int_{\Omega}(g(u)+t f-g(\underline{u})-t f)(u-\underline{u}) d x
\end{aligned}
$$

so that

$$
\int_{\Omega}(u-\underline{u})\left(g(u)+g^{\prime}(u)(\underline{u}-u)-g(\underline{u})\right) d x \geq 0 .
$$

Because of the convexity of g and since $u \geq \underline{u}$, the integrand is non-positive and we conclude that

$$
g(\underline{u})=g(u)+g^{\prime}(u)(\underline{u}-u) .
$$

Since $g(u)=u^{p}$ is strictly convex we conclude that $u=\underline{u}$. But u is unbounded and this forces $t=t^{*}$.

Consider the function

$$
\begin{equation*}
v(x)=v(|x|)=\lambda|x|^{\alpha} \tag{5}
\end{equation*}
$$

where

$$
\lambda=\lambda_{n, p}=\left(\frac{2}{p-1}\left(n-\frac{2 p}{p-1}\right)\right)^{\frac{1}{p-1}}
$$

and

$$
\alpha=\alpha_{p}=-\frac{2}{p-1} .
$$

Then $v \in H^{1}(\Omega)$ for $n>2+4 /(p-1)$, and

$$
-\Delta v=v^{p} \quad \text { in } \mathbb{R}^{n} .
$$

From now on we assume that $0 \in \Omega$, and we will construct u with a singularity at the origin so that it satisfies the requirements in Lemma 4. We look for a function u of the form $u=v-\psi$.

Lemma 5 There exists a smooth function ψ defined on $\bar{\Omega}$ with the properties:

1. $\psi \geq 0$ and is smooth in $\bar{\Omega}$,
2. $\Delta \psi \geq 0$ in Ω,
3. $\psi \equiv 0$ in a neighborhood of 0 , and
4. $\psi=v$ on $\partial \Omega$.

Proof of Theorem 3. Let $u=v-\psi$. Then

$$
\begin{aligned}
-\Delta u & =-\Delta v+\Delta \psi \\
& =v^{p}+\Delta \psi \\
& \geq 0
\end{aligned}
$$

and $u=00$ on $\partial \Omega$, so $u \geq 0$. Taking

$$
f=\Delta \psi+v^{p}-u^{p}
$$

we then have

$$
-\Delta u=u^{p}+f .
$$

Note that $f \geq 0$ and is smooth, because $u \leq v$ and $u \equiv v$ in a neighborhood of 0 . The only condition that still needs to be checked to apply Lemma 4 is the non-negativity of the first eigenvalue of the operator $-\Delta-p u^{p-1}$. Here enters into play condition (3). Recall the Hardy inequality (see [BV] for example):

$$
\frac{(n-2)^{2}}{4} \int_{\Omega} \frac{1}{|x|^{2}} \varphi^{2} d x \leq \int_{\Omega}|\nabla \varphi|^{2} d x
$$

for any $\varphi \in C_{0}^{1}(\Omega)$, when $n \geq 3$. Note that $u \leq v$ so that for any $\varphi \in C_{0}^{1}(\Omega)$

$$
\begin{aligned}
\int_{\Omega} p u^{p-1} \varphi^{2} d x & \leq \int_{\Omega} p v^{p-1} \varphi^{2} d x \\
& =\frac{2 p}{p-1}\left(n-\frac{2 p}{p-1}\right) \int_{\Omega} \frac{1}{|x|^{2}} \varphi^{2} d x \\
& \leq \frac{(n-2)^{2}}{4} \int_{\Omega} \frac{1}{|x|^{2}} \varphi^{2} d x \\
& \leq \int_{\Omega}|\nabla \varphi|^{2} d x
\end{aligned}
$$

where the third inequality is a consequence of (3).
Proof of Lemma 5. Let $r=\operatorname{dist}(0, \partial \Omega) / 2$, and let ψ_{1} be the solution of the following problem

$$
\left\{\begin{array}{rll}
\Delta \psi_{1}=0 & & \text { in } \Omega \backslash \bar{B}_{r} \\
\psi_{1} & =v & \\
\text { on } \partial \Omega \\
\psi_{1} & =0 & \\
\text { on } \partial B_{r}
\end{array}\right.
$$

Then ψ_{1} is smooth and positive in $\Omega \backslash \bar{B}_{r}$ and by the Hopf boundary lemma $\frac{\partial \psi_{1}}{\partial \nu}>0$ on ∂B_{r}, where ν is the normal vector, pointing away from the origin. Let ψ_{1} be extended by 0 in B_{r}. Then $\Delta \psi_{1} \geq 0$ in $\mathcal{D}(\Omega)^{\prime}$.

Now we regularize ψ_{1} by convolution to get a smooth function ψ :

$$
\psi=\psi_{1} * \rho_{\varepsilon}
$$

where ρ_{ε} is a standard mollifier $\left(\rho_{\varepsilon}(x)=\varepsilon^{-n} \rho(x / \varepsilon), \rho \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), \rho \geq 0, \operatorname{supp}(\rho) \subset B_{1}\right.$, $\left.\int \rho d x=1\right) . \psi(x)$ is well defined and subharmonic on the set

$$
\{x \in \Omega \mid \operatorname{dist}(x, \partial \Omega)>\varepsilon\} .
$$

If ρ_{ε} is radially symmetric, then $\psi_{1}=\psi_{1} * \rho_{\varepsilon}=\psi$ on

$$
\left\{x \in \Omega \mid \operatorname{dist}(x, \partial \Omega)>\varepsilon, \operatorname{dist}\left(x, B_{r}\right)>\varepsilon\right\} .
$$

By fixing $\varepsilon>0$ but small enough we can consider ψ to be defined and smooth up to $\partial \Omega$.

3 The radially symmetric case

Theorem 6 Assume now that Ω is the open unit ball $B_{1}(0)$ in \mathbb{R}^{n}, and that $f \geq 0, f \neq 0$ is any smooth, radially symmetric function. If $n \geq 6+\frac{4}{p-1}+4 \sqrt{\frac{p}{p-1}}$ then the extremal solution u^{*} is singular.

First we give a short proof of this theorem, but actually more can be said about the extremal solution u^{*} than merely $u^{*} \notin L^{\infty}(\Omega)$.

Theorem 7 Assume Ω is the open unit ball $B_{1}(0)$ in \mathbb{R}^{n}, and $f \geq 0, f \not \equiv 0$ is a radially symmetric function $f(x)=f(|x|)$ with $f \in C^{2}([0,1])$. Suppose $n \geq \overline{6}+\frac{4}{p-1}+4 \sqrt{\frac{p}{p-1}}$. Let v be the function defined by (5) and set $w=r^{-2}(u-v), r=|x|$. Then w is $C^{2}([0,1])$, and if moreover $f^{\prime}(0)=0$ (i.e. $f \in C^{2}(\bar{\Omega})$), then the same is true for w.

Before giving the proofs we note that if Ω and f are radially symmetric, then the minimal solution \underline{u} of $\left(P_{t}\right)$ is also radially symmetric.

Proof of Theorem 6. Let v denote the function defined by (5). We use the improved Hardy inequality, proved in [BV]: for all $\varphi \in C_{0}^{1}(\Omega)$ we have

$$
\int_{\Omega}|\nabla \varphi|^{2} d x \geq \frac{(n-2)^{2}}{4} \int_{\Omega} \frac{\varphi^{2}}{|x|^{2}} d x+c \int_{\Omega} \varphi^{2} d x
$$

where $c=H_{2}\left(w_{n} /|\Omega|\right)^{2 / n}>0, H_{2}$ is the first eigenvalue of the Laplacian with Dirichlet boundary condition in the unit ball in dimension 2 , and w_{n} is the measure of the unit ball in \mathbb{R}^{n}. This inequality implies that if (3) holds, then the operator $-\Delta-p v^{p-1}$ has a positive first eigenvalue, and although $p v^{p-1}=C /|x|^{2}$ is not in $L^{n / 2}(\Omega)$, the maximum principle can be applied to it.
Claim: for all $0<t \leq t^{*}$ we have $\underline{u}(\cdot, t) \leq v$, and the inequality is strict for $0<t<t^{*}$.
Indeed let $0<t<t^{*}$ and suppose that there exists some $0<r<1$ such that $\underline{u}(r, t) \geq v(r)$. Then

$$
\underline{u}-v \geq 0 \quad \text { on } \partial B_{r}
$$

and by the convexity of $u \rightarrow u^{p}$ we have

$$
\begin{aligned}
-\Delta(\underline{u}-v) & =\underline{u}^{p}-v^{p}+t f \\
& \geq p v^{p-1}(\underline{u}-v)+t f
\end{aligned}
$$

so that

$$
-\Delta(\underline{u}-v)-p v^{p-1}(\underline{u}-v) \geq 0 .
$$

By the maximum principle we conclude that $\underline{u} \geq v$ on B_{r}, which is impossible, because \underline{u} is bounded for $0<t<t^{*}$. The conclusion for $t=t^{*}$ is obtained by taking the limit as $t \rightarrow t^{*}$.

Since $u^{*} \leq v$ we conclude that the first eigenvalue for the operator $-\Delta-p u^{* p-1}$ is

$$
\inf _{\|\varphi\|_{L^{2}}} \int_{\Omega}|\nabla \varphi|^{2}-p u^{* p-1} \varphi^{2} d x \geq \inf _{\|\varphi\|_{L^{2}}} \int_{\Omega}|\nabla \varphi|^{2}-p v^{p-1} \varphi^{2} d x>0
$$

This shows that u^{*} cannot be bounded.
Proof of Theorem 7. This proof involves again the same idea as in [BV], using Lemma 4. We set

$$
u=v+r^{2} w
$$

Then a calculation shows that the equation $-\Delta u=u^{p}+f$ is equivalent to

$$
-\left(r^{2} w^{\prime \prime}+(n+3) r w^{\prime}+2 n w\right)=\left|v+r^{2} w\right|^{p}-v^{p}+f, \quad 0<r<1
$$

It is convenient to rewrite this equation as

$$
w^{\prime \prime}+\frac{n+3}{r} w^{\prime}+\frac{2 n+p v^{p-1} r^{2}}{r^{2}} w=-\frac{1}{r^{2}}\left(\left|v+r^{2} w\right|^{p}-v^{p}-p v^{p-1} r^{2} w\right)-r^{-2} f
$$

or

$$
\begin{equation*}
L w=-g(r, w)-r^{-2} f \tag{6}
\end{equation*}
$$

where

$$
L w=w^{\prime \prime}+\frac{n+3}{r} w^{\prime}+\frac{2 n+p v^{p-1} r^{2}}{r^{2}} w
$$

and

$$
g(r, w)=\frac{1}{r^{2}}\left(\left|v+r^{2} w\right|^{p}-v^{p}-p v^{p-1} r^{2} w\right)
$$

Note that $p v^{p-1} r^{2}=p \lambda^{p-1}$ is a constant, and that $g(r, w) \geq 0$ by convexity.
The aim is the to find a solution w of (6), that behaves nicely near 0 and such that $w(1)=$ $-v(1)$. It turns out that a nice behavior of w near 0 can be imposed for example by the requirement that

$$
\begin{equation*}
w(r), r w^{\prime}(r) \text { are bounded near } 0 \tag{7}
\end{equation*}
$$

We show in Proposition 8 that if f is a continuous function on $[0, \infty)$ then (6) together with (7) has a unique solution w, which is defined on an open maximal interval. We also prove that $w \leq 0$ if $f \geq 0$. Then, in Proposition 15, we show that if we replace f by $t f$ in (6), where $t \geq 0$, $f \geq 0, f \not \equiv 0$ in $[0,1]$, then there exists t such that the solution w to (6)-(7) is defined on $[0,1]$ and $w(1)=-v(1)$. We also show in Lemma 12 that if f is smooth enough, then w has the regularity stated in Theorem 7.

Accepting these results for a moment, we see that

$$
u=v+r^{2} w
$$

satisfies the requirements in Lemma 4, the non negativity of the first eigenvalue of the operator $-\Delta-p u^{p-1}$ following again from $u \leq v$, the Hardy inequality and condition (3).

From now on until the end of this section we assume that condition (3) holds.

Proposition 8

a) Let $K>0$. Then there exists $R>0$ such that for any continuous function f on $[0, R]$ with $\|f\|_{C[0, R]} \leq K$, (6)-(7) has a unique solution on $(0, R)$. Moreover, the solution depends continuously on f. More precisely, there exists a constant $C>0$, such that for any continuous functions f_{1}, f_{2} on $[0, R],\left\|f_{i}\right\|_{C[0, R]} \leq K, i=1,2$, if w_{1}, w_{2} are the corresponding solutions of (6)-(7), then

$$
\left\|w_{1}-w_{2}\right\|_{C[0, R]} \leq C\left\|f_{1}-f_{2}\right\|_{C[0, R]}
$$

b) If f is a continuous function on $[0, \infty)$, the (6)-(7) has a unique solution w defined on an open maximal interval. The solution depends continuously on f.

We need some preparatory lemmas.
Lemma 9 There exists $C>0$ depending only on n, p such that if

$$
M>0, R>0 \text { and } 2 M R^{\frac{2 p}{p-1}} \leq \lambda
$$

then

$$
\begin{equation*}
|g(r, w)| \leq C r^{\frac{2}{p-1}}|w|^{2} \tag{8}
\end{equation*}
$$

for any $|w| \leq M$ and $0<r<R$, and

$$
\begin{equation*}
\left|g\left(r, w_{1}\right)-g\left(r, w_{2}\right)\right| \leq C M r^{\frac{2}{p-1}}\left|w_{1}-w_{2}\right| \tag{9}
\end{equation*}
$$

for any $\left|w_{1}\right|,\left|w_{2}\right| \leq M$ and $0<r<R$.
Proof. Let $a(x)=x^{p}$, which is a convex functions (recall that $p>1$). Let $|w| \leq M$ and $0<r<R$. Then, using $2 M R^{\frac{2 p}{p-1}} \leq \lambda$, we obtain $\left|r^{2} w\right| \leq \frac{1}{2} \lambda r^{-\frac{2}{p-1}}$. With $v=v(r)=\lambda r^{-\frac{-2}{p-1}}$, we have $\frac{1}{2} v \leq v+r^{2} w \leq \frac{3}{2} v$. Notice that

$$
\begin{aligned}
g(r, w) & =\frac{1}{r^{2}}\left(a\left(v+r^{2} w\right)-a(v)-a^{\prime}(v) r^{2} w\right) \\
& =\frac{1}{2} a^{\prime \prime}(\xi) r^{2} w^{2}
\end{aligned}
$$

where ξ is in the interval with endpoints v and $v+r^{2} w$. Using that $a^{\prime \prime}$ is monotone, we thus have

$$
\begin{aligned}
|g(r, w)| & \leq \frac{1}{2} p(p-1) r^{2}|w|^{2} \max \left\{(1 / 2)^{p-2},(3 / 2)^{p-2}\right\} v^{p-2} \\
& \leq C(p) r^{2}|w|^{2} \lambda^{p-2} r^{-\frac{2}{p-1}(p-2)} \\
& \leq C(n, p) r^{\frac{2}{p-1}}|w|^{2}
\end{aligned}
$$

We now prove estimate (9):

$$
\begin{aligned}
\left|g\left(r, w_{1}\right)-g\left(r, w_{2}\right)\right| & =\frac{1}{r^{2}}\left|\left(v+r^{2} w_{1}\right)^{p}-\left(v+r^{2} w_{2}\right)^{p}-p v^{p-1} r^{2}\left(w_{1}-w_{2}\right)\right| \\
& =\frac{1}{r^{2}}\left|\int_{0}^{1} \frac{d}{d t}\left(v+r^{2}\left(t w_{1}+(1-t) w_{2}\right)\right)^{p}-p v^{p-1} r^{2}\left(w_{1}-w_{2}\right) d t\right| \\
& \leq p \int_{0}^{1}\left|\left(v+r^{2}\left(t w_{1}+(1-t) w_{2}\right)\right)^{p-1}-v^{p-1}\right|\left|w_{1}-w_{2}\right| d t
\end{aligned}
$$

But

$$
\left|\left(v+r^{2}\left(t w_{1}+(1-t) w_{2}\right)\right)^{p-1}-v^{p-1}\right|=(p-1)|\xi|^{p-2} r^{2}\left|t w_{1}+(1-t) w_{2}\right|
$$

where ξ is in the interval with endpoints v and $v+r^{2}\left(t w_{1}+(1-t) w_{2}\right)$. Therefore

$$
\begin{aligned}
\left|\left(v+r^{2}\left(t w_{1}+(1-t) w_{2}\right)\right)^{p-1}-v^{p-1}\right| & \leq(p-1) \max \left\{(1 / 2)^{p-2},(3 / 2)^{p-2}\right\} v^{p-2} r^{2} M \\
& \leq C(n, p) r^{\frac{2}{p-1}} M
\end{aligned}
$$

Lemma 10 Let w be a solution of (6) in $(0, R)$ (i.e. $w \in C^{2}(0, R)$ and satisfies the equation) and let $0<r_{0}<R$. Then

$$
\begin{equation*}
w(r)=w_{h}(r)-\int_{r_{0}}^{r} k(s / r)\left(s g(s, w(s))+s^{-1} f(s)\right) d s, \quad 0<r<R \tag{10}
\end{equation*}
$$

where w_{h} is the solution of the linear homogeneous equation

$$
\left\{\begin{align*}
L w_{h} & =0 \tag{11}\\
w_{h}\left(r_{0}\right) & =w\left(r_{0}\right) \\
w_{h}^{\prime}\left(r_{0}\right) & =w^{\prime}\left(r_{0}\right)
\end{align*} \quad \text { in }(0, R)\right.
$$

and k is the continuous function on $[0,1]$ given by:

$$
k(t)= \begin{cases}t^{-\beta} \ln (1 / t) & \text { if } n=6+\frac{4}{p-1}+4 \sqrt{\frac{p}{p-1}} \quad \text { where } \beta=-\frac{n+2}{2} \\ \frac{t^{-\beta_{1}} t^{-\beta_{2}}}{\beta_{1}-\beta_{2}} & \text { if } n>6+\frac{4}{p-1}+4 \sqrt{\frac{p}{p-1}} \quad \text { where } \beta_{1,2}=-\frac{n+2}{2} \pm \sqrt{\left(\frac{n+2}{2}\right)^{2}-2 n-p \lambda^{p-1}}\end{cases}
$$

We note that (3) implies that β_{1}, β_{2} are real, and that $k>0$ on $(0,1), k(0)=k(1)=0$.
Proof. We use the variation of parameters formula, noting that two linearly independent solutions of the homogeneous equation $L y=0$ on $(0, \infty)$ are:

$$
\begin{array}{lll}
y_{1}=s^{\beta}, & y_{2}=\ln (s) s^{\beta} & \text { if } n=6+\frac{4}{p-1}+4 \sqrt{\frac{p}{p-1}} \\
y_{1}=s^{\beta_{1}}, & y_{2}=s^{\beta_{2}} & \text { if } n>6+\frac{4}{p-1}+4 \sqrt{\frac{p}{p-1}}
\end{array}
$$

Lemma 11 Let w be a solution of (6) in $(0, R)$ and suppose it satisfies (7). The

$$
\begin{equation*}
w(r)=-\int_{0}^{r} k(s / r)\left(s g(s, w(s))+s^{-1} f(s)\right) d s \tag{12}
\end{equation*}
$$

Proof. A direct computation gives the following expression for the solution w_{h} of the homogeneous equation (11):

$$
\text { case } n=6+\frac{4}{p-1}+4 \sqrt{\frac{p}{p-1}}: \quad w_{h}(r)=c_{1} r^{\beta}+c_{2} \ln (r) r^{\beta}, ~=~\left(r_{0}\right) r_{0}^{-\beta}\left(\beta \ln \left(r_{0}\right)+1\right)-w^{\prime}\left(r_{0}\right) r_{0}^{-\beta+1} \ln \left(r_{0}\right) .
$$

case $n>6+\frac{4}{p-1}+4 \sqrt{\frac{p}{p-1}}: \quad w_{h}(r)=c_{1} r^{\beta_{1}}+c_{2} \beta_{2}$

$$
\begin{aligned}
& c_{1}=\left(\beta_{2} w\left(r_{0}\right) r_{0}^{-\beta_{1}}-w^{\prime}\left(r_{0}\right) r_{0}^{-\beta_{2}+1}\right) /\left(\beta_{2}-\beta_{1}\right) \\
& c_{2}=\left(-\beta_{1} w\left(r_{0}\right) r_{0}^{-\beta_{1}}+w^{\prime}\left(r_{0}\right) r_{0}^{-\beta_{2}+1}\right) /\left(\beta_{2}-\beta_{1}\right)
\end{aligned}
$$

In both cases we see that under the assumption (7) we have $c_{1}, c_{2} \rightarrow 0$ as $r_{0} \rightarrow 0^{+}$, and that we can take the limit as $r_{0} \rightarrow 0^{+}$in (10).

Lemma 12 Let $R>0$ and $w \in L^{\infty}(0, R)$ satisfy (12) for $0<r<R$, where $f \in C([0, R])$. Then $w \in C^{2}(0, R)$ and is a solution of (6)-(7). If moreover $f \in C^{2}([0, R))$ then the same is true for w, and if $f^{\prime}(0)=0$ then $w^{\prime}(0)=0$.

Proof. We differentiate under the integral sign and check that the equation (6) is satisfied. Set $w=w_{1}+w_{2}$ where

$$
w_{1}(r)=-\int_{0}^{r} k(s / r) s g(s, w(s)) d s \quad w_{2}(r)=-\int_{0}^{r} k(s / r) s^{-1} f(s) d s
$$

It is easy to see that if f is smooth the w_{2} is also smooth and that

$$
w_{2}^{\prime}(0)=-f^{\prime}(0) \int_{0}^{1} k(t) d t
$$

so that $f^{\prime}(0)=0$ implies $w_{2}^{\prime}(0)=0$. It is also easy to check that if f is only continuous then $r w_{2}^{\prime}(r) \rightarrow 0$ as $r \rightarrow 0^{+}$. To estimate w_{1} and its derivatives, consider $M=\|w\|_{L^{\infty}(0, R)}$ and let $r_{0}>0$ be small enough so that $2 M R_{0}^{\frac{2 p}{p-1}} \leq \lambda$. Then by (8), for $0<r<r_{0}$ we have

$$
\begin{aligned}
\left|w_{1}(r)\right| & \leq C M^{2}\left|\int_{0}^{r} k(s / r) s^{\frac{p+1}{p-1}} d s\right| \\
& \leq C M^{2} r^{\frac{2 p}{p-1}} \int_{0}^{1} k(t) t^{\frac{p+1}{p-1}} d t \\
& \rightarrow 0 \text { as } r \rightarrow 0^{+}
\end{aligned}
$$

In a similar way one proves that $w_{1}^{\prime}(r), w_{1}^{\prime \prime}(r) \rightarrow 0$ as $r \rightarrow 0^{+}$.

Proof of Proposition 8. To prove part b) of the proposition we use part a) to obtain the conclusions on some interval $(0, R), R>0$, and then we can quote standard results for ODE's (see for example [CL]).

The proof of part a) consists in applying the Banach fixed point theorem to the operator suggested by (12). Let $R>0$ (to be specified later) and let $f \in C[0, R]$. Consider the operator $T: C[0, R] \rightarrow C[0, R]$ defined by

$$
T w(r)=-\int_{0}^{r} k(s / r)\left(s g(s, w(s))+s^{-1} f(s)\right) d s
$$

Let $M>0$ (also to be chosen later) and let X_{M} be the closed ball of $C[0, R]$ centered at 0 of radius M. Then, for $w \in X_{M}$ and if $2 M R^{\frac{2 p}{p-2}} \leq \lambda$, using (8) we have

$$
\begin{aligned}
|T w(r)| & \leq \int_{0}^{r}|k(s / r)|\left(C s^{\frac{p+1}{p-1}}|w(s)|^{2}+s^{-1}|f(s)|\right) d s \\
& \leq C M^{2} \int_{0}^{r}|k(s / r)| s^{\frac{p+1}{p-1}} d s+\|f\|_{C[0, R]} \int_{0}^{r}|k(s / r)| s^{-1} d s
\end{aligned}
$$

But

$$
\int_{0}^{r}|k(s / r)| s^{q} d s=r^{q+1} \int_{0}^{1}|k(t)| t^{q} d t
$$

and using the expression for k one can check that the integrals in the right hand side are finite for $q=\frac{p+1}{p-1}$ and $q=-1$. We obtain thus

$$
\|T w\|_{C[0, R]} \leq C\left(M^{2} R^{\frac{2 p}{p-1}}+K\right)
$$

if $\|f\|_{C[0, R]} \leq K$. Also, for $w_{1}, w_{2} \in X_{M}$, by (9) we have

$$
\begin{aligned}
\left|T w_{1}(r)-T w_{2}(r)\right| & \leq \int_{0}^{r}|k(s / r)| s\left|g\left(s, w_{1}(s)\right)-g\left(s, w_{2}(s)\right)\right| d s \\
& \leq C M \int_{0}^{r}|k(s / r)| s^{\frac{p+1}{p-1}}\left|w_{1}(s)-w_{2}(s)\right| d s \\
& \leq C M R^{\frac{2 p}{p-1}}\left\|w_{1}-w_{2}\right\|_{C[0, R]}
\end{aligned}
$$

So, given $K>0$ we choose M so that $2 C K \leq M$ and then we take R small enough so that

$$
M R^{\frac{2 p}{p-1}} \leq \min \{\lambda / 2,1 / 2 C\}
$$

With these choices T is a contraction (with Lipschitz constant $1 / 2$) that maps X_{M} into X_{M}. Therefore it has a fixed point (unique in X_{M}), which is a solution of (6)-(7) by Lemma 12.

To prove uniqueness, suppose that w_{1}, w_{2} are two solutions of (6)-(7) on $(0, R)$. Then choose M^{\prime} so that

$$
M^{\prime} \geq \max \left\{2 C K,\left\|w_{1}\right\|_{C[0, R]},\left\|w_{2}\right\|_{C[0, R]}\right\}
$$

and R^{\prime} so that

$$
M^{\prime} R^{\frac{2 p}{p-1}} \leq \min \{\lambda / 2,1 / 2 C\} \quad \text { and } \quad R^{\prime} \leq R
$$

Then w_{1}, w_{2} are in $\left\{w \in C\left[0, R^{\prime}\right] /\|w\|_{C\left[0 \cdot R^{\prime}\right]} \leq M^{\prime}\right\}$ and are fixed points of T. Hence $w_{1} \equiv w_{2}$ on $\left(0, R^{\prime}\right)$. The equality on $(0, R)$ is obtained by a standard uniqueness result for ODE's.

Regarding continuous dependence, let $f_{1}, f_{2} \in C[0, R]$ be such that $\left\|f_{i}\right\|_{C\left[0 . R^{\prime}\right]} \leq K, i=1,2$, and let w_{1}, w_{2} be the corresponding solutions to (6)-(7), i.e., the fixed points of T_{i} in X_{M}, where

$$
T_{i} w(r)=-\int_{0}^{r} k(s / r)\left(s g(s, w(s))+s^{-1} f_{i}(s)\right) d s
$$

Recall that T_{i} maps X_{M} into X_{M} and that it has a Lipschitz constant of $1 / 2$. Then,

$$
\begin{aligned}
\left\|w_{1}-w_{2}\right\|_{C[0, R]} & \leq\left\|T_{1}\left(w_{1}\right)-T_{1}\left(w_{2}\right)\right\|+\left\|T_{1}\left(w_{2}\right)-T_{2}\left(w_{2}\right)\right\| \\
& \leq \frac{1}{2}\left\|w_{1}-w_{2}\right\|+\sup _{0 \leq r \leq R} \int_{0}^{r}|k(s / r)| s^{-1}\left|f_{1}(s)-f_{2}(s)\right| d s \\
& \leq \frac{1}{2}\left\|w_{1}-w_{2}\right\|+C\left\|f_{1}-f_{2}\right\|
\end{aligned}
$$

Remark that by part a) of Proposition 8 , given a continuous function f on $[0, \infty)$ there exists $R>0$ such that the sequence

$$
\left\{\begin{array}{l}
w_{0} \equiv 0 \\
w_{k+1}=T\left(w_{k}\right)
\end{array}\right.
$$

converges in $C[0, R]$ to the solution of (6)-(7).
Lemma 13 Assume now that $f \geq 0$ is a continuous function on $[0, \infty)$ and let w be the corresponding solution of (6)-(7) with maximal domain $(0, R)$. Then

$$
w_{k} \searrow w \text { on }(0, R)
$$

Proof. Indeed, first note that $w_{k} \leq 0$ for all k, because $g(r, w) \geq 0$ and $f \geq 0$. In particular $w_{1} \leq w_{0} \equiv 0$. Then observe that for fixed $r, g(r, w)$ is non increasing in w for $w \leq 0$. This implies that $T\left(w_{1}\right) \leq T\left(w_{0}\right)$, i.e. $w_{2} \leq w_{1}$, and by induction $w_{k+1} \leq w_{k}$ for all k. Note also that since w is a fixed point of T, from $w \leq w_{0} \equiv 0$ follows that $w \leq T\left(w_{0}\right)=w_{1}$, and again an induction argument shows that $w \leq w_{k}$ for all k. It follows that $w_{k} \searrow \tilde{w}$ pointwise, and taking the limit in the recurrence relation

$$
w_{k+1}(r)=-\int_{0}^{r} k(s / r)\left(s g\left(s, w_{k}(s)\right)+s^{-1} f(s)\right) d s
$$

we obtain that \tilde{w} is a fixed point of T, and hence a solution of (6)-(7). By uniqueness $w=\tilde{w}$.
Lemma 14 Let f_{1}, f_{2} be continuous functions on $[0, R]$ and suppose that the corresponding solutions $w^{(1)}$, $w^{(2)}$ to (6)-(7) are defined on $(0, R)$. Assume that $f_{1} \geq f_{2} \geq 0$. Then $w^{(1)} \leq$ $w^{(2)} \leq 0$ on $(0, R)$.

Proof. For $i=1,2$ define the operators T_{i} corresponding to f_{i} as before, and consider the sequences

$$
\left\{\begin{array}{l}
w_{0}^{(i)} \equiv 0 \\
w_{k+1}^{(i)}=T_{i}\left(w_{k}^{(i)}\right)
\end{array}\right.
$$

Then $w_{k}^{(i)} \searrow w^{(i)}, i=1,2$. But since $f_{1} \geq f_{2} \geq 0$ we have (inductively)

$$
\begin{aligned}
w_{k+1}^{(1)} & =T_{1}\left(w_{k}^{(1)}\right) \\
& \leq T_{1}\left(w_{k}^{(2)}\right) \\
& \leq T_{2}\left(w_{k}^{(2)}\right) \\
& =w_{k+1}^{(2)}
\end{aligned}
$$

Therefore $w^{(1)} \leq w^{(2)}$.

Proposition 15 Let f be a continuous function on $[0, \infty), f \geq 0, f \not \equiv 0$ on $[0,1]$. For each $t \geq 0$ let w_{t} be the solution of

$$
\left\{\begin{array}{l}
L w_{t}=-g\left(r, w_{t}\right)-r^{-2} t f \\
w_{t}(r), r w_{t}^{\prime}(r) \quad \text { are bounded near } 0
\end{array}\right.
$$

which is defined on a maximal interval $\left(0, R_{t}\right)$. Then the set

$$
\left\{w_{t}(1) / t \geq 0 \text { and } w_{t}(1) \text { is defined }\right\}
$$

is the whole interval $(-\infty, 0]$. In particular there exists $\bar{t} \geq 0$ such that $w_{\bar{t}}(1)$ is defined and is equal to $-v(1)$.

Proof. Define

$$
A=\left\{w_{t}(1) / t \geq 0 \text { and } w_{t}(1) \text { is defined }\right\}
$$

and note that $0 \in A$. Next we show that A is connected. Consider $\varphi(t)=w_{t}(1)$ with domain $\operatorname{dom}(\varphi)=\left\{t \geq 0 / w_{t}(1)\right.$ is defined $\}$. Then φ is continuous, and to conclude that A is connected we only need to check that $\operatorname{dom}(\varphi)$ is connected. So let $0 \leq t_{2} \leq t_{1}$ and suppose that $R_{t_{1}}>1$ (i.e. $\left.t_{1} \in \operatorname{dom}(\varphi)\right)$. By monotonicity with respect to t we have $0 \geq w_{t_{2}} \geq w_{t_{1}}$ on $\left(0, R_{t_{1}}\right) \cap\left(0, R_{t_{2}}\right)$. If $R_{t_{2}}<R_{t_{1}}$ then we have an apriori bound for $w_{t_{2}}$ on $\left(0, R_{t_{2}}\right)$, so that $w_{t_{2}}$ can be continued beyond $R_{t_{2}}$. This contradiction shows that $R_{t_{2}} \geq R_{t_{1}}>1$ and therefore $t_{2} \in \operatorname{dom}(\varphi)$.
Now we prove that A is open in $(-\infty, 0]$. Let $a \in A$ and $t \geq 0$ be such that $w_{t}(1)=a$. By the continuous dependence of w_{t} in t, we have that $w_{t^{\prime}}(1)$ is defined for t^{\prime} close to t. Take $t^{\prime}>t$ but close enough. Then

$$
\begin{aligned}
w_{t^{\prime}}(1) & =-\int_{0}^{1} k(s)\left(s g\left(s, w_{t^{\prime}}(s)\right)+s^{-1} t^{\prime} h(s)\right) d s \\
& <w_{t}(1)
\end{aligned}
$$

because $f \not \equiv 0$ on $[0,1]$. Hence A contains an interval of the form $(a-\varepsilon, a]$ for some $\varepsilon>0$.
Suppose now that A is bounded and let $a=\inf A \notin A$. Then there exists a sequence $a_{n} \searrow a$, $a_{n} \in A$. Let $t_{n} \geq 0$ be such that $w_{t_{n}}(1)=a_{n}$. Then, if $t_{n}<t_{m}$ we must have $a_{m}<a_{n}$, and we conclude that $\left(t_{n}\right)$ is increasing. If $t_{n} \nearrow \infty$, then

$$
\begin{aligned}
a_{n} & =-\int_{0}^{1} k(s)\left(s g\left(s, w_{t_{n}}(s)\right)+s^{-1} t_{n} f(s)\right) d s \\
& \rightarrow-\infty \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

which contradicts the assumption that A is bounded. Hence we may assume that $t_{n} \nearrow t<\infty$. Note that $w_{t_{n}}(r)$ is decreasing, so that $w(r)=\lim _{n} w_{t_{n}}(r)$ exists for $0<r<1$. Taking the limit as $n \rightarrow \infty$ in

$$
w_{t_{n}}(r)=-\int_{0}^{r} k(s / r)\left(s g\left(s, w_{t_{n}}(s)\right)+s^{-1} t_{n} f(s)\right) d s
$$

we obtain by monotone convergence

$$
\begin{equation*}
w(r)=-\int_{0}^{r} k(s / r)\left(s g(s, w(s))+s^{-1} t f(s)\right) d s \tag{13}
\end{equation*}
$$

Claim: w is the solution of

$$
\left\{\begin{array}{l}
L w_{t}=-g\left(r, w_{t}\right)-r^{-2} t f \\
w_{t}(r), r w_{t}^{\prime}(r) \text { are bounded near } 0
\end{array}\right.
$$

and $w(1)=a$. Thus $a \in A$ and from this contradiction we conclude that $A=(-\infty, 0]$.
Proof of the claim. We need to prove that $w \in L^{\infty}(0,1)$ so that we can apply Lemma 12 , and then show that $\lim _{r \rightarrow 1^{-}} w(r)=a$.
Note that by Proposition 8 there exists $M>0$ and $0<R<1$ such that $\left|w_{t_{n}}(r)\right| \leq M$ for $0<r<R$, and therefore $|w(r)| \leq M$ for $0<r<R$. Let's estimate $w(r)$ for $r \in[R, 1]$. Let $m(s)=s g(s, w(s))+s^{-1} f(s)$ and let's use the convention that $k(t)=0$ for $t \geq 1$. So

$$
\begin{equation*}
w(r)=-\int_{0}^{R} k(s / r) s g(s, w(s)) d s-\int_{0}^{R} k(s / r) s^{-1} f(s) d s-\int_{R}^{1} k(s / r) m(s) d s \tag{14}
\end{equation*}
$$

We may take R smaller if necessary so that $2 M R^{\frac{2 p}{p-1}} \leq \lambda$ and therefore by (8) we find as in the proof of Lemma 12 that the first 2 terms are bounded independently of $r \in[R, 1]$. To estimate

$$
\int_{R}^{1} k(s / r) m(s) d s
$$

note that by taking $r=1$ in (13) we get $k m \in L^{1}(0,1)$. But there exists $C>0$ such that for $R \leq s, r \leq 1, k(s / r) \leq C k(s)$, which shows that w is bounded in $(0,1)$.

Finally, because of the same estimates as before we can use dominated convergence in (14) to find that $w(r) \rightarrow a$ as $r \rightarrow 1^{-}$.

Appendix

Here we give a proof of Theorem 2. Let $f \geq 0$ be smooth, and let u denote here the minimal solution of $\left(P_{t}\right)$, which we know is smooth for $0<t<t^{*}$. We omit from the notation the explicit dependence of u in t.

We know that the first eigenvalue of $-\Delta-p u^{p-1}$ is non-negative, so for all $\varphi \in C_{0}^{1}(\Omega)$ we have

$$
\int_{\Omega}|\nabla \varphi|^{2} d x \geq p \int_{\Omega} u^{p-1} \varphi^{2} d x
$$

Let $j \geq 1$ and take $\varphi=u^{j}$. We then get

$$
j^{2} \int_{\Omega} u^{2 j-2}|\nabla u|^{2} d x \geq p \int_{\Omega} u^{p+2 j-1} d x .
$$

Now multiply $\left(P_{t}\right)$ by $\frac{j^{2}}{2 j-1} u^{2 j-1}$ and integrate by parts to obtain

$$
j^{2} \int_{\Omega} u^{2 j-2}|\nabla u|^{2} d x=\frac{j^{2}}{2 j-1} \int_{\Omega} u^{p+2 j-1}+t f u^{2 j-1} d x
$$

Combining these two we obtain

$$
\frac{j^{2}}{2 j-1} \int_{\Omega} u^{p+2 j-1}+t f u^{2 j-1} d x \geq p \int \Omega u^{p+2 j-1} d x
$$

If $\frac{j^{2}}{2 j-1}<p$ we see that there is a constant C independent of t such that

$$
\|u\|_{L^{p+2 j-1}} \leq C
$$

(recall that $t<t^{*}$). From now on we denote by C different numbers independent of t. The restriction on j can be rewritten as $1 \leq j<p+\sqrt{p^{2}-p}$. Hence for $q=p+2 j-1$ we find a bound for $\|u\|_{L^{q}}$ independent of t, for $q<3 p+2 \sqrt{p^{2}-p}-1$, and hence

$$
\left\|u^{p}+t f\right\|_{L^{r}} \leq C
$$

for $r<3+2 \sqrt{1-1 / p}-1 / p$. Now we use the equation and the L^{p} theory to improve this estimate. Let $1<r_{0}<3+2 \sqrt{1-1 / p}-1 / p$. By L^{p} estimates

$$
\|u\|_{W^{2, r_{0}}} \leq C
$$

and if $1 / r_{0}-2 / n>0$, by Sobolev embedding we get

$$
\left\|u^{p}+t f\right\|_{L^{r_{1}}} \leq C
$$

with $1 / r_{1}=p\left(1 / r_{0}-2 / n\right)$. If on the other hand $1 / r_{0}-2 / n \leq 0$ we conclude that

$$
\|u\|_{C(\bar{\Omega})} \leq C
$$

(If $1 / r_{0}-2 / n<0$, we use Sobolev embedding, and if $1 / r_{0}-2 / n=0$ we apply once more the L^{p} estimates and the Sobolev embedding). Continuing in this way we define a sequence r_{k} by $1 / r_{k+1}=p\left(1 / r_{k}-2 / n\right)$, and we would like to find some k for which $r_{k} \leq 0$, so that as before we obtain a bound for u in $C(\bar{\Omega})$. To compute r_{k} we introduce $a_{k}=1 / r_{k}-2 / n$ which satisfies then $a_{k+1}=p a_{k}-2 / n$. Therefore

$$
a_{k}=p^{k}\left(a_{0}-\frac{2}{n(p-1)}\right)+\frac{2}{n(p-1)}
$$

We want to find some k for which $a_{k} \leq 0$ and this occurs for some k iff

$$
a_{0}-\frac{2}{n(p-1)}<0
$$

Going back to r_{0} this requires $r_{0}>\frac{n}{2}(1-1 / p)$. But we had already the restriction $r_{0}<$ $3+2 \sqrt{1-1 / p}-1 / p$, so that the argument works if

$$
\frac{n}{2}(1-1 / p)<3+2 \sqrt{1-1 / p}-1 / p
$$

which is equivalent to

$$
n<6+\frac{4}{p-1}+4 \sqrt{\frac{p}{p-1}} .
$$

Acknowledgments. The author wishes to thank Prof. H. Brezis for introducing the problem and useful discussions concerning this work.

References

[BC] H. Brezis and X. Cabré, Some simple nonlinear pde's without solutions, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998), no. 2, 223-262.
[BCMR] H. Brezis, T. Cazenave, Y. Martel, and A. Ramiandrisoa, Blow up for $u_{t}-\Delta u=g(u)$ revisited, Adv. Differential Equations 1 (1996), no. 1, 73-90.
[BV] H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid 10 (1997), no. 2, 443-469.
[CL] E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGrawHill Book Company, Inc., New York-Toronto-London, 1955.
[CR] M. G. Crandall and P. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rational Mech. Anal. 58 (1975), no. 3, 207-218.
[Ma] Y. Martel, Uniqueness of weak extremal solutions of nonlinear elliptic problems, Houston J. Math. 23 (1997), no. 1, 161-168.
[MP] F. Mignot and J.P. Puel, Sur une classe de problèmes non linéaires avec non linéairité positive, croissante, convexe, Comm. Partial Differential Equations 5 (1980), no. 8, 791-836.
[Ne] G. Nedev, Preprint, 1999.

[^0]: ${ }^{1}$ Dept. of Mathematics, Rutgers University, New Brunswick, NJ 08903, U. S. A., davila@math.rutgers.edu

