Some extremal singular solutions of a

nonlinear elliptic equation

JUAN DAvILA!

1 Introduction

Let 2 C IR™ be a smooth, bounded domain, and let f be a smooth function on , f >0, f#£0.
Let p > 1 and consider the semi-linear elliptic equation

—Au = uP+tf inQ
(FR) u > 0 in Q
u = 0 on 0f2

where t > 0 is a parameter.

We are concerned with weak solutions of (F;), and we use the definition introduced in [BCMR]:
a weak solution of (P;) is a function u € L'(2), uw > 0, such that u?§ € L'(Q), where §(x) =
dist(z, 0€2), and such that

_/QUAC dx:/Q(up—Irtf)C dx

for all ¢ € C2(Q2) with ¢ = 0 on 9.
We start by mentioning some well known facts (see for example [BCMR], [BC], [Ma]).

Theorem 1 There ezists 0 < t* < oo such that for 0 < t < t* (F;) has a unique minimal
solution u(-,t) (which is smooth), fort = t* (Py) has a unique solution u* (possibly unbounded),
and for t > t* there is no solution of (P;) (even in the weak sense). Moreover u(-,t) depends
smoothly on t € (0,t*), increases as t increases, and

u(-,t) /S u* ae inQ, ast St

We call u* the extremal solution.
An important feature of the minimal solution u is that the linearized operator at u

—A — p@p—l

has a positive first eigenvalue for all 0 < ¢ < ¢*. This property can be used as in [CR] or [MP],
to prove the following
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Theorem 2 If

4 [ p
<6+ —-+4,/—— 1
n +p—1+ b1 ()

then there exists a constant C' independent of t such that

u(-, )| ey S C forany 0 <t < t*.

This is equivalent to the statement that the extremal solution u* is bounded.

We note that if the extremal solution u* is bounded, then by elliptic regularity it is also
smooth, and in this case the first eigenvalue of —A — p(u*)P~! is zero.

In the present work we are interested in the case n > 6 + zﬁ + 4\/1)?1 . First in Section 2 we

show that Theorem 2 is sharp, i.e. assuming n > 6+ ﬁ +4,/ }%, for any domain 2 there exists

a smooth function f > 0, f#£ 0 for which the extremal solution u* is unbounded (or singular).
Then in Section 3 we study the radially symmetric case with €2 the open unit ball in [R", and
we show that assuming n > 6 + p%l + 4, /z% the extremal solution is singular for any smooth

radially symmetric function f, f > 0, f£0. We also give a precise description of the singularity
of u* in this case.
A problem related to (P;) that has received much attention in the literature is the following:

{ —Au = Ag(u) inQ @)
u = 0 on 0f)

where A > 0 is a parameter and ¢ : [0,00) — (0,00) is a C' convex, positive, nondecreasing
function with ¢(0) > 0 and g(u)/u — oo as u — oo. Typical examples are g(u) = e* and
g(u) = (1 +u)?, p > 1. For this equation there is again an extremal parameter \* < oo, such
that for 0 < A < A* there is a minimal solution, for A = \* there is a unique weak solution (called
the extremal solution), and for A > A* there is no solution (see for example [BCMR],[BV],[MP]
and their references for results on this problem).

Several very interesting open problems for (2) were proposed in [BV], and we mention some
of them in the context of problem (F;).

1) Assume n > 6 + zﬁ + 4\/pfj1. If Q is convex, is it true that for any smooth f > 0, f#£0
the extremal solution is singular? Is it true for f = 17 We note that some restriction on {2 has
to be imposed, as shown by the example Q = B, \ B; and f = 1 (or any radially symmetric
positive smooth f). In this case it can be easily shown that the extremal solution is always
smooth, without any restriction on n and p. (See Problem 3 in [BV]).

2) Concerning problem (2) in some cases the extremal solution is bounded and in others it
is singular (see [BV]). In a recent work, G. Nedev [Ne] has shown that in dimension 2, for
any nonlinearity ¢ satisfying the hypothesis above the extremal solution of (2) is bounded. His
argument can be adapted to show that the same is true for a more general version of (F;), where
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the nonlinearity u? is replaced by g(u), and g is a C! positive, convex, increasing function with
g(0) =0, and g(u)/u — oo as u — oo (we note that Theorem 1 is still true for this more general
problem). In dimension 3, it is not known whether or not there exist nonlinearities ¢ for which
the extremal solution is singular.

2 Is condition (1) sharp?

Theorem 3 Let Q) C IR" be any bounded, smooth domain. If

4 P
> [ 4, [ ———
n 6—|—p 1+ 1/p 7 (3)

then there exists a smooth function f >0, f#£0 so that the extremal solution u* is singular.

The idea of the construction is the same as in [BV], that is, to find a smooth function f > 0,
f#0, a number 0 < ¢ < co and an unbounded function u in H](2) which is a weak solution of
(P;), and such that the operator

—A — puP?

has a nonnegative first eigenvalue, in the sense that
LIVel dozp [ wie? do v e CHQ), (4)
Q Q
Then we can conclude using the following lemma (similar to Theorem 3 in [BV]).

Lemma 4 Suppose that u € H} () is an unbounded weak solution of (P;) such that the operator
—A —put?
has a nonnegative first eigenvalue (in the sense of (4). Then t =t* and u = u*.

Proof. Since there is no solution for ¢ > ¢* we must have ¢ < t*. Let u = u(-,t) denote the
minimal solution of (P,), and let g(u) = u?. The inequality

L1l da > [ gt do

holds by assumption for all ¢ € C}(Q) and by approximation also for ¢ € H}(Q). We take
o =u—u€ H}(Q) (note that by assumption u € H}() and by the estimates in the appendix,
u € H}(Q) even for t = t*, i.e. u=u*). We have

[d@@-wde < [ |[Viu-wf?da
— [ ~Au-ww-u) d
— [ () +t5 = gw) ~ t)(u — w) da

3



so that

| (= w)(g(w) + ¢ (w)w—u) = g(w) dz >0,

Because of the convexity of g and since u > u, the integrand is non-positive and we conclude

that
g(w) = g(u) + ¢'(u)(u — u).

Since g(u) = P is strictly convex we conclude that v = u. But u is unbounded and this forces

t=1t".
Consider the function

where 1
2 2\
A=y = —— [n— 2
p—1 p—1
and
2
a=q,=———:
p p_l
Then v € H'(Q) forn > 2+4/(p — 1), and
—Av=12" in R".

O

(5)

From now on we assume that 0 € €2, and we will construct v with a singularity at the origin so
that it satisfies the requirements in Lemma 4. We look for a function u of the form u = v — 9.

Lemma 5 There exists a smooth function v defined on Q with the properties:

1. ¢ >0 and is smooth in (Q,

2. A >0 in €,

3. ¢ =0 in a neighborhood of 0, and
4. ¥ =wv on Of).

Proof of Theorem 3. Let u = v — . Then

—Au = —Av+ Ay
= W+ Ay
0

v

and v = 00 on 052, so u > 0. Taking
f=A¢Y+0P —uP
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we then have
—Au=u"+ f.

Note that f > 0 and is smooth, because u < v and u = v in a neighborhood of 0. The only
condition that still needs to be checked to apply Lemma 4 is the non-negativity of the first
eigenvalue of the operator —A — pu?~!. Here enters into play condition (3). Recall the Hardy
inequality (see [BV] for example):

— 2)? 1
(n ) / ©* dr < / ]VgpP dx
4 o |x|? Q

for any ¢ € C}(Q), when n > 3. Note that u < v so that for any ¢ € C} ()

/pup_lgDQ dr < /pvp_lgOQ dx
Q Q
2p 2p / 1
= ——(n-—= —p° d
p—1<n p—1> of2”

n —2)? 1,
< d
= Ty /Q|x|290 g

< /\W)I2 dx
Q

where the third inequality is a consequence of (3). O

Proof of Lemma 5. Let r = dist(0, 092) /2, and let 11 be the solution of the following problem

Awl = 0 in Q \ BT
Y1 = v on 0f)
Y1 = 0 ondB,

Then 1), is smooth and positive in Q\ B, and by the Hopf boundary lemma % > 0 on 0B,,

where v is the normal vector, pointing away from the origin. Let 1; be extended by 0 in B,.
Then Ay > 0 in D(Q2)'.

Now we regularize ¢; by convolution to get a smooth function :

¢=¢1*Pa

where p. is a standard mollifier (p.(z) = e "p(z/e), p € C(R"), p > 0, supp(p) C By,
[ pdx=1). ¥(z) is well defined and subharmonic on the set

{z € Q| dist(x,00) > e}.
If p. is radially symmetric, then ¥; = ¥ * p. =1 on
{z € Q| dist(z, 02) > ¢,dist(x, B,) > €}.

By fixing £ > 0 but small enough we can consider v to be defined and smooth up to 0f2. O
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3 The radially symmetric case

Theorem 6 Assume now that Q0 is the open unit ball By(0) in IR", and that f > 0, f£0 is
any smooth, radially symmetric function. If n > 6 + ﬁ +4, /I% then the extremal solution u*

18 singular.

First we give a short proof of this theorem, but actually more can be said about the extremal
solution u* than merely u* ¢ L>*(Q).

Theorem 7 Assume € is the open unit ball B1(0) in IR", and f > 0, f£ 0 is a radially
symmetric function f(z) = f(|lz|) with f € C*([0,1]). Suppose n > 6 + pfl + 4,/1%. Let v
be the function defined by (5) and set w = r=*(u —v), r = |z|. Then w is C*([0,1]), and if
moreover f'(0) =0 (i.e. f € C*)), then the same is true for w.

Before giving the proofs we note that if 2 and f are radially symmetric, then the minimal
solution u of (F;) is also radially symmetric.

Proof of Theorem 6. Let v denote the function defined by (5). We use the improved Hardy
inequality, proved in [BV]: for all ¢ € C}(Q) we have

(n—2)* 1 ¢
4 o |x|?

/|Vg0|2 dx > da:+c/ ©* dx
Q Q

where ¢ = Hy(w, /|Q])?/™ > 0, H, is the first eigenvalue of the Laplacian with Dirichlet boundary
condition in the unit ball in dimension 2, and w,, is the measure of the unit ball in IR™. This
inequality implies that if (3) holds, then the operator —A — pvP~! has a positive first eigenvalue,
and although pv?~! = C'/|z|? is not in L™/?(f2), the maximum principle can be applied to it.
Claim: for all 0 <t < ¢* we have u(-,t) < v, and the inequality is strict for 0 < ¢ < t*.
Indeed let 0 < t < t* and suppose that there exists some 0 < r < 1 such that u(r,t) > v(r).
Then

u—v>0 ondB,

and by the convexity of u — u? we have
—Alu—v) = =P +tf
> por (w—v) +tf

so that
~Au —v) — pv* Hu —v) > 0.

By the maximum principle we conclude that v > v on B,, which is impossible, because u is
bounded for 0 < t < t*. The conclusion for ¢ = t* is obtained by taking the limit as t — t*.



Since u* < v we conclude that the first eigenvalue for the operator —A — pu*P~! is

inf / IVo|? — pu™? ' ¢? do > inf / IVp|* — pvP~tp? dx > 0.
Q Q

ol L2 — lell2

This shows that u* cannot be bounded. 0O

Proof of Theorem 7. This proof involves again the same idea as in [BV], using Lemma 4. We
set
u=v+r*w

Then a calculation shows that the equation —Au = u? + f is equivalent to
—(r*w” + (n+3)rw’ + 2nw) = v +r*wlP — P+ f, 0<r<1

It is convenient to rewrite this equation as

+3 2n + poP~1r? 1
w" + nr w + = ];;) L= 3 (|U+T2w|p—vp—pvp’1r2 ) —r72f
or
Lw = —g(r,w)—r"2f (6)
where 5 ) -
.
Lw = w' + nto i L;)Tw
r r
and

1
o) = & (o 2 = 9 — i)
:

Note that pvP~1r? = pAP~! is a constant, and that g(r,w) > 0 by convexity.

The aim is the to find a solution w of (6), that behaves nicely near 0 and such that w(1) =
—v(1). It turns out that a nice behavior of w near 0 can be imposed for example by the
requirement that

w(r),rw'(r) are bounded near 0 (7)

We show in Proposition 8 that if f is a continuous function on [0, 00) then (6) together with
(7) has a unique solution w, which is defined on an open maximal interval. We also prove that
w < 0if f > 0. Then, in Proposition 15, we show that if we replace f by ¢f in (6), where ¢t > 0,
f >0, f#£0in [0,1], then there exists ¢ such that the solution w to (6)-(7) is defined on [0, 1]
and w(l) = —v(1). We also show in Lemma 12 that if f is smooth enough, then w has the
regularity stated in Theorem 7.

Accepting these results for a moment, we see that

u=v+rw

satisfies the requirements in Lemma 4, the non negativity of the first eigenvalue of the operator
—A — puP~! following again from u < v, the Hardy inequality and condition (3). 0

From now on until the end of this section we assume that condition (3) holds.
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Proposition 8
a) Let K > 0. Then there exists R > 0 such that for any continuous function f on [0, R]
with || fllco,r) < K, (6)-(7) has a unique solution on (0,R). Moreover, the solution depends
continuously on f. More precisely, there exists a constant C' > 0, such that for any continuous
functions f1, fo on [0, R], || fillcpo,r < K, i = 1,2, if wy,wy are the corresponding solutions of
(6)-(7), then

w1 —wallcp,r < Cllfi = fallco.r

b) If f is a continuous function on [0,00), the (6)-(7) has a unique solution w defined on an
open maximal interval. The solution depends continuously on f.

We need some preparatory lemmas.
Lemma 9 There exists C' > 0 depending only on n,p such that if
M >0, R>0and 2MR>T <
then
l9(r, w)] < Critlul? ®)
for any lw| < M and 0 <r < R, and
lg(r, w1) — g(r, ws)| < CMriTw, — w, (9)
for any |wy|, |wa] < M and 0 <r < R.

Proof. Let a(x) = aP, which is a convex functions (recall that p > 1). Let |w| < M and
2 —2

0 <7 < R. Then, using 2M R7-T < \, we obtain [r2w| < %/\T_P%l. With v = v(r) = Ar” »1, we

have %v <v+4riw< %v. Notice that

g(rw) = — (alw+r"w) —av) = d'()r’w)

where £ is in the interval with endpoints v and v + r?w. Using that a” is monotone, we thus
have

IN

l9(r, w)| ;p(p — Dr?fw* max{(1/2)P~%, (3/2)" "%}~

IN

ClpyrwPxe 2
C(n, p)riwf

IN



We now prove estimate (9):

lg(r,wi) — g(r,ws)| = 2 (v + r*wi)? — (v + r*we)? — poP P (wy — w2)‘

1

r2

dt

IN

1
p/ [0+ 2 (twr + (1= wa) P~ — o oy — ] dt
0
But
(v 12 (twy + (1= Bjwa) )P~ =P = (p = DIEP2rftws + (1 — )|
where £ is in the interval with endpoints v and v + r?(tw; + (1 — t)ws). Therefore
(w42 (twy + (1= )y —0?!| <
< C(n,p)riM

L d
/ — (v 47 (twy + (1 — t)wy))P — prP~ 2 (wy — wy) dt|
0

(p — 1) max{(1/2)P~2,(3/2)P2}oP"2r* M

O

Lemma 10 Let w be a solution of (6) in (0,R) (i.e. w € C?(0,R) and satisfies the equation)

and let 0 < rog < R. Then
w(r) = wp(r) — /T: k(s/r) (sg(s,w(s)) + s_lf(s)) ds, 0<r<R

where wy, 1s the solution of the linear homogeneous equation

Lw, = 0 in (0, R)
wy(ro) = w(ro)
wy,(ro) = w'(ro)

and k is the continuous function on [0, 1] given by:

t7In(1/t) ifn="6+ ﬁ +4\E where f = —"2

(10)

(11)

k(t) =

We note that (3) implies that (1, B2 are real, and that k > 0 on (0,1), k(0) = k(1) = 0.

_ _ 2
R s 64 gt uhere fra = —22 £ (22)7 — 20— pro

Proof. We use the variation of parameters formula, noting that two linearly independent

solutions of the homogeneous equation Ly = 0 on (0, 00) are:

_ _ . o 4
yi =57, yo=1In(s)s” 1f”—6+1:+4¢§1



Lemma 11 Let w be a solution of (6) in (0, R) and suppose it satisfies (7). The

w(r) =— /OT k(s/r) (Sg(s, w(s)) + Sflf(s)) ds (12)

Proof. A direct computation gives the following expression for the solution wy, of the homoge-
neous equation (11):

case n = 6 + p%l T4/ w(r) = c1r? + coIn(r)r?
w(ro)rg”(BIn(ro) + 1) — w'(ro)ry " In(ro)
¢y = —Pwlro)ry” 4+ w'(ro)ry "

@]

case n > 6 + ﬁ + 4,/p%1 : wp(r) = carf + ey
(Baw(ro)rg ™ — w'(ro)rg ™ *1) /(B2 — 1)

T =

e = (=Brw(ro)ry™ +w'(ro)rg ™) /(8 — B1)
In both cases we see that under the assumption (7) we have ¢1,c; — 0 as g — 07, and that we
can take the limit as ro — 0% in (10). O

Lemma 12 Let R > 0 and w € L>(0, R) satisfy (12) for 0 < r < R, where f € C([0, R]).
Then w € C*(0,R) and is a solution of (6)-(7). If moreover f € C?([0, R)) then the same is
true for w, and if f'(0) =0 then w'(0) = 0.

Proof. We differentiate under the integral sign and check that the equation (6) is satisfied. Set
w = Wy + we Where

wy(r) = — /OT k(s/r)sg(s,w(s)) ds we(r) = — /OT k(s/r)s ' f(s) ds

It is easy to see that if f is smooth the wy is also smooth and that

so that f/(0) = 0 implies w5(0) = 0. It is also easy to check that if f is only continuous then
2

rwy(r) — 0 as r — 0%. To estimate w; and its derivatives, consider M = ||w||p(0,z) and let
2p

ro > 0 be small enough so that 2M R§™" < A. Then by (8), for 0 < r < ry we have
r ptl
i (r)| < 0M2\/ k(s/r)s5t ds|
0
2p 1 p+1
< CM?rv1 / k(t)tr— dt
0

— 0 asr—0"

In a similar way one proves that w}(r),w{(r) — 0 as r — 0. O
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Proof of Proposition 8. To prove part b) of the proposition we use part a) to obtain the
conclusions on some interval (0, R), R > 0, and then we can quote standard results for ODE’s
(see for example [CL]).

The proof of part a) consists in applying the Banach fixed point theorem to the operator
suggested by (12). Let R > 0 (to be specified later) and let f € C[0, R]. Consider the operator
T :C[0, R] — C0, R] defined by

Tw(r)=— /OT k(s/r) (sg(s,w(s)) + s_lf(s)) ds

Let M > 0 (also to be chosen later) and let X, be the closed ball of C[0, R] centered at 0 of
2p
radius M. Then, for w € X, and if 2M R»—2 < A, using (8) we have

Tu)] < [ ksl (CsFTlw(s) P+ s717(5)]) ds
< CM2/0 \k:(s/r)|sz%1 dS“‘HfHC[O,R]/O |k(s/r)|s™! ds

But i .
/ Ik(s/r)|s? ds = rq“/ (1) ]9 dt
0 0

and using the expression for k£ one can check that the integrals in the right hand side are finite

for ¢ = Z%} and ¢ = —1. We obtain thus

ITwlcro.m < € (M2 R L K)
if ||f||C[0,R] <K. AlSO, for wi, Wy € XM, by (9) we have

[Tur(r) = Tun(r)| < [ k(s/r)lslg(s. wi(s)) — gls. wa(s))] ds

cM /0 (s /r)| 555 [wn (s) — wa(s)| ds

IN

2p
< CMR» |lwy — wsal|cpon

So, given K > 0 we choose M so that 2C'K < M and then we take R small enough so that
MR < min{)\/2,1/2C}

With these choices T' is a contraction (with Lipschitz constant 1/2) that maps X, into Xj;.
Therefore it has a fixed point (unique in X,;), which is a solution of (6)-(7) by Lemma 12.
To prove uniqueness, suppose that wy, wsy are two solutions of (6)-(7) on (0, R). Then choose
M’ so that
M' > max{2CK, [[wi|cpo,r), [[wallopo.n }

and R’ so that .
M'R'%7 <min{)\/2,1/2C} and R <R
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Then wy,w; are in {w € C[0, R'] / ||w|lco.r7 < M'} and are fixed points of T'. Hence w; = wy

on (0, R'). The equality on (0, R) is obtained by a standard uniqueness result for ODE’s.
Regarding continuous dependence, let fi, fo € C[0, R] be such that ||fillcp.r) < K,i = 1,2,

and let wy, wy be the corresponding solutions to (6)-(7), i.e., the fixed points of T; in X, where

Tw(r) = — /Or k(s/r) (3g(s,w(s)) + s_lfi(s)) ds

Recall that T; maps X, into X, and that it has a Lipschitz constant of 1/2. Then,

w1 —wallep,r < 171 (wr) — Ti(wa) || + [ T1 (wa) — To(ws)||
1 r
< Slev—wsl+ swp [ lk(s/r)ls T a(s) = fals)] ds
0<r<R YO0
1
< §||w1 —wal| + C[f1 — f2

0
Remark that by part a) of Proposition 8, given a continuous function f on [0, c0) there exists

R > 0 such that the sequence

Wy = 0
Wiy = T(wy)
converges in C[0, R] to the solution of (6)-(7).

Lemma 13 Assume now that f > 0 is a continuous function on [0,00) and let w be the corre-
sponding solution of (6)-(7) with mazimal domain (0, R). Then

we \yw  on (0,R)

Proof. Indeed, first note that wy < 0 for all k&, because g(r,w) > 0 and f > 0. In particular
w; < wy = 0. Then observe that for fixed r, g(r,w) is non increasing in w for w < 0. This
implies that T'(w;) < T'(wp), i.e. we < wi, and by induction w41 < wy for all k. Note also
that since w is a fixed point of T', from w < wy = 0 follows that w < T'(wy) = wy, and again an
induction argument shows that w < wjy for all k. It follows that w; \, w pointwise, and taking
the limit in the recurrence relation

wen(r) = = [ k(s/r) (sgls, we(s) + 57 (s) ds
we obtain that @ is a fixed point of 7', and hence a solution of (6)-(7). By uniqueness w = w.
Lemma 14 Let fi, fo be continuous functions on [0, R|] and suppose that the corresponding

solutions w, w® to (6)-(7) are defined on (0, R). Assume that fi > fo > 0. Then w®) <
w® <0 on (0,R).
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Proof. For ¢ = 1,2 define the operators T; corresponding to f; as before, and consider the

sequences A
{ w(()z) =0
with = Ti(w”)
Then w,(:) N\ w®, i =1,2. But since f; > f» > 0 we have (inductively)

1
w,(gll =

IN A

Therefore w® < w®, 0

Proposition 15 Let f be a continuous function on [0,00), f > 0, f£0 on [0,1]. For each
t >0 let wy be the solution of

{ Lw; = —g(r,w;) —r72tf

we(r), rwi(r) are bounded near 0

which is defined on a maximal interval (0, R;). Then the set
{w(1) / t >0 and wy(1) is defined}

is the whole interval (—oo,0]. In particular there exists t > 0 such that wg(1) is defined and is
equal to —v(1).

Proof. Define
A={w(1l) / t >0 and w(1) is defined}

and note that 0 € A. Next we show that A is connected. Consider p(t) = w(1) with domain
dom(p) = {t > 0 / w(1) is defined}. Then ¢ is continuous, and to conclude that A is connected
we only need to check that dom(y) is connected. Solet 0 < ¢ < ¢; and suppose that R;, > 1 (i.e.
t1 € dom(p)). By monotonicity with respect to ¢ we have 0 > wy, > wy, on (0, Ry,) N (0, Ry,).
If Ry, < Ry, then we have an apriori bound for wy, on (0, Ry,), so that w;, can be continued
beyond Ry,. This contradiction shows that R;, > R;, > 1 and therefore t5 € dom(yp).

Now we prove that A is open in (—o0,0]. Let a € A and ¢ > 0 be such that w;(1) = a. By
the continuous dependence of w; in ¢, we have that wy (1) is defined for ¢’ close to t. Take t' >t
but close enough. Then

we(l) = — /Olk:(s)(sg(s,wt/(s))+s_1t'h(s)) ds
< wy(1)

13



because f#£0 on [0,1]. Hence A contains an interval of the form (a — €, a] for some £ > 0.

Suppose now that A is bounded and let @ = inf A ¢ A. Then there exists a sequence a,, \, «,
a, € A. Let t, > 0 be such that wy, (1) = a,. Then, if ¢, < t,, we must have a,, < a,, and we
conclude that (¢,) is increasing. If ¢, /' oo, then

a, = - /01 k(s)(sg(s,wy, (s)) + s 't f(s)) ds

—0o0  asn — &0

which contradicts the assumption that A is bounded. Hence we may assume that ¢, "t < cc.
Note that wy, (r) is decreasing, so that w(r) = lim,, wy, (1) exists for 0 < r < 1. Taking the limit
as n — oo in

wy, (1) = — /Or k(s/r) (sg(s,wtn(s)) + sfltnf(s)) ds

we obtain by monotone convergence

w(r) = — /0 "k(s/r) (sg(s,w(s)) +s7'tf(s)) ds (13)
Claim: w is the solution of

{ Lwy = —g(r,w;) —r72tf

wy(r), rw;(r) are bounded near 0

and w(l) = a. Thus a € A and from this contradiction we conclude that A = (—o0, 0].
Proof of the claim. We need to prove that w € L*(0,1) so that we can apply Lemma 12,
and then show that lim, ;- w(r) = a.

Note that by Proposition 8 there exists M > 0 and 0 < R < 1 such that |wy, (r)] < M for
0 < r < R, and therefore |w(r)] < M for 0 < r < R. Let’s estimate w(r) for r € [R,1]. Let
m(s) = sg(s,w(s)) + s ' f(s) and let’s use the convention that k(t) = 0 for ¢ > 1. So

w(r) =— /OR k(s/r)sg(s,w(s)) ds — /OR k(s/r)s " f(s) ds — /1 k(s/r)ym(s) ds (14)

R

We may take R smaller if necessary so that 2M R < X and therefore by (8) we find as in the
proof of Lemma 12 that the first 2 terms are bounded independently of r € [R, 1]. To estimate

/Rl k(s/r)m(s) ds

note that by taking r = 1 in (13) we get km € L'(0,1). But there exists C' > 0 such that for
R <s,r <1, k(s/r) < Ck(s), which shows that w is bounded in (0, 1).

Finally, because of the same estimates as before we can use dominated convergence in (14) to
find that w(r) — aasr — 1. 0O
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Appendix

Here we give a proof of Theorem 2. Let f > 0 be smooth, and let u denote here the minimal
solution of (F;), which we know is smooth for 0 < ¢ < t*. We omit from the notation the explicit
dependence of u in t.

We know that the first eigenvalue of —A — puP™! is non-negative, so for all p € C3(Q) we
have

/ V|? dz > p/ uP~1p? da
Q 0

Let 5 > 1 and take ¢ = u?. We then get

jQ/ w2 Vul* do Zp/ uP Tt dy,
Q Q0
Now multiply (P;) by Qj—ilu%_l and integrate by parts to obtain

)
jQ/Qu23—2|Vu|2 dr = 2]_*7_1/Qup+2j—1_|_tfu2]_1 du
Combining these two we obtain

<2
I / WP P > p / QuPH1
27 —1Ja -

If 2]’—: < p we see that there is a constant C' independent of ¢ such that
[——ve

(recall that ¢t < t*). From now on we denote by C' different numbers independent of ¢. The
restriction on j can be rewritten as 1 < j < p 4+ v/p?> —p. Hence for ¢ = p+ 25 — 1 we find a
bound for ||ul|z« independent of ¢, for ¢ < 3p + 24/p?> — p — 1, and hence

|u? +tfl|r <C

for r < 34 2y/1—1/p —1/p. Now we use the equation and the L? theory to improve this
estimate. Let 1 <7y <3+2,/1—1/p—1/p. By L” estimates

[ullwzn <C
and if 1/rg — 2/n > 0, by Sobolev embedding we get
[ +tfl[n < C
with 1/r; = p(1/ro —2/n). If on the other hand 1/ry —2/n < 0 we conclude that

ullc@ < C
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(If 1/rg — 2/n < 0, we use Sobolev embedding, and if 1/rqg — 2/n = 0 we apply once more the
LP estimates and the Sobolev embedding). Continuing in this way we define a sequence r by
1/re41 = p(1/rx — 2/n), and we would like to find some k for which r; < 0, so that as before

we obtain a bound for u in C(2). To compute 7, we introduce ay = 1/, — 2/n which satisfies
then apy 1 = pax — 2/n. Therefore

= < ) n<p2— 1>> i n(pz— 1)

We want to find some k for which a; < 0 and this occurs for some k iff
2
ag — m <0
Going back to 7o this requires ro > %(1 — 1/p). But we had already the restriction 7y <
3+424/1—1/p—1/p, so that the argument works if

ga—1ﬁﬁ<3+2wy—yp—1m

4
n<6+-—+4 /L
p—1 p—1
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