Some extremal singular solutions of a nonlinear elliptic equation

JUAN DÁVILA

1 Introduction

Let Ω ⊂ IR^n be a smooth, bounded domain, and let f be a smooth function on Ω, f ≥ 0, f ≠ 0. Let p > 1 and consider the semi-linear elliptic equation

\[\begin{aligned}
(P_t) \quad & \left\{ \begin{array}{ll}
-\Delta u = u^p + tf & \text{in } \Omega \\
u > 0 & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega
\end{array} \right.
\end{aligned} \]

where t ≥ 0 is a parameter.

We are concerned with weak solutions of \((P_t)\), and we use the definition introduced in [BCMR]: a weak solution of \((P_t)\) is a function \(u \in L^1(\Omega), u \geq 0\), such that \(u^p \delta \in L^1(\Omega)\), where \(\delta(x) = \text{dist}(x, \partial \Omega)\), and such that

\[-\int_{\Omega} u \Delta \zeta \, dx = \int_{\Omega} (u^p + tf) \zeta \, dx\]

for all \(\zeta \in C^2(\overline{\Omega})\) with \(\zeta = 0\) on \(\partial \Omega\).

We start by mentioning some well known facts (see for example [BCMR], [BC], [Ma]).

Theorem 1 There exists \(0 < t^* < \infty\) such that for \(0 < t < t^*\) \((P_t)\) has a unique minimal solution \(u(\cdot, t)\) (which is smooth), for \(t = t^*\) \((P_{t^*})\) has a unique solution \(u^*\) (possibly unbounded), and for \(t > t^*\) there is no solution of \((P_t)\) (even in the weak sense). Moreover \(u(\cdot, t)\) depends smoothly on \(t \in (0, t^*)\), increases as \(t\) increases, and

\(u(\cdot, t) \nearrow u^* \quad \text{a.e. in } \Omega, \text{ as } t \nearrow t^*\).

We call \(u^*\) the extremal solution.

An important feature of the minimal solution \(u\) is that the linearized operator at \(u\)

\[-\Delta - pu^{p-1}\]

has a positive first eigenvalue for all \(0 < t < t^*\). This property can be used as in [CR] or [MP], to prove the following

1Dept. of Mathematics, Rutgers University, New Brunswick, NJ 08903, U. S. A., davila@math.rutgers.edu
Theorem 2 If

\[n < 6 + \frac{4}{p-1} + 4\sqrt{\frac{p}{p-1}} \]

then there exists a constant C independent of t such that

\[\|u(\cdot, t)\|_{L^\infty(\Omega)} \leq C \quad \text{for any } 0 < t < t^*. \]

This is equivalent to the statement that the extremal solution \(u^* \) is bounded.

We note that if the extremal solution \(u^* \) is bounded, then by elliptic regularity it is also smooth, and in this case the first eigenvalue of \(-\Delta - p(u^*)^{p-1}\) is zero.

In the present work we are interested in the case \(n \geq 6 + \frac{4}{p-1} + 4\sqrt{\frac{p}{p-1}} \). First in Section 2 we show that Theorem 2 is sharp, i.e. assuming \(n \geq 6 + \frac{4}{p-1} + 4\sqrt{\frac{p}{p-1}} \), for any domain \(\Omega \) there exists a smooth function \(f \geq 0, f \not\equiv 0 \) for which the extremal solution \(u^* \) is unbounded (or singular). Then in Section 3 we study the radially symmetric case with \(\Omega \) the open unit ball in \(IR^n \), and we show that assuming \(n \geq 6 + \frac{4}{p-1} + 4\sqrt{\frac{p}{p-1}} \) the extremal solution is singular for any smooth radially symmetric function \(f, f \geq 0, f \not\equiv 0 \). We also give a precise description of the singularity of \(u^* \) in this case.

A problem related to \((P_t)\) that has received much attention in the literature is the following:

\[\begin{cases} -\Delta u = \lambda g(u) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases} \]

where \(\lambda \geq 0 \) is a parameter and \(g : [0, \infty) \to (0, \infty) \) is a \(C^1 \) convex, positive, nondecreasing function with \(g(0) > 0 \) and \(g(u)/u \to \infty \) as \(u \to \infty \). Typical examples are \(g(u) = e^u \) and \(g(u) = (1 + u)^p, p > 1 \). For this equation there is again an extremal parameter \(\lambda^* < \infty \), such that for \(0 < \lambda < \lambda^* \) there is a minimal solution, for \(\lambda = \lambda^* \) there is a unique weak solution (called the extremal solution), and for \(\lambda > \lambda^* \) there is no solution (see for example [BCMR],[BV],[MP] and their references for results on this problem).

Several very interesting open problems for \((2)\) were proposed in [BV], and we mention some of them in the context of problem \((P_t)\).

1) Assume \(n \geq 6 + \frac{4}{p-1} + 4\sqrt{\frac{p}{p-1}} \). If \(\Omega \) is convex, is it true that for any smooth \(f \geq 0, f \not\equiv 0 \) the extremal solution is singular? Is it true for \(f \equiv 1 \)? We note that some restriction on \(\Omega \) has to be imposed, as shown by the example \(\Omega = B_2 \setminus B_1 \) and \(f \equiv 1 \) (or any radially symmetric positive smooth \(f \)). In this case it can be easily shown that the extremal solution is always smooth, without any restriction on \(n \) and \(p \). (See Problem 3 in [BV]).

2) Concerning problem \((2)\) in some cases the extremal solution is bounded and in others it is singular (see [BV]). In a recent work, G. Nedev [Ne] has shown that in dimension 2, for any nonlinearity \(g \) satisfying the hypothesis above the extremal solution of \((2)\) is bounded. His argument can be adapted to show that the same is true for a more general version of \((P_t)\), where
the nonlinearity \(u^p \) is replaced by \(g(u) \), and \(g \) is a \(C^1 \) positive, convex, increasing function with \(g(0) = 0 \), and \(g(u)/u \to \infty \) as \(u \to \infty \) (we note that Theorem 1 is still true for this more general problem). In dimension 3, it is not known whether or not there exist nonlinearities \(g \) for which the extremal solution is singular.

2 Is condition (1) sharp?

Theorem 3 Let \(\Omega \subset \mathbb{R}^n \) be any bounded, smooth domain. If

\[
 n \geq 6 + \frac{4}{p-1} + 4\sqrt{\frac{p}{p-1}} \quad (3)
\]

then there exists a smooth function \(f \geq 0, f \neq 0 \) so that the extremal solution \(u^* \) is singular.

The idea of the construction is the same as in [BV], that is, to find a smooth function \(f \geq 0, f \neq 0 \), a number \(0 < t < \infty \) and an unbounded function \(u \in H^1_0(\Omega) \) which is a weak solution of (P), and such that the operator

\[
 -\Delta - pu^{p-1}
\]

has a nonnegative first eigenvalue, in the sense that

\[
 \int_{\Omega} |\nabla \varphi|^2 \, dx \geq p \int_{\Omega} u^{p-1}\varphi^2 \, dx \quad \forall \varphi \in C^1_0(\Omega).
\]

(4)

Then we can conclude using the following lemma (similar to Theorem 3 in [BV]).

Lemma 4 Suppose that \(u \in H^1_0(\Omega) \) is an unbounded weak solution of (P) such that the operator

\[
 -\Delta - pu^{p-1}
\]

has a nonnegative first eigenvalue (in the sense of (4)). Then \(t = t^* \) and \(u = u^* \).

Proof. Since there is no solution for \(t > t^* \) we must have \(t \leq t^* \). Let \(\underline{u} = u(\cdot, t) \) denote the minimal solution of (P), and let \(g(u) = u^p \). The inequality

\[
 \int_{\Omega} |\nabla \varphi|^2 \, dx \geq \int_{\Omega} g'(u)\varphi^2 \, dx
\]

holds by assumption for all \(\varphi \in C^1_0(\Omega) \) and by approximation also for \(\varphi \in H^1_0(\Omega) \). We take \(\varphi = u - \underline{u} \in H^1_0(\Omega) \) (note that by assumption \(u \in H^1_0(\Omega) \) and by the estimates in the appendix, \(\underline{u} \in H^1_0(\Omega) \) even for \(t = t^* \), i.e. \(\underline{u} = u^* \)). We have

\[
 \int_{\Omega} g'(u)(u - \underline{u})^2 \, dx \leq \int_{\Omega} |\nabla(u - \underline{u})|^2 \, dx \\
 = \int_{\Omega} -\Delta(u - \underline{u})(u - \underline{u}) \, dx \\
 = \int_{\Omega} (g(u) + tf - g(\underline{u}) - f)(u - \underline{u}) \, dx
\]
so that
\[\int_\Omega (u - u)(g(u) + g'(u)(u - u) - g(u)) \, dx \geq 0. \]
Because of the convexity of \(g \) and since \(u \geq u \), the integrand is non-positive and we conclude that
\[g(u) = g(u) + g'(u)(u - u). \]
Since \(g(u) = u^p \) is strictly convex we conclude that \(u = u \). But \(u \) is unbounded and this forces \(t = t^* \).

Consider the function
\[v(x) = v(|x|) = \lambda |x|^\alpha \quad (5) \]
where
\[\lambda = \lambda_{n,p} = \left(\frac{2}{p-1} \left(n - \frac{2p}{p-1} \right) \right)^{\frac{1}{p-1}} \]
and
\[\alpha = \alpha_p = -\frac{2}{p - 1}. \]
Then \(v \in H^1(\Omega) \) for \(n > 2 + 4/(p - 1) \), and
\[-\Delta v = v^p \text{ in } \mathbb{R}^n. \]
From now on we assume that \(0 \in \Omega \), and we will construct \(u \) with a singularity at the origin so that it satisfies the requirements in Lemma 4. We look for a function \(u \) of the form \(u = v - \psi \).

Lemma 5 There exists a smooth function \(\psi \) defined on \(\bar{\Omega} \) with the properties:

1. \(\psi \geq 0 \) and is smooth in \(\bar{\Omega} \),
2. \(\Delta \psi \geq 0 \) in \(\Omega \),
3. \(\psi \equiv 0 \) in a neighborhood of \(0 \), and
4. \(\psi = v \) on \(\partial \Omega \).

Proof of Theorem 3. Let \(u = v - \psi \). Then
\[
-\Delta u = -\Delta v + \Delta \psi \\
= v^p + \Delta \psi \\
\geq 0
\]
and \(u = 0 \) on \(\partial \Omega \), so \(u \geq 0 \). Taking
\[
f = \Delta \psi + v^p - u^p
\]
we then have

$$-\Delta u = u^p + f.$$

Note that \(f \geq 0 \) and is smooth, because \(u \leq v \) and \(u \equiv v \) in a neighborhood of 0. The only condition that still needs to be checked to apply Lemma 4 is the non-negativity of the first eigenvalue of the operator \(-\Delta - pu^{p-1} \). Here enters into play condition (3). Recall the Hardy inequality (see [BV] for example):

$$\frac{(n-2)^2}{4} \int_\Omega \frac{1}{|x|^2} \varphi^2 \, dx \leq \int_\Omega |\nabla \varphi|^2 \, dx$$

for any \(\varphi \in C^1_0(\Omega) \), when \(n \geq 3 \). Note that \(u \leq v \) so that for any \(\varphi \in C^1_0(\Omega) \)

$$\int_\Omega pu^{p-1} \varphi^2 \, dx \leq \int_\Omega pv^{p-1} \varphi^2 \, dx = \frac{2p}{p-1} \left(n - \frac{2p}{p-1}\right) \int_\Omega \frac{1}{|x|^2} \varphi^2 \, dx \leq \frac{(n-2)^2}{4} \int_\Omega \frac{1}{|x|^2} \varphi^2 \, dx \leq \int_\Omega |\nabla \varphi|^2 \, dx$$

where the third inequality is a consequence of (3).

\[\square \]

Proof of Lemma 5. Let \(r = \text{dist}(0, \partial \Omega)/2 \), and let \(\psi_1 \) be the solution of the following problem

\[
\begin{cases}
\Delta \psi_1 = 0 & \text{in } \Omega \setminus \overline{B}_r \\
\psi_1 = v & \text{on } \partial \Omega \\
\psi_1 = 0 & \text{on } \partial B_r
\end{cases}
\]

Then \(\psi_1 \) is smooth and positive in \(\Omega \setminus \overline{B}_r \) and by the Hopf boundary lemma \(\frac{\partial \psi_1}{\partial \nu} > 0 \) on \(\partial B_r \), where \(\nu \) is the normal vector, pointing away from the origin. Let \(\psi_1 \) be extended by 0 in \(B_r \). Then \(\Delta \psi_1 \geq 0 \) in \(D(\Omega)' \).

Now we regularize \(\psi_1 \) by convolution to get a smooth function \(\psi \):

$$\psi = \psi_1 * \rho_\varepsilon$$

where \(\rho_\varepsilon \) is a standard mollifier \((\rho_\varepsilon(x) = \varepsilon^{-n} \rho(x/\varepsilon), \rho \in C_0^\infty(\mathbb{R}^n), \rho \geq 0, \text{supp}(\rho) \subset B_1, \int \rho \, dx = 1) \). \(\psi(x) \) is well defined and subharmonic on the set

$$\{ x \in \Omega \mid \text{dist}(x, \partial \Omega) > \varepsilon \}.$$

If \(\rho_\varepsilon \) is radially symmetric, then \(\psi_1 = \psi_1 * \rho_\varepsilon = \psi \) on

$$\{ x \in \Omega \mid \text{dist}(x, \partial \Omega) > \varepsilon, \text{dist}(x, B_r) > \varepsilon \}.$$

By fixing \(\varepsilon > 0 \) but small enough we can consider \(\psi \) to be defined and smooth up to \(\partial \Omega \). \[\square \]
3 The radially symmetric case

Theorem 6 Assume now that Ω is the open unit ball $B_1(0)$ in \mathbb{R}^n, and that $f \geq 0$, $f \not\equiv 0$ is any smooth, radially symmetric function. If $n \geq 6 + \frac{4}{p-1} + 4\sqrt{\frac{p}{p-1}}$ then the extremal solution u^* is singular.

First we give a short proof of this theorem, but actually more can be said about the extremal solution u^* than merely $u^* \notin L^\infty(\Omega)$.

Theorem 7 Assume Ω is the open unit ball $B_1(0)$ in \mathbb{R}^n, and $f \geq 0$, $f \not\equiv 0$ is a radially symmetric function $f(x) = f(|x|)$ with $f \in C^2([0,1])$. Suppose $n \geq 6 + \frac{4}{p-1} + 4\sqrt{\frac{p}{p-1}}$. Let v be the function defined by (5) and set $w = r^{-2}(u - v)$, $r = |x|$. Then w is $C^2([0,1])$, and if moreover $f'(0) = 0$ (i.e. $f \in C^2(\bar{\Omega})$), then the same is true for w.

Before giving the proofs we note that if Ω and f are radially symmetric, then the minimal solution u of (P_t) is also radially symmetric.

Proof of Theorem 6. Let v denote the function defined by (5). We use the improved Hardy inequality, proved in [BV]: for all $\varphi \in C^1_0(\Omega)$ we have

$$\int_\Omega |\nabla \varphi|^2 \, dx \geq \frac{(n-2)^2}{4} \int_\Omega \frac{\varphi^2}{|x|^2} \, dx + c \int_\Omega \varphi^2 \, dx$$

where $c = H_2(w_n/|\Omega|)^{2/n} > 0$, H_2 is the first eigenvalue of the Laplacian with Dirichlet boundary condition in the unit ball in dimension 2, and w_n is the measure of the unit ball in \mathbb{R}^n. This inequality implies that if (3) holds, then the operator $-\Delta - pv^{p-1}$ has a positive first eigenvalue, and although $pv^{p-1} = C/|x|^2$ is not in $L^{n/2}(\Omega)$, the maximum principle can be applied to it.

Claim: for all $0 < t \leq t^*$ we have $u(\cdot,t) \leq v$, and the inequality is strict for $0 < t < t^*$.

Indeed let $0 < t < t^*$ and suppose that there exists some $0 < r < 1$ such that $u(r,t) \geq v(r)$. Then

$$u - v \geq 0 \quad \text{on } \partial B_r$$

and by the convexity of $u \to u^p$ we have

$$-\Delta(u - v) = u^p - v^p + tf \geq pv^{p-1}(u - v) + tf$$

so that

$$-\Delta(u - v) - pv^{p-1}(u - v) \geq 0.$$

By the maximum principle we conclude that $u \geq v$ on B_r, which is impossible, because u is bounded for $0 < t < t^*$. The conclusion for $t = t^*$ is obtained by taking the limit as $t \to t^*$.

6
Since $u^* \leq v$ we conclude that the first eigenvalue for the operator $-\Delta - pu^{p-1}$ is
\[
\inf_{\|\varphi\|_{L^2}} \int_{\Omega} |\nabla \varphi|^2 - pu^{p-1} \varphi^2 \, dx \geq \inf_{\|\varphi\|_{L^2}} \int_{\Omega} |\nabla \varphi|^2 - pv^{p-1} \varphi^2 \, dx > 0.
\]
This shows that u^* cannot be bounded.

Proof of Theorem 7. This proof involves again the same idea as in [BV], using Lemma 4. We set
\[u = v + r^2 w \]
Then a calculation shows that the equation $-\Delta u = u^p + f$ is equivalent to
\[-(r^2 w'' + (n + 3)rw' + 2nw) = |v + r^2 w|^p - v^p + f, \quad 0 < r < 1 \]
It is convenient to rewrite this equation as
\[w'' + \frac{n + 3}{r} w' + \frac{2n + pv^{p-1}r^2}{r^2} w = -\frac{1}{r^2} \left(|v + r^2 w|^p - v^p - pv^{p-1}r^2 w \right) - r^{-2} f \]
or
\[Lw = -g(r, w) - r^{-2} f \tag{6} \]
where
\[Lw = w'' + \frac{n + 3}{r} w' + \frac{2n + pv^{p-1}r^2}{r^2} w \]
and
\[g(r, w) = \frac{1}{r^2} \left(|v + r^2 w|^p - v^p - pv^{p-1}r^2 w \right) \]
Note that $pv^{p-1}r^2 = p\lambda^{p-1}$ is a constant, and that $g(r, w) \geq 0$ by convexity.

The aim is the to find a solution w of (6), that behaves nicely near 0 and such that $w(1) = -v(1)$. It turns out that a nice behavior of w near 0 can be imposed for example by the requirement that
\[w(r), rw'(r) \text{ are bounded near 0} \tag{7} \]
We show in Proposition 8 that if f is a continuous function on $[0, \infty)$ then (6) together with (7) has a unique solution w, which is defined on an open maximal interval. We also prove that $w \leq 0$ if $f \geq 0$. Then, in Proposition 15, we show that if we replace f by tf in (6), where $t \geq 0$, $f \geq 0$, $f \not\equiv 0$ in $[0, 1]$, then there exists t such that the solution w to (6)-(7) is defined on $[0, 1]$ and $w(1) = -v(1)$. We also show in Lemma 12 that if f is smooth enough, then w has the regularity stated in Theorem 7.

Accepting these results for a moment, we see that
\[u = v + r^2 w \]
satisfies the requirements in Lemma 4, the non negativity of the first eigenvalue of the operator $-\Delta - pu^{p-1}$ following again from $u \leq v$, the Hardy inequality and condition (3).

From now on until the end of this section we assume that condition (3) holds.
Proposition 8

a) Let $K > 0$. Then there exists $R > 0$ such that for any continuous function f on $[0, R]$ with $\|f\|_{C[0,R]} \leq K$, (6)-(7) has a unique solution on $(0, R)$. Moreover, the solution depends continuously on f. More precisely, there exists a constant $C > 0$, such that for any continuous functions f_1, f_2 on $[0, R]$, $\|f_i\|_{C[0,R]} \leq K$, $i = 1, 2$, if w_1, w_2 are the corresponding solutions of (6)-(7), then
\[\|w_1 - w_2\|_{C[0,R]} \leq C\|f_1 - f_2\|_{C[0,R]} \]

b) If f is a continuous function on $[0, \infty)$, the (6)-(7) has a unique solution w defined on an open maximal interval. The solution depends continuously on f.

We need some preparatory lemmas.

Lemma 9 There exists $C > 0$ depending only on n, p such that if
\[M > 0, \ R > 0 \text{ and } 2MR^{2p} \leq \lambda \]
then
\[|g(r, w)| \leq Cr^{2p-1}|w|^2 \] (8)
for any $|w| \leq M$ and $0 < r < R$ and
\[|g(r, w_1) - g(r, w_2)| \leq CMr^{2p-1}|w_1 - w_2| \] (9)
for any $|w_1|, |w_2| \leq M$ and $0 < r < R$.

Proof. Let $a(x) = x^p$, which is a convex functions (recall that $p > 1$). Let $|w| \leq M$ and $0 < r < R$. Then, using $2MR^{2p} \leq \lambda$, we obtain $|r^2w| \leq \frac{1}{2}\lambda r^{-2p+1}$. With $v = v(r) = \lambda r^{-2p+1}$, we have $\frac{1}{2}v \leq v + r^2w \leq \frac{3}{2}v$. Notice that
\[
g(r, w) = \frac{1}{r^2} \left(a(v + r^2w) - a(v) - a'(v)r^2w \right) = \frac{1}{2} a''(\xi)r^2w^2 \]
where ξ is in the interval with endpoints v and $v + r^2w$. Using that a'' is monotone, we thus have
\[
|g(r, w)| \leq \frac{1}{2} p(p - 1)r^2|w|^2 \max\{(1/2)^{p-2}, (3/2)^{p-2}\} v^{p-2} \\
\leq C(p)r^2|w|^2\lambda^{p-2}r^{-2p+1}(p-2) \\
\leq C(n, p)r^{2p-1}|w|^2
\]
We now prove estimate (9):

\[|g(r, w_1) - g(r, w_2)| = \frac{1}{r^2} \left| (v + r^2 w_1)^p - (v + r^2 w_2)^p - p v^{p-1} r^2 (w_1 - w_2) \right| \]

\[= \frac{1}{r^2} \left| \int_0^1 \frac{d}{dt} (v + r^2 (tw_1 + (1 - t)w_2))^p - p v^{p-1} r^2 (w_1 - w_2) \, dt \right| \]

\[\leq p \int_0^1 \left| (v + r^2 (tw_1 + (1 - t)w_2))^{p-1} - v^{p-1} \right| |w_1 - w_2| \, dt \]

But

\[\left| (v + r^2 (tw_1 + (1 - t)w_2))^{p-1} - v^{p-1} \right| = (p - 1) |\xi|^{p-2} r^2 |tw_1 + (1 - t)w_2| \]

where \(\xi \) is in the interval with endpoints \(v \) and \(v + r^2 (tw_1 + (1 - t)w_2) \). Therefore

\[\left| (v + r^2 (tw_1 + (1 - t)w_2))^{p-1} - v^{p-1} \right| \leq (p - 1) \max \{(1/2)^{p-2}, (3/2)^{p-2}\} v^{p-2} r^2 M \]

\[\leq C(n, p) r^{\frac{2}{p-1}} M \]

\[\square \]

Lemma 10 Let \(w \) be a solution of (6) in \((0, R)\) (i.e. \(w \in C^2(0, R) \) and satisfies the equation) and let \(0 < r_0 < R \). Then

\[w(r) = w_h(r) - \int_{r_0}^r k(s/r) \left(s g(s, w(s)) + s^{-1} f(s) \right) ds, \quad 0 < r < R \quad (10) \]

where \(w_h \) is the solution of the linear homogeneous equation

\[\left\{ \begin{array}{l}
Lw_h = 0 \quad \text{in } (0, R) \\
w_h(r_0) = w(r_0) \\
w_h'(r_0) = w'(r_0)
\end{array} \right. \quad (11) \]

and \(k \) is the continuous function on \([0, 1]\) given by:

\[k(t) = \begin{cases}
 t^{-\beta} \ln(1/t) & \text{if } n = 6 + \frac{4}{p-1} + 4 \sqrt{\frac{p}{p-1}} \quad \text{where } \beta = -\frac{n+2}{2} \\
 t^{-\beta_1 - t^{-\beta_2}} & \text{if } n > 6 + \frac{4}{p-1} + 4 \sqrt{\frac{p}{p-1}} \quad \text{where } \beta_{1,2} = -\frac{n+2}{2} \pm \sqrt{\left(\frac{n+2}{2}\right)^2 - 2n - p\lambda^{p-1}}
\end{cases} \]

We note that (3) implies that \(\beta_1, \beta_2 \) are real, and that \(k > 0 \) on \((0, 1)\), \(k(0) = k(1) = 0 \).

Proof. We use the variation of parameters formula, noting that two linearly independent solutions of the homogeneous equation \(Ly = 0 \) on \((0, \infty)\) are:

\[y_1 = s^\beta, \quad y_2 = \ln(s)^s s^\beta \quad \text{if } n = 6 + \frac{4}{p-1} + 4 \sqrt{\frac{p}{p-1}} \]

\[y_1 = s^{\beta_1}, \quad y_2 = s^{\beta_2} \quad \text{if } n > 6 + \frac{4}{p-1} + 4 \sqrt{\frac{p}{p-1}} \]
Lemma 11 Let w be a solution of (6) in $(0, R)$ and suppose it satisfies (7). The

$$w(r) = -\int_0^r k(s/r) \left(sg(s, w(s)) + s^{-1} f(s) \right) \, ds$$ \hspace{1cm} (12)

Proof. A direct computation gives the following expression for the solution w_h of the homogeneous equation (11):

\[
\begin{align*}
\text{case } n &= 6 + \frac{4}{p-1} + 4\sqrt{\frac{p}{p-1}}: & w_h(r) &= c_1 r^\beta + c_2 \ln(r) r^\beta \\
& & c_1 &= w(r_0) r_0^{-\beta} (\beta \ln(r_0) + 1) - w'(r_0) r_0^{-\beta+1} \ln(r_0) \\
& & c_2 &= -\beta w(r_0) r_0^{-\beta} + w'(r_0) r_0^{-\beta+1} \\
\text{case } n &> 6 + \frac{4}{p-1} + 4\sqrt{\frac{p}{p-1}}: & w_h(r) &= c_1 r_0^{-\beta_1} + c_2 \beta_2 \\
& & c_1 &= (\beta_2 w(r_0) r_0^{-\beta_1} - w'(r_0) r_0^{-\beta_2+1})/(\beta_2 - \beta_1) \\
& & c_2 &= -\beta_1 w(r_0) r_0^{-\beta_1} + w'(r_0) r_0^{-\beta_2+1})/(\beta_2 - \beta_1)
\end{align*}
\]

In both cases we see that under the assumption (7) we have $c_1, c_2 \to 0$ as $r_0 \to 0^+$, and that we can take the limit as $r_0 \to 0^+$ in (10).

Lemma 12 Let $R > 0$ and $w \in L^\infty(0, R)$ satisfy (12) for $0 < r < R$, where $f \in C([0, R])$. Then $w \in C^2(0, R)$ and is a solution of (6)-(7). If moreover $f \in C^2([0, R])$ then the same is true for w, and if $f''(0) = 0$ then $w'(0) = 0$.

Proof. We differentiate under the integral sign and check that the equation (6) is satisfied. Set $w = w_1 + w_2$ where

$$w_1(r) = -\int_0^r k(s/r) s g(s, w(s)) \, ds \quad w_2(r) = -\int_0^r k(s/r) s^{-1} f(s) \, ds$$

It is easy to see that if f is smooth the w_2 is also smooth and that

$$w_2'(0) = -f'(0) \int_0^1 k(t) \, dt$$

so that $f'(0) = 0$ implies $w_2'(0) = 0$. It is also easy to check that if f is only continuous then $rw_2'(r) \to 0$ as $r \to 0^+$. To estimate w_1 and its derivatives, consider $M = \|w\|_{L^\infty(0, R)}$ and let $r_0 > 0$ be small enough so that $2MR_0^{\frac{2p}{p-1}} \leq \lambda$. Then by (8), for $0 < r < r_0$ we have

$$|w_1(r)| \leq CM^2 \int_0^r k(s/r) s^{\frac{p+1}{p-1}} \, ds \leq CM^2 r_0^{\frac{2p}{p-1}} \int_0^1 k(t) t^{\frac{p+1}{p-1}} \, dt \quad \to 0 \quad \text{as } r \to 0^+$$

In a similar way one proves that $w_1'(r), w_1''(r) \to 0$ as $r \to 0^+$.
Proof of Proposition 8. To prove part b) of the proposition we use part a) to obtain the conclusions on some interval \((0, R), R > 0\), and then we can quote standard results for ODE’s (see for example [CL]).

The proof of part a) consists in applying the Banach fixed point theorem to the operator suggested by (12). Let \(R > 0\) (to be specified later) and let \(f \in C[0, R]\). Consider the operator \(T : C[0, R] \to C[0, R]\) defined by

\[Tw(r) = - \int_0^r k(s/r) \left(sg(s, w(s)) + s^{-1} f(s) \right) \, ds \]

Let \(M > 0\) (also to be chosen later) and let \(X_M\) be the closed ball of \(C[0, R]\) centered at 0 of radius \(M\). Then, for \(w \in X_M\) and if \(2MR^{2p-1} \leq \lambda\), using (8) we have

\[|Tw(r)| \leq \int_0^r |k(s/r)| \left(Cs^{\frac{p+1}{p}}|w(s)|^2 + s^{-1}|f(s)| \right) \, ds \leq CM^2 \int_0^r |k(s/r)|s^{\frac{p+1}{p-1}} \, ds + \|f\|_{C[0,R]} \int_0^r |k(s/r)|s^{-1} \, ds \]

But

\[\int_0^r |k(s/r)|s^q \, ds = r^{q+1} \int_0^1 |k(t)|t^q \, dt \]

and using the expression for \(k\) one can check that the integrals in the right hand side are finite for \(q = \frac{p+1}{p-1}\) and \(q = -1\). We obtain thus

\[\|Tw\|_{C[0,R]} \leq C \left(M^2 R^{\frac{2p}{p-1}} + K \right) \]

if \(\|f\|_{C[0,R]} \leq K\). Also, for \(w_1, w_2 \in X_M\), by (9) we have

\[|Tw_1(r) - Tw_2(r)| \leq \int_0^r |k(s/r)|s|g(s, w_1(s)) - g(s, w_2(s))| \, ds \leq CM \int_0^r |k(s/r)|s^{\frac{p+1}{p-1}}|w_1(s) - w_2(s)| \, ds \leq CMR^{\frac{2p}{p-1}} \|w_1 - w_2\|_{C[0,R]} \]

So, given \(K > 0\) we choose \(M\) so that \(2CK \leq M\) and then we take \(R\) small enough so that

\[MR^{\frac{2p}{p-1}} \leq \min\{\lambda/2, 1/2C\} \]

With these choices \(T\) is a contraction (with Lipschitz constant 1/2) that maps \(X_M\) into \(X_M\). Therefore it has a fixed point (unique in \(X_M\)), which is a solution of (6)-(7) by Lemma 12.

To prove uniqueness, suppose that \(w_1, w_2\) are two solutions of (6)-(7) on \((0, R)\). Then choose \(M'\) so that

\[M' \geq \max\{2CK, \|w_1\|_{C[0,R]}, \|w_2\|_{C[0,R]}\} \]

and \(R'\) so that

\[M'R^{\frac{2p}{p-1}} \leq \min\{\lambda/2, 1/2C\} \quad \text{and} \quad R' \leq R \]

11
Then w_1, w_2 are in $\{w \in C[0, R] \mid \|w\|_{C[0, R]} \leq M\}$ and are fixed points of T. Hence $w_1 \equiv w_2$ on $(0, R')$. The equality on $(0, R)$ is obtained by a standard uniqueness result for ODE’s.

Regarding continuous dependence, let $f_1, f_2 \in C[0, R]$ be such that $\|f_i\|_{C[0, R]} \leq K, i = 1, 2,$ and let w_1, w_2 be the corresponding solutions to (6)-(7), i.e., the fixed points of T_i in X_M, where

$$T_i w(r) = - \int_0^r k(s/r) \left(s g(s, w(s)) + s^{-1} f_i(s)\right) \, ds$$

Recall that T_i maps X_M into X_M and that it has a Lipschitz constant of $1/2$. Then,

$$\|w_1 - w_2\|_{C[0, R]} \leq \|T_1(w_1) - T_1(w_2)\| + \|T_1(w_2) - T_2(w_2)\| \leq \frac{1}{2} \|w_1 - w_2\| + \sup_{0 \leq r \leq R} \int_0^r |k(s/r)| s^{-1} |f_1(s) - f_2(s)| \, ds \leq \frac{1}{2} \|w_1 - w_2\| + C \|f_1 - f_2\|.$$

Remark that by part a) of Proposition 8, given a continuous function f on $[0, \infty)$ there exists $R > 0$ such that the sequence

$$\begin{cases}
 w_0 \equiv 0 \\
 w_{k+1} = T(w_k)
\end{cases}$$

converges in $C[0, R]$ to the solution of (6)-(7).

Lemma 13 Assume now that $f \geq 0$ is a continuous function on $[0, \infty)$ and let w be the corresponding solution of (6)-(7) with maximal domain $(0, R)$. Then

$$w_k \searrow w \text{ on } (0, R)$$

Proof. Indeed, first note that $w_k \leq 0$ for all k, because $g(r, w) \geq 0$ and $f \geq 0$. In particular $w_1 \leq w_0 \equiv 0$. Then observe that for fixed r, $g(r, w)$ is non increasing in w for $w \leq 0$. This implies that $T(w_1) \leq T(w_0)$, i.e. $w_2 \leq w_1$, and by induction $w_{k+1} \leq w_k$ for all k. Note also that since w is a fixed point of T, from $w \leq w_0 \equiv 0$ follows that $w \leq T(w_0) = w_1$, and again an induction argument shows that $w \leq w_k$ for all k. It follows that $w_k \searrow \bar{w}$ pointwise, and taking the limit in the recurrence relation

$$w_{k+1}(r) = - \int_0^r k(s/r) \left(s g(s, w_k(s)) + s^{-1} f(s)\right) \, ds$$

we obtain that \bar{w} is a fixed point of T, and hence a solution of (6)-(7). By uniqueness $w = \bar{w}$. □

Lemma 14 Let f_1, f_2 be continuous functions on $[0, R]$ and suppose that the corresponding solutions $w^{(1)}, w^{(2)}$ to (6)-(7) are defined on $(0, R)$. Assume that $f_1 \geq f_2 \geq 0$. Then $w^{(1)} \leq w^{(2)} \leq 0$ on $(0, R)$.
Proof. For $i = 1, 2$ define the operators T_i corresponding to f_i as before, and consider the sequences
\[
\begin{aligned}
 w_0^{(i)} &\equiv 0 \\
 w_{k+1}^{(i)} &= T_i(w_k^{(i)})
\end{aligned}
\]
Then $w_k^{(i)} \searrow w^{(i)}$, $i = 1, 2$. But since $f_1 \geq f_2 \geq 0$ we have (inductively)
\[
\begin{aligned}
 w_1^{(1)} &= T_1(w_1^{(1)}) \\
 &\leq T_1(w_2^{(2)}) \\
 &\leq T_2(w_1^{(2)}) \\
 &= w_2^{(2)}
\end{aligned}
\]
Therefore $w^{(1)} \leq w^{(2)}$.

Proposition 15 Let f be a continuous function on $[0, \infty)$, $f \geq 0$, $f \not\equiv 0$ on $[0, 1]$. For each $t \geq 0$ let w_t be the solution of
\[
\begin{aligned}
 Lw_t &= -g(r, w_t) - r^{-2}tf \\
 w_t(r), rw'_t(r) &\text{ are bounded near 0}
\end{aligned}
\]
which is defined on a maximal interval $(0, R_t)$. Then the set
\[
\{w_t(1) / t \geq 0 \text{ and } w_t(1) \text{ is defined}\}
\]
is the whole interval $(-\infty, 0]$. In particular there exists $\bar{t} \geq 0$ such that $w_{\bar{t}}(1)$ is defined and is equal to $-v(1)$.

Proof. Define
\[
A = \{w_t(1) / t \geq 0 \text{ and } w_t(1) \text{ is defined}\}
\]
and note that $0 \in A$. Next we show that A is connected. Consider $\varphi(t) = w_t(1)$ with domain $\text{dom}(\varphi) = \{t \geq 0 / w_t(1) \text{ is defined}\}$. Then φ is continuous, and to conclude that A is connected we only need to check that $\text{dom}(\varphi)$ is connected. So let $0 \leq t_2 \leq t_1$ and suppose that $R_{t_1} > 1$ (i.e. $t_1 \in \text{dom}(\varphi)$). By monotonicity with respect to t we have $0 \geq w_{t_2} \geq w_{t_1}$ on $(0, R_{t_1}) \cap (0, R_{t_2})$. If $R_{t_2} < R_{t_1}$ then we have an apriori bound for w_{t_2} on $(0, R_{t_2})$, so that w_{t_2} can be continued beyond R_{t_2}. This contradiction shows that $R_{t_2} \geq R_{t_1} > 1$ and therefore $t_2 \in \text{dom}(\varphi)$.

Now we prove that A is open in $(-\infty, 0]$. Let $a \in A$ and $t \geq 0$ be such that $w_t(1) = a$. By the continuous dependence of w_t in t, we have that $w_{t'}(1)$ is defined for t' close to t. Take $t' > t$ but close enough. Then
\[
\begin{aligned}
w_{t'}(1) &= -\int_0^{t'} k(s)(sg(s, w_{t'}(s)) + s^{-1}t'h(s)) \, ds \\
&< w_t(1)
\end{aligned}
\]
because \(f \not\equiv 0 \) on \([0, 1]\). Hence \(A \) contains an interval of the form \((a - \varepsilon, a]\) for some \(\varepsilon > 0 \).

Suppose now that \(A \) is bounded and let \(a = \inf A \notin A \). Then there exists a sequence \(a_n \searrow a \), \(a_n \in A \). Let \(t_n \geq 0 \) be such that \(w_{t_n}(1) = a_n \). Then, if \(t_n < t_m \) we must have \(a_m < a_n \), and we conclude that \((t_n) \) is increasing. If \(t_n \not\to \infty \), then

\[
a_n = -\int_0^1 k(s)(sg(s, w_{t_n}(s)) + s^{-1}t_n f(s)) \, ds \to -\infty \text{ as } n \to \infty
\]

which contradicts the assumption that \(A \) is bounded. Hence we may assume that \(t_n \not\to t < \infty \). Note that \(w_{t_n}(r) \) is decreasing, so that \(w(r) = \lim_{n} w_{t_n}(r) \) exists for \(0 < r < 1 \). Taking the limit as \(n \to \infty \) in

\[
w_{t_n}(r) = -\int_0^r k(s/r) \left(sg(s, w_{t_n}(s)) + s^{-1}t_n f(s) \right) \, ds
\]

we obtain by monotone convergence

\[
w(r) = -\int_0^r k(s/r) \left(sg(s, w(s)) + s^{-1}f(s) \right) \, ds \tag{13}
\]

Claim: \(w \) is the solution of

\[
\begin{align*}
L w_t &= -g(t, w_t) - r^{-2}tf \\
(w_t, re^{-t}w'_t) &\text{ are bounded near } 0
\end{align*}
\]

and \(w(1) = a \). Thus \(a \in A \) and from this contradiction we conclude that \(A = (-\infty, 0] \).

Proof of the claim. We need to prove that \(w \in L^\infty(0, 1) \) so that we can apply Lemma 12, and then show that \(\lim_{r \to 1^-} w(r) = a \).

Note that by Proposition 8 there exists \(M > 0 \) and \(0 < R < 1 \) such that \(|w_{t_n}(r)| \leq M \) for \(0 < r < R \), and therefore \(|w(r)| \leq M \) for \(0 < r < R \). Let’s estimate \(w(r) \) for \(r \in [R, 1] \). Let \(\lambda = sg(s, w(s)) + s^{-1}f(s) \) and let’s use the convention that \(k(t) = 0 \) for \(t \geq 1 \). So

\[
w(r) = -\int_0^R k(s/r)sg(s, w(s)) \, ds - \int_0^R k(s/r)s^{-1}f(s) \, ds - \int_1^R k(s/r)m(s) \, ds \tag{14}
\]

We may take \(R \) smaller if necessary so that \(2MR^2 \lambda \leq \lambda \) and therefore by (8) we find as in the proof of Lemma 12 that the first 2 terms are bounded independently of \(r \in [R, 1] \). To estimate

\[
\int_R^1 k(s/r)m(s) \, ds
\]

note that by taking \(r = 1 \) in (13) we get \(km \in L^1(0, 1) \). But there exists \(C > 0 \) such that for \(R \leq s, r \leq 1, k(s/r) \leq Ck(s) \), which shows that \(w \) is bounded in \((0, 1)\).

Finally, because of the same estimates as before we can use dominated convergence in (14) to find that \(w(r) \to a \) as \(r \to 1^- \).
Appendix

Here we give a proof of Theorem 2. Let $f \geq 0$ be smooth, and let u denote here the minimal solution of (P_t), which we know is smooth for $0 < t < t^*$. We omit from the notation the explicit dependence of u in t.

We know that the first eigenvalue of $-\Delta - pu^{p-1}$ is non-negative, so for all $\varphi \in C^1_0(\Omega)$ we have

$$\int_\Omega |\nabla \varphi|^2 \, dx \geq p \int_\Omega u^{p-1} \varphi^2 \, dx$$

Let $j \geq 1$ and take $\varphi = u^j$. We then get

$$j^2 \int_\Omega u^{2j-2} |\nabla u|^2 \, dx \geq p \int_\Omega u^{p+2j-1} \, dx.$$

Now multiply (P_t) by $\frac{j^2}{2j-1} u^{2j-1}$ and integrate by parts to obtain

$$j^2 \int_\Omega u^{2j-2} |\nabla u|^2 \, dx = \frac{j^2}{2j-1} \int_\Omega u^{p+2j-1} + tfu^{2j-1} \, dx$$

Combining these two we obtain

$$\frac{j^2}{2j-1} \int_\Omega u^{p+2j-1} + tfu^{2j-1} \, dx \geq p \int_\Omega \Omega u^{p+2j-1} \, dx$$

If $\frac{j^2}{2j-1} < p$ we see that there is a constant C independent of t such that

$$\|u\|_{L^{p+2j-1}} \leq C$$

(recall that $t < t^*$). From now on we denote by C different numbers independent of t. The restriction on j can be rewritten as $1 \leq j < p + \sqrt{p^2 - p}$. Hence for $q = p + 2j - 1$ we find a bound for $\|u\|_{L^q}$ independent of t, for $q < 3p + 2\sqrt{p^2 - p} - 1$, and hence

$$\|u^p + tf\|_{L^r} \leq C$$

for $r < 3 + 2\sqrt{1 - 1/p} - 1/p$. Now we use the equation and the L^p theory to improve this estimate. Let $1 < r_0 < 3 + 2\sqrt{1 - 1/p} - 1/p$. By L^p estimates

$$\|u\|_{W^{2,r_0}} \leq C$$

and if $1/r_0 - 2/n > 0$, by Sobolev embedding we get

$$\|u^p + tf\|_{L^{r_1}} \leq C$$

with $1/r_1 = p(1/r_0 - 2/n)$. If on the other hand $1/r_0 - 2/n \leq 0$ we conclude that

$$\|u\|_{C(\overline{\Omega})} \leq C$$
(If $1/r_0 - 2/n < 0$, we use Sobolev embedding, and if $1/r_0 - 2/n = 0$ we apply once more the L^p estimates and the Sobolev embedding). Continuing in this way we define a sequence r_k by $1/r_{k+1} = p(1/r_k - 2/n)$, and we would like to find some k for which $r_k \leq 0$, so that as before we obtain a bound for u in $C(\bar{\Omega})$. To compute r_k we introduce $a_k = 1/r_k - 2/n$ which satisfies then $a_{k+1} = pa_k - 2/n$. Therefore

$$a_k = p^k \left(a_0 - \frac{2}{n(p-1)} \right) + \frac{2}{n(p-1)}$$

We want to find some k for which $a_k \leq 0$ and this occurs for some k iff

$$a_0 - \frac{2}{n(p-1)} < 0$$

Going back to r_0 this requires $r_0 > \frac{n}{2}(1 - 1/p)$. But we had already the restriction $r_0 < 3 + 2\sqrt{1 - 1/p - 1/p}$, so that the argument works if

$$\frac{n}{2}(1 - 1/p) < 3 + 2\sqrt{1 - 1/p - 1/p}$$

which is equivalent to

$$n < 6 + \frac{4}{p-1} + 4\sqrt{\frac{p}{p-1}}.$$

Acknowledgments. The author wishes to thank Prof. H. Brezis for introducing the problem and useful discussions concerning this work.

References

