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1 Introduction

Let Ω ⊂ IRn be a smooth, bounded domain, and let f be a smooth function on Ω, f ≥ 0, f≡/ 0.
Let p > 1 and consider the semi-linear elliptic equation

(Pt)


−∆u = up + tf in Ω

u > 0 in Ω
u = 0 on ∂Ω

where t ≥ 0 is a parameter.
We are concerned with weak solutions of (Pt), and we use the definition introduced in [BCMR]:

a weak solution of (Pt) is a function u ∈ L1(Ω), u ≥ 0, such that upδ ∈ L1(Ω), where δ(x) =
dist(x, ∂Ω), and such that

−
∫

Ω
u∆ζ dx =

∫
Ω

(up + tf)ζ dx

for all ζ ∈ C2(Ω̄) with ζ = 0 on ∂Ω.
We start by mentioning some well known facts (see for example [BCMR], [BC], [Ma]).

Theorem 1 There exists 0 < t∗ < ∞ such that for 0 < t < t∗ (Pt) has a unique minimal
solution u(·, t) (which is smooth), for t = t∗ (Pt∗) has a unique solution u∗ (possibly unbounded),
and for t > t∗ there is no solution of (Pt) (even in the weak sense). Moreover u(·, t) depends
smoothly on t ∈ (0, t∗), increases as t increases, and

u(·, t)↗ u∗ a.e. in Ω, as t↗ t∗.

We call u∗ the extremal solution.
An important feature of the minimal solution u is that the linearized operator at u

−∆− pup−1

has a positive first eigenvalue for all 0 < t < t∗. This property can be used as in [CR] or [MP],
to prove the following
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Theorem 2 If

n < 6 +
4

p− 1
+ 4

√
p

p− 1
(1)

then there exists a constant C independent of t such that

‖u(·, t)‖L∞(Ω) ≤ C for any 0 < t < t∗.

This is equivalent to the statement that the extremal solution u∗ is bounded.
We note that if the extremal solution u∗ is bounded, then by elliptic regularity it is also

smooth, and in this case the first eigenvalue of −∆− p(u∗)p−1 is zero.
In the present work we are interested in the case n ≥ 6 + 4

p−1
+ 4

√
p
p−1

. First in Section 2 we

show that Theorem 2 is sharp, i.e. assuming n ≥ 6+ 4
p−1

+4
√

p
p−1

, for any domain Ω there exists

a smooth function f ≥ 0, f≡/ 0 for which the extremal solution u∗ is unbounded (or singular).
Then in Section 3 we study the radially symmetric case with Ω the open unit ball in IRn, and
we show that assuming n ≥ 6 + 4

p−1
+ 4

√
p
p−1

the extremal solution is singular for any smooth

radially symmetric function f , f ≥ 0, f≡/ 0. We also give a precise description of the singularity
of u∗ in this case.

A problem related to (Pt) that has received much attention in the literature is the following:{
−∆u = λg(u) in Ω

u = 0 on ∂Ω
(2)

where λ ≥ 0 is a parameter and g : [0,∞) → (0,∞) is a C1 convex, positive, nondecreasing
function with g(0) > 0 and g(u)/u → ∞ as u → ∞. Typical examples are g(u) = eu and
g(u) = (1 + u)p, p > 1. For this equation there is again an extremal parameter λ∗ < ∞, such
that for 0 < λ < λ∗ there is a minimal solution, for λ = λ∗ there is a unique weak solution (called
the extremal solution), and for λ > λ∗ there is no solution (see for example [BCMR],[BV],[MP]
and their references for results on this problem).

Several very interesting open problems for (2) were proposed in [BV], and we mention some
of them in the context of problem (Pt).

1) Assume n ≥ 6 + 4
p−1

+ 4
√

p
p−1

. If Ω is convex, is it true that for any smooth f ≥ 0, f≡/ 0

the extremal solution is singular? Is it true for f ≡ 1? We note that some restriction on Ω has
to be imposed, as shown by the example Ω = B2 \ B̄1 and f ≡ 1 (or any radially symmetric
positive smooth f). In this case it can be easily shown that the extremal solution is always
smooth, without any restriction on n and p. (See Problem 3 in [BV]).

2) Concerning problem (2) in some cases the extremal solution is bounded and in others it
is singular (see [BV]). In a recent work, G. Nedev [Ne] has shown that in dimension 2, for
any nonlinearity g satisfying the hypothesis above the extremal solution of (2) is bounded. His
argument can be adapted to show that the same is true for a more general version of (Pt), where
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the nonlinearity up is replaced by g(u), and g is a C1 positive, convex, increasing function with
g(0) = 0, and g(u)/u→∞ as u→∞ (we note that Theorem 1 is still true for this more general
problem). In dimension 3, it is not known whether or not there exist nonlinearities g for which
the extremal solution is singular.

2 Is condition (1) sharp?

Theorem 3 Let Ω ⊂ IRn be any bounded, smooth domain. If

n ≥ 6 +
4

p− 1
+ 4

√
p

p− 1
(3)

then there exists a smooth function f ≥ 0, f≡/ 0 so that the extremal solution u∗ is singular.

The idea of the construction is the same as in [BV], that is, to find a smooth function f ≥ 0,
f≡/ 0, a number 0 < t <∞ and an unbounded function u in H1

0 (Ω) which is a weak solution of
(Pt), and such that the operator

−∆− pup−1

has a nonnegative first eigenvalue, in the sense that∫
Ω
|∇ϕ|2 dx ≥ p

∫
Ω
up−1ϕ2 dx ∀ϕ ∈ C1

0(Ω). (4)

Then we can conclude using the following lemma (similar to Theorem 3 in [BV]).

Lemma 4 Suppose that u ∈ H1
0 (Ω) is an unbounded weak solution of (Pt) such that the operator

−∆− pup−1

has a nonnegative first eigenvalue (in the sense of (4). Then t = t∗ and u = u∗.

Proof. Since there is no solution for t > t∗ we must have t ≤ t∗. Let u = u(·, t) denote the
minimal solution of (Pt), and let g(u) = up. The inequality∫

Ω
|∇ϕ|2 dx ≥

∫
Ω
g′(u)ϕ2 dx

holds by assumption for all ϕ ∈ C1
0(Ω) and by approximation also for ϕ ∈ H1

0 (Ω). We take
ϕ = u− u ∈ H1

0 (Ω) (note that by assumption u ∈ H1
0 (Ω) and by the estimates in the appendix,

u ∈ H1
0 (Ω) even for t = t∗, i.e. u = u∗). We have∫

Ω
g′(u)(u− u)2 dx ≤

∫
Ω
|∇(u− u)|2 dx

=
∫

Ω
−∆(u− u)(u− u) dx

=
∫

Ω
(g(u) + tf − g(u)− tf)(u− u) dx
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so that ∫
Ω

(u− u)(g(u) + g′(u)(u− u)− g(u)) dx ≥ 0.

Because of the convexity of g and since u ≥ u, the integrand is non-positive and we conclude
that

g(u) = g(u) + g′(u)(u− u).

Since g(u) = up is strictly convex we conclude that u = u. But u is unbounded and this forces
t = t∗.

Consider the function

v(x) = v(|x|) = λ|x|α (5)

where

λ = λn,p =

(
2

p− 1

(
n− 2p

p− 1

)) 1
p−1

and

α = αp = − 2

p− 1
.

Then v ∈ H1(Ω) for n > 2 + 4/(p− 1), and

−∆v = vp in IRn.

From now on we assume that 0 ∈ Ω, and we will construct u with a singularity at the origin so
that it satisfies the requirements in Lemma 4. We look for a function u of the form u = v − ψ.

Lemma 5 There exists a smooth function ψ defined on Ω̄ with the properties:

1. ψ ≥ 0 and is smooth in Ω̄,

2. ∆ψ ≥ 0 in Ω,

3. ψ ≡ 0 in a neighborhood of 0, and

4. ψ = v on ∂Ω.

Proof of Theorem 3. Let u = v − ψ. Then

−∆u = −∆v + ∆ψ

= vp + ∆ψ

≥ 0

and u = 00 on ∂Ω, so u ≥ 0. Taking

f = ∆ψ + vp − up
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we then have
−∆u = up + f.

Note that f ≥ 0 and is smooth, because u ≤ v and u ≡ v in a neighborhood of 0. The only
condition that still needs to be checked to apply Lemma 4 is the non-negativity of the first
eigenvalue of the operator −∆ − pup−1. Here enters into play condition (3). Recall the Hardy
inequality (see [BV] for example):

(n− 2)2

4

∫
Ω

1

|x|2
ϕ2 dx ≤

∫
Ω
|∇ϕ|2 dx

for any ϕ ∈ C1
0(Ω), when n ≥ 3. Note that u ≤ v so that for any ϕ ∈ C1

0(Ω)∫
Ω
pup−1ϕ2 dx ≤

∫
Ω
pvp−1ϕ2 dx

=
2p

p− 1

(
n− 2p

p− 1

)∫
Ω

1

|x|2
ϕ2 dx

≤ (n− 2)2

4

∫
Ω

1

|x|2
ϕ2 dx

≤
∫

Ω
|∇ϕ|2 dx

where the third inequality is a consequence of (3).

Proof of Lemma 5. Let r = dist(0, ∂Ω)/2, and let ψ1 be the solution of the following problem
∆ψ1 = 0 in Ω \ B̄r

ψ1 = v on ∂Ω
ψ1 = 0 on ∂Br

Then ψ1 is smooth and positive in Ω \ B̄r and by the Hopf boundary lemma ∂ψ1

∂ν
> 0 on ∂Br,

where ν is the normal vector, pointing away from the origin. Let ψ1 be extended by 0 in Br.
Then ∆ψ1 ≥ 0 in D(Ω)′.

Now we regularize ψ1 by convolution to get a smooth function ψ:

ψ = ψ1 ∗ ρε

where ρε is a standard mollifier (ρε(x) = ε−nρ(x/ε), ρ ∈ C∞0 (IRn), ρ ≥ 0, supp(ρ) ⊂ B1,∫
ρ dx = 1). ψ(x) is well defined and subharmonic on the set

{x ∈ Ω | dist(x, ∂Ω) > ε}.

If ρε is radially symmetric, then ψ1 = ψ1 ∗ ρε = ψ on

{x ∈ Ω | dist(x, ∂Ω) > ε, dist(x,Br) > ε}.

By fixing ε > 0 but small enough we can consider ψ to be defined and smooth up to ∂Ω.
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3 The radially symmetric case

Theorem 6 Assume now that Ω is the open unit ball B1(0) in IRn, and that f ≥ 0, f≡/ 0 is
any smooth, radially symmetric function. If n ≥ 6 + 4

p−1
+ 4

√
p
p−1

then the extremal solution u∗

is singular.

First we give a short proof of this theorem, but actually more can be said about the extremal
solution u∗ than merely u∗ /∈ L∞(Ω).

Theorem 7 Assume Ω is the open unit ball B1(0) in IRn, and f ≥ 0, f≡/ 0 is a radially
symmetric function f(x) = f(|x|) with f ∈ C2([0, 1]). Suppose n ≥ 6 + 4

p−1
+ 4

√
p
p−1

. Let v

be the function defined by (5) and set w = r−2(u − v), r = |x|. Then w is C2([0, 1]), and if
moreover f ′(0) = 0 (i.e. f ∈ C2(Ω̄)), then the same is true for w.

Before giving the proofs we note that if Ω and f are radially symmetric, then the minimal
solution u of (Pt) is also radially symmetric.

Proof of Theorem 6. Let v denote the function defined by (5). We use the improved Hardy
inequality, proved in [BV]: for all ϕ ∈ C1

0(Ω) we have

∫
Ω
|∇ϕ|2 dx ≥ (n− 2)2

4

∫
Ω

ϕ2

|x|2
dx+ c

∫
Ω
ϕ2 dx

where c = H2(wn/|Ω|)2/n > 0, H2 is the first eigenvalue of the Laplacian with Dirichlet boundary
condition in the unit ball in dimension 2, and wn is the measure of the unit ball in IRn. This
inequality implies that if (3) holds, then the operator −∆−pvp−1 has a positive first eigenvalue,
and although pvp−1 = C/|x|2 is not in Ln/2(Ω), the maximum principle can be applied to it.
Claim: for all 0 < t ≤ t∗ we have u(·, t) ≤ v, and the inequality is strict for 0 < t < t∗.
Indeed let 0 < t < t∗ and suppose that there exists some 0 < r < 1 such that u(r, t) ≥ v(r).
Then

u− v ≥ 0 on∂Br

and by the convexity of u→ up we have

−∆(u− v) = up − vp + tf

≥ pvp−1(u− v) + tf

so that
−∆(u− v)− pvp−1(u− v) ≥ 0.

By the maximum principle we conclude that u ≥ v on Br, which is impossible, because u is
bounded for 0 < t < t∗. The conclusion for t = t∗ is obtained by taking the limit as t→ t∗.
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Since u∗ ≤ v we conclude that the first eigenvalue for the operator −∆− pu∗p−1 is

inf
‖ϕ‖L2

∫
Ω
|∇ϕ|2 − pu∗p−1ϕ2 dx ≥ inf

‖ϕ‖L2

∫
Ω
|∇ϕ|2 − pvp−1ϕ2 dx > 0.

This shows that u∗ cannot be bounded.

Proof of Theorem 7. This proof involves again the same idea as in [BV], using Lemma 4. We
set

u = v + r2w

Then a calculation shows that the equation −∆u = up + f is equivalent to

−(r2w′′ + (n+ 3)rw′ + 2nw) = |v + r2w|p − vp + f, 0 < r < 1

It is convenient to rewrite this equation as

w′′ +
n+ 3

r
w′ +

2n+ pvp−1r2

r2
w = − 1

r2

(
|v + r2w|p − vp − pvp−1r2w

)
− r−2f

or

Lw = −g(r, w)− r−2f (6)

where

Lw = w′′ +
n+ 3

r
w′ +

2n+ pvp−1r2

r2
w

and

g(r, w) =
1

r2

(
|v + r2w|p − vp − pvp−1r2w

)
Note that pvp−1r2 = pλp−1 is a constant, and that g(r, w) ≥ 0 by convexity.

The aim is the to find a solution w of (6), that behaves nicely near 0 and such that w(1) =
−v(1). It turns out that a nice behavior of w near 0 can be imposed for example by the
requirement that

w(r), rw′(r) are bounded near 0 (7)

We show in Proposition 8 that if f is a continuous function on [0,∞) then (6) together with
(7) has a unique solution w, which is defined on an open maximal interval. We also prove that
w ≤ 0 if f ≥ 0. Then, in Proposition 15, we show that if we replace f by tf in (6), where t ≥ 0,
f ≥ 0, f≡/ 0 in [0, 1], then there exists t such that the solution w to (6)-(7) is defined on [0, 1]
and w(1) = −v(1). We also show in Lemma 12 that if f is smooth enough, then w has the
regularity stated in Theorem 7.

Accepting these results for a moment, we see that

u = v + r2w

satisfies the requirements in Lemma 4, the non negativity of the first eigenvalue of the operator
−∆− pup−1 following again from u ≤ v, the Hardy inequality and condition (3).

From now on until the end of this section we assume that condition (3) holds.
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Proposition 8
a) Let K > 0. Then there exists R > 0 such that for any continuous function f on [0, R]
with ‖f‖C[0,R] ≤ K, (6)-(7) has a unique solution on (0, R). Moreover, the solution depends
continuously on f . More precisely, there exists a constant C > 0, such that for any continuous
functions f1, f2 on [0, R], ‖fi‖C[0,R] ≤ K, i = 1, 2, if w1, w2 are the corresponding solutions of
(6)-(7), then

‖w1 − w2‖C[0,R] ≤ C‖f1 − f2‖C[0,R]

b) If f is a continuous function on [0,∞), the (6)-(7) has a unique solution w defined on an
open maximal interval. The solution depends continuously on f .

We need some preparatory lemmas.

Lemma 9 There exists C > 0 depending only on n, p such that if

M > 0, R > 0 and 2MR
2p
p−1 ≤ λ

then

|g(r, w)| ≤ Cr
2
p−1 |w|2 (8)

for any |w| ≤M and 0 < r < R, and

|g(r, w1)− g(r, w2)| ≤ CMr
2
p−1 |w1 − w2| (9)

for any |w1|, |w2| ≤M and 0 < r < R.

Proof. Let a(x) = xp, which is a convex functions (recall that p > 1). Let |w| ≤ M and

0 < r < R. Then, using 2MR
2p
p−1 ≤ λ, we obtain |r2w| ≤ 1

2
λr−

2
p−1 . With v = v(r) = λr−

−2
p−1 , we

have 1
2
v ≤ v + r2w ≤ 3

2
v. Notice that

g(r, w) =
1

r2

(
a(v + r2w)− a(v)− a′(v)r2w

)
=

1

2
a′′(ξ)r2w2

where ξ is in the interval with endpoints v and v + r2w. Using that a′′ is monotone, we thus
have

|g(r, w)| ≤ 1

2
p(p− 1)r2|w|2 max{(1/2)p−2, (3/2)p−2}vp−2

≤ C(p)r2|w|2λp−2r−
2
p−1

(p−2)

≤ C(n, p)r
2
p−1 |w|2
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We now prove estimate (9):

|g(r, w1)− g(r, w2)| =
1

r2

∣∣∣(v + r2w1)p − (v + r2w2)p − pvp−1r2(w1 − w2)
∣∣∣

=
1

r2

∣∣∣∣∣
∫ 1

0

d

dt
(v + r2(tw1 + (1− t)w2))p − pvp−1r2(w1 − w2) dt

∣∣∣∣∣
≤ p

∫ 1

0

∣∣∣(v + r2(tw1 + (1− t)w2))p−1 − vp−1
∣∣∣ |w1 − w2| dt

But ∣∣∣(v + r2(tw1 + (1− t)w2))p−1 − vp−1
∣∣∣ = (p− 1)|ξ|p−2r2|tw1 + (1− t)w2|

where ξ is in the interval with endpoints v and v + r2(tw1 + (1− t)w2). Therefore∣∣∣(v + r2(tw1 + (1− t)w2))p−1 − vp−1
∣∣∣ ≤ (p− 1) max{(1/2)p−2, (3/2)p−2}vp−2r2M

≤ C(n, p)r
2
p−1M

Lemma 10 Let w be a solution of (6) in (0, R) (i.e. w ∈ C2(0, R) and satisfies the equation)
and let 0 < r0 < R. Then

w(r) = wh(r)−
∫ r

r0
k(s/r)

(
sg(s, w(s)) + s−1f(s)

)
ds, 0 < r < R (10)

where wh is the solution of the linear homogeneous equation
Lwh = 0 in (0, R)

wh(r0) = w(r0)
w′h(r0) = w′(r0)

(11)

and k is the continuous function on [0, 1] given by:

k(t) =


t−β ln(1/t) if n = 6 + 4

p−1
+ 4

√
p
p−1

where β = −n+2
2

t−β1−t−β2
β1−β2

if n > 6 + 4
p−1

+ 4
√

p
p−1

where β1,2 = −n+2
2
±
√(

n+2
2

)2
− 2n− pλp−1

We note that (3) implies that β1, β2 are real, and that k > 0 on (0, 1), k(0) = k(1) = 0.

Proof. We use the variation of parameters formula, noting that two linearly independent
solutions of the homogeneous equation Ly = 0 on (0,∞) are:

y1 = sβ, y2 = ln(s)sβ if n = 6 + 4
p−1

+ 4
√

p
p−1

y1 = sβ1 , y2 = sβ2 if n > 6 + 4
p−1

+ 4
√

p
p−1
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Lemma 11 Let w be a solution of (6) in (0, R) and suppose it satisfies (7). The

w(r) = −
∫ r

0
k(s/r)

(
sg(s, w(s)) + s−1f(s)

)
ds (12)

Proof. A direct computation gives the following expression for the solution wh of the homoge-
neous equation (11):

case n = 6 + 4
p−1

+ 4
√

p
p−1

: wh(r) = c1r
β + c2 ln(r)rβ

c1 = w(r0)r−β0 (β ln(r0) + 1)− w′(r0)r−β+1
0 ln(r0)

c2 = −βw(r0)r−β0 + w′(r0)r−β+1
0

case n > 6 + 4
p−1

+ 4
√

p
p−1

: wh(r) = c1r
β1 + c2β2

c1 = (β2w(r0)r−β1
0 − w′(r0)r−β2+1

0 )/(β2 − β1)

c2 = (−β1w(r0)r−β1
0 + w′(r0)r−β2+1

0 )/(β2 − β1)

In both cases we see that under the assumption (7) we have c1, c2 → 0 as r0 → 0+, and that we
can take the limit as r0 → 0+ in (10).

Lemma 12 Let R > 0 and w ∈ L∞(0, R) satisfy (12) for 0 < r < R, where f ∈ C([0, R]).
Then w ∈ C2(0, R) and is a solution of (6)-(7). If moreover f ∈ C2([0, R)) then the same is
true for w, and if f ′(0) = 0 then w′(0) = 0.

Proof. We differentiate under the integral sign and check that the equation (6) is satisfied. Set
w = w1 + w2 where

w1(r) = −
∫ r

0
k(s/r)sg(s, w(s)) ds w2(r) = −

∫ r

0
k(s/r)s−1f(s) ds

It is easy to see that if f is smooth the w2 is also smooth and that

w′2(0) = −f ′(0)
∫ 1

0
k(t) dt

so that f ′(0) = 0 implies w′2(0) = 0. It is also easy to check that if f is only continuous then
rw′2(r) → 0 as r → 0+. To estimate w1 and its derivatives, consider M = ‖w‖L∞(0,R) and let

r0 > 0 be small enough so that 2MR
2p
p−1

0 ≤ λ. Then by (8), for 0 < r < r0 we have

|w1(r)| ≤ CM2|
∫ r

0
k(s/r)s

p+1
p−1 ds|

≤ CM2r
2p
p−1

∫ 1

0
k(t)t

p+1
p−1 dt

→ 0 as r → 0+

In a similar way one proves that w′1(r), w′′1(r)→ 0 as r → 0+.
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Proof of Proposition 8. To prove part b) of the proposition we use part a) to obtain the
conclusions on some interval (0, R), R > 0, and then we can quote standard results for ODE’s
(see for example [CL]).

The proof of part a) consists in applying the Banach fixed point theorem to the operator
suggested by (12). Let R > 0 (to be specified later) and let f ∈ C[0, R]. Consider the operator
T : C[0, R]→ C[0, R] defined by

Tw(r) = −
∫ r

0
k(s/r)

(
sg(s, w(s)) + s−1f(s)

)
ds

Let M > 0 (also to be chosen later) and let XM be the closed ball of C[0, R] centered at 0 of

radius M . Then, for w ∈ XM and if 2MR
2p
p−2 ≤ λ, using (8) we have

|Tw(r)| ≤
∫ r

0
|k(s/r)|

(
Cs

p+1
p−1 |w(s)|2 + s−1|f(s)|

)
ds

≤ CM2
∫ r

0
|k(s/r)|s

p+1
p−1 ds+ ‖f‖C[0,R]

∫ r

0
|k(s/r)|s−1 ds

But ∫ r

0
|k(s/r)|sq ds = rq+1

∫ 1

0
|k(t)|tq dt

and using the expression for k one can check that the integrals in the right hand side are finite
for q = p+1

p−1
and q = −1. We obtain thus

‖Tw‖C[0,R] ≤ C
(
M2R

2p
p−1 +K

)
if ‖f‖C[0,R] ≤ K. Also, for w1, w2 ∈ XM , by (9) we have

|Tw1(r)− Tw2(r)| ≤
∫ r

0
|k(s/r)|s|g(s, w1(s))− g(s, w2(s))| ds

≤ CM
∫ r

0
|k(s/r)|s

p+1
p−1 |w1(s)− w2(s)| ds

≤ CMR
2p
p−1‖w1 − w2‖C[0,R]

So, given K > 0 we choose M so that 2CK ≤M and then we take R small enough so that

MR
2p
p−1 ≤ min{λ/2, 1/2C}

With these choices T is a contraction (with Lipschitz constant 1/2) that maps XM into XM .
Therefore it has a fixed point (unique in XM), which is a solution of (6)-(7) by Lemma 12.

To prove uniqueness, suppose that w1, w2 are two solutions of (6)-(7) on (0, R). Then choose
M ′ so that

M ′ ≥ max{2CK, ‖w1‖C[0,R], ‖w2‖C[0,R]}
and R′ so that

M ′R′
2p
p−1 ≤ min{λ/2, 1/2C} and R′ ≤ R
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Then w1, w2 are in {w ∈ C[0, R′] / ‖w‖C[0.R′] ≤ M ′} and are fixed points of T . Hence w1 ≡ w2

on (0, R′). The equality on (0, R) is obtained by a standard uniqueness result for ODE’s.
Regarding continuous dependence, let f1, f2 ∈ C[0, R] be such that ‖fi‖C[0.R′] ≤ K, i = 1, 2,

and let w1, w2 be the corresponding solutions to (6)-(7), i.e., the fixed points of Ti in XM , where

Tiw(r) = −
∫ r

0
k(s/r)

(
sg(s, w(s)) + s−1fi(s)

)
ds

Recall that Ti maps XM into XM and that it has a Lipschitz constant of 1/2. Then,

‖w1 − w2‖C[0,R] ≤ ‖T1(w1)− T1(w2)‖+ ‖T1(w2)− T2(w2)‖

≤ 1

2
‖w1 − w2‖+ sup

0≤r≤R

∫ r

0
|k(s/r)|s−1|f1(s)− f2(s)| ds

≤ 1

2
‖w1 − w2‖+ C‖f1 − f2‖

Remark that by part a) of Proposition 8, given a continuous function f on [0,∞) there exists
R > 0 such that the sequence {

w0 ≡ 0
wk+1 = T (wk)

converges in C[0, R] to the solution of (6)-(7).

Lemma 13 Assume now that f ≥ 0 is a continuous function on [0,∞) and let w be the corre-
sponding solution of (6)-(7) with maximal domain (0, R). Then

wk ↘ w on (0, R)

Proof. Indeed, first note that wk ≤ 0 for all k, because g(r, w) ≥ 0 and f ≥ 0. In particular
w1 ≤ w0 ≡ 0. Then observe that for fixed r, g(r, w) is non increasing in w for w ≤ 0. This
implies that T (w1) ≤ T (w0), i.e. w2 ≤ w1, and by induction wk+1 ≤ wk for all k. Note also
that since w is a fixed point of T , from w ≤ w0 ≡ 0 follows that w ≤ T (w0) = w1, and again an
induction argument shows that w ≤ wk for all k. It follows that wk ↘ w̃ pointwise, and taking
the limit in the recurrence relation

wk+1(r) = −
∫ r

0
k(s/r)

(
sg(s, wk(s)) + s−1f(s)

)
ds

we obtain that w̃ is a fixed point of T , and hence a solution of (6)-(7). By uniqueness w = w̃.

Lemma 14 Let f1, f2 be continuous functions on [0, R] and suppose that the corresponding
solutions w(1), w(2) to (6)-(7) are defined on (0, R). Assume that f1 ≥ f2 ≥ 0. Then w(1) ≤
w(2) ≤ 0 on (0, R).

12



Proof. For i = 1, 2 define the operators Ti corresponding to fi as before, and consider the
sequences {

w
(i)
0 ≡ 0

w
(i)
k+1 = Ti(w

(i)
k )

Then w
(i)
k ↘ w(i), i = 1, 2. But since f1 ≥ f2 ≥ 0 we have (inductively)

w
(1)
k+1 = T1(w

(1)
k )

≤ T1(w
(2)
k )

≤ T2(w
(2)
k )

= w
(2)
k+1

Therefore w(1) ≤ w(2).

Proposition 15 Let f be a continuous function on [0,∞), f ≥ 0, f≡/ 0 on [0, 1]. For each
t ≥ 0 let wt be the solution of{

Lwt = −g(r, wt)− r−2tf
wt(r), rw

′
t(r) are bounded near 0

which is defined on a maximal interval (0, Rt). Then the set

{wt(1) / t ≥ 0 and wt(1) is defined}

is the whole interval (−∞, 0]. In particular there exists t̄ ≥ 0 such that wt̄(1) is defined and is
equal to −v(1).

Proof. Define
A = {wt(1) / t ≥ 0 and wt(1) is defined}

and note that 0 ∈ A. Next we show that A is connected. Consider ϕ(t) = wt(1) with domain
dom(ϕ) = {t ≥ 0 / wt(1) is defined}. Then ϕ is continuous, and to conclude that A is connected
we only need to check that dom(ϕ) is connected. So let 0 ≤ t2 ≤ t1 and suppose that Rt1 > 1 (i.e.
t1 ∈ dom(ϕ)). By monotonicity with respect to t we have 0 ≥ wt2 ≥ wt1 on (0, Rt1) ∩ (0, Rt2).
If Rt2 < Rt1 then we have an apriori bound for wt2 on (0, Rt2), so that wt2 can be continued
beyond Rt2 . This contradiction shows that Rt2 ≥ Rt1 > 1 and therefore t2 ∈ dom(ϕ).

Now we prove that A is open in (−∞, 0]. Let a ∈ A and t ≥ 0 be such that wt(1) = a. By
the continuous dependence of wt in t, we have that wt′(1) is defined for t′ close to t. Take t′ > t
but close enough. Then

wt′(1) = −
∫ 1

0
k(s)(sg(s, wt′(s)) + s−1t′h(s)) ds

< wt(1)

13



because f≡/ 0 on [0, 1]. Hence A contains an interval of the form (a− ε, a] for some ε > 0.
Suppose now that A is bounded and let a = inf A /∈ A. Then there exists a sequence an ↘ a,

an ∈ A. Let tn ≥ 0 be such that wtn(1) = an. Then, if tn < tm we must have am < an, and we
conclude that (tn) is increasing. If tn ↗∞, then

an = −
∫ 1

0
k(s)(sg(s, wtn(s)) + s−1tnf(s)) ds

→ −∞ asn→∞

which contradicts the assumption that A is bounded. Hence we may assume that tn ↗ t <∞.
Note that wtn(r) is decreasing, so that w(r) = limnwtn(r) exists for 0 < r < 1. Taking the limit
as n→∞ in

wtn(r) = −
∫ r

0
k(s/r)

(
sg(s, wtn(s)) + s−1tnf(s)

)
ds

we obtain by monotone convergence

w(r) = −
∫ r

0
k(s/r)

(
sg(s, w(s)) + s−1tf(s)

)
ds (13)

Claim: w is the solution of {
Lwt = −g(r, wt)− r−2tf
wt(r), rw

′
t(r) are bounded near 0

and w(1) = a. Thus a ∈ A and from this contradiction we conclude that A = (−∞, 0].
Proof of the claim. We need to prove that w ∈ L∞(0, 1) so that we can apply Lemma 12,
and then show that limr→1− w(r) = a.

Note that by Proposition 8 there exists M > 0 and 0 < R < 1 such that |wtn(r)| ≤ M for
0 < r < R, and therefore |w(r)| ≤ M for 0 < r < R. Let’s estimate w(r) for r ∈ [R, 1]. Let
m(s) = sg(s, w(s)) + s−1f(s) and let’s use the convention that k(t) = 0 for t ≥ 1. So

w(r) = −
∫ R

0
k(s/r)sg(s, w(s)) ds−

∫ R

0
k(s/r)s−1f(s) ds−

∫ 1

R
k(s/r)m(s) ds (14)

We may take R smaller if necessary so that 2MR
2p
p−1 ≤ λ and therefore by (8) we find as in the

proof of Lemma 12 that the first 2 terms are bounded independently of r ∈ [R, 1]. To estimate∫ 1

R
k(s/r)m(s) ds

note that by taking r = 1 in (13) we get km ∈ L1(0, 1). But there exists C > 0 such that for
R ≤ s, r ≤ 1, k(s/r) ≤ Ck(s), which shows that w is bounded in (0, 1).

Finally, because of the same estimates as before we can use dominated convergence in (14) to
find that w(r)→ a as r → 1−.
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Appendix
Here we give a proof of Theorem 2. Let f ≥ 0 be smooth, and let u denote here the minimal

solution of (Pt), which we know is smooth for 0 < t < t∗. We omit from the notation the explicit
dependence of u in t.

We know that the first eigenvalue of −∆ − pup−1 is non-negative, so for all ϕ ∈ C1
0(Ω) we

have ∫
Ω
|∇ϕ|2 dx ≥ p

∫
Ω
up−1ϕ2 dx

Let j ≥ 1 and take ϕ = uj. We then get

j2
∫

Ω
u2j−2|∇u|2 dx ≥ p

∫
Ω
up+2j−1 dx.

Now multiply (Pt) by j2

2j−1
u2j−1 and integrate by parts to obtain

j2
∫

Ω
u2j−2|∇u|2 dx =

j2

2j − 1

∫
Ω
up+2j−1 + tfu2j−1 dx

Combining these two we obtain

j2

2j − 1

∫
Ω
up+2j−1 + tfu2j−1 dx ≥ p

∫
Ωup+2j−1 dx

If j2

2j−1
< p we see that there is a constant C independent of t such that

‖u‖Lp+2j−1 ≤ C

(recall that t < t∗). From now on we denote by C different numbers independent of t. The
restriction on j can be rewritten as 1 ≤ j < p +

√
p2 − p. Hence for q = p + 2j − 1 we find a

bound for ‖u‖Lq independent of t, for q < 3p+ 2
√
p2 − p− 1, and hence

‖up + tf‖Lr ≤ C

for r < 3 + 2
√

1− 1/p − 1/p. Now we use the equation and the Lp theory to improve this

estimate. Let 1 < r0 < 3 + 2
√

1− 1/p− 1/p. By Lp estimates

‖u‖W 2,r0 ≤ C

and if 1/r0 − 2/n > 0, by Sobolev embedding we get

‖up + tf‖Lr1 ≤ C

with 1/r1 = p(1/r0 − 2/n). If on the other hand 1/r0 − 2/n ≤ 0 we conclude that

‖u‖C(Ω̄) ≤ C
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(If 1/r0 − 2/n < 0, we use Sobolev embedding, and if 1/r0 − 2/n = 0 we apply once more the
Lp estimates and the Sobolev embedding). Continuing in this way we define a sequence rk by
1/rk+1 = p(1/rk − 2/n), and we would like to find some k for which rk ≤ 0, so that as before
we obtain a bound for u in C(Ω̄). To compute rk we introduce ak = 1/rk − 2/n which satisfies
then ak+1 = pak − 2/n. Therefore

ak = pk
(
a0 −

2

n(p− 1)

)
+

2

n(p− 1)

We want to find some k for which ak ≤ 0 and this occurs for some k iff

a0 −
2

n(p− 1)
< 0

Going back to r0 this requires r0 > n
2
(1 − 1/p). But we had already the restriction r0 <

3 + 2
√

1− 1/p− 1/p, so that the argument works if

n

2
(1− 1/p) < 3 + 2

√
1− 1/p− 1/p

which is equivalent to

n < 6 +
4

p− 1
+ 4

√
p

p− 1
.
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