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Abstract

This paper deals with the construction of solutions to autonomous semilinear
elliptic equations considered in entire space. In the absence of space dependence
or explicit geometries of the ambient space, the point is to unveil internal mech-
anisms of the equation that trigger the presence of families of solutions with
interesting concentration patterns. We discuss the connection between minimal
surface theory and entire solutions of the Allen-Cahn equation. In particular,
for dimensions 9 or higher, we build an example that provides a negative answer
to a celebrated question by De Giorgi for this problem. We will also discuss re-
lated results for the (actually more delicate) standing wave problem in nonlinear
Schrödinger equations and for sign-changing solutions of the Yamabe equation.
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1. Introduction

Understanding the entire solutions of nonlinear elliptic equations in R
N such

as

∆u+ f(u) = 0 in R
N , (1.1)

is a basic problem in PDE research. This is the context of various classical
results in literature like the Gidas-Ni-Nirenberg theorems on radial symmetry,
Liouville type theorems, or the achievements around De Giorgi’s conjecture.
In those results, the geometry of level sets of the solutions turns out to be a
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posteriori very simple (planes or spheres). On the other hand, problems of the
form (1.1) with nonlinearities recurrent the literature, do have solutions with
more interesting patterns, and the structure of their solution sets has remained
mostly a mystery.

In many studies, problems like (1.1) are considered involving explicit de-
pendence on the space variable, or on a manifold or in a domain in R

N under
boundary conditions. Topological and geometric features of the domain are
often characteristic that trigger the presence of interesting solutions, whose
precise features can be analyzed when some singular perturbation parameter
is involved. In the absence of space inhomogeneity or geometry of the ambient
space, as in the “clean” equation (1.1), it is less clear which internal mecha-
nisms of the equation are behind complex patterns in the solution set, whose
richness may be nearly impossible to fully grasp.

In this paper we consider specific problems of the form (1.1) and describe
recent results on existence of families of solutions, depending on parameters,
that exhibit interesting asymptotic patterns linked to geometric objects in entire
space. We consider the following three classical problems:

1. The Allen-Cahn equation,

∆u + u− u3 = 0 in R
N .

2. The standing wave problem for the (focusing) nonlinear Schrödinger equation

∆u + |u|p−1u− u = 0 in R
N .

3. The Yamabe equation

∆u + |u| 4
N−2u = 0 in R

N , N ≥ 3.

Sections 1 to 10, will be devoted to discuss the Allen Cahn equation. We will
describe a link between entire minimal surfaces and solutions to the equation
which have a nodal set close to large dilations near such a surface, while ap-
proaching ±1 away from it, in particular answering negatively a long-standing
question by De Giorgi in dimensions N ≥ 9. We shall describe in Section 13
parallels and related results for the other two problems, which are in turn more
delicate.

2. The Allen-Cahn Equation

The Allen-Cahn equation in R
N is the semilinear elliptic problem

∆u + u− u3 = 0 in R
N . (2.1)

Originally formulated in the description of bi-phase separation in fluids [14] and
ordering in binary alloys [3], Equation (2.1) has received extensive mathematical
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study. It is a prototype for the modeling of phase transition phenomena in a
variety of contexts.

Introducing a small positive parameter ε and writing v(x) := u(ε−1x), we
get the scaled version of (2.1),

ε2∆v + v − v3 = 0 in R
N . (2.2)

On every bounded domain Ω ⊂ R
N , (2.1) is the Euler-Lagrange equation for

the action functional

Jε(v) =

∫

Ω

ε

2
|∇v|2 + 1

4ε
(1− v2)2.

We observe that the constant functions v = ±1 minimize Jε. They are idealized
as two stable phases of a material in Ω. It is of interest to analyze configurations
in which the two phases coexist. These states are represented by stationary
points of Jε, or solutions vε of Equation (2.2), that take values close to +1 in
a subregion of Ω of and −1 in its complement. Modica and Mortola [64] and
Modica [63], established that a family of local minimizers vε of Jε for which

sup
ε>0

Jε(vε) < +∞ (2.3)

must satisfy as ε→ 0, after passing to a subsequence,

vε → χΛ − χΩ\Λ in L1
loc(Ω). (2.4)

Here Λ is an open subset of Ω with Γ = ∂Λ ∩ Ω having minimal perimeter,
being therefore a (generalized) minimal surface. Moreover,

Jε(vε) →
2

3

√
2HN−1(Γ). (2.5)

2.1. Formal asymptotic behavior of vε. Let us argue formally to
obtain an idea on how a solution vε of Equation (2.2) with uniformly bounded
energy (2.3) should look like near a limiting interface Γ. Let us assume that Γ
is a smooth hypersurface and let ν designate a choice of its unit normal. Points
δ-close to Γ can be uniquely represented as

x = y + zν(y), y ∈ Γ, |z| < δ (2.6)

A well known formula for the Laplacian in these coordinates reads as follows.

∆x = ∂zz +∆Γz −HΓz
∂z (2.7)

Here

Γz := {y + zν(y) / y ∈ Γ}.
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∆Γz is the Laplace-Beltrami operator on Γz acting on functions of the variable
y, and HΓz designates its mean curvature. Let k1, . . . , kN denote the principal
curvatures of Γ. Then we have the validity of the expression

HΓz =

N
∑

i=1

ki
1− zki

. (2.8)

It is reasonable to assume that the solution has uniform smoothness in the
y-direction, while in the transition direction z, elliptic estimates applied to the
transformed equation (2.1) yield uniform smoothness in the variable ζ = ε−1z.
The equation for vε(y, ζ) then reads

ε2∆Γεζvε − εHΓεζ (y) ∂ζvε + ∂2ζvε + vε − v3ε = 0, y ∈ Γ, |ζ| < δε−1. (2.9)

We shall make two strong assumptions:

1. The zero-level set of vε lies within a O(ε2)-neighborhood of Γ, that is on
the region |ζ| = O(ε) and ∂τvε > 0 on this nodal set, and

2. vε(y, ζ) can be expanded in powers of ε as

vε(y, ζ) = v0(y, ζ) + εv1(y, ζ) + ε2v2(y, ζ) + · · · (2.10)

for smooth coefficients bounded, with bounded derivatives. We observe
also that

∫

Γ

∫ δ/ε

−δ/ε

[
1

2
|∂ζvε|2 +

1

4
(1− v2ε)

2 ] dζ dσ(y) ≤ Jε(vε) ≤ C (2.11)

Substituting Expression (2.10) in Equation (2.9), using the first assumption,
and letting ε→ 0, we get

∂2ζv0 + v0 − v30 = 0, (y, ζ) ∈ Γ× R,

v0(0, y) = 0, ∂ζ(0, y) ≥ 0, y ∈ Γ. (2.12)

while from (2.11) we get

∫

R

[
1

2
|∂ζv0|2 +

1

4
(1− v20)

2 ] dζ < +∞ (2.13)

Conditions (2.13) and (2.12) force v0(y, ζ) = w(ζ) where w is the unique solu-
tion of the ordinary differential equation

w′′ + w − w3 = 0, w(0) = 0, w(±∞) = ±1, (2.14)

namely
w(ζ) := tanh(ζ/

√
2). (2.15)
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On the other hand, substitution yields that v1(y, ζ) satisfies

∂2ζv1 + (1− 3w(ζ)2)v1 = HΓ(y)w
′(ζ), ζ ∈ (−∞,∞) (2.16)

Testing this equation against w′(ζ) and integrating by parts in ζ we get the
relation

HΓ(y) = 0 for all y ∈ Γ

which tells us precisely that Γ must be a minimal surface, as expected. Hence,
we get v1 = −h0(y)w′(ζ) for a certain function h0(y). As a conclusion, from
(2.10) and a Taylor expansion, we can write

vε(y, ζ) = w(ζ − εh0(y)) + ε2v2 + · · ·

It is convenient to write this expansion in terms of the variable t = ζ − εh0(y)
in the form

vε(y, ζ) = w(t) + ε2v2(t, y) + ε3v3(t, y) + · · · (2.17)

Using expression (2.8) and the fact that Γ is a minimal surface, we expand

HΓεζ (y) = ε2ζ |AΓ(y)|2 + ε3ζ2H3(y) + · · ·

where

|AΓ|2 =

8
∑

i=1

k2i , H3 =

8
∑

i=1

k3i .

Thus setting t = ζ − εh0(y) and using (2.17), we compute

0 = ∆vε + vε + v3ε = [∂2t + (1− 3w(t)2)] (ε2v2 + ε3v3)

−w′(t) [ ε3∆Γh0 + ε3H3 t
2 + ε2|AΓ|2 (t+ εh0) ] + O(ε4).

And then letting ε→ 0 we arrive to the equations

∂2t v2 + (1− 3w2)v2 = |AΓ|2 tw′, (2.18)

∂2t v3 + (1− 3w2)v3 = [∆Γh0 + |AΓ|2h0 +H3 t
2]w′. (2.19)

Equation (2.18) has a bounded solution since
∫

R
tw′(t)2 dt = 0 Instead the

bounded solvability of (2.19) is obtained if and only if h0 solves the following
elliptic equation in Γ.

JΓ[h0](y) := ∆Γh0 + |AΓ|2h0 = c

8
∑

i=1

k3i in Γ, (2.20)

where c = −
∫

R
t2w′2 dt/

∫

R
w′2 dt. JΓ is by definition the Jacobi operator of the

minimal surface Γ.
We deal with the problem of constructing entire solutions of Equation (2.2),

that exhibit the asymptotic behavior described above, around a given, fixed
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minimal hypersurface Γ that splits the space R
N into two components, and for

which the coordinates (2.6) are defined for some uniform δ > 0. A key element
for such a construction is the precisely the question of solvability of Equation
(2.20), that determines at main order the deviation of the nodal set of the
solution from Γ.

In terms of the original problem (2.1), the issue is to consider a large dilation
of Γ,

Γε := ε−1Γ,

and find an entire solution uε to problem (2.1) such that for a function hε
defined on Γ with

sup
ε>0

‖hε‖L∞(Γ) < +∞, (2.21)

we have

uε(x) = w(ζ − εhε(εy)) +O(ε2), (2.22)

uniformly for

x = y + ζν(εy), |ζ| ≤ δ

ε
, y ∈ Γε,

while

|uε(x)| → 1 as dist (x,Γε) → +∞. (2.23)

We shall answer affirmatively this question in some important examples for
Γ. One is a nontrivial minimal graph in R

9. The solution found provides a
negative answer to to a famous question due to Ennio De Giorgi [25]. On the
other hand, in R

3 we find a broad new class of entire solutions with finite Morse
index, which suggests analogs of De Giorgi’s conjecture for solutions of (2.1) in
parallel with known classification results for minimal surfaces.

3. From Bernstein’s to De Giorgi’s Conjecture

Ennio De Giorgi [25] formulated in 1978 the following celebrated conjecture
concerning entire solutions of equation (2.1).

De Giorgi’s Conjecture: Let u be a bounded solution of equation (2.1) such
that ∂xN

u > 0. Then the level sets [u = λ] are all hyperplanes, at least for
dimension N ≤ 8.

Equivalently, u must depend only on one Euclidean variable so that it must
have the form u(x) = w((x− p) · ν) for some p ∈ R

N and some ν with |ν| = 1
and νN > 0.

The condition ∂xN
u > 0 implies that the level sets of u are all graphs of

functions of the first N − 1 variables. As we have discussed in the previous
section, level sets of solutions with a transition are closely connected to mini-
mal hypersurfaces. De Giorgi’s conjecture is in fact a parallel to the following
classical statement.
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Bernstein’s conjecture: A minimal hypersurface in R
N , which is also the

graph of a smooth entire function of N − 1 variables, must be a hyperplane.
In other words, if Γ is an entire minimal graph, namely

Γ = {(x′, xN ) | x′ ∈ R
N−1, xN = F (x′)} (3.1)

where F solves the minimal surface equation

HΓ ≡ ∇ ·
(

∇F
√

1 + |∇F |2

)

= 0 in R
N−1, (3.2)

then Γ must be a hyperplane, hence F must be a linear affine function.
Bernstein’s conjecture is known to be true up to dimension N = 8, see

Simons [80] and references therein, while it is false for N ≥ 9, as proven by
Bombieri, De Giorgi and Giusti [12], by building a nontrivial solution to Equa-
tion (3.2). Let us write x′ ∈ R

8 as x′ = (u,v) ∈ R
4 × R

4. Let us consider the
set

T := {(u,v) ∈ R
8 | |v| > |u| > 0 }. (3.3)

The set {|u| = |v|} ∈ R
8 is Simons’ minimal cone [80]. The solution found in

[12] is radially symmetric in both variables, namely F = F (|u|, |v|). In addition,
F is positive in T and it vanishes along Simons’ cone. Moreover, it satisfies

F (|u|, |v|) = −F (|v|, |u|) . (3.4)

Let us write (|u|, |v|) = (r cos θ, r sin θ). In [30] it is found that there is a
function g(θ) with

g(θ) > 0 in (π/4, π/2), g′(π/2) = 0 = g(π/4), g′(π/4) > 0,

such that for some σ > 0,

F (|u|, |v|) = g(θ) r3 +O(r−σ) in T. (3.5)

De Giorgi’s conjecture has been established in dimensions N = 2 by Ghous-
soub and Gui [41] and for N = 3 by Ambrosio and Cabré [15]. Savin [76] proved
its validity for 4 ≤ N ≤ 8 under the additional assumption

lim
xN→±∞

u(x′, xN ) = ±1 for all x′ ∈ R
N−1. (3.6)

Farina and Valdinoci [38] replaced condition (3.6) by the less restrictive as-
sumption that the profiles at infinity are two-dimensional functions, or that
their level sets are complete graphs. Condition (3.6) is related to the so-called
Gibbons’ Conjecture:

Gibbons’ Conjecture: Let u be a bounded solution of equation (2.1) satisfying
Condition (3.6) uniformly in x′. Then the level sets of u are all hyperplanes.



8 Manuel del Pino

Gibbons’ Conjecture has been established in all dimensions with different
methods by Caffarelli and Córdoba [17], Farina [36], Barlow, Bass and Gui
[10], and Berestycki, Hamel, and Monneau [11]. In [17, 10] it is proven that the
conjecture is true for any solution that has one level set which is a globally
Lipschitz graph.

The following result disproves De Giorgi’s statement for n ≥ 9.

Theorem 1 ([30, 31]). Let N ≥ 9. Then there is an entire minimal graph Γ
which is not a hyperplane, such that all ε > 0 sufficiently small there exists a
bounded solution uε(x) of equation (2.1) that satisfies properties (2.21)-(2.23).
Besides, ∂xN

uε > 0 and uε satisfies condition (3.6).

A counterexample to De Giorgi’s conjecture in dimension N ≥ 9 was be-
lieved to exist for a long time. Partial progress in this direction was made by
Jerison and Monneau [51] and by Cabré and Terra [13]. See also the survey
article by Farina and Valdinoci [37].

3.1. Outline of the proof. For a small ε > 0 we look for a solution uε
of the form (near Γε),

uε(x) = w(ζ − εh(εy)) + φ(ζ − εh(εy), y), x = y + ζν(εy) (3.7)

where y ∈ Γε, ν designates a unit normal to Γ with νN > 0, h is a function
defined on Γ, which is left as a parameter to be adjusted. Setting r(y′, y9) = |y′|,
we assume a priori in h that

‖(1 + r2)DΓh‖L∞(Γ) + ‖(1 + r)h‖L∞(Γ) ≤ M (3.8)

for some large, fixed number M , also with a uniform control on (1 + r3)D2
Γh.

Letting f(u) = u − u3 and using Expression (2.7) for the Laplacian, the
equation becomes

S(uε) := ∆uε + f(uε) =

∆Γζ
ε
uε − εHΓζ

ε
(εy) ∂ζuε +

∂2ζuε + f(uε) = 0, y ∈ Γε, |ζ| < δ/ε. (3.9)

Letting t = ζ − εh(εy), we look for uε of the form

uε(t, y) = w(t) + φ(t, y)

for a small function φ. The equation in terms of φ becomes

∂2t φ+∆Γε
φ+Bφ+ f ′(w(t))φ+N(φ) + E = 0. (3.10)

where B is a small linear second order operator, and

E = S(w(t)), N(φ) = f(w + φ)− f(w)− f ′(w)φ ≈ f ′′(w)φ2.
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While the expression (3.10) makes sense only for |t| < δε−1, it turns out that
the equation in the entire space can be reduced to one similar to (3.10) in entire
R × Γε, where E and the undefined coefficients in B are just cut-off far away,
while the operator N is slightly modified by the addition of a small nonlinear,
nonlocal operator of φ. Rather than solving this problem directly we carry
out an infinite dimensional form of Lyapunov-Schmidt reduction, considering a
projected version of it,

∂2t φ+∆Γε
φ+Bφ+ f ′(w(t))φ+N(φ) + E =

c(y)w′(t) in R× Γε,
∫

R

φ(t, y)w′(t) dt = 0 for all y ∈ Γε. (3.11)

the error of approximation E has roughly speaking a bound O(ε2r(εy)−2e−σ|t|),
and it turns out that one can find a solution φ = Φ(h) to problem (3.11) with
the same bound. We then get a solution to our original problem if h is such
that c(y) ≡ 0. Thus the problem is reduced to finding h such that

c(y)

∫

R

w′2 =

∫

R

(E +BΦ(h) +N(Φ(h)))w′dt ≡ 0.

A computation similar to that in the formal derivation yields that this problem
is equivalent to a small perturbation of Equation (2.20)

JΓ(h) := ∆Γh+ |AΓ|2h = c

8
∑

i=1

k3i +N (h) in Γ, (3.12)

where N (h) is a small operator. From an estimate by Simon [79] we know

that ki = O(r−1). Hence H3 :=
∑8

i=1 k
3
i = O(r−3). A central point is to

show that the unperturbed equation (2.20) has a solution h = O(r−1), which
justifies a posteriori the assumption (3.8) made originally on h. This step uses
the asymptotic expression (3.5). The symmetries of the surface allow to reduce
the problem to solving it in T with zero Dirichlet boundary conditions on
Simons’ cone. We have that H3 = O(g(θ)r−3) and one gets a positive barrier of
size O(r−1). The operator JΓ satisfies maximum principle and existence thus
follows. The full nonlinear equation is then solved with the aid of contraction
mapping principle. The detailed proof of this theorem is contained in [30].

The program towards the counterexample in [51] and [15] is based on an
analogous one in Bernstein’s conjecture: the existence of the counterexample
is reduced to establishing the minimizing character of a saddle solution in R

8

that vanishes on Simon’s cone. Our approach of direct construction is actually
applicable to build unstable solutions associated to general minimal surfaces,
as we illustrate in the next section. We should mention that method of infinite
dimensional reduction for the Allen Cahn equation in compact settings has
precedents with similar flavor in [73], [55], [29]. Using variational approach,
local minimizers were built in [54].
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4. Finite Morse Index Solutions of the

Allen-Cahn Equation in R
3

The assumption of monotonicity in one direction for the solution u in De
Giorgi’s conjecture implies a form of stability, locally minimizing character for u
when compactly supported perturbations are considered in the energy. Indeed,
the linearized operator L = ∆ + (1 − 3u2), satisfies maximum principle since
L(Z) = 0 for Z = ∂xN

u > 0. This implies stability of u, in the sense that its
associated quadratic form, namely the second variation of the corresponding
energy,

Q(ψ,ψ) :=

∫

R3

|∇ψ|2 + (3u2 − 1)ψ2 (4.1)

satisfies Q(ψ,ψ) > 0 for all ψ 6= 0 smooth and compactly supported. Stability
of u is indeed sufficient for De Giorgi’s statement to hold in dimension N = 2, as
observed by Dancer [22]. This question is open for 3 ≤ N ≤ 8. The monotonicity
assumption actually implies the globally minimizing character of the solution
on each compact set, subject to its own boundary conditions, see [1].

The Morse index m(u) is defined as the maximal dimension of a vector
space E of compactly supported functions such that

Q(ψ,ψ) < 0 for all ψ ∈ E \ {0}.

In view of the discussion so far, it seems natural to associate complete,
embedded minimal surfaces Γ with finite Morse index, and solutions of (2.1).
The Morse index of the minimal surface Γ, i(Γ), has a similar definition relative
to the quadratic form for its Jacobi operator JΓ := ∆Γ + |AΓ|2: The number
i(Γ) is the largest dimension for a vector spaced E of compactly supported
smooth functions in Γ with

∫

Γ

|∇k|2 dV −
∫

Γ

|A|2k2 dV < 0 for all k ∈ E \ {0}.

We point out that for complete, embedded surfaces, finite index is equivalent
to finite total curvature, namely

∫

Γ

|K| dV < +∞

where K denotes Gauss curvature of the manifold, see §7 of [48] and references
therein.

4.1. Embedded minimal surfaces of finite total curvature.
The theory of embedded, minimal surfaces of finite total curvature in R

3, has
reached a notable development in the last 25 years. For more than a century,
only two examples of such surfaces were known: the plane and the catenoid.
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The first nontrivial example was found in 1981 by C. Costa, [19, 20]. The Costa
surface is a genus one minimal surface, complete and properly embedded, which
outside a large ball has exactly three components (its ends), two of which are
asymptotically catenoids with the same axis and opposite directions, the third
one asymptotic to a plane perpendicular to that axis. The complete proof of em-
beddedness is due to Hoffman and Meeks [49]. In [50] these authors generalized
notably Costa’s example by exhibiting a class of three-end, embedded minimal
surface, with the same look as Costa’s far away, but with an array of tunnels
that provides arbitrary genus ` ≥ 1. This is known as the Costa-Hoffman-Meeks
surface with genus `.

As a special case of the main results of [32] we have the following

Theorem 2 ([32]). Let Γ ⊂ R
3 be either a catenoid or a Costa-Hoffman-Meeks

surface with genus ` ≥ 1. Then for all sufficiently small ε > 0 there exists a
solution uε of Problem (2.1) with the properties (2.21)-(2.23). In the case of the
catenoid, the solution found is radially symmetric in two of its variables and
m(uε) = 1. For the Costa-Hoffman-Meeks surface with genus ` ≥ 1, we have
m(uε) = 2`+ 3.

4.2. A general statement. In what follows Γ designates a complete,
embedded minimal surface in R

3 with finite total curvature. Then Γ is orientable
and the set R3 \Γ has exactly two components S+, S−, see [48]. In what follows
we fix a continuous choice of unit normal field ν(y), which conventionally we
take it to point towards S+.

For x = (x′, x3) ∈ R
3, we denote as before, r = r(x) = |x′|. It is known that

after a suitable rotation of the coordinate axes, outside the infinite cylinder
r < R0 with sufficiently large radius R0, Γ decomposes into a finite number m
of unbounded components Γ1, . . . ,Γm, its ends. From a result in [78], we know
that asymptotically each end of Γk either resembles a plane or a catenoid. More
precisely, Γk can be represented as the graph of a function Fk of the first two
variables,

Γk = { y ∈ R
3 / r(y) > R0, y3 = Fk(y

′) }
where Fk is a smooth function which can be expanded as

Fk(y
′) = ak log r + bk + bik

yi
r2

+O(r−3) as r → +∞, (4.2)

for certain constants ak, bk, bik, and this relation can also be differentiated.
Here

a1 ≤ a2 ≤ . . . ≤ am ,

m
∑

k=1

ak = 0 . (4.3)

We say that Γ has non-parallel ends if all the above inequalities are strict.
Let us consider the Jacobi operator of Γ

JΓ(h) := ∆Γh+ |AΓ|2h (4.4)
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where |AΓ|2 = k21 + k22 = −2K. A smooth function z(y) defined on Γ is called
a Jacobi field if JΓ(z) = 0. Rigid motions of the surface induce naturally some
bounded Jacobi fields: Associated to respectively translations along coordinates
axes and rotation around the x3-axis, are the functions

z1(y) = ν(y) · ei, y ∈ Γ, i = 1, 2, 3,

z4(y) = (−y2, y1, 0) · ν(y), y ∈ Γ. (4.5)

We assume that Γ is non-degenerate in the sense that these functions are
actually all the bounded Jacobi fields, namely

{ z ∈ L∞(Γ) / JΓ(z) = 0 } = span { z1, z2, z3, z4 } . (4.6)

This property is known in some important cases, most notably the catenoid
and the Costa-Hoffmann-Meeks surface of any order ` ≥ 1. See Nayatani [67, 68]
and Morabito [65].

Theorem 3 ([32]). Let N = 3 and Γ be a minimal surface embedded, complete
with finite total curvature and non-parallel ends, which is in addition nondegen-
erate. Then for all sufficiently small ε > 0 there exists a solution uε of Problem
(2.1) with the properties (2.21)-(2.23). Moreover, we have

m(uε) = i(Γ).

Besides, the solution is non-degenerate, in the sense that any bounded solution
of

∆φ + (1− 3u2ε)φ = 0 in R
3

must be a linear combination of the functions Zi, i = 1, 2, 3, 4 defined as

Zi = ∂iuε, i = 1, 2, 3, Z4 = −x2∂1uε + x1∂2uε.

It is well-known that if Γ is a catenoid then i(Γ) = 1. Moreover, in the
Costa-Hoffmann-Meeks surface it is known that i(Γ) = 2` + 3 where ` is the
genus of Γ. See [67, 68, 65].

4.3. Further comments. In analogy with De Giorgi’s conjecture, it
seems plausible that qualitative properties of embedded minimal surfaces with
finite Morse index should hold for the level sets of finite Morse index solutions
of Equation (2.1), provided that these sets are embedded manifolds outside a
compact set. As a sample, one may ask for the validity of the following two
statements:

• The level sets of any finite Morse index solution u of (2.1) in R
3, such

that ∇u 6= 0 outside a compact set should have a finite, even number of
catenoidal or planar ends with a common axis.
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The above fact does hold for minimal surfaces with finite total curvature and
embedded ends as established by Ossermann and Schoen. On the other hand,
the above statement should not hold true if the condition ∇u 6= 0 outside
a large ball is violated. For instance, let us consider the octant {x1, x2, x3 ≥
0}. Problem (2.1) in the octant with zero boundary data can be solved by a
super-subsolution scheme (similar to that in [23]) yielding a positive solution.
Extending by successive odd reflections to the remaining octants, one generates
an entire solution (likely to have finite Morse index), whose zero level set does
not have the characteristics above: the condition ∇u 6= 0 far away corresponds
to embeddedness of the ends of the level sets.

An analog of De Giorgi’s conjecture for the solutions that follow in complex-
ity the stable ones, namely those with Morse index one, may be the following:

• A bounded solution u of (2.1) in R
3 with i(u) = 1, and ∇u 6= 0 outside

a bounded set, must be axially symmetric, namely radially symmetric in
two variables.

The solution we found, with transition on a dilated catenoid has this prop-
erty. This statement would be in correspondence with results by Schoen [78]
and López and Ros [58]: if i(Γ) = 1 and Γ has embedded ends, then it must be
a catenoid.

5. The Allen-Cahn Equation in R
2

5.1. Solutions with multiply connected nodal set. The only
minimal surface Γ that we can consider in this case is a straight line, to which
the trivial solution depending on its normal variable can be associated.

A class of solutions to (2.1) with a finite number of transition lines, likely to
have finite Morse index, has been recently built in [34]. The location and shape
of these lines is governed by the Toda system, a classical integrable model for
scattering of particles on a line under the action of a repulsive exponential
potential:

√
2

24
f ′′j = e−

√
2(fj−fj−1) − e−

√
2(fj+1−fj), j = 1, . . . k, (5.1)

f0 ≡ −∞, fk+1 ≡ +∞. It is known that for a given solution there exist numbers
a±j , b

±
j such that

fj(z) = a±j |z|+ b±j +O(e−|z|) as z → ±∞

where a±j < a±j+1, j = 1, . . . , k − 1 (long-time scattering).
The role of this system in the construction of solutions with multiple tran-

sition lines in the Allen-Cahn equation in bounded domains was discovered in
[29]. In entire space the following result holds.
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Theorem 4 ([34]). Given a solution f of (5.1) if we scale

fε,j(z) :=
√
2 (j − k + 1

2
) log

1

ε
+ fj(εz),

then for all small ε there is a solution uε with k transitions layers near the lines
x2 = fε,j(x1). More precisely,

uε(x1, x2) =

k
∑

j=1

(−1)j−1w(x1 − fε,j(x2) ) + σk + O(ε), (5.2)

where σk = − 1
2 (1 + (−1)k) .

The transition lines are therefore nearly parallel and asymptotically straight.
In particular, if k = 2 and f solves the ODE

√
2

24
f ′′(z) = e−2

√
2f(z), f ′(0) = 0,

and fε(z) :=
√
2 log 1

ε + f(εz), then there exists a solution uε to (2.1) in R
2

with
uε(x1, x2) = w(x1 + fε(x2) ) + w(x1 − fε(x2)) − 1 +O(ε). (5.3)

The formal reason for the appearance of the Toda system can be explained
as follows: Let us consider the function

u∗(x1, x2) =
k
∑

j=1

(−1)j−1w(x1 − fj(x2) ) + σk

and assume that the fj ’s are ordered and very distant one to each other. Then
the energy

JS(u∗) =
1

2

∫

S

|∂x2
u∗|2 + |∂x1

u∗|2 +
1

4

∫

S

(1− u2∗)
2

computed in a finite strip S = R × (−`, `) becomes at main order, after some
computation,

JS(u∗) ≈ 2` [
1

2

∫

R

|w′|2+1

4

∫

R

(1−w2)2 ] + c1

k
∑

j=1

∫ `

−`

|f ′j |2−c2
∑

i6=j

∫ `

−`

e−
√
2|fi−fj |

for certain explicit constants c1 and c2. Assuming that the quantities e−
√
2|fi−fj |

are negligible for |i−j| ≥ 2, we obtain for the approximate equilibrium condition
of the functions fj , precisely the system (5.1).
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5.2. Remarks. The solutions (5.2) show a major difference between the
minimal surface problem and the Allen-Cahn equation, as it is the fact that two
separate interfaces interact, leading to a major deformation in their asymptotic
shapes. We believe that these examples should be prototypical of bounded finite
Morse index solutions of (2.1). A finite Morse index solution u is stable outside
a bounded set. If we follow a component of its nodal set along a unbounded
sequence, translation and a standard compactness argument leads in the limit
to a stable solution. Hence from the result in [22] its profile must be one-
dimensional and hence its nodal set is a straight line. This makes it plausible
that the ends of the nodal set of u are asymptotically a finite, even number
of straight lines. If this is the case, those lines are not disposed in arbitrary
way: Gui [46] proved that if e1,. . . e2k are unit vectors in the direction of the
ends of the nodal set of a solution of (2.1) in R

2, then the balancing formula
∑2k

j=1 ej = 0 holds.

As we have mentioned, another finite Morse solution is known, [23], the
so-called saddle solution. It is built by positive barriers with zero boundary
data on a quadrant, and then extended by odd reflections to the rest of the
plane, so that its nodal set is an infinite cross, hence having 4 straight ends.
The saddle solution has Morse index 1, see [77]. This is also formally the case
for the solutions (5.3), which also has 4 ends.

An interesting question is whether the parameter ε of the solutions (5.3) can
be continued to increase the nearly zero angle between ends up to π

2 , the case of
the saddle solution. Similarly, a saddle solutions with 2k ends with consecutive
angles π

k has been built in [2]. One may similarly ask whether this solution is
in some way connected to the 2k-end family (5.2).

6. The Stationary NLS and the Yamabe

Equations

6.1. The standing wave problem for NLS. We shall discuss some
results on the problem

∆u+ |u|p−1u− u = 0 in R
N (6.1)

where p > 1. Equation (6.1) arises for instance as the standing-wave problem
for the standard nonlinear Schrödinger equation

iψt = ∆ψ + |ψ|p−1ψ, (6.2)

corresponding to that of solutions of the form ψ(y, t) = u(y)e−it. It also arises
in nonlinear models in Turing’s theory biological theory of pattern formation,
such as the Gray-Scott or Gierer-Meinhardt systems, [44, 43]. The positive
solutions of (6.1) which decay to zero at infinity are well understood. Problem



16 Manuel del Pino

(6.1) has a radially symmetric solution wN (y) which approaches 0 at infinity
provided that

1 < p <







N+2
N−2 if N ≥ 3,

+∞ if N = 1, 2,

see [81, 7]. This solution is unique [56], and actually any positive solution to
(6.1) which vanishes at infinity must be radially symmetric around some point
[42].

Variations of Problem (6.1), where the space homogeneity is broken by the
action of an external potential or boundary conditions in a domain, have been
broadly treated in the PDE literature in the last two decades, especially con-
cerning the construction of positive solutions. Widely studied has been for in-
stance a singular perturbation problem of the form

ε2∆− V (x)u+ |u|p−1u = 0 (6.3)

where ε is a small parameter, or in a bounded domain with V ≡ 1, under Dirich-
let or Neumann boundary conditions. Many constructions in the literature refer
to “multi-bump solutions”, built from a perturbation of the superposition of
suitably scaled copies of the basic radial bump wN . The location of their max-
ima is determined typically by a criterion related either with the potential or
the geometry of the underlying domain. Among other contributions, we refer
the reader to the works [4, 6, 26, 27, 57, 39, 45, 52, 69, 70, 71, 24, 75, 83] and
their references. Solutions concentrating on a higher dimensional sets have been
considered for instance in [60, 61, 28, 59].

It is natural to ask about positive solutions to (6.1) which do not vanish at
infinity.

For instance, let us consider the solution w := w1 of (6.1) in R,

w′′ − w + wp = 0, w > 0, in R,

w′(0) = 0, w(±∞) = 0. (6.4)

Then the functions u(x, z) := w(x − a), a ∈ R, define a class of positive solu-
tions on (6.1) in R

2, which vanish in all but one space direction, corresponding
to single “bump lines”, very much in analogy to the trivial single transition so-
lutions to the Allen-Cahn equation induced by (2.14). In [8], these solutions of
(6.1) were found to be isolated in a uniform topology which avoids oscillations
at infinity. In constrast, in [21] it is found that a there is continuum of solutions
wδ(x, z) which are periodic in z and decay exponentially in x, bifurcating from
w(x).

A big qualitative difference between the homoclinic solution (6.4) and the
heteroclinic solution (2.14) is that the latter is stable, and that avoids these
bifurcations. Instead, there is a positive eigenvalue λ1 to with positive eigen-
function to the linearized equation

Z ′′ + (pwp−1 − 1)Z − λ1Z = 0 in R, Z(±∞) = 0,
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and the bifurcating Dancer solutions can be expanded as .

wδ(x, z) = w(x) + δZ(x) cos(
√

λ1z) +O(δ2e−|x|). (6.5)

Intuitively, as δ increases, the period becomes long and the oscillating am-
plitude largely varies: in fact a simple variational argument using symmetries
gives also the existence of a solution wT (x, z) with a large period T � 1 whose
profile is an “infinite bump array” solution like

wT (x, z) ≈
∞
∑

k=−∞
w2(x, z − k T ), (6.6)

where w2 is the radial positive solution that decays to zero of (6.1). The solu-
tions to (6.6)

Independently in [33] and [62], positive solutions that glue together respec-
tively bump-lines and infinite bump arrays have been built.

The result in [33] is the exact analog of Theorem 4, now with a Toda system
of the form

cpf
′′
j = e−(fj−fj−1) − e−(fj+1−fj), j = 1, . . . k, (6.7)

f0 ≡ −∞, fk+1 ≡ +∞, where cp is a explicit positive constant.

Theorem 5 ([33]). Given a solution f of (6.7) if we scale

fε,j(z) :=
√
2 (j − k + 1

2
) log

1

ε
+ fj(εz),

then for all small ε there is a positive solution uε of (6.1) with k bump lines:

uε(x, z) =

k
∑

j=1

w(x− fε,j(z) ) + O(ε). (6.8)

The profile of the solution (6.8) can actually be more accurately described
as a superposition of bifurcating Dancer solutions (6.5) wδj , with respective
axes given at main order by the straight line asymptote of to the graphs of the
fj ’s, and with δj(ε) → 0, plus a remainder that decays away and along these
lines.

In [62] a solution was built close to a given finite number of halves of infinite
bump arrays (6.6), with sufficiently large T , emanating from the origin, and
along three divergent rays with sufficiently large mutual angles. The solutions
in [33] and those in [62] may belong to endpoints of families with opposite
size in their Dancer parameters, in a way perhaps similar as the solutions in
Theorem 4 are expected to connect to the symmetric saddle solutions, but this is
still far from understood. Obtaining (even partial) classification of the positive
solutions of (6.1) is presumably much harder than in the Allen-Cahn equation.
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In particular, Morse index of the solutions built turn out to be infinite due to
the oscillations along their ends.

Another interesting issue is that of understanding sign changing solutions.
Even those with finite energy (and finite morse index) can exhibit very complex
patterns. From Ljusternik-Schirelmann theory applied to the energy functional

J(u) =
1

2

∫

RN

|∇u|2 + u2 − 1

p+ 1

∫

RN

|u|p+1

it is known that (6.1) possesses and infinite number of radially symmetric so-
lutions. Nonradial solutions have been built in [66], as a small perturbation
of a configuration of half arrays (6.6) symmetrically disposed, cut-off far away
outside a disk of very large radius, and so that the sides of the regular polygon
thus formed is filled with alternating sign, nearly equidistant bumps w2.

6.2. The Yamabe equation in R
N . Let us consider the equation at

the critical exponent

∆u+ |u| 4
N−2u = 0 in R

N (6.9)

N ≥ 3. It is known that a positive solution to this problem must be equal to
one of the Aubin-Talenti extremals for Sobolev’s embedding,

wµ,ξ(x) = αN

(

µ

µ2 + |x− ξ|2
)

N−2

2

, αN = (N(N − 2))
N−2

4 . (6.10)

See [72, 5, 82, 18].
The energy associated to Problem (6.9) is given by

J(u) =
1

2

∫

RN

|∇u|2 − N − 2

2N

∫

RN

|u| 2N
N−2 .

We consider the common value of the energy of the solitons (6.10),

SN := J(wµ,ξ).

Concerning sign changing solutions the whole picture is still far from un-
derstood. To our knowledge, only one result is available. Ding [40] proved the
existence of infinitely many solutions within a class of solutions which, when,
after the equation is lifted to the sphere SN , it is radially symmetric in two vari-
ables. The class of such functions turns out to regain the loss of compactness in
Sobolev’s embedding, and then Ljusternik-Schnirelmann arguments apply. No
further information on the solutions is available. Understanding solutions to
(6.9) and its energy levels is an major issue in the analysis of blow-up and well-
prosedness for the NLS (6.2) at the critical exponent, in a program initiated in
[53].

We have the following result, a special case of that in [35], which describes
in precise terms a class of finite energy solutions of (6.9) which do not have the
radial symmetries in [40].
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Let us consider the points

ξj := (e2πij/k, 0) ∈ C× R
N−2 = R

N , j = 1, . . . , k

where

Theorem 6 ([35]). for any k sufficiently large, there exists a solution uk of
(6.9) with the form

uk(x) = w1,0(x)−
k
∑

j=1

wµj ,ξj (x) + o(1)

where for a certain number µN > 0,

µj =
νN
k2

and o(1) → 0 uniformly in R
N as k → +∞. Besides we have

J(uk) = (k + 1)SN +O(1)

as k → ∞.

A characteristic of this problem is the fact that eventually the concentration
set becomes higher dimensional, namely a copy of S1 in R

N , in spite of being
the context just discrete. The hidden parameter here it is of course the num-
ber of bubbles. This concentration phenomena can be regarded as somehow
intermediate between point and continuum concentration. The idea of using
the number of concentrating cells as a singular perturbation parameter appears
already in the context of critical problems in [84].

The result o Theorem 6 extends considerably to similar patterns where the
limiting concentration set, is, after stereographic projection, a submanifold of
the sphere SN with suitable rotation invariances.

Again, when the Yamabe equation is perturbed by space inhomogeneities or
by exponents close to critical, many results on construction and classification
of bubbling solutions are present in the literature, but we will not survey them
here. The analysis of bubbling solutions has been a central tool for instance
in the understanding of the Yamabe and prescribed scalar curvature problems.
For changing sign solutions of equation (6.9) in dimension N = 3, an analysis
of the topology of level sets of the associated energy for low energies is present
in [9].
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