Asymptotic Analysis 28 (2001) 279-307 279
10S Press

A nonlinear elliptic equation with rapidly
oscillating boundary conditions

Juan Déavila
Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA
E-mail: davila@math.rutgers.edu

1. Introduction
1.1. Motivation

Let2 ¢ R™, n > 2, be a bounded, smooth domain, and consider a partifign/%} of the boundary
002, thatisln U T, =082 andly N 1% =0, with I'7 # 0.

Consider the problem

—Du=Af(u) in,

u = 0 OnF]_, (1)
ou

— =0 only,

ov

wherev is the unit outward normal vector &2, A is a positive parameter, an [0, c0) — [0, ) is a
C* nondecreasing, strictly convex function, wifk0) > 0 and

o f(s)

Typical examples arg(uv) = €* and f(u) = (1 + u)? wherep > 1. This type of nonlinear problems
arises, for example, from a model of exothermic reaction, and was originally formulated on a Bk in
with zero boundary condition. Barenblatt et al. [1] introduced a modification of the original model by
considering a mixed boundary condition as in (1).

The case of a zero Dirichlet condition has been well studied, see, for example, Fujita [13], Gel-
fand [14], Brezis et al. [4], Brezis [2], Martel [16], Brezis and Vazquez [5]. Some of the basic properties
described in these works still hold for (1): there is a valtie= (0, c0) such that for\ < A* problem (1)
has a solution, and fox > A\* (1) has no solution. Fak = \* there is a unique solution* (see Sec-
tion 3.3 and also Proposition 1.5 below). We céllthe extremal parameter associated1p /%, andu*
the extremal solution. In the original modél,is a constant depending on physical parameters, and the
relevance of\* is that a nonexplosive reaction is possible only €& \*.

We consider now a family {7, I5} .~ of partitions of the boundary, that i55, [ C 042, ITUI; =
002, It NI = 0, and we assumf 5| > O for all . Heree is a positive index approaching zero, and
we denote by\ the corresponding extremal parameter. There are several ways in which we want this
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280 J. Davila / A nonlinear elliptic equation with rapidly oscillating boundary conditions

family to behave as — 0, but the general idea is that the partitibfi, 15 “becomes finer” as — O.
For example we can consider the case in whitts the unit disk inR?2, 92 is subdivided in segments
of lengthe, and we impose homogeneous Dirichlet and Neumann conditions on alternate segments. In
this particular case, Barenblatt suggested to study the asymptotic behavior of the extremal pardmeters
ase — 0. A numerical study is presented in [1].

The main goal in this work is to study the asymptotic behavior of the extremal parameters and solutions
of (1). More precisely, we show that the limit [img A} exists (at least for a sequeneg — 0), and
we identify it as the extremal parameter of some limit problem. Similarly, we prove that the extremal
solutionsu? converge in some sense, to the extremal solution of a limit problem.

1.2. Definitions and main results

When dealing with the nonlinear problem (1) it is important to know the asymptotic behavior of
solutions of a linear equation with the same boundary condition as in (1), namely

—Auz +u. =h in {2,
u. =0 only,

5 3
£=0 onls,
ov
whereh € L3(12).
It turns out that a convenient class of linear problems to consider, is

—ANu+u+ou=h in{2,

0 4
M su=0 ond g, “)
ov

whereh € L?(£2) ando belongs to a certain class of Borel measures. The main reference that we use
here for the linear problem (4) and questions on the asymptotic behavior of their solutions is Buttazzo et
al. [6]. Other references are [10,8,9].

Definition 1.1.

(@) M denotes the collection of Borel measuresRshwith values into [Opo] that vanish on Borel
sets of capacity zero and have supporfAn
(b) Foro € M we setH, = H(£2) N L?(£2, ) which is a Hilbert space with the inner product

(u, p) :/ VuVe + up de +/_ﬂg5da,
02 9

whereu andy are quasi-continuous representatives @ind.
(c) We say that: is an H'-solution of (4) ifu € H, and

/VquO—Fugpdm—l—/_ﬁgBda:/ hode forallp e H,.
2 2 2
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Remarks.

1) We note here that the integrals with respect to the measume well defined for, 0 € H,
becauser vanishes on sets of capacity zero, and quasi-continuous representatives of an element in
H*(£2) agree up to sets of capacity zero (see [6]). From now on we drop thie ‘u, ¢ and always
use quasi-continuous representatives in integrals with respect to a measuyé.

2) Problem (4) has a unique solution, which is also the minimizer of

/ |Vu|2—|—u2dx—i—/_u2da—2/ hu dz.
0] 2 2

A trivial case which can occur is when for all Borel sé&s o(B) = oo if B N {2 has positive
capacity, anar(B) = 0 otherwise. Ther, = {0}, and in this case 0 is the solution of (4) for
anyh.

3) A mixed boundary condition as in (3) can be obtained by taking

oo if BN ¥ has positive capacity,
0 otherwise

7.(B) = |

for all Borel setsB.
4) If suppg) C 942, then (4) can also be rewritten in the form

%—Fauzo onof?2.

{—Au+u:h in £2,
ov

5) Here is an example in which the measures have support insi@Gensider a union of disjoint balls
T = ; B; ,and let2 = 2\ T (this is usually called a perforated domain, and the balls are usually
taken in a periodic arrangement). TakingB) = oo if B N (7' U 942) has positive capacity, and
o(B) = 0 otherwise, (4) can be written as

{—Au—i—u:h inf?,
u=0 onafn.

We consider the following notion of convergence for measurestin

Definition 1.2. If (0;) € M is a sequence of measures we wmigeﬁ 0 Whereo,, € M if for all
h € L3(£2), the solutions; of

~ 5
Ui | =0 onos ®)

{—Aui—l—ui—i—aiui:h in {2,
ov

satisfyu; — uq in H1(£2) weakly asi — oo, whereu is the solution of

Qoo 4 e =0 onodf.

{ —Ntgo + Uso + Toolioe = . IN 12,
ov
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Observe that we formulate this definition for the operatdr+ I instead of—A, which would be more
natural for the nonlinear problem (1). The advantage of this formulation is that the saltair(5) is
bounded inH1(£2) without any assumption os; or h.

As an example, in the case in whithis the unit disk inR?, 92 is subdivided in segments of length
and the boundary condition is zero Dirichlet and zero Neumann on alternate segments, the limit boundary
condition in the sense of Definition 1.2 is a zero Dirichlet condition. This is shown in Example 1 of
Section 2.2. That section contains also some other examples.

The following compactness theorem is a consequence of the results in [6].

Theorem 1.3. If (0;) C M is a sequence, then there is a subsequéngg and o, € M such that
0. A 0. Moreover, ifsuppg;) C 042 for all 7, thensuppg,) C 952.

J

Next we consider the nonlinear problem

—Au+ou = Af(u) in {2,
% +ou=0 onos?, (©)
ov
whereo € M, ¢ # 0. Recall thatf(u) > 0 and we are interested x> 0. If o = 0 then (6) has no
solution for\ > 0. On the other hand, the hypothesisz 0 implies that for anyy € L3(f2) there is a

unique solution € H,, of

A+ o(=¢ inf2,
a¢
—4+0(=0 onof?.
ov

We use the notation

¢ =T,(¥) 7
and this defines a bounded linear oper&tpr L2(2) — H,,.

Definition 1.4. Let 0 € M with o #0. We say thatu € L1(£2) is a weak solution of (6) if
Jo f(w)x < oo wherex = T,(1), and for allp € C5°(£2) we have

/Q updr = )\/Q FWw)Ty(p)dx.

Remark. In the case of the zero Dirichlet boundary condition, this is the same noti_on of weak solution
introduced by Brezis et al. [4]. In this case, the test functions T,.(») belong toC?(2) and vanish

on the boundary in the usual sense. But for a generalM it is hard to describe the precise regularity

of ¢.

Proposition 1.5. Assumer € M is notidentically zero and thall, # {0} . Then there exit3* € (0, o)
such that ford < A < \* problem(6) has anH-solution which is bounded, and far> \* (6) has no
solution even in the weak sense of Definitlo If furthermoresuppg) C 02, then forA = \* (6) has
a unique weak solution* € L(£2).

See Section 3 and specially Theorem 3.14 for more properties of (6).
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Important notation. In order to state the main results, for a givere M with o # 0 andH, # {0},
we let \*(0) denote the corresponding extremal parameter of (6). If additionally sypp(0f2 we let
u*(o) be the extremal solution of (6). Note thatif= 0 then (6) has no solution for any > 0, so we
use the convention*(c) = 0. On the other hand, if, = {0} we use the convention*(¢) = cc.

Theorem 1.6. If (o;) C M is a sequence such that L=t 0 then

lim " (07) = A*(00c)- (8)

In particular we find lim_o A\’ in the example wherg? C R2, 312 is subdivided in segments of
length ¢, with zero Dirichlet and Neumann conditions on alternate segments. The result states that
lim._o AI is the extremal parameter for the same nonlinear equation but with zero Dirichlet boundary
condition.

On the asymptotic behavior of the extremal solution, we have the following result:

Theorem 1.7. Let (0;) € M be sequence such thatipp¢;) C 942 for all i and g; X 00, Where
0so Z 0. Then

u*(0;) = u*(0x), Aasi— oo, 9)
in LP(£2) for 1 < p < n/(n — 1). Moreover, ifu*(0) is unbounded then

sl — o0
and ifu*(o.) € L*(S2) then

lim sup|u*(03)||, < oo.
In the latter case the convergene&(c;) — u*(0) takes place also idE.(£2) for anyk > 0.

This work is organized as follows. In Section 2 we give a proof of Theorem 1.3 and some examples of

the convergence; A 0s- IN Section 3 we collect some preliminary results that are needed later. Then
in Section 4 we prove Theorem 1.6 and in Section 5 we prove Theorem 1.7.

2. Asymptoticsfor alinear problem
2.1. A compactness result
In this section we give a proof of Theorem 1.3, using the results of [6].

Proof of Theorem 1.3. Fix (g;) a sequence of positive numbers such that- 0, and letL.%: be the
operator

1o {siA inR™\ £,
A in £2.
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Letg € C*°(R™), g >0in (2, ¢ =0inR™\ 2 and letv; denote the solution of

{ —L‘Sivil—k vi +ov;, =g INRY, (10)
v; € HH(R™).
The variational formulation of (10) is
/ (€ilgm\o + 10)Vui Vi + vipdr + /_vigp do; = / g dr (12)
R” Q Rn

for all p € HY(R") N L3(R™, 0;).

By Theorems 4.1 and 5.1 of [6] we have that there is a subsequenend a measure., € M
supported in2 such that;;, — ve In L?(R™) wherev,, = g = 0inR™\ 2 andv |, = vg Wherewg
is the solution of

—Avg+vg+ osoo =g in 12,
0 12
ﬂ—i—aoovc):o onof?2. (12)
ov

We mention here that if supp() C 9(?2 for all 7, then by [6, Lemma 6.2] we have supp{) C 9.
Leth € L3(12), letu; denote the solution of

aui (13)

ov

—Au; +u; +ou; =h in$2,
+ou; =0 onoaf?

andu., denote the solution of

(14)

0o

ov

—NUoo + Uso + Oooliog = b IN 12,
+ Oooloo = 0 onaf?.

Note that (13) implies that; is bounded inF7%(£2), so that for a further subsequence we can assume that
u; — win H1(£2) weakly. From now on we will just use the indéfor all subsequences. To conclude,
we only need to show that = u., whereu,, is the solution of (14). We start with the calsec L°°({2).
The general case can then be obtained by a density argument.

Let¢ € C§°(R™) and let us us€w; as a test function in the variational formulation of (13). Note that
v; is bounded, so thatw; € H(£2) and also note thatv; € L?(£2, o;). Thus we obtain

/. CVu; Vo, + v;Vu; VE + uv;¢ da + /_uivigdai = / hv;¢ dz. (15)
2 (9] 2

Now we need to extend; € H(2) to R*. We denote by~ : H1(2) — HY(R") a linear bounded
extension operator, with the property thHafw||p~rnr) < Cllw||r=(n). Set nowus; = Fu,;. We want
to usep = u;( in (11). Remark that since we assumec L°°(f2) we have that,; € L*°(f2) and so
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w; € L>®(R™). Thereforeu;¢ € H(R") and we also have;¢ € L*(R™, ;). Hence we obtain
R\ 02 0 Rn 0
= / gu;C dx. (16)
0
We now subtract (15) from (16):
ei/ Vu;V(u;¢) dx + / (u; Vv; — v; V)V de + / v;u;C dr — / viu;C dx
R\ 2 0 Rn ¢
- / (gti; — hvi)C d. (17)
0
We want now to pass to the limit as— co. For this observe that from (11) (with = v;) we find
/ (gian\Q + 1_(2)‘V?)i‘2 + UZ-Z dx + /_1)22 do; = / gu; dz. (18)
R™ 0 Q

This shows that;|, is bounded ini1(£2) and therefore converges weaklyAh'(£2) to vo, which is the
solution of (12). But also from (18) we find that

gi/ |V [2dz < C
R\ 2

with C independent of. We use this to estimate the first term on the left-hand side of (17):

12 1/2
gi/ Vu;V(u;¢)dr < 83/2 (52/ ]Vvi\zdx) (/ ‘V(uif)lzdx> -0
R™\ 02 R™\ 02 R™\ 02

asi — oo. S0, taking the limit ag — oo in (17) we arrive at

/ (uVvg — voVu)V{dx = / (gu — hvg)¢ dx. (29)
(9} (9}

We note that (19) is also satisfied if we replachby u,. This can be seen by using( in the variational
formulation of (14), then taking = u..( in the variational formulation of (12) and subtracting. Hence,
if we setu = u — uo,, We obtain

/Q (aVvo — voVa) V{ dr = /Q gu( dx (20)

for all ¢ € C§°(R™) and hence for alf € C*°(£2). Remark that; is bounded inZ>°(£2) and therefore
u € L>®(£2). Alsovg € L>(£2), so (20) is valid for all € H(£2). We take¢ = % in (20) and obtain

/ }VUOV(ﬁ)Z—vo‘Vﬁyzdm:/ gu? dz. (21)
02 2
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But takingy = % in the variational formulation of (12) we find
/ VoV (17)2 + voul dz + /_voﬂz dos = / g2 d. (22)
Q 9] Q
Combining (21) and (22) we obtain
/ g% + 20| V| + voii? dz + /_voaz dose = O.
Q )

Sinceg > 0 in {2 we conclude thali = 0, and therefore, = u,,. O
2.2. Some examples
There are many examples in the literature.

Example 1. This example includes the one mentioned in the introduction, in whidh the unit disk
in R?, 0402 is divided in segments of lengthand a zero Dirichlet and Neumann condition is applied on
alternate segments.

More generally, suppose thaf, I is a family of partitions o0 {2 that satisfies the following condi-
tions:

lim sup dist(z,I5) =0 (23)
e—0 zcon

(with this we want to capture the notion that the partition becomes finera®), and

there exisfpo > 0, v > 0 such that for aliy € I'; and all 0< p < po we have
Byw)N 5| _ (24)
’Bp(y) N a*Q‘ ~

(this condition says, roughly speaking, that the local proportiafi;cftays away from zero around points
of I'7). Set

oo if BN ¥ has positive capacity,
Ua(B) = .
0  otherwise.
Claim. Then
08 E UD! (25)

whereop(B) = oo if BN0S2 has positive capacity, and 0 otherwise, that;isis the measure that gives a
zero Dirichlet boundary condition. The point of this example is that there are no regularity requirements
on the partitiond 7, I5.
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Proof of (25). Fix someh € L*°(2) and letu. be the solution of

—Nu. +u. =h in {2,

zée =0 only, (26)
Ue

= I5.
3 0 onls

Since the partitiond’§, I'; satisfy (24) with constants independentpby Theorem 3.4.. is bounded
in C(£2) for somea € (0, 1). Hence, by taking a subsequence we can assume.that u uniformly
in £2. But then, by (23} = 0. Now let¢ € C?(£2) with (|3 = 0. By (26) we have

/ng(—AC—i-C)dx—i—/ang%ds:/Qthx

and taking the limit as — 0 we find thatu is the solution of

{—Au+u:h in {2,
u=20 onaf?.

Example2. There are some examples by Cioranescu and Murat [7], where the measures in question
have support insid€. We refer to their article for the detailed description of the results.

Example 3. This example is a consequence of the results of Damlamian for the Neumann sieve [11].
We mention it in connection with Example 1, to show what happens if the local propdrfigtne part
of 042 where we set;. = 0) goes to zero at a certain speed.
More concretely, suppose that a portdof the boundang (2 is contained in the hyperplanef{ = 0}
(we use the standard notatien= (2, z,) € R with 2/ € R" ! andz, € R), and that? ¢ R" =
{x, > 0}.
Let {7, I3} denote a family of partitions 0d(2 such that:

1) I'f N X is a periodic arrangement with peried’, Y = (0, 1)* 1, of setsO:. EachO: is assumed
to be, up to a translation, equal kg0, where® C R"1 is the reference set, artd > 0 is the
“size” of og, to be defined later as a function of

2) 02\ XY C I7.

Let h € L?(£2) and letu. be the solution of

—Au5 + u5 - h In Q!

us =0 only,
Oue

=0 onrl%s.
ov 2

Claim. Assume thai© (the reference set) is a bounded, open, smooth subsetof, » > 3, and
b. = £n=1/("=2) Then

ue — u in HY(2) weakly, (27)
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whereuw is the solution of

—ANu+u=~h inf2,

du c
E—FEU—O OnE,
u=20 onaf2\ X

andc > 0 is the capacity irR™ of O x {0}. We highlight here the boundary condition dfi:

ou ¢
E—FEU—O OnE.

This can be rephrased in terms of measures as well.

From the work in [11] one can also see thabif= o™ 1/("=2) in the caser > 3, then the limit
boundary condition ot is a zero Neumann condition.

Sketch of the proof of (27). Define

u: (7', ) if 2, >0,

—u.(2', —x,) ifxz, <O.

Ue (2, 1) = {

By [11, Theorem 1}i. — @ in V, whereV is the Hilbert spacéZ*(2) x H(£27), 2~ is the reflection
of £2 across {,, = 0}, andu solves

—Au+u=nh in2u-,
i=0 ondnU (3027 \ X, (28)
ou ou

Lot —E[ﬂ} onXx.

ov—  ouvt 4

Hered/dv~ andd/dvt are the normal derivatives a@fcoming from(2~ ands2, respectively (recall that
v points to the outside of?, s0d/dv = —9/9x,,), and 1] = a* — u~; @, u~ being the values of
on X when coming from2 and{2—, respectively.
But z is odd across, so the jump condition in (28) may be written as
ou ¢,
a + Eu = O on Z

3. Preliminaries
In this section we collect a number of preliminary results that are needed later. We dencadfilgd

element inM with o # 0.
Recall that we definedl, = H(£2) N L?(£2, o) which is a Hilbert space with the inner product

(u,v) :/ Vqu—dem—i—/_uvda.
2 7]
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The assumptiorr # 0 implies that there is a constafit > 0 (depending omr and {2) such that for all
peH,

/gpzdmg(](/ \Vgp\zdx—k/_apzda)
2 Q 9]

or equivalently, that the first eigenvalue efA + o|;, with the generalized Robin boundary condition
dp/0v + op = 0 0nds?, is positive:

2 r_ 2
pEH, Jo p?dx

> 0. (29)

Note that it can happen thaf, = {0}. In this case we adopt the convention (o) = co.
If 0 € M andXi(o) < oo, then the infimum in (29) is attained at some nonnegative, honzero function
p1 € H, which we call the first eigenfunction associatedrtdt satisfies the equation

{ —Ap1 + o1 = M(0)pr  In 82,

0
had +o0p1=0 onof?.
ov

We remark here that in many elliptic estimates in this and later sections, we will say that the constants
depend orv only through A1(o), meaning that these constants remain bounded as long(a} is
bounded away from zero.

3.1. Some elliptic estimates

The first result we mention here is 43° bound. Its proof is standard, and follows that of Lemma 7.3
of Hartman and Stampacchia [15].

Proposition 3.1. Letp > n/2. Then there exists a constatit> 0 depending only o2, n, p andA1(o)

such that for any solutiom of

%—Fauzo onaf?

{—Au—i—au:h in 2,
ov

with h € LP({2) we have
[tlloo < CIlA]lp-
The next result is also important (see [12]).

Lemma 3.2. Assume that € M has support o 2. Lety be theH-solution of

—Ax =1 in {2,
ox 4+ox=0 onas.
ov



290 J. Davila / A nonlinear elliptic equation with rapidly oscillating boundary conditions

Suppose thaf is the H1-solution of

A= in (2,
% +0(=0 o0nas,
ov

wherep € LP(§2), p > n. Then there exist§’ such that

H%H < Clgly. (30)

The constanC depends oi2, n, p and\1(o).

Remark 3.3. We mention that the assumption supp( 042 is not absolutely necessary. It is enough
that the support of is contained i {2 U K whereK is a compact smooth — 1 dimensional manifold
contained in(2.

Another observation is that in [12] the result is stated for a mixed boundary condition, but the proof
given there works also for a measurec M with supp¢) C 942.

Under some extra assumptions @it is possible to establish the Holder continuity of the solutions
(this is an adaptation of a result of Stampacchia [17]).

Theorem 3.4. Suppose is a solution of

—ANu=nh in £2,
u=0 onlt,

0
au +ou=g only,
ov

wherel, I is a partition ofd(2, h € LP(2), p > n/2,ando, g € LI(I3), ¢ > n — 1. We assume the
following “regularity” condition: o
there existgg > 0, 19 > 0such that for ally € I'; and all0 < p < pg we have

|Bp(y) N Fl|

ORLIES o

Then there exists € (0, 1)andC' > 0 such that

[ull oy < Clllulloe + 1Bl + llgllq.r2)-
The constants, C' depend only o2, n, p, g, |||, poandwvg.
3.2. Weak solutions of the linear problem

Throughout this section € M is not identically zero. We first introduce an analog for the function
0(z) = dist(z, 942) used in [4] for the Dirichlet boundary condition, and a definition of weak solution of

{—Au—i—au:h in 2,

d 32
a—u—{—au:O ono. (32)

v
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Definition 3.5.

(@) Lety =T,(1) (T,, was defined in (7)).
(b) We introducelL; = L(£2, x dz) and||hl|z = o [hlx-
(c) Leth € Ly. We say that. € L(12) is a weak solution of (32) if

/Q wp dar = /Q T, () da (33)

for anyp € C3°(12).

Remarks.

1) The functions{ = T,(y) € H, as in the previous definition play the role of the test functions
¢ € C?(2) with ¢|3 = 0in the case of a Dirichlet boundary condition (see [4]).

2) Observe also that anff*-solution is a weak solution.

3) Note that/,, |hT,(y)| dz < oo for h € Ly andy € C§°(£2).

Lemma3.6. Givenh € L} there exists a unique weak solutiare L(12) of (32), and
lullza < Al (34)
Moreover, ifh > 0thenwu > 0.

The proof is like the one of Lemma 1 in [4], where instead @f) = dist(z, 02) we usey.
If supp() C 042, then the estimate (34) can be improved using Lemma 3.2.

Lemma 3.7. Assumesuppg) C 0f2. Then givenl < p < n/(n — 1) there is a constanC > 0
depending only?2, n, p and \1(o) such that ifu is the weak solution df32) then

Jlly < ClAl s

Proof. We use a duality argument. Lgt denote the conjugate exponentrofthat is I/p + 1/p’ = 1)
and lety € C5°(£2) and¢ = T, (). Then from (33) we find

/ugodm:/ h¢ dx < ||h] 2
2 2 x

where the last inequality is a consequence of (30) (note that singe» & n/(n — 1) we have
p >n). O

¢
S < Clrllpallely.
X lloo

Remark. Again, we can relax the assumption on the suppod a$ in Remark 3.3.

Definition 3.8. Leth € L>1<. We say that, € L(£2) is a weak supersolution of (32), which we denote
by

{—Au+au>h in £2,

%—FauZO onaf?
ov
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if for any ¢ € C5°(f2) such thatl;(¢) > 0 we have

/ugpdx}/ hTy(p)dz.
Q Q

The two following versions of the strong maximum principle fafA with Robin boundary condition
are consequences of Lemma 3.2 (see [12]).

Theorem 3.9. Assumesuppg) C 9£2. Then there exists > 0 depending only o2 and A;(o) such that
if h € L} andu is a solution of(32) then

u(x) > c(/ghx) x(z) a.e.inf2.

Lemma 3.10. Assumesuppg) C 942 and suppose that is a supersolution of32) with h = 0. Then
eitheru = 0 or there existg: > 0 such that

u>cy a.e.ingl.
Finally, an important tool is the following result (see the case of zero Dirichlet condition in [4,3]).
Lemma 3.11 (Kato's inequality). Leth € L andu € L(£2) a weak solution of (32). Leb:R — R be

aC? concave function witl®’ € L> and®(0) = 0. Then

0D (u)
ov

—AP(u) + oP(u) = &' (u)h  in £2,
{ +o®P(u) >0 onadf?.
For completeness we give a proof in the appendix.
3.3. The nonlinear problem
In this section we consider the nonlinear problem
—Au+ou = Af(u) in (2,
{ % +ou=0 onof?. (35)

v

Definition 3.12. We say that, € L'(£2) is a weak solution of (35) if (u) € L}, and

/ngodx :)\/Qf(u)Ta(gp)dx

foranyy € Cg°(£2). B
We also say thall € L(12) is a weak supersolution of (35) f({U) L}( and

| Ueto> [ (O T (o) ds

for anyy € Cg°(42) such thatl},(¢) > 0.
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Lemma 3.13. Suppose thall is a weak supersolution gf35). Then(35) has a minimal solution
0<u<U.

The proof is analog to the case of zero Dirichlet boundary condition. See [4] for example.
The following theorem summarizes some of the properties of (35).

Theorem 3.14. Leto € M with o Z 0 and suppose thall, # {0} . Then

(i) There exist® < \* < oo such that Eq(35) has a weak solution fod < A < A* and has no
weak solution for\ > A*. \* is called the extremal parameter.

(i) We denote by:) the minimal solution of35), for 0 < A < A*. We have that,, is bounded
for A < \*, and hence is @/ *-solution. Moreover, the map € (0,\*) — u, is monotone
increasing and continuous in theé™ norm.

(i) The minimal solution:), is stable, that is, foD < A < A*

inf fQ |VSD|2 + fﬁ@z dU - )\fQ f/(U)\)QDZ >

0.
pEeH, Jo ¢

(iv) If o; € M, o; # 0fori = 1, 2let us denote byp*(o;) the extremal parameter fdB5) with o
replaced by;. Then, ifo1 < o2 we have

A (o1) < X(02).

For the rest of the properties we assume thappg) C 02.

(v) For A = X\*, (35) has a unigue weak solution* which coincides with the monotone limit
u* = IimA/A* uy. Moreover, forA = \* (35) has no strict supersolutions, that is,«ifis a
supersolution of35) for A = A* thenu = u*.

(vi) There exist€ depending only o2, f and\1(c) such that

A /Q fu)x < C.

(vii) The map\ € (0,\*] — sup, uy € [0, oc] is continuous.
(viii) The extremal solution satisfies

/ IVeol? + /_gpz do > )\*/ f(u*)? forall p € H,.
7 2 7

(ix) (Stability characterizes the minimal solution§uppose that € H,, is a weak solution of35)
for some\ > 0 and it satisfies

/ |Vg0|2—|—/_g02d0 > )\/ Flu)p? forall g ¢ H,. (36)
2 2 2

Thenu = u,.



294 J. Davila / A nonlinear elliptic equation with rapidly oscillating boundary conditions

Remarks.

1) Most of these results are adaptations of the analog statements for the Dirichlet boundary condition
using mainly Lemmas 3.13 and 3.14, and we refer to the literature [4,2,5]. The proof of (v), on
the other hand, requires a new result: a strong maximum principle with Robin boundary condition
which is given in Lemma 3.10. With it is possible to adapt the argument given by Martel [16] for
the case of zero Dirichlet boundary condition.

2) If o is not supported o2, but ono2U K with K a compact smooth — 1 dimensional manifold
contained inf2, then the conclusions of the theorem still hold.

3) Inthe general case we can always consider the monotoneulimaitlim, -+ uy. It can be shown
to exist pointwise, and it satisfies

/ u*p1dr < oo, / f(u*)p1dz < oo,
Q 2

whereg is the first eigenfunction associatedatoWe still can regard.* as a solution of (35) for

A = \* in the following sense. Recall the bounded linear oper#tarL?(2) — H, (defined in
(7). In Definition 3.5 and by Lemma 3.6 we have extenlegdLi< — LY(£2). But is easy to check
that||TU(h)||L%91 < C||h\|L391 where\|h||L%91 = [, |hlp1dz. SOT, can be extended as a bounded

linear mapTy, : L}, — L% whereL} = L({2,p1dz). Thenu* is a solution of (35) fo = \*

in the sense that*, f(u*) € L}Ol andT,(\* f(u*)) = u*. Is is also the minimal one among these
solutions. But for a general it is not known whether or not it is unique, or if there exists a strict
supersolution of (35) foh = A*.

3.4. Two preliminary lemmas

Lemma 3.15. Assume thafo;); C M is a sequence such that L4 Oso € M. ThenAi(o;) — A(0s0)-
In particular, if 0, #Z 0then\s(o;) stays away from zero farlarge.

Proof of Lemma 3.15. We use the notations; and )\ for the first eigenvalues associatedt@ndo,,,
and also we denote hy; andy, the first eigenfunctions associatedstcando .. We use the convention
thaty; = 0 whenevetH,,, = {0}, and recall thaty; satisfies

—Dp; +0ipi = N in L2,
0 (37)

ov

4+ oip0; =0 onof?2.

Step 1. If Ao = oo then); — oo.

Proof. Suppose not, so that for a subsequence we have C for some constant’. We normalize the
eigenfunctionsp; so that||y;||;2 = 1. Testing (37) withp; we see thab; is bounded ini71(£2), so we
extract a new subsequence such that~ ¢ in H(2) weakly. Note that|¢|| ;2 = 1.

Let h € L3(£2) and let¢; be the solution of

—OG+ G +oiG=h ing,
; 38
%—FJZQZ:O onof?. ( )
ov
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By assumption oéb; X 5 and since\1(os) = oo we have; — 0 in H(£2) weakly.
Now we multiply (37) by¢; and integrate by parts, multiply (38) by and integrate by parts, and take
the difference to obtain

/. Gpidr = / h; — XipiC; da.
Q Q

But¢; — 0 andy; — ¢ in HY(£2) weakly, so

/. hpdx = 0.
N

Sinceh € L?(£2) was arbitrary we conclude that= 0, but this is in contradiction withy|| ;2 = 1.
Step 2. If A, < oo then there exist§’ < oo such that\; < C for i large.

Proof. Sincel,, < oo we haveH,_ # {0}. Fix h € H,_ \ {0} and let ¢; be the solution of (38). By
the assumption; A 0o We have(; — (o in H1(£2) weakly, wherel,, is the solution of

0Co0 (39)

—— +05(=0 onof?2.

ov

Note that{, # 0. Indeed, sincé € H,_, testing (39) withh we find

/ V(YA + Cooh Oz + /_Coohdaoo - / W2 dz £ 0
(9} 2 2
and therefore,, cannot be zero. Hence

v < Jo IVGPde + [5¢F do; _ Jo(hGi — ¢7) da
o Jo ¢Fda Jo¢Fdx

because; is bounded inL?(£2) and [, (?dx — [, (% dx # 0.

<C

Step 3. If Ao < cothen); — M.

Proof. By Step 2); is bounded so for a subsequence we can assumeg;that\.

Let ; denote the first eigenfunction associatedrfpnormalized so thafy;||;. = 1. Theny; is
bounded inH1(2), so we take a new subsequence so that> ¢ in H(£2) weakly. Note thatp; > 0
for all 7, sop > 0, and||¢||;. = 1.

Leth € L?(£2), with [, h = 0if oo, = 0, and let, be a solution of

%4-0—00(:0 onaf?.

{—AC+UOOC:h in {2,
ov
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Observe that ib,, # 0 then( is uniquely defined, and otherwigeis defined up to constant. L&
denote the solution of

=AG+ G +oiGg=h+(¢ inf2,
{ % +0;(; =0 onof?. (40)
ov
Claim.
G — ¢ in HY() weakly (41)

Proof of Lemma 3.15 completed. Multiplying (40) by ¢;, integrating by parts and using (37) we find

/ AiiG + Gioi = / ho;i + Cp;
0 17

so that by letting — co we have

)\/QQOC:/tho. (42)

In the caser,, = 0, since we could replaagby ¢ + cin (42), we conclude that = 0 = A\1(0).
In the caser,, # 0, from (42) we deduce that satisfies

0 43
£+0w¢:0 onads?. (43)

{—Agp+aoo =Xp in{2,
ov

Sincep £ 0, p > 0, (43) implies thats = \1(0s0).
Proof of (41). By definition ofo; 2 o, we have(; — ¢ in HY(2) weakly, where is the solution of

A+ C+ol=h+(¢ ing,

0 ~
—C +05(=0 onag2.
ov

But —A( + 05, = h so that
“AC-O)+ (- +0u((—=¢) =0 ing,
d N
(EJHTOO)(C—C):O onds?

sothatt =¢. O
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Lemma 3.16. Assumer; EY 0 Whereo,, Z 0. By Lemma.15we have that\i(o;) is bounded away
from zero fori large. Lety € L?(£2) and¢; be the solution of

~ 44
%—FJZQZ:O on (2. ( )

{ NG+ oG =9 inf2,
ov

Then¢; — (o in H(£2) weakly where, is the solution of

0o 45
—C 4+ 050Co =0 on {2. (45)

{ Ao + 000 = ¢ INn 12,
ov

Proof. Since\i(o;) is bounded away from zero, we have thét|| ;;» < C for someC' independent of,
and therefore up to subsequerige~ ¢ in H(£2) weakly. We letv; denote the solution of

—Dv; + v + o =9+ in g,
ov; 46
sl +ov; =0 on{? (46)
ov
so that by definition; — v in H(£2) weakly tov,, which is the solution of
Do + Voo + OooVoo = @ + ¢ iN 12,
47

av—oo—i—aoovoozo onJ{?. (47)
ov

Then by (44) and (46) we have

v = Gill gr < 1|¢ = Gillz2 — 0

and this implies that,, = (. But then, by (47) we see thatsatisfies (45) and by uniqueness of the
solution of this problem we hawe= (,,. O

4. Convergence of the extremal parameter

Throughout this sectiono{); is a sequence it such thato; LY 0, and we use the notation
Af = N(04), Aoy = M(0c0)-

We divide the proof of Theorem 1.6 in two steps.
Step 1. If o; =Y 0so, then

limsupA; < A%

7
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Proof. If A%, = oo there is nothing to prove, so we assume tkigt < co. Suppose that the conclusion
is not true, and take a subsequence (which we denote the same) suth thak with A3 < A < oo.
Fix A" such that\*_ < )’ < X and for: large enough let; denote the minimal solution of

% o0 =0 ondf.

—Av; + ov; = N f(z)z) in £2,
{ (48)

Claim. There is a constant’ independent of such that
[vill =) < C.

Indeed fix\” € (N, \) and lety; be the minimal solution of (48) but with parametgf. Fore > 0
consider the concave functiah. defined by

5w ds
L=l i

Using Kato’s inequality (Lemma 3.11), a calculation as in [4] shows thatif &\ > )/, then
v < @e(ai) < Ce.

We fix thene so that (1-¢)\"” > X' for i large. Hence|v;[| 1) is bounded independently af(Note:

by (48) and since; is bounded in.>°(£2) we find thatVv; is bounded inL?(£2). This and the.> bound
for v; imply thatwv; is bounded inf1(£2).) So after taking a new subsequence we can assume; tha
in H(£2) weakly.

We claim thatv is a solution of

—Av+oov=Nf(v) Iinf2,
{ ov (49)

— 4+ 00 =0 onof?2.
ov

If this is true, then we have contradicted the maximality\gf in the caser,, # 0, and in the case
0o = 0 We arrive at a contradiction becauseatisfies a zero Neumann boundary condition, but the
right-hand side of (49) is strictly positive.

To show that is a solution of (49), considep; the solution of

(50)

ow;

{ —Dw; +w; +o;w; =N fv)+v in £,
ov

+ow; =0 onof?.

Then by hypothesig); — w,, in H(£2) weakly wherew,, solves

Woo | =0 onodf.

{ —DAWeo + Woo + TooWoo = N f(v) +v N (2,
ov
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But subtracting (48) from (50) we get:
lwi = vill gy < ClINF@) = N fi) + v = il o) — O.
Hence we must have=w. O
Step 2.
Iimiinf DD N

Proof. If the conclusion is not true, then there exists a subsequence (denoted the same) s\ich-that
A < A% . Fix X such thath < ) < A% and letu’ denote the minimal solution of

! (51)
ou +oou' =0 onodf.

{ =M + oot/ =N f(u) in g2,
ov

Thenu' € L*°(42). To arrive at a contradiction, we want to find a supersolution for the nonlinear problem
with measurer; and a parametex”, with A < \” < )\’ < A\*. Consider them;, the solution of

A 52
%_’_Uirvizo ondJn. 2

{ —DAv + v+ o =N f(u)+4  ing2,
ov

By definition ofg; A 0o We havev; — v, in H-weakly, wherev,, is the solution of

Voo

ov

{—Avoo + Voo + OoolVoo = N f(u) + 4/ in 2,

4 OoolVoo =0 onof?2.

But from here and (51) we deduce that = «’. Now considenw; the solution of

; 53
%Jrgiwi:o ondfn 3

{ —Aw; +w; + ojw; = Xf(vi) +wv; in £,
ov

and note the following:

—Dw; + opw; = X f(v3) + v; — w;
= X' f(wi) + (X = XN) f(0i) + X' (f(vi) — f(ws)) + vi — w;
> N fwi) + (X = N) FO0) + X' (f(vi) = fwi) +vi — ws. (54)

Since f(0) > 0, if we can show that

w; —v; — 0 uniforml (55)
y
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then we have shown that; is a supersolution for the problem

%%—Jiuzo onoaf?
ov

{ —Du+ou =N f(u) ing,
and this contradicts the fact th&} is the maximal parameter for this nonlinear problem.

Proof of (55). Subtracting (52) from (53) and using Proposition 3.1 we find that
|wi — villoe < CIIN f(u) +u = XN f(v;) — vin,

where we fix somer/2 < p < oo. The constanC' depends only o2, n andp (not on A1(o;)). But
v; — o' in HY(£2) weakly, andy; is bounded inL>°(?), therefore

[INf (') +u" =N fui) — Uin —0 asi—oo. O

5. Convergence of the extremal solution

Throughout this section we use the following notatios;){ is a sequence itM of measures with

support ind{?2 such thaw; EY 0. We assume that; Z 0 for eachi, and thatr, Z 0. This assumption
implies, by Lemma 3.15 that; (o;) stays away from zero. Therefore all of the estimates in Sections 3.1,
3.2 and 3.3 which depend on(o;), will hold uniformly in 4.

We write A} = X\*(0;), A5 = M (0), uf = u*(0;) andul, = u*(0s), and we lety; (i = 1,...,00)
denote the solution of

—Ay; =1 on{?2,
oX;

X +o;x; =0 o0onaf.
ov

(Note that since we assume thgthas support on the boundary, the tesfyy; does not appear in the
equation.)

5.1. Convergence ih”

Lemmab5.1. Assume that; — o, and thato, # 0. Then there exists a subsequengcandu € L(12)
such thatu), — win LP(22)for1 < p < n/(n — 1).

Proof. Note that since\1(o;) stays away from zero, by Theorem 3.14 property (vi) we have
X fade<c (56
2
which C independent of. Therefore, by Lemma 3.7 we have also

i, < €, (57)
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where 1< p < n/(n — 1), andC is independent of.

SinceAu} is bounded inLi.(£2) andu} is bounded in.(£2), we have that:} is bounded irng'Cl(Q).
So we can extract a subsequence (which we denote the same) sueh that: in L] (2) and a.e.,
where we fix 1< ¢ < n/(n — 1).

Lete > 0 and letU be an open neighborhood 8f2 in {2 such that|1;||, < e, whereq is the
conjugate exponent @f, that is, 1= 1/q + 1/¢’. Let {; denote the solution of

_AG =1 in 0,
%—kaig:o inof2.
ov
Then
/u; dm:/ u;(—Ag)dm:A;f/ Flu) G de < c’ S x;/ ()i (58)
U (] 0 Xilloo 0
But by Lemma 3.2

So, from (56), (58) and (59) we find that
/ u; dr < Ce
U
and by Fatou’s lemma we also have

/udxéCe.
U
Hence
Jui —uly= [ Jui—aldot [ Jui—ujde < [ Jup—uldo 20
O\U U O\U

and therefore

limsup||uj — ul|; < 2Ce.
)

Sincee was arbitrary we conclude that — w in L(£2). Finally, from this convergence ih'(£2) and
from (57) we conclude that; — win LP(£2) forany 1< p <n/(n—1). O

Proof of (9) in Theorem 1.7. By Lemma 5.1, we can extract a subsequence (which we denote the same)
such that,; — win LP(f2) and a.e., where we fix some<p < n/(n —1). Letp € C3°(£2), ¢ > 0 and
let ¢; be the solution of

—ACZZQO in £2,
%—FJZQZ:O onaf?.
ov
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By Lemma 3.16 we have that — ¢ in H1(£2) weakly, where is the solution of

A= in £,
% +0,,( =0 onof2.
ov

Note that sincep is smooth, we have thgt is bounded irCI’gC(Q) for anyk > 0, and thereforg; — ¢
in C{gc((}) for anyk > 0. In particular we have a.e. convergence. Takinas a test function in the weak
formulation of

—Dut = N f(u) in R,
Ol L Gur =0 ond®
ov

we find

/Quz‘apdx:)\f/gf(uf)gdm.

By passing to the limit as — oo and using Fatou’s lemma on the right-hand side we find

/ updr > )\Zo/ fw)Cdz.
Q Q
This shows that: is a weak supersolution of

{ —Du=N_f(w) in £,

% +o0sou=0 o0nof2.
ov

By Theorem 3.14 property (v), we conclude that= v}, and this finishes the proof of (9) in Theo-
reml.7. O

5.2. Asymptotic behavior sup, u*(\;)

In this section we prove the second part of Theorem 1.7, which we recall na; i§ unbounded
then

il oo — 00
and ifu’, € L°°(f2) then

lim supl|u*(03)]|, < o©.
Step 1. If * is unbounded then

lufll o — oo
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Proof. This is a consequence of the fact that

wlf =l inIP(R), 1<p< HL_l

Step 2. If u), € L*>(£2) then
lim supl|u*(03)]|, < o©.
Proof. Suppose not and consider a subsequence (denoted the same) such hgt stipo. We fix

now M = C1 + 2 < oo, where( is to be chosen later. Now, for each fixedecause of property (vii)
in Theorem 3.14 we can seleck0\; < A7 such that the minimal solutiow; of the problem

; 60
ou; +o;u; =0  onof? (60)

{ —Du; = A f(u;) i {2,

ov

satisfies

supu; = M. (61)
Q

Note that the sequencg is bounded, so up to a new subsequekgce» A

Claim.
u; — @ in HY(2) weakly (62)
wherew is the minimal solution of

—Ai=\f(7) ing,
ol (63)

— 4+ 0u =0 o0nof2.
ov

In particular A < A*_ andu < u,

Proof of Step 2 completed. Letv; be the solution of
ov; (64)

— +ov;, =0 onof?2.

{ —Nv; = N5 f (uly) in 82,
ov

We note here that by Proposition 3.1 we have

Uz‘gcl in Q,
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where(C depends on\:_, u’,, {2, n and\i(o;), which is bounded away from zero. At this point we
make the choice aof’;.

Recall that we assume; € L>°(f2), hence by Lemma 3.16 we have— v, in H(£2) weakly. But
subtracting (64) from (60) and using Proposition 3.1 we have

sgmi—waCWMfWJ—A&f@&»+M’

where we fix somez/2~< p < oo, andC is independent of. But \; f(u;) is bounded inl.*>°({2) and
converges pointwise tf(w) < A% f(ul,). Therefore

I(hif i) = N f (ule)) [, — 0 asi — oc.
Hence, fori large we have

M =supu; < 1+supy; <1+ C
¢’ ¢

which is impossible.

Proof of (62). From (60), (61) and the fact thag(o;) stays away from zero, we have thatis bounded
in H1(£2) and L>°(£2). Hence by taking a subsequence we can assumexthat u in H 1(£2) weakly,
a.e. and inLP(£2) strongly for 1< p < co. We also can assume that — A. Note thatu satisfies (63).
Indeed, takep € C§°(£2) and(; the solution of

—ACZ =@ in £2,

; 65
%—i—aifizo onof?2. (65)
ov

Then by Lemma 3.16 we have that— ¢ which is the solution
66
%4-0—00(:0 onaf?. (66)
ov
Hence, we can take the limit as— oo in
/ ujp = )\i/ J(w)G.
0 0
We also have
/ IV¢|? + /_gz dooo > X/ f'(@)¢? forall¢ € H,,, (67)
0 0 7}

which is obtained from the corresponding stability inequality«fpas follows: takep € C3°(£2), ¢; the
solution of (65) and; the solution of (66). We havg¢ € H,, and¢; — ¢ in H(£2) weakly. Therefore,
by property (iii) in Theorem 3.14 we have

[ vai+ [z [ it (68)
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Now, multiplying (65) by(; and integrating by parts we get

/Q’VCz‘\ZJF/ﬁCZ‘ZdUz‘ Z/QSOQ-

Since¢; — ¢ in H(£2) weakly, this equality shows that

/Q]VCi\er/ﬁCfdai—>/Q]VC]2+/§C2daOO.

Takingi — oo in (68) and using Fatou’s lemma on the right-hand side, we obtain (67)ifoa subset
of H,_, namely the ones that are solutions of (66) for sgme C3°(2). But this subset is dense in
H,_ and (67) follows.

By Theorem 3.14 property (i) we must hake< A%, and by property (ix) of the same theoremis
the minimal solution of (63). O

Appendix
Proof of Lemma3.11. Recall that we assume thais a weak solution of

—ANu+ou=~h in{2,
%—{—Juzo onof?,

ov

whereo € M andh € LY. Form > 0 leth,, = hif || <m, hy = —mif h < —m andh, = m if

h > m, and letu,, denote the1-solution of

—Au,y, + oy, = hy, N £,
Ou, (69)

— +ou, =0 onof?.
ov

Note thatu,, — uin L1(£2). Lety € C§°(£2) and suppose that the solutigrof

—A(+oC=¢ inf2,
70
% +0(=0 onof? (70)
ov
iS nonnegative.

Note that®'(u,,)¢ € H, becaused’ € L=, ¢ € H, andV(P'(u,)¢) € L3(£2). Using®' (u,,)¢ as a
test function in (69) we find that

| T (@ @n)Vien + @) V) o+ [ o = [ @)
(0] (0] (0]

But &’ < 0 becausep is concave, and (u)u < @(u) (this follows from the concavity off and
@(0) = 0). Hence

/Q V (B(un))VC de + /5 B(uy)C dor > /Q T ® (t)C di. (71)
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Note thatd(u,,) € H, becausb(u) < ||¥'||«|u| € L*(12, o). Usingd(u,,) in (70) we obtain

/Q V (@(u)) VC da + /5 B(u1y)C dor = /Q B(uym)p . (72)

Combining (71) and (72) we get

/ B(up) dr > / o ® (1) C .
(9} (9}
Now we letm — oo:
| 19m) = )leldr < oo, [ fm i — 0
and
/ o ® (1) A — / W (u)C do
Q Q
since we have convergence a.e. (at least for a subsequence) and
| ® (un)C| < |2 RIS € LH(92)

by the assumptioh € L}. O
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