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1. Introduction

1.1. Motivation

LetΩ ⊂ Rn, n � 2, be a bounded, smooth domain, and consider a partition {Γ1,Γ2} of the boundary
∂Ω, that isΓ1 ∪ Γ2 = ∂Ω andΓ1 ∩ Γ2 = ∅, with Γ1 �= ∅.

Consider the problem
−∆u = λf (u) in Ω,

u = 0 onΓ1,
∂u

∂ν
= 0 onΓ2,

(1)

whereν is the unit outward normal vector to∂Ω, λ is a positive parameter, andf : [0,∞) → [0,∞) is a
C1 nondecreasing, strictly convex function, withf (0)> 0 and∫ ∞

0

ds
f (s)

<∞. (2)

Typical examples aref (u) = eu andf (u) = (1 + u)p wherep > 1. This type of nonlinear problems
arises, for example, from a model of exothermic reaction, and was originally formulated on a disk inR2

with zero boundary condition. Barenblatt et al. [1] introduced a modification of the original model by
considering a mixed boundary condition as in (1).

The case of a zero Dirichlet condition has been well studied, see, for example, Fujita [13], Gel-
fand [14], Brezis et al. [4], Brezis [2], Martel [16], Brezis and Vázquez [5]. Some of the basic properties
described in these works still hold for (1): there is a valueλ∗ ∈ (0,∞) such that forλ < λ∗ problem (1)
has a solution, and forλ > λ∗ (1) has no solution. Forλ = λ∗ there is a unique solutionu∗ (see Sec-
tion 3.3 and also Proposition 1.5 below). We callλ∗ the extremal parameter associated toΓ1, Γ2, andu∗

the extremal solution. In the original model,λ is a constant depending on physical parameters, and the
relevance ofλ∗ is that a nonexplosive reaction is possible only ifλ � λ∗.

We consider now a family {Γ ε
1 ,Γ ε

2 } ε>0 of partitions of the boundary, that is,Γ ε
1 ,Γ ε

2 ⊂ ∂Ω, Γ ε
1 ∪Γ ε

2 =
∂Ω, Γ ε

1 ∩ Γ ε
2 = ∅, and we assume|Γ ε

1 | > 0 for all ε. Hereε is a positive index approaching zero, and
we denote byλ∗ε the corresponding extremal parameter. There are several ways in which we want this
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family to behave asε → 0, but the general idea is that the partitionΓ ε
1 , Γ ε

2 “becomes finer” asε → 0.
For example we can consider the case in whichΩ is the unit disk inR2, ∂Ω is subdivided in segments
of lengthε, and we impose homogeneous Dirichlet and Neumann conditions on alternate segments. In
this particular case, Barenblatt suggested to study the asymptotic behavior of the extremal parametersλ∗ε
asε→ 0. A numerical study is presented in [1].

The main goal in this work is to study the asymptotic behavior of the extremal parameters and solutions
of (1). More precisely, we show that the limit limε→0λ

∗
ε exists (at least for a sequenceεi → 0), and

we identify it as the extremal parameter of some limit problem. Similarly, we prove that the extremal
solutionsu∗ε converge in some sense, to the extremal solution of a limit problem.

1.2. Definitions and main results

When dealing with the nonlinear problem (1) it is important to know the asymptotic behavior of
solutions of a linear equation with the same boundary condition as in (1), namely

−∆uε + uε = h in Ω,

uε = 0 onΓ ε
1 ,

∂uε

∂ν
= 0 onΓ ε

2 ,

(3)

whereh ∈ L2(Ω).
It turns out that a convenient class of linear problems to consider, is

−∆u+ u+ σu = h in Ω,
∂u

∂ν
+ σu = 0 on∂Ω,

(4)

whereh ∈ L2(Ω) andσ belongs to a certain class of Borel measures. The main reference that we use
here for the linear problem (4) and questions on the asymptotic behavior of their solutions is Buttazzo et
al. [6]. Other references are [10,8,9].

Definition 1.1.

(a) M denotes the collection of Borel measures onRn with values into [0,∞] that vanish on Borel
sets of capacity zero and have support inΩ.

(b) Forσ ∈ M we setHσ = H1(Ω) ∩ L2(Ω,σ) which is a Hilbert space with the inner product

〈u,ϕ〉 =
∫

Ω
∇u∇ϕ+ uϕdx +

∫
Ω
ũϕ̃dσ,

whereũ andϕ̃ are quasi-continuous representatives ofu andϕ.
(c) We say thatu is anH1-solution of (4) ifu ∈ Hσ and∫

Ω
∇u∇ϕ+ uϕdx+

∫
Ω
ũϕ̃ dσ =

∫
Ω
hϕdx for all ϕ ∈ Hσ.
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Remarks.

1) We note here that the integrals with respect to the measureσ are well defined foru,ϕ ∈ Hσ

becauseσ vanishes on sets of capacity zero, and quasi-continuous representatives of an element in
H1(Ω) agree up to sets of capacity zero (see [6]). From now on we drop the “˜” in ũ, ϕ̃ and always
use quasi-continuous representatives in integrals with respect to a measureσ ∈ M.

2) Problem (4) has a unique solution, which is also the minimizer of∫
Ω
|∇u|2 + u2 dx+

∫
Ω
u2 dσ − 2

∫
Ω
hudx.

A trivial case which can occur is when for all Borel setsB, σ(B) = ∞ if B ∩ Ω has positive
capacity, andσ(B) = 0 otherwise. ThenHσ = {0}, and in this case 0 is the solution of (4) for
anyh.

3) A mixed boundary condition as in (3) can be obtained by taking

σε(B) =
{∞ if B ∩ Γ ε

1 has positive capacity,

0 otherwise

for all Borel setsB.
4) If supp(σ) ⊂ ∂Ω, then (4) can also be rewritten in the form

−∆u+ u = h in Ω,
∂u

∂ν
+ σu = 0 on∂Ω.

5) Here is an example in which the measures have support insideΩ. Consider a union of disjoint balls
T =

⋃
iBi , and letΩ̃ = Ω \T (this is usually called a perforated domain, and the balls are usually

taken in a periodic arrangement). Takingσ(B) = ∞ if B ∩ (T ∪ ∂Ω) has positive capacity, and
σ(B) = 0 otherwise, (4) can be written as{

−∆u+ u = h in Ω̃,

u = 0 on∂Ω̃.

We consider the following notion of convergence for measures inM.

Definition 1.2. If (σi) ⊂ M is a sequence of measures we writeσi
B
⇀ σ∞ whereσ∞ ∈ M if for all

h ∈ L2(Ω), the solutionsui of
−∆ui + ui + σiui = h in Ω,
∂ui

∂ν
+ σiui = 0 on∂Ω

(5)

satisfyui ⇀ u∞ in H1(Ω) weakly asi→ ∞, whereu∞ is the solution of
−∆u∞ + u∞ + σ∞u∞ = h in Ω,
∂u∞
∂ν

+ σ∞u∞ = 0 on∂Ω.
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Observe that we formulate this definition for the operator−∆+I instead of−∆, which would be more
natural for the nonlinear problem (1). The advantage of this formulation is that the solutionui of (5) is
bounded inH1(Ω) without any assumption onσi or h.

As an example, in the case in whichΩ is the unit disk inR2, ∂Ω is subdivided in segments of lengthε
and the boundary condition is zero Dirichlet and zero Neumann on alternate segments, the limit boundary
condition in the sense of Definition 1.2 is a zero Dirichlet condition. This is shown in Example 1 of
Section 2.2. That section contains also some other examples.

The following compactness theorem is a consequence of the results in [6].

Theorem 1.3. If (σi) ⊂ M is a sequence, then there is a subsequence(σij ) andσ∞ ∈ M such that

σij
B
⇀ σ∞. Moreover, ifsupp(σi) ⊂ ∂Ω for all i, thensupp(σ∞) ⊂ ∂Ω.

Next we consider the nonlinear problem
−∆u+ σu = λf (u) in Ω,
∂u

∂ν
+ σu = 0 on∂Ω,

(6)

whereσ ∈ M, σ �≡ 0. Recall thatf (u) > 0 and we are interested inλ > 0. If σ ≡ 0 then (6) has no
solution forλ > 0. On the other hand, the hypothesisσ �≡ 0 implies that for anyϕ ∈ L2(Ω) there is a
unique solutionζ ∈ Hσ of

−∆ζ + σζ = ϕ in Ω,
∂ζ

∂ν
+ σζ = 0 on∂Ω.

We use the notation

ζ = Tσ(ϕ) (7)

and this defines a bounded linear operatorTσ :L2(Ω) → Hσ.

Definition 1.4. Let σ ∈ M with σ �≡ 0. We say thatu ∈ L1(Ω) is a weak solution of (6) if∫
Ω f (u)χ<∞ whereχ = Tσ(1), and for allϕ ∈ C∞

0 (Ω) we have∫
Ω
uϕdx = λ

∫
Ω
f (u)Tσ(ϕ) dx.

Remark. In the case of the zero Dirichlet boundary condition, this is the same notion of weak solution
introduced by Brezis et al. [4]. In this case, the test functionsζ = Tσ(ϕ) belong toC2(Ω) and vanish
on the boundary in the usual sense. But for a generalσ ∈ M it is hard to describe the precise regularity
of ζ.

Proposition 1.5. Assumeσ ∈ M is not identically zero and thatHσ �= {0} . Then there exitsλ∗ ∈ (0,∞)
such that for0 < λ < λ∗ problem(6) has anH1-solution which is bounded, and forλ > λ∗ (6) has no
solution even in the weak sense of Definition1.4. If furthermoresupp(σ) ⊂ ∂Ω, then forλ = λ∗ (6) has
a unique weak solutionu∗ ∈ L1(Ω).

See Section 3 and specially Theorem 3.14 for more properties of (6).
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Important notation. In order to state the main results, for a givenσ ∈ M with σ �≡ 0 andHσ �= {0},
we letλ∗(σ) denote the corresponding extremal parameter of (6). If additionally supp(σ) ⊂ ∂Ω we let
u∗(σ) be the extremal solution of (6). Note that ifσ ≡ 0 then (6) has no solution for anyλ > 0, so we
use the conventionλ∗(σ) = 0. On the other hand, ifHσ = {0} we use the conventionλ∗(σ) = ∞.

Theorem 1.6. If (σi) ⊂ M is a sequence such thatσi
B
⇀ σ∞ then

lim
i
λ∗(σi) = λ∗(σ∞). (8)

In particular we find limε→0 λ
∗
ε in the example whereΩ ⊂ R2, ∂Ω is subdivided in segments of

length ε, with zero Dirichlet and Neumann conditions on alternate segments. The result states that
limε→0 λ

∗
ε is the extremal parameter for the same nonlinear equation but with zero Dirichlet boundary

condition.
On the asymptotic behavior of the extremal solution, we have the following result:

Theorem 1.7. Let (σi) ⊂ M be sequence such thatsupp(σi) ⊂ ∂Ω for all i and σi
B
⇀ σ∞, where

σ∞ �≡ 0. Then

u∗(σi) → u∗(σ∞), asi→ ∞, (9)

in Lp(Ω) for 1 � p < n/(n− 1). Moreover, ifu∗(σ∞) is unbounded then∥∥u∗i ∥∥∞ → ∞

and ifu∗(σ∞) ∈ L∞(Ω) then

lim sup
∥∥u∗(σi)

∥∥
∞ <∞.

In the latter case the convergenceu∗(σi) → u∗(σ∞) takes place also inCk
loc(Ω) for anyk � 0.

This work is organized as follows. In Section 2 we give a proof of Theorem 1.3 and some examples of

the convergenceσi
B
⇀ σ∞. In Section 3 we collect some preliminary results that are needed later. Then

in Section 4 we prove Theorem 1.6 and in Section 5 we prove Theorem 1.7.

2. Asymptotics for a linear problem

2.1. A compactness result

In this section we give a proof of Theorem 1.3, using the results of [6].

Proof of Theorem 1.3. Fix (εi) a sequence of positive numbers such thatεi → 0, and letLεi be the
operator

Lεi =
{
εi∆ in Rn \Ω,

∆ in Ω.
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Let g ∈ C∞(Rn), g > 0 inΩ, g = 0 in Rn \Ω and letvi denote the solution of

{−Lεivi + vi + σivi = g in Rn,

vi ∈ H1(Rn).
(10)

The variational formulation of (10) is∫
Rn

(εi1Rn\Ω + 1Ω)∇vi∇ϕ+ viϕdx+
∫

Ω
viϕdσi =

∫
Rn
gϕdx (11)

for all ϕ ∈ H1(Rn) ∩ L2(Rn,σi).
By Theorems 4.1 and 5.1 of [6] we have that there is a subsequenceσij and a measureσ∞ ∈ M

supported inΩ such thatvij → v∞ in L2(Rn) wherev∞ = g = 0 in Rn \ Ω andv∞|Ω = v0 wherev0

is the solution of
−∆v0 + v0 + σ∞v0 = g in Ω,
∂v0

∂ν
+ σ∞v0 = 0 on∂Ω.

(12)

We mention here that if supp(σi) ⊂ ∂Ω for all i, then by [6, Lemma 6.2] we have supp(σ∞) ⊂ ∂Ω.
Let h ∈ L2(Ω), let ui denote the solution of

−∆ui + ui + σiui = h in Ω,
∂ui

∂ν
+ σui = 0 on∂Ω

(13)

andu∞ denote the solution of
−∆u∞ + u∞ + σ∞u∞ = h in Ω,
∂u∞
∂ν

+ σ∞u∞ = 0 on∂Ω.
(14)

Note that (13) implies thatui is bounded inH1(Ω), so that for a further subsequence we can assume that
ui ⇀ u in H1(Ω) weakly. From now on we will just use the indexi for all subsequences. To conclude,
we only need to show thatu = u∞ whereu∞ is the solution of (14). We start with the caseh ∈ L∞(Ω).
The general case can then be obtained by a density argument.

Let ζ ∈ C∞
0 (Rn) and let us useζvi as a test function in the variational formulation of (13). Note that

vi is bounded, so thatζvi ∈ H1(Ω) and also note thatζvi ∈ L2(Ω,σi). Thus we obtain∫
Ω
ζ∇ui∇vi + vi∇ui∇ζ + uiviζ dx+

∫
Ω
uiviζ dσi =

∫
Ω
hviζ dx. (15)

Now we need to extendui ∈ H1(Ω) to Rn. We denote byE :H1(Ω) → H1(Rn) a linear bounded
extension operator, with the property that‖Ew‖L∞(Rn) � C‖w‖L∞(Ω). Set nowūi = Eui. We want
to useϕ = ūiζ in (11). Remark that since we assumeh ∈ L∞(Ω) we have thatui ∈ L∞(Ω) and so
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ūi ∈ L∞(Rn). Thereforēuiζ ∈ H1(Rn) and we also havēuiζ ∈ L2(Rn,σi). Hence we obtain

εi

∫
Rn\Ω

∇vi∇(ūiζ) dx+
∫

Ω
ζ∇vi∇ūi + ūi∇vi∇ζ dx+

∫
Rn
viūiζ dx+

∫
Ω
viūiζ dσi

=
∫

Ω
guiζ dx. (16)

We now subtract (15) from (16):

εi

∫
Rn\Ω

∇vi∇(ūiζ) dx+
∫

Ω
(ui∇vi − vi∇ui)∇ζ dx+

∫
Rn
viūiζ dx−

∫
Ω
viuiζ dx

=
∫

Ω
(gūi − hvi)ζ dx. (17)

We want now to pass to the limit asi→ ∞. For this observe that from (11) (withϕ = vi) we find∫
Rn

(εi1Rn\Ω + 1Ω)|∇vi|2 + v2
i dx+

∫
Ω
v2
i dσi =

∫
Ω
gvi dx. (18)

This shows thatvi|Ω is bounded inH1(Ω) and therefore converges weakly inH1(Ω) to v0, which is the
solution of (12). But also from (18) we find that

εi

∫
Rn\Ω

|∇vi|2 dx � C

with C independent ofi. We use this to estimate the first term on the left-hand side of (17):

εi

∫
Rn\Ω

∇vi∇(ūiζ) dx � ε
1/2
i

(
εi

∫
Rn\Ω

|∇vi|2 dx
)1/2( ∫

Rn\Ω

∣∣∇(ūiζ)
∣∣2 dx

)1/2

→ 0

asi→ ∞. So, taking the limit asi→ ∞ in (17) we arrive at∫
Ω

(u∇v0 − v0∇u)∇ζ dx =
∫

Ω
(gu − hv0)ζ dx. (19)

We note that (19) is also satisfied if we replaceu by u∞. This can be seen by usingv0ζ in the variational
formulation of (14), then takingϕ = u∞ζ in the variational formulation of (12) and subtracting. Hence,
if we setũ = u− u∞, we obtain∫

Ω

(
ũ∇v0 − v0∇ũ

)
∇ζ dx =

∫
Ω
gũζ dx (20)

for all ζ ∈ C∞
0 (Rn) and hence for allζ ∈ C∞(Ω). Remark thatui is bounded inL∞(Ω) and therefore

ũ ∈ L∞(Ω). Also v0 ∈ L∞(Ω), so (20) is valid for allζ ∈ H1(Ω). We takeζ = ũ in (20) and obtain∫
Ω

1
2
∇v0∇

(
ũ
)2 − v0

∣∣∇ũ∣∣2 dx =
∫

Ω
gũ2 dx. (21)
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But takingϕ = ũ2 in the variational formulation of (12) we find∫
Ω
∇v0∇

(
ũ
)2 + v0ũ

2 dx+
∫

Ω
v0ũ

2 dσ∞ =
∫

Ω
gũ2 dx. (22)

Combining (21) and (22) we obtain∫
Ω
gũ2 + 2v0

∣∣∇ũ∣∣2 + v0ũ
2 dx+

∫
Ω
v0ũ

2 dσ∞ = 0.

Sinceg > 0 inΩ we conclude that̃u = 0, and thereforeu = u∞. �

2.2. Some examples

There are many examples in the literature.

Example 1. This example includes the one mentioned in the introduction, in whichΩ is the unit disk
in R2, ∂Ω is divided in segments of lengthε and a zero Dirichlet and Neumann condition is applied on
alternate segments.

More generally, suppose thatΓ ε
1 , Γ ε

2 is a family of partitions of∂Ω that satisfies the following condi-
tions:

lim
ε→0

sup
x∈∂Ω

dist
(
x,Γ ε

1

)
= 0 (23)

(with this we want to capture the notion that the partition becomes finer asε→ 0), and


there existρ0 > 0, ν0 > 0 such that for ally ∈ Γ ε

1 and all 0< ρ < ρ0 we have

|Bρ(y) ∩ Γ ε
1 |

|Bρ(y) ∩ ∂Ω| � ν0
(24)

(this condition says, roughly speaking, that the local proportion ofΓ ε
1 stays away from zero around points

of Γ ε
1 ). Set

σε(B) =
{∞ if B ∩ Γ ε

1 has positive capacity,

0 otherwise.

Claim. Then

σε
B
⇀ σD, (25)

whereσD(B) = ∞ if B∩∂Ω has positive capacity, and 0 otherwise, that isσD is the measure that gives a
zero Dirichlet boundary condition. The point of this example is that there are no regularity requirements
on the partitionsΓ ε

1 , Γ ε
2 .
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Proof of (25). Fix someh ∈ L∞(Ω) and letuε be the solution of
−∆uε + uε = h in Ω,

uε = 0 onΓ ε
1 ,

∂uε

∂ν
= 0 onΓ ε

2 .

(26)

Since the partitionsΓ ε
1 , Γ ε

2 satisfy (24) with constants independent ofε, by Theorem 3.4uε is bounded
in Cα(Ω) for someα ∈ (0, 1). Hence, by taking a subsequence we can assume thatuε → u uniformly
in Ω. But then, by (23)u|∂Ω = 0. Now letζ ∈ C2(Ω) with ζ|∂Ω = 0. By (26) we have∫

Ω
uε(−∆ζ + ζ) dx+

∫
∂Ω
uε

∂ζ

∂ν
ds =

∫
Ω
hζ dx

and taking the limit asε→ 0 we find thatu is the solution of{−∆u+ u = h in Ω,

u = 0 on∂Ω.

Example 2. There are some examples by Cioranescu and Murat [7], where the measures in question
have support insideΩ. We refer to their article for the detailed description of the results.

Example 3. This example is a consequence of the results of Damlamian for the Neumann sieve [11].
We mention it in connection with Example 1, to show what happens if the local proportionΓ ε

1 (the part
of ∂Ω where we setuε = 0) goes to zero at a certain speed.

More concretely, suppose that a portionΣ of the boundary∂Ω is contained in the hyperplane {xn = 0}
(we use the standard notationx = (x′,xn) ∈ Rn with x′ ∈ Rn−1 andxn ∈ R), and thatΩ ⊂ Rn

+ =
{xn > 0}.

Let {Γ ε
1 ,Γ ε

2 } denote a family of partitions of∂Ω such that:

1) Γ ε
1 ∩Σ is a periodic arrangement with periodεY , Y = (0, 1)n−1, of setsOi

ε. EachOi
ε is assumed

to be, up to a translation, equal tobεO, whereO ⊂ Rn−1 is the reference set, andbε > 0 is the
“size” of Oi

ε, to be defined later as a function ofε.
2) ∂Ω \Σ ⊂ Γ ε

1 .

Let h ∈ L2(Ω) and letuε be the solution of
−∆uε + uε = h in Ω,

uε = 0 onΓ ε
1 ,

∂uε

∂ν
= 0 onΓ ε

2 .

Claim. Assume thatO (the reference set) is a bounded, open, smooth subset ofRn−1, n � 3, and
bε = ε(n−1)/(n−2). Then

uε ⇀ u inH1(Ω) weakly, (27)
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whereu is the solution of
−∆u+ u = h in Ω,
∂u

∂ν
+
c

2
u = 0 onΣ,

u = 0 on∂Ω \Σ

andc > 0 is the capacity inRn of O × {0}. We highlight here the boundary condition onΣ:

∂u

∂ν
+
c

2
u = 0 onΣ.

This can be rephrased in terms of measures as well.

From the work in [11] one can also see that ifbε = o(ε(n−1)/(n−2)) in the casen � 3, then the limit
boundary condition onΣ is a zero Neumann condition.

Sketch of the proof of (27). Define

ũε

(
x′,xn

)
=

{
uε(x′,xn) if xn > 0,

−uε(x′,−xn) if xn < 0.

By [11, Theorem 1]̃uε ⇀ ũ in V , whereV is the Hilbert spaceH1(Ω) ×H1(Ω−),Ω− is the reflection
of Ω across {xn = 0}, and ũ solves

−∆ũ+ ũ = h̃ in Ω ∪Ω−,

ũ = 0 on∂Ω ∪
(
∂Ω−)

\Σ,
∂ũ

∂ν−
=

∂ũ

∂ν+
= − c

4

[
ũ
]

onΣ.

(28)

Here∂/∂ν− and∂/∂ν+ are the normal derivatives of̃u coming fromΩ− andΩ, respectively (recall that
ν points to the outside ofΩ, so∂/∂ν = −∂/∂xn), and [̃u] = ũ+ − ũ−; ũ+, ũ− being the values of̃u
onΣ when coming fromΩ andΩ−, respectively.

But ũ is odd acrossΣ, so the jump condition in (28) may be written as

∂ũ

∂ν
+
c

2
ũ+ = 0 onΣ.

3. Preliminaries

In this section we collect a number of preliminary results that are needed later. We denote byσ a fixed
element inM with σ �≡ 0.

Recall that we definedHσ = H1(Ω) ∩ L2(Ω,σ) which is a Hilbert space with the inner product

〈u,v〉σ =
∫

Ω
∇u∇v + uv dx+

∫
Ω
uv dσ.
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The assumptionσ �≡ 0 implies that there is a constantC > 0 (depending onσ andΩ) such that for all
ϕ ∈ Hσ∫

Ω
ϕ2 dx � C

( ∫
Ω
|∇ϕ|2 dx+

∫
Ω
ϕ2 dσ

)
or equivalently, that the first eigenvalue of−∆ + σ|Ω , with the generalized Robin boundary condition
∂ϕ/∂ν + σϕ = 0 on∂Ω, is positive:

λ1(σ) = inf
ϕ∈Hσ

∫
Ω |∇ϕ|2 dx+

∫
Ω ϕ

2 dσ∫
Ω ϕ

2 dx
> 0. (29)

Note that it can happen thatHσ = {0}. In this case we adopt the conventionλ1(σ) = ∞.
If σ ∈ M andλ1(σ) <∞, then the infimum in (29) is attained at some nonnegative, nonzero function

ϕ1 ∈ Hσ which we call the first eigenfunction associated toσ. It satisfies the equation
−∆ϕ1 + σϕ1 = λ1(σ)ϕ1 in Ω,
∂ϕ1

∂ν
+ σϕ1 = 0 on∂Ω.

We remark here that in many elliptic estimates in this and later sections, we will say that the constants
depend onσ only throughλ1(σ), meaning that these constants remain bounded as long asλ1(σ) is
bounded away from zero.

3.1. Some elliptic estimates

The first result we mention here is anL∞ bound. Its proof is standard, and follows that of Lemma 7.3
of Hartman and Stampacchia [15].

Proposition 3.1. Letp > n/2. Then there exists a constantC > 0 depending only onΩ, n, p andλ1(σ)
such that for any solutionu of

−∆u+ σu = h in Ω,
∂u

∂ν
+ σu = 0 on∂Ω

with h ∈ Lp(Ω) we have

‖u‖∞ � C‖h‖p.

The next result is also important (see [12]).

Lemma 3.2. Assume thatσ ∈ M has support on∂Ω. Letχ be theH1-solution of
−∆χ = 1 in Ω,
∂χ

∂ν
+ σχ = 0 on∂Ω.
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Suppose thatζ is theH1-solution of
−∆ζ = ϕ in Ω,
∂ζ

∂ν
+ σζ = 0 on∂Ω,

whereϕ ∈ Lp(Ω), p > n. Then there existsC such that∥∥∥∥ ζχ
∥∥∥∥
∞

� C‖ϕ‖p. (30)

The constantC depends onΩ, n, p andλ1(σ).

Remark 3.3. We mention that the assumption supp(σ) ⊂ ∂Ω is not absolutely necessary. It is enough
that the support ofσ is contained in∂Ω ∪K whereK is a compact smoothn− 1 dimensional manifold
contained inΩ.

Another observation is that in [12] the result is stated for a mixed boundary condition, but the proof
given there works also for a measureσ ∈ M with supp(σ) ⊂ ∂Ω.

Under some extra assumptions onσ it is possible to establish the Hölder continuity of the solutions
(this is an adaptation of a result of Stampacchia [17]).

Theorem 3.4. Supposeu is a solution of
−∆u = h in Ω,

u = 0 onΓ1,
∂u

∂ν
+ σu = g onΓ2,

whereΓ1, Γ2 is a partition of∂Ω, h ∈ Lp(Ω), p > n/2, andσ,g ∈ Lq(Γ2), q > n− 1. We assume the
following “regularity” condition:

there existsρ0 > 0, ν0 > 0 such that for ally ∈ Γ1 and all 0< ρ < ρ0 we have

|Bρ(y) ∩ Γ1|
|Bρ(y) ∩ ∂Ω| � ν0. (31)

Then there existsα ∈ (0, 1)andC > 0 such that

‖u‖Cα(Ω) � C
(
‖u‖∞ + ‖h‖p + ‖g‖q,Γ2

)
.

The constantsα, C depend only onΩ, n, p, q, ‖σ‖q,Γ2, ρ0 andν0.

3.2. Weak solutions of the linear problem

Throughout this sectionσ ∈ M is not identically zero. We first introduce an analog for the function
δ(x) = dist(x,∂Ω) used in [4] for the Dirichlet boundary condition, and a definition of weak solution of

−∆u+ σu = h in Ω,
∂u

∂ν
+ σu = 0 on∂Ω.

(32)
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Definition 3.5.

(a) Letχ = Tσ(1) (Tσ was defined in (7)).
(b) We introduceL1

χ = L1(Ω,χdx) and‖h‖L1
χ

=
∫
Ω |h|χ.

(c) Leth ∈ L1
χ. We say thatu ∈ L1(Ω) is a weak solution of (32) if∫

Ω
uϕdx =

∫
Ω
hTσ(ϕ) dx (33)

for anyϕ ∈ C∞
0 (Ω).

Remarks.

1) The functionsζ = Tσ(ϕ) ∈ Hσ as in the previous definition play the role of the test functions
ζ ∈ C2(Ω) with ζ|∂Ω = 0 in the case of a Dirichlet boundary condition (see [4]).

2) Observe also that anyH1-solution is a weak solution.
3) Note that

∫
Ω |hTσ(ϕ)|dx <∞ for h ∈ L1

χ andϕ ∈ C∞
0 (Ω).

Lemma 3.6. Givenh ∈ L1
χ there exists a unique weak solutionu ∈ L1(Ω) of (32), and

‖u‖L1 � ‖h‖L1
χ
. (34)

Moreover, ifh � 0 thenu � 0.

The proof is like the one of Lemma 1 in [4], where instead ofδ(x) = dist(x,∂Ω) we useχ.
If supp(σ) ⊂ ∂Ω, then the estimate (34) can be improved using Lemma 3.2.

Lemma 3.7. Assumesupp(σ) ⊂ ∂Ω. Then given1 � p < n/(n− 1) there is a constantC > 0
depending onlyΩ, n, p andλ1(σ) such that ifu is the weak solution of(32) then

‖u‖p � C‖h‖L1
χ
.

Proof. We use a duality argument. Letp′ denote the conjugate exponent ofp (that is 1/p + 1/p′ = 1)
and letϕ ∈ C∞

0 (Ω) andζ = Tσ(ϕ). Then from (33) we find∫
Ω
uϕdx =

∫
Ω
hζ dx � ‖h‖L1

χ

∥∥∥∥ ζχ
∥∥∥∥
∞

� C‖h‖L1
χ
‖ϕ‖p′ ,

where the last inequality is a consequence of (30) (note that since 1� p < n/(n− 1) we have
p′ > n). �

Remark. Again, we can relax the assumption on the support ofσ as in Remark 3.3.

Definition 3.8. Let h ∈ L1
χ. We say thatu ∈ L1(Ω) is a weak supersolution of (32), which we denote

by 
−∆u+ σu � h in Ω,
∂u

∂ν
+ σu � 0 on∂Ω
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if for any ϕ ∈ C∞
0 (Ω) such thatTσ(ϕ) � 0 we have∫

Ω
uϕdx �

∫
Ω
hTσ(ϕ) dx.

The two following versions of the strong maximum principle for−∆ with Robin boundary condition
are consequences of Lemma 3.2 (see [12]).

Theorem 3.9. Assumesupp(σ) ⊂ ∂Ω. Then there existsc > 0 depending only onΩ andλ1(σ) such that
if h ∈ L1

χ andu is a solution of(32) then

u(x) � c

( ∫
Ω
hχ

)
χ(x) a.e. inΩ.

Lemma 3.10. Assumesupp(σ) ⊂ ∂Ω and suppose thatu is a supersolution of(32) with h = 0. Then
eitheru ≡ 0 or there existsc > 0 such that

u � cχ a.e. inΩ.

Finally, an important tool is the following result (see the case of zero Dirichlet condition in [4,3]).

Lemma 3.11 (Kato’s inequality). Leth ∈ L1
σ andu ∈ L1(Ω) a weak solution of (32). LetΦ : R → R be

aC2 concave function withΦ′ ∈ L∞ andΦ(0) = 0. Then
−∆Φ(u) + σΦ(u) � Φ′(u)h in Ω,
∂Φ(u)

∂ν
+ σΦ(u) � 0 on∂Ω.

For completeness we give a proof in the appendix.

3.3. The nonlinear problem

In this section we consider the nonlinear problem
−∆u+ σu = λf (u) in Ω,
∂u

∂ν
+ σu = 0 on∂Ω.

(35)

Definition 3.12. We say thatu ∈ L1(Ω) is a weak solution of (35) iff (u) ∈ L1
χ and∫

Ω
uϕdx = λ

∫
Ω
f (u)Tσ(ϕ) dx

for anyϕ ∈ C∞
0 (Ω).

We also say thatU ∈ L1(Ω) is a weak supersolution of (35) iff (U) ∈ L1
χ and∫

Ω
Uϕdx �

∫
Ω
f (U)Tσ(ϕ) dx

for anyϕ ∈ C∞
0 (Ω) such thatTσ(ϕ) � 0.
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Lemma 3.13. Suppose thatU is a weak supersolution of(35). Then (35) has a minimal solution
0 � u � U .

The proof is analog to the case of zero Dirichlet boundary condition. See [4] for example.
The following theorem summarizes some of the properties of (35).

Theorem 3.14. Letσ ∈ M with σ �≡ 0 and suppose thatHσ �= {0} . Then:

(i) There exists0 < λ∗ < ∞ such that Eq.(35) has a weak solution for0 < λ < λ∗ and has no
weak solution forλ > λ∗. λ∗ is called the extremal parameter.

(ii) We denote byuλ the minimal solution of(35), for 0 < λ < λ∗. We have thatuλ is bounded
for λ < λ∗, and hence is aH1-solution. Moreover, the mapλ ∈ (0,λ∗) → uλ is monotone
increasing and continuous in theL∞ norm.

(iii) The minimal solutionuλ is stable, that is, for0< λ < λ∗

inf
ϕ∈Hσ

∫
Ω |∇ϕ|2 +

∫
Ω ϕ

2 dσ − λ
∫
Ω f

′(uλ)ϕ2∫
Ω ϕ

2 > 0.

(iv) If σi ∈ M, σi �≡ 0 for i = 1, 2 let us denote byλ∗(σi) the extremal parameter for(35) with σ
replaced byσi. Then, ifσ1 � σ2 we have

λ∗(σ1) � λ∗(σ2).

For the rest of the properties we assume thatsupp(σ) ⊂ ∂Ω.

(v) For λ = λ∗, (35) has a unique weak solutionu∗ which coincides with the monotone limit
u∗ = limλ↗λ∗ uλ. Moreover, forλ = λ∗ (35) has no strict supersolutions, that is, ifu is a
supersolution of(35) for λ = λ∗ thenu = u∗.

(vi) There existsC depending only onΩ, f andλ1(σ) such that

λ∗
∫

Ω
f
(
u∗

)
χ � C.

(vii) The mapλ ∈ (0,λ∗] → supΩ uλ ∈ [0,∞] is continuous.
(viii) The extremal solution satisfies∫

Ω
|∇ϕ|2 +

∫
Ω
ϕ2 dσ � λ∗

∫
Ω
f ′

(
u∗

)
ϕ2 for all ϕ ∈ Hσ.

(ix) (Stability characterizes the minimal solutions). Suppose thatu ∈ Hσ is a weak solution of(35)
for someλ > 0 and it satisfies∫

Ω
|∇ϕ|2 +

∫
Ω
ϕ2 dσ � λ

∫
Ω
f ′(u)ϕ2 for all ϕ ∈ Hσ. (36)

Thenu = uλ.
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Remarks.

1) Most of these results are adaptations of the analog statements for the Dirichlet boundary condition
using mainly Lemmas 3.13 and 3.14, and we refer to the literature [4,2,5]. The proof of (v), on
the other hand, requires a new result: a strong maximum principle with Robin boundary condition
which is given in Lemma 3.10. With it is possible to adapt the argument given by Martel [16] for
the case of zero Dirichlet boundary condition.

2) If σ is not supported on∂Ω, but on∂Ω∪K withK a compact smoothn−1 dimensional manifold
contained inΩ, then the conclusions of the theorem still hold.

3) In the general case we can always consider the monotone limitu∗ = limλ↗λ∗ uλ. It can be shown
to exist pointwise, and it satisfies∫

Ω
u∗ϕ1 dx <∞,

∫
Ω
f
(
u∗

)
ϕ1 dx <∞,

whereϕ1 is the first eigenfunction associated toσ. We still can regardu∗ as a solution of (35) for
λ = λ∗ in the following sense. Recall the bounded linear operatorTσ :L2(Ω) → Hσ (defined in
(7)). In Definition 3.5 and by Lemma 3.6 we have extendedTσ :L1

χ → L1(Ω). But is easy to check
that‖Tσ(h)‖L1

ϕ1
� C‖h‖L1

ϕ1
where‖h‖L1

ϕ1
=

∫
Ω |h|ϕ1 dx. SoTσ can be extended as a bounded

linear mapTσ :L1
ϕ1

→ L1
ϕ1

whereL1
ϕ1

= L1(Ω,ϕ1 dx). Thenu∗ is a solution of (35) forλ = λ∗

in the sense thatu∗, f (u∗) ∈ L1
ϕ1

andTσ(λ∗f (u∗)) = u∗. Is is also the minimal one among these
solutions. But for a generalσ it is not known whether or not it is unique, or if there exists a strict
supersolution of (35) forλ = λ∗.

3.4. Two preliminary lemmas

Lemma 3.15. Assume that(σi)i ⊂ M is a sequence such thatσi
B
⇀ σ∞ ∈ M. Thenλ1(σi) → λ1(σ∞).

In particular, if σ∞ �≡ 0 thenλ1(σi) stays away from zero fori large.

Proof of Lemma 3.15. We use the notationsλi andλ∞ for the first eigenvalues associated toσi andσ∞,
and also we denote byϕi andϕ∞ the first eigenfunctions associated toσi andσ∞. We use the convention
thatϕi = 0 wheneverHσi = {0}, and recall thatϕi satisfies

−∆ϕi + σiϕi = λiϕi in Ω,
∂ϕi

∂ν
+ σiϕi = 0 on∂Ω.

(37)

Step 1. If λ∞ = ∞ thenλi → ∞.

Proof. Suppose not, so that for a subsequence we haveλi � C for some constantC. We normalize the
eigenfunctionsϕi so that‖ϕi‖L2 = 1. Testing (37) withϕi we see thatϕi is bounded inH1(Ω), so we
extract a new subsequence such thatϕi ⇀ ϕ in H1(Ω) weakly. Note that‖ϕ‖L2 = 1.

Let h ∈ L2(Ω) and letζi be the solution of
−∆ζi + ζi + σiζi = h in Ω,
∂ζi
∂ν

+ σiζi = 0 on∂Ω.
(38)
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By assumption ofσi
B
⇀ σ∞ and sinceλ1(σ∞) = ∞ we haveζi ⇀ 0 inH1(Ω) weakly.

Now we multiply (37) byζi and integrate by parts, multiply (38) byϕi and integrate by parts, and take
the difference to obtain∫

Ω
ζiϕi dx =

∫
Ω
hϕi − λiϕiζi dx.

But ζi ⇀ 0 andϕi ⇀ ϕ inH1(Ω) weakly, so∫
Ω
hϕdx = 0.

Sinceh ∈ L2(Ω) was arbitrary we conclude thatϕ = 0, but this is in contradiction with‖ϕ‖L2 = 1.

Step 2. If λ∞ <∞ then there existsC <∞ such thatλi � C for i large.

Proof. Sinceλ∞ < ∞ we haveHσ∞ �= {0}. Fix h ∈ Hσ∞ \ {0} and let ζi be the solution of (38). By

the assumptionσi
B
⇀ σ∞ we haveζi ⇀ ζ∞ inH1(Ω) weakly, whereζ∞ is the solution of

−∆ζ∞ + ζ∞ + σ∞ζ∞ = h in Ω,
∂ζ∞
∂ν

+ σ∞ζ∞ = 0 on∂Ω.
(39)

Note thatζ∞ �= 0. Indeed, sinceh ∈ Hσ∞ , testing (39) withh we find∫
Ω
∇ζ∞∇h+ ζ∞hdx+

∫
Ω
ζ∞hdσ∞ =

∫
Ω
h2 dx �= 0

and thereforeζ∞ cannot be zero. Hence

λi �
∫
Ω |∇ζi|2 dx+

∫
Ω ζ

2
i dσi∫

Ω ζ
2
i dx

=
∫
Ω(hζi − ζ2

i ) dx∫
Ω ζ

2
i dx

� C

becauseζi is bounded inL2(Ω) and
∫
Ω ζ

2
i dx→

∫
Ω ζ

2
∞ dx �= 0.

Step 3. If λ∞ <∞ thenλi → λ∞.

Proof. By Step 2λi is bounded so for a subsequence we can assume thatλi → λ.
Let ϕi denote the first eigenfunction associated toσi, normalized so that‖ϕi‖L2 = 1. Thenϕi is

bounded inH1(Ω), so we take a new subsequence so thatϕi ⇀ ϕ in H1(Ω) weakly. Note thatϕi � 0
for all i, soϕ � 0, and‖ϕ‖L2 = 1.

Let h ∈ L2(Ω), with
∫
Ω h = 0 if σ∞ ≡ 0, and letζ be a solution of

−∆ζ + σ∞ζ = h in Ω,
∂ζ

∂ν
+ σ∞ζ = 0 on∂Ω.
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Observe that ifσ∞ �≡ 0 thenζ is uniquely defined, and otherwiseζ is defined up to constant. Letζi
denote the solution of

−∆ζi + ζi + σiζi = h+ ζ in Ω,
∂ζi
∂ν

+ σiζi = 0 on∂Ω.
(40)

Claim.

ζi ⇀ ζ in H1(Ω) weakly. (41)

Proof of Lemma 3.15 completed. Multiplying (40) byϕi, integrating by parts and using (37) we find

∫
Ω
λiϕiζi + ζiϕi =

∫
Ω
hϕi + ζϕi

so that by lettingi→ ∞ we have

λ

∫
Ω
ϕζ =

∫
Ω
hϕ. (42)

In the caseσ∞ ≡ 0, since we could replaceζ by ζ + c in (42), we conclude thatλ = 0 = λ1(σ∞).
In the caseσ∞ �≡ 0, from (42) we deduce thatϕ satisfies


−∆ϕ+ σ∞ = λϕ in Ω,
∂ϕ

∂ν
+ σ∞ϕ = 0 on∂Ω.

(43)

Sinceϕ �≡ 0,ϕ � 0, (43) implies thatλ = λ1(σ∞).

Proof of (41). By definition ofσi
B
⇀ σ∞ we haveζi ⇀ ζ̃ in H1(Ω) weakly, wherẽζ is the solution of


−∆ζ̃ + ζ̃ + σ∞ζ̃ = h+ ζ in Ω,

∂ζ̃

∂ν
+ σ∞ζ̃ = 0 on∂Ω.

But−∆ζ + σ∞ζ = h so that


−∆

(
ζ̃ − ζ

)
+

(
ζ̃ − ζ

)
+ σ∞

(
ζ̃ − ζ

)
= 0 inΩ,(

∂

∂ν
+ σ∞

)(
ζ̃ − ζ

)
= 0 on∂Ω

so thatζ = ζ̃. �
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Lemma 3.16. Assumeσi
B
⇀ σ∞ whereσ∞ �≡ 0. By Lemma3.15we have thatλ1(σi) is bounded away

from zero fori large. Letϕ ∈ L2(Ω) andζi be the solution of


−∆ζi + σiζi = ϕ in Ω,
∂ζi
∂ν

+ σiζi = 0 onΩ.
(44)

Thenζi ⇀ ζ∞ inH1(Ω) weakly whereζ∞ is the solution of


−∆ζ∞ + σ∞ζ∞ = ϕ in Ω,
∂ζ∞
∂ν

+ σ∞ζ∞ = 0 onΩ.
(45)

Proof. Sinceλ1(σi) is bounded away from zero, we have that‖ζi‖H1 � C for someC independent ofi,
and therefore up to subsequenceζi ⇀ ζ inH1(Ω) weakly. We letvi denote the solution of


−∆vi + vi + σivi = ϕ+ ζ in Ω,
∂vi
∂ν

+ σivi = 0 onΩ
(46)

so that by definitionvi ⇀ v in H1(Ω) weakly tov∞ which is the solution of


−∆v∞ + v∞ + σ∞v∞ = ϕ+ ζ in Ω,
∂v∞
∂ν

+ σ∞v∞ = 0 onΩ.
(47)

Then by (44) and (46) we have

‖vi − ζi‖H1 � ‖ζ − ζi‖L2 → 0

and this implies thatv∞ = ζ. But then, by (47) we see thatζ satisfies (45) and by uniqueness of the
solution of this problem we haveζ = ζ∞. �

4. Convergence of the extremal parameter

Throughout this section (σi)i is a sequence inM such thatσi
B
⇀ σ∞, and we use the notation

λ∗i = λ∗(σi), λ∗∞ = λ∗(σ∞).
We divide the proof of Theorem 1.6 in two steps.

Step 1. If σi
B
⇀ σ∞, then

lim sup
i

λ∗i � λ∗∞.
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Proof. If λ∗∞ = ∞ there is nothing to prove, so we assume thatλ∗∞ < ∞. Suppose that the conclusion
is not true, and take a subsequence (which we denote the same) such thatλ∗i → λ with λ∗∞ < λ � ∞.
Fix λ′ such thatλ∗∞ < λ′ < λ and fori large enough letvi denote the minimal solution of

−∆vi + σivi = λ′ f (vi) in Ω,
∂vi
∂ν

+ σivi = 0 on∂Ω.
(48)

Claim. There is a constantC independent ofi such that

‖vi‖L∞(Ω) � C.

Indeed fixλ′′ ∈ (λ′,λ) and letṽi be the minimal solution of (48) but with parameterλ′′. For ε > 0
consider the concave functionΦε defined by

∫ Φε(u)

0

ds
f (s)

= (1− ε)
∫ u

0

ds
f (s)

.

Using Kato’s inequality (Lemma 3.11), a calculation as in [4] shows that if (1− ε)λ′′ � λ′, then

vi � Φε
(
ṽi

)
� Cε.

We fix thenε so that (1−ε)λ′′ � λ′ for i large. Hence‖vi‖H1(Ω) is bounded independently ofi. (Note:
by (48) and sincevi is bounded inL∞(Ω) we find that∇vi is bounded inL2(Ω). This and theL∞ bound
for vi imply thatvi is bounded inH1(Ω).) So after taking a new subsequence we can assume thatvi ⇀ v
inH1(Ω) weakly.

We claim thatv is a solution of
−∆v + σ∞v = λ′f (v) in Ω,
∂v

∂ν
+ σ∞v = 0 on∂Ω.

(49)

If this is true, then we have contradicted the maximality ofλ∗∞ in the caseσ∞ �≡ 0, and in the case
σ∞ = 0 we arrive at a contradiction becausev satisfies a zero Neumann boundary condition, but the
right-hand side of (49) is strictly positive.

To show thatv is a solution of (49), considerwi the solution of
−∆wi + wi + σiwi = λ′ f (v) + v in Ω,
∂wi

∂ν
+ σiwi = 0 on∂Ω.

(50)

Then by hypothesiswi ⇀ w∞ in H1(Ω) weakly wherew∞ solves
−∆w∞ + w∞ + σ∞w∞ = λ′f (v) + v in Ω,
∂w∞
∂ν

+ σ∞w∞ = 0 on∂Ω.
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But subtracting (48) from (50) we get:

‖wi − vi‖H1(Ω) � C
∥∥λ′f (v) − λ′f (vi) + v − vi

∥∥
L2(Ω) → 0.

Hence we must havev = w. �

Step 2.

lim inf
i

λ∗i � λ∗∞.

Proof. If the conclusion is not true, then there exists a subsequence (denoted the same) such thatλ∗i →
λ < λ∗∞. Fix λ′ such thatλ < λ′ < λ∗∞ and letu′ denote the minimal solution of

−∆u′ + σ∞u′ = λ′f
(
u′

)
in Ω,

∂u′

∂ν
+ σ∞u′ = 0 on∂Ω.

(51)

Thenu′ ∈ L∞(Ω). To arrive at a contradiction, we want to find a supersolution for the nonlinear problem
with measureσi and a parameterλ′′, with λ < λ′′ < λ′ < λ∗. Consider thenvi the solution of

−∆vi + vi + σivi = λ′ f
(
u′

)
+ u′ in Ω,

∂vi
∂ν

+ σivi = 0 on∂Ω.
(52)

By definition ofσi
B
⇀ σ∞ we havevi ⇀ v∞ in H1-weakly, wherev∞ is the solution of

−∆v∞ + v∞ + σ∞v∞ = λ′f
(
u′

)
+ u′ in Ω,

∂v∞
∂ν

+ σ∞v∞ = 0 on∂Ω.

But from here and (51) we deduce thatv∞ = u′. Now considerwi the solution of
−∆wi + wi + σiwi = λ′f (vi) + vi in Ω,
∂wi

∂ν
+ σiwi = 0 on∂Ω

(53)

and note the following:

−∆wi + σiwi = λ′f (vi) + vi − wi

= λ′′f (wi) +
(
λ′ − λ′′

)
f (vi) + λ′′

(
f (vi) − f (wi)

)
+ vi − wi

� λ′′f (wi) +
(
λ′ − λ′′

)
f (0) + λ′′

(
f (vi) − f (wi)

)
+ vi − wi. (54)

Sincef (0)> 0, if we can show that

wi − vi → 0 uniformly (55)
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then we have shown thatwi is a supersolution for the problem
−∆u+ σiu = λ′′f (u) in Ω,
∂u

∂ν
+ σiu = 0 on∂Ω

and this contradicts the fact thatλ∗i is the maximal parameter for this nonlinear problem.

Proof of (55). Subtracting (52) from (53) and using Proposition 3.1 we find that

‖wi − vi‖∞ � C
∥∥λ′f(

u′
)
+ u′ − λ′f (vi) − vi

∥∥
p,

where we fix somen/2 < p < ∞. The constantC depends only onΩ, n andp (not onλ1(σi)). But
vi ⇀ u′ inH1(Ω) weakly, andvi is bounded inL∞(Ω), therefore∥∥λ′f(

u′
)
+ u′ − λ′f (vi) − vi

∥∥
p → 0 asi→ ∞. �

5. Convergence of the extremal solution

Throughout this section we use the following notation: (σi)i is a sequence inM of measures with

support in∂Ω such thatσi
B
⇀ σ∞. We assume thatσi �≡ 0 for eachi, and thatσ∞ �≡ 0. This assumption

implies, by Lemma 3.15 thatλ1(σi) stays away from zero. Therefore all of the estimates in Sections 3.1,
3.2 and 3.3 which depend onλ1(σi), will hold uniformly in i.

We writeλ∗i = λ∗(σi), λ∗∞ = λ∗(σ∞), u∗i = u∗(σi) andu∗∞ = u∗(σ∞), and we letχi (i = 1, . . . ,∞)
denote the solution of

−∆χi = 1 onΩ,
∂χi

∂ν
+ σiχi = 0 on∂Ω.

(Note that since we assume thatσi has support on the boundary, the termσiχi does not appear in the
equation.)

5.1. Convergence inLp

Lemma 5.1. Assume thatσi ⇀ σ∞ and thatσ∞ �≡ 0. Then there exists a subsequenceij andu ∈ L1(Ω)
such thatu∗ij → u in Lp(Ω) for 1 � p < n/(n − 1).

Proof. Note that sinceλ1(σi) stays away from zero, by Theorem 3.14 property (vi) we have

λ∗i

∫
Ω
f (u∗i )χi dx � C (56)

whichC independent ofi. Therefore, by Lemma 3.7 we have also∥∥u∗i ∥∥p � C, (57)
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where 1� p < n/(n− 1), andC is independent ofi.
Since∆u∗i is bounded inL1

loc(Ω) andu∗i is bounded inL1(Ω), we have thatu∗i is bounded inW 1,1
loc (Ω).

So we can extract a subsequence (which we denote the same) such thatu∗i → u in Lq
loc(Ω) and a.e.,

where we fix 1< q < n/(n− 1).
Let ε > 0 and letU be an open neighborhood of∂Ω in Ω such that‖1U‖q′ < ε, whereq′ is the

conjugate exponent ofq, that is, 1= 1/q + 1/q′. Let ζi denote the solution of
−∆ζi = 1U in Ω,
∂ζi
∂ν

+ σiζi = 0 in ∂Ω.

Then∫
U
u∗i dx =

∫
Ω
u∗i (−∆ζi) dx = λ∗i

∫
Ω
f
(
u∗i

)
ζi dx � C

∥∥∥∥ ζiχi

∥∥∥∥
∞
λ∗i

∫
Ω
f
(
u∗i

)
χi. (58)

But by Lemma 3.2∥∥∥∥ ζiχi

∥∥∥∥
∞

� C‖1U‖q′ � Cε. (59)

So, from (56), (58) and (59) we find that∫
U
u∗i dx � Cε

and by Fatou’s lemma we also have∫
U
udx � Cε.

Hence∥∥u∗i − u∥∥
1 =

∫
Ω\U

∣∣u∗i − u∣∣ dx+
∫

U

∣∣u∗i − u∣∣ dx �
∫

Ω\U

∣∣u∗i − u∣∣ dx+ 2Cε

and therefore

lim sup
i

∥∥u∗i − u∥∥
1 � 2Cε.

Sinceε was arbitrary we conclude thatu∗i → u in L1(Ω). Finally, from this convergence inL1(Ω) and
from (57) we conclude thatu∗i → u in Lp(Ω) for any 1� p < n/(n− 1). �

Proof of (9) in Theorem 1.7. By Lemma 5.1, we can extract a subsequence (which we denote the same)
such thatu∗i → u in Lp(Ω) and a.e., where we fix some 1� p < n/(n−1). Letϕ ∈ C∞

0 (Ω), ϕ � 0 and
let ζi be the solution of

−∆ζi = ϕ in Ω,
∂ζi
∂ν

+ σiζi = 0 on∂Ω.
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By Lemma 3.16 we have thatζi ⇀ ζ inH1(Ω) weakly, whereζ is the solution of
−∆ζ = ϕ in Ω,
∂ζ

∂ν
+ σ∞ζ = 0 on∂Ω.

Note that sinceϕ is smooth, we have thatζi is bounded inCk
loc(Ω) for anyk � 0, and thereforeζi → ζ

in Ck
loc(Ω) for anyk � 0. In particular we have a.e. convergence. Takingζi as a test function in the weak

formulation of
−∆u∗i = λ∗i f

(
u∗i

)
in Ω,

∂u∗i
∂ν

+ σiu
∗
i = 0 on∂Ω

we find∫
Ω
u∗iϕdx = λ∗i

∫
Ω
f
(
u∗i

)
ζi dx.

By passing to the limit asi→ ∞ and using Fatou’s lemma on the right-hand side we find∫
Ω
uϕdx � λ∗∞

∫
Ω
f (u)ζ dx.

This shows thatu is a weak supersolution of
−∆u = λ∗∞f (u) in Ω,
∂u

∂ν
+ σ∞u = 0 on∂Ω.

By Theorem 3.14 property (v), we conclude thatu = u∗∞ and this finishes the proof of (9) in Theo-
rem 1.7. �

5.2. Asymptotic behavior ofsupΩ u
∗(λi)

In this section we prove the second part of Theorem 1.7, which we recall now: ifu∗∞ is unbounded
then∥∥u∗i ∥∥∞ → ∞

and ifu∗∞ ∈ L∞(Ω) then

lim sup
∥∥u∗(σi)

∥∥
∞ <∞.

Step 1. If u∗ is unbounded then∥∥u∗i ∥∥∞ → ∞.
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Proof. This is a consequence of the fact that

u∗i → u∗∞ in Lp(Ω), 1 � p <
n

n− 1
.

Step 2. If u∗∞ ∈ L∞(Ω) then

lim sup
∥∥u∗(σi)

∥∥
∞ <∞.

Proof. Suppose not and consider a subsequence (denoted the same) such that supΩ u
∗
i ↗ ∞. We fix

nowM = C1 + 2 < ∞, whereC1 is to be chosen later. Now, for each fixedi because of property (vii)
in Theorem 3.14 we can select 0< λi � λ∗i such that the minimal solutionui of the problem

−∆ui = λif (ui) in Ω,
∂ui

∂ν
+ σiui = 0 on∂Ω

(60)

satisfies

sup
Ω
ui = M. (61)

Note that the sequenceλi is bounded, so up to a new subsequenceλi → λ̃.

Claim.

ui ⇀ ũ in H1(Ω) weakly, (62)

whereũ is the minimal solution of
−∆ũ = λ̃f

(
ũ
)

in Ω,
∂ũ

∂ν
+ σ∞ũ = 0 on∂Ω.

(63)

In particular λ̃ � λ∗∞ and ũ � u∗∞.

Proof of Step 2 completed. Let vi be the solution of


−∆vi = λ∗∞f

(
u∗∞

)
in Ω,

∂vi
∂ν

+ σivi = 0 on∂Ω.
(64)

We note here that by Proposition 3.1 we have

vi � C1 in Ω,
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whereC1 depends onλ∗∞, u∗∞, Ω, n andλ1(σi), which is bounded away from zero. At this point we
make the choice ofC1.

Recall that we assumeu∗∞ ∈ L∞(Ω), hence by Lemma 3.16 we havevi ⇀ u∗∞ inH1(Ω) weakly. But
subtracting (64) from (60) and using Proposition 3.1 we have

sup
Ω
ui − vi � C

∥∥(
λif (ui) − λ∗∞f

(
u∗∞

))+∥∥
p,

where we fix somen/2 < p < ∞, andC is independent ofi. But λif (ui) is bounded inL∞(Ω) and
converges pointwise tõλf (ũ) � λ∗∞f (u∗∞). Therefore∥∥(

λif (ui) − λ∗∞f
(
u∗∞

))+∥∥
p → 0 asi→ ∞.

Hence, fori large we have

M = sup
Ω
ui � 1 + sup

Ω
vi � 1 + C1

which is impossible.

Proof of (62). From (60), (61) and the fact thatλ1(σi) stays away from zero, we have thatui is bounded
in H1(Ω) andL∞(Ω). Hence by taking a subsequence we can assume thatui ⇀ ũ in H1(Ω) weakly,
a.e. and inLp(Ω) strongly for 1� p < ∞. We also can assume thatλi → λ̃. Note thatũ satisfies (63).
Indeed, takeϕ ∈ C∞

0 (Ω) andζi the solution of
−∆ζi = ϕ in Ω,
∂ζi
∂ν

+ σiζi = 0 on∂Ω.
(65)

Then by Lemma 3.16 we have thatζi ⇀ ζ which is the solution
−∆ζ = ϕ in Ω,
∂ζ

∂ν
+ σ∞ζ = 0 on∂Ω.

(66)

Hence, we can take the limit asi→ ∞ in∫
Ω
uiϕ = λi

∫
Ω
f (ui)ζi.

We also have∫
Ω
|∇ζ|2 +

∫
Ω
ζ2 dσ∞ � λ̃

∫
Ω
f ′

(
ũ
)
ζ2 for all ζ ∈ Hσ∞ (67)

which is obtained from the corresponding stability inequality forui as follows: takeϕ ∈ C∞
0 (Ω), ζi the

solution of (65) andζ the solution of (66). We haveζi ∈ Hσi andζi ⇀ ζ in H1(Ω) weakly. Therefore,
by property (iii) in Theorem 3.14 we have∫

Ω
|∇ζi|2 +

∫
Ω
ζ2
i dσi � λi

∫
Ω
f ′(ui)ζ

2
i . (68)
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Now, multiplying (65) byζi and integrating by parts we get∫
Ω
|∇ζi|2 +

∫
Ω
ζ2
i dσi =

∫
Ω
ϕζi.

Sinceζi ⇀ ζ in H1(Ω) weakly, this equality shows that∫
Ω
|∇ζi|2 +

∫
Ω
ζ2
i dσi →

∫
Ω
|∇ζ|2 +

∫
Ω
ζ2 dσ∞.

Taking i → ∞ in (68) and using Fatou’s lemma on the right-hand side, we obtain (67) forζ in a subset
of Hσ∞ , namely the ones that are solutions of (66) for someϕ ∈ C∞

0 (Ω). But this subset is dense in
Hσ∞ and (67) follows.

By Theorem 3.14 property (i) we must haveλ̃ � λ∗∞, and by property (ix) of the same theorem̃u is
the minimal solution of (63). �

Appendix

Proof of Lemma 3.11. Recall that we assume thatu is a weak solution of
−∆u+ σu = h in Ω,
∂u

∂ν
+ σu = 0 on∂Ω,

whereσ ∈ M andh ∈ L1
χ. Form > 0 lethm = h if |h| � m, hm = −m if h < −m andhm = m if

h > m, and letum denote theH1-solution of
−∆um + σum = hm in Ω,
∂um

∂ν
+ σum = 0 on∂Ω.

(69)

Note thatum → u in L1(Ω). Letϕ ∈ C∞
0 (Ω) and suppose that the solutionζ of

−∆ζ + σζ = ϕ in Ω,
∂ζ

∂ν
+ σζ = 0 on∂Ω

(70)

is nonnegative.
Note thatΦ′(um)ζ ∈ Hσ becauseΦ′ ∈ L∞, ζ ∈ Hσ and∇(Φ′(um)ζ) ∈ L2(Ω). UsingΦ′(um)ζ as a

test function in (69) we find that∫
Ω
∇um

(
Φ′′(um)∇umζ + Φ′(um)∇ζ

)
dx+

∫
Ω
Φ′(um)umζ dσ =

∫
Ω
hmΦ

′(um)ζ dx.

But Φ′′ � 0 becauseΦ is concave, andΦ′(u)u � Φ(u) (this follows from the concavity ofΦ and
Φ(0) = 0). Hence∫

Ω
∇

(
Φ(um)

)
∇ζ dx+

∫
Ω
Φ(um)ζ dσ �

∫
Ω
hmΦ

′(um)ζ dx. (71)
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Note thatΦ(um) ∈ Hσ becauseΦ(u) � ‖Φ′‖∞|u| ∈ L2(Ω,σ). UsingΦ(um) in (70) we obtain∫
Ω
∇

(
Φ(um)

)
∇ζ dx+

∫
Ω
Φ(um)ζ dσ =

∫
Ω
Φ(um)ϕdx. (72)

Combining (71) and (72) we get∫
Ω
Φ(um)ϕdx �

∫
Ω
hmΦ

′(um)ζ dx.

Now we letm→ ∞:∫
Ω

∣∣Φ(um) − Φ(u)
∣∣|ϕ|dx � ‖ϕ‖∞

∥∥Φ′∥∥
∞

∫
Ω
|um − u|dx→ 0

and ∫
Ω
hmΦ

′(um)ζ dx→
∫

Ω
hΦ′(u)ζ dx

since we have convergence a.e. (at least for a subsequence) and∣∣hmΦ
′(um)ζ

∣∣ �
∥∥Φ′∥∥

∞|h|ζ ∈ L1(Ω)

by the assumptionh ∈ L1
χ. �
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