
DISCRETE AND CONTINUOUS doi:10.3934/dcds.2010.28.975
DYNAMICAL SYSTEMS
Volume 28, Number 3, November 2010 pp. 975–1006

THE JACOBI-TODA SYSTEM AND FOLIATED INTERFACES

Manuel del Pino and Michal Kowalczyk
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Abstract. Let (M, g̃) be an N-dimensional smooth (compact or noncompact)
Riemannian manifold. We introduce the elliptic Jacobi-Toda system on (M, g̃).
We review various recent results on its role in the construction of solutions with
multiple interfaces of the Allen-Cahn equation on compact manifolds and entire
space, as well as multiple-front traveling waves for its parabolic counterpart.

1. Introduction. In the gradient theory of phase transitions by Allen-Cahn [1],
two phases of a material, +1 and −1 coexist in a region Ω ⊂ RN separated by an
(N − 1)-dimensional interface. The phase is idealized as a smooth ε-regularization
of the discrete function, which is selected as a critical point of the energy

Jε(u) =

∫

Ω

ε

2
|∇u|2 +

1

4ε
(1 − u2)2,

where ε > 0 is a small parameter. While any function with values ±1 minimizes
exactly the second term, the presence of the gradient term conveys a balance in
which the interface is selected asymptotically as stationary for perimeter (namely a
generalized minimal surface). The mathematical problem is that of finding critical
points of Jε in H1(Ω), namely solutions uε of the Allen-Cahn equation

ε2∆u+ u− u3 = 0, in Ω, ∂νu = 0 on ∂Ω. (1.1)

with the property that

uε → χΛ − χΩ\Λ in L1
loc(Ω). (1.2)

where Λ is an open subset of Ω with Γ = ∂Λ∩Ω having minimal perimeter. Modica
and Mortola proved that this is precisely the situation (after passing to a subse-
quence) for a family of local minimizers uε with supε>0 Jε(uε) < +∞

Moreover,

Jε(uε) →
2

3

√
2HN−1(Γ). (1.3)
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The formal reason why this asymptotic behavior for the energy holds, is that at
main order the asymptotic behavior of uε is governed near the interface Γ by

uε(x) ≈ w(z/ε) (1.4)

where z is a choice of normal coordinate to Γ and w is the unique solution of the
ordinary differential equation

w′′ + w − w3 = 0, w(0) = 0, w(±∞) = ±1, (1.5)

namely

w(ζ) := tanh(ζ/
√

2). (1.6)

Kohn and Sternberg [29] built local minimizers with this property in the two-
dimensional case: Associated to a straight line segment Γ0 contained in Ω which
locally minimizes length among all curves nearby with endpoints lying on ∂Ω, they
find a local minimizer uε of Jε with asymptotic interface given by this segment
and property (1.3). Kowalczyk [31] considered a segment perpendicular to the
boundary, not necessarily minimizing, but non-degenerate and found a solution with
the above features. In [49] Pacard and Ritoré considered the Allen-Cahn equation
on a compact Riemannian manifold and established that, associated to a minimal
hypersurface, non-degenerate in the sense that its Jacobi operator is non-singular,
a solution with a single interface exists.

In this paper we review some recent results on solutions to the Allen-Cahn equa-
tion that exhibit multiple interfaces. The prototype of the phenomena we deal with
is the existence of a solution uε of (1.1) for N = 2, such that

Jε(uε) → m
2

3

√
2H1(Γ). (1.7)

for each given m ≥ 1, which exhibit the transition behavior (1.4) along m close,
nearly parallel copies of a critical segment. As proven in [15], such a solution indeed
exists for instance associated to the shorter axis of an ellipse. A notable feature
of these solutions is that their equilibrium location is governed by the well-known
integrable Toda System.

On a compact manifold equilibrium of multiple interfaces is governed by the
Jacobi-Toda system as found in [21]. This type of system also arises in building entire
solutions to the Allen-Cahn equation in Euclidean space, and in the construction of
traveling waves to the associated parabolic flow. Next we will introduce this system,
and then discuss various results of this type.

2. The Toda and Jacobi-Toda systems.

2.1. The Jacobi operator. Let (M, g̃) be a compact or noncompact N -
dimensional Riemannian manifold and K be a minimal (N − 1)-dimensional em-
bedded submanifold of M. The Jacobi operator J of K, corresponds to the second
variation of N -volume along normal perturbations of K inside M: given any smooth
small function v on K, let us consider the manifold K(v), the normal graph on K
of the function v, namely the image of K by the map p ∈ K 7→ expp

(

v(p)νK(p)
)

.
If H(v) denotes the mean curvature of K(v), defined as the arithmetic mean of
the principal curvatures, then the linear operator J is the differential of the map
v 7→ nH(v) at v = 0. More explicitly, it can be shown that

Jψ = ∆Kψ + |AK|2ψ + Ricg̃(νK, νK)ψ, (2.1)
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where ∆K is the Laplace-Beltrami operator on K, |AK|2 denotes the norm of the
second fundamental form of K, Ricg̃ is the Ricci tensor of M and νK is a unit normal
to K.

The minimal submanifold K is said to be nondegenerate if the are no nontrivial
smooth solutions to the homogeneous problem

Jψ = 0 in K. (2.2)

This condition implies that K is isolated as a minimal submanifold of M.
In the noncompact case M = RN , we have Ricg̃(νK, νK) = 0. If K = RN−1,

J = ∆RN−1 .

2.2. The Toda system. Next we introduce the integrable Toda system in RN .
First we have the one-dimensional Toda system, given by

c2pf
′′
j = efj−1−fj − efj−fj+1 in R, j = 1, . . . ,m, (2.3)

with the conventions f0 = −∞, fm+1 = +∞, where cp is an explicit positive
constant. Without loss of generality we may take cp = 1. Equation (2.3) models m
particles on the whole line interacting with the neighbors exponentially.

We introduce variables
uj = qj+1 − qj . (2.4)

In terms of u = (u1, . . . , uk−1) system (2.3) becomes

u′′ +Meu = 0 (2.5)

where

M =















2 −1 0 · · · 0
−1 2 −1 · · · 0

. . .

0 · · · 2 −1
0 · · · −1 2















, eu =







eu1

...
eum−1






.

According to classical results of Kostant [30] and Moser [45], all solutions to (2.5)
can be written explicitly (see formula (7.7.10) in [30]). They depend on 2(k − 1)
parameters. Given numbers w1, . . . , wk ∈ R such that

m
∑

j=1

wj = 0, and wj > wj+1, j = 1, . . . ,m, (2.6)

we define the matrix
w0 = diag (w1, . . . , wm).

Next, given numbers g1, . . . , gm ∈ R such that
m
∏

j=1

gj = 1, and gj > 0, j = 1, . . . ,m, (2.7)

we define the matrix
g0 = diag (g1, . . . , gm).

Furthermore, we define functions Φj(g0,w0; z), z ∈ R, j = 0, . . . ,m, by

Φ0 = Φk ≡ 1

Φj(g0,w0; z) = (2.8)

(−1)j(m−j)
∑

1≤ii<···<ij≤m

ri1...ij
(w0)gi1 . . . gij

exp[−z(wi1 + · · · + wij
)],
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where ri1...ij
(w0) are rational functions of the entries of the matrix w0.

According to [30] all solutions to (2.5) are given by

uj(z) = 2 log Φj(g0,w0; z) − log Φj−1(g0,w0; z) − log Φj+1(g0,w0; z). (2.9)

Analogously, there is the two-dimensional Toda system
{

∆u +Meu = 0, in R2,
∫

R2 e
uj < +∞, j = 1, ...,m− 1.

(2.10)

System (2.10) is a natural generalization of the Liouville equation

∆u + eu = 0 in R
2,

∫

R2

eu <∞. (2.11)

The Liouville equation (2.11) and the Toda system (2.10) arise in many physical
models. In Chern-Simons theories, the Liouville equation is related to abelian mod-
els, while the Toda system is related to nonabelian models. We refer to the books
by Dunne [22] and Yang [55] for physical backgrounds. The SU(3) Chern-Simons
model has been studed in many papers. We refer to Jost-Wang [26], Jost-Lin-Wang
[25], Malchiodi-Ndiaye [39], Ohtsuka-Suzuki [48] and the references therein.

Using algebraic geometry results, Jost and Wang ([27]) classified all solutions to
(2.10). When m = 2, (2.10) is reduced to Liouville equation and the solutions are
given

u = log
8a2

(a2 + |x− x0|2)2
(2.12)

which is nondegenerate ([11]). When m = 3, all solutions to (2.10) can be written
as follows:

u(z) = log
4

(

a2
1a

2
2 + a2

1|2z + c|2 + a2
2|z2 + 2bz + bc− d|2

)

(a2
1 + a2

2|z + b|2 + |z2 + cz + d|2)2
, (2.13)

v(z) = log
16a2

1a
2
2

(

a2
1 + a2

2|z + b|2 + |z2 + cz + d|2
)

(a2
1a

2
2 + a2

1|2z + c|2 + a2
2|z2 + 2bz + bc− d|2)2

, (2.14)

where z = x1 + ix2 ∈ C, a1 > 0, a2 > 0 are real numbers and b = b1 + ib2 ∈
C, c = c1 + ic2 ∈ C, d = d1 + id2 ∈ C. Note that there are eight parameters
(a1, a2, b1, b2, c1, c2, d1, d2) ∈ R8. The nondegeneracy of the solutions has only been
proved in the case of m = 3 ([54]).

2.3. The Jacobi-Toda system. Now we introduce the following the Jacobi-Toda
system

σ
(

∆Kfj +
(

|AK|2 + Ricg̃(νK, νK)
)

fj

)

−
[

e−(fj−fj−1) − e−(fj+1−fj)
]

= 0 (2.15)

on K, j = 1, . . . , k, with the convention f0 = −∞, fk+1 = +∞.
Here σ > 0 is a positive constant (in many cases we also assume that σ is small).
Observe that if K = RN , N = 1, 2, then (2.15) becomes the Toda system (2.3),

(2.10). On the other hand, if we sum up (2.15) and let f̄ =
∑m

j=1 fj , then we obtain

the Jacobi operator J (f̄) = 0. Thus both the Jacobi operator and the Toda system
are embedded in the system (2.15).

As we have mentioned in the introduction, the Toda system was used first in
[15] to construct clustered interfaces in a bounded domain in R

2 for the Allen-Cahn
equation (1.1). Later it was used to construct multiple end solutions to the Allen-
Cahn equation and nonlinear Schrodinger equation in entire R2 in [12] and [13].
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The role of the Jacobi operator was found in [49] in constructing solutions to Allen-
Cahn equation. The Jacobi-Toda system was discovered in [21]. Later different
Jacobi-Toda systems have been derived in ([18], [19]).

In the following, we explain how we (2.15) arises in various settings and how
we solve (2.15) in compact or noncompact cases: In Section 2, we consider Allen-
Cahn equation on a compact manifold. In Secton 3, we derive (2.15) formally on
a compact manifold. In Section 4, we explain how to solve (2.15) on a compact
manifold. In Section 5, we derive and solve the Jacobi-Toda system on catenoid in
R3. In Section 6, we show that how Jacobi-Toda system arises in traveling waves
with multiple fronts in RN .

3. The Jacobi-Toda system I: Foliated interfaces of Allen-Cahn equation
on compact manifolds.

3.1. Allen-Cahn equation on manifolds. It is natural to consider situations in
which phase transitions take place in a manifold rather than in a subset of Euclidean
space. Namely, we consider the Allen-Cahn equation on a compact N -dimensional
Riemannian manifold (M, g̃)

ε2∆g̃u + (1 − u2)u = 0 in M, (3.1)

where ∆g̃ is the Laplace-Beltrami operator on M.

In [49], Pacard and Ritoré proved the following result: assume that K is non-
degenerate minimal (N − 1)-dimensional submanifold which divides M into two
connected components. Then there exists a solution uε to equation (3.1) with values
close to ±1 inside M±, whose (sharp) 0-level set is a smooth manifold which lies

ε-close to K. More precisely, let w(z) := tanh
(

z√
2

)

be the unique solution of

Problem (1.5). Then the solution uε in [49] resembles near K the function w(z/ε),
where z is a choice of signed geodesic distance to Γ.

3.2. Multple interfaces. In [21], we found a a new phenomenon induced by the
presence of positive curvature in the ambient manifold M: in addition to non-
degeneracy of K, let us assume that

K := |AK|2 + Ricg̃(νK, νK) > 0 on K. (3.2)

Then, besides the solution by Pacard and Ritoré, there are solutions with multiple
interfaces collapsing onto K. In fact, given any integer m ≥ 2, we find a solution
uε such that u2

ε − 1 approaches 0 in M± as ε → 0, with zero level set constituted
by m smooth components O(ε| log ε|) distant one to each other and to K.

Condition (3.2) is satisfied automatically if the manifold M has non-negative
Ricci curvature. If N = 2, K corresponds simply to Gauss curvature of M measured
along the geodesic K.

The nature of these solutions is drastically different from the single-interface so-
lution by Pacard and Ritoré. They are actually defined only if ε satisfies a nonreso-
nance condition in ε. In fact, in the construction ε must remain suitably away from
certain values where a shift in Morse index occurs. We expect that the solutions
we find have a Morse index O(| log ε|a) for some a > 0 as critical points of Jε, while
the single interface solution is likely to have its Morse index uniformly bounded by
the index of K (namely the number of negative eigenvalues of the operator J .
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Theorem 1 ([21]). Assume that K is nondegenerate, and that condition (3.2) is
satisfied. Then, for each m ≥ 2, there exists a sequence of values ε = εj → 0 such
that problem (3.1) has a solution uε such that u2

ε − 1 → 0 uniformly on compact
subsets of M±, while near K, we have

uε(x) =
m

∑

ℓ=1

w

(

z − εfℓ(y)

ε

)

+
1

2

(

(−1)m−1 − 1
)

+ o(1),

where (z, y) are the Fermi coordinates defined near K through the exponential map,
and the functions fℓ satisfy

fℓ(y) =
(

ℓ− m+ 1

2

)

[√
2 log

1

ε
− 1√

2
log log

1

ε

]

+O(1). (3.3)

Moreover, when N = 2, there exist positive numbers ν1, . . . , νm−1 such that gi
ven c > 0 and all sufficiently small ε > 0 satisfying

∣

∣

∣

1

log 1
ε

− νi

j2

∣

∣

∣
>

c

j3
, for all i = 1, . . . ,m− 1, j = 1, 2, . . . . (3.4)

a solution uε with the above properties exists.

We observe that the same result holds if m is even and M\K consists of just one
component. Thus the condition that K divides M into two connected components
is not essential in general.

As we shall derive formally, the equilibrium location of the interfaces is asymp-
totically governed by a small perturbation of the Jacobi-Toda system

ε2
(

∆Kfj +
(

|AK|2 +Ricg̃(νK, νK)
)

fj

)

− a0

[

e−(fj−fj−1) − e−(fj+1−fj)
]

= 0 (3.5)

on K, j = 1, . . . ,m, with the convention f0 = −∞, fm+1 = +∞.
Heuristically, the interface foliation near K is possible due to a balance between

the interfacial energy, which decreases as interfaces app roach each other, and the
fact that the length or area of each individual interface increases as the interface is
closer to K since M is positively curved near K. What is unexpected, is the need
of a nonresonance condition in order to solve the Jacobi-Toda system.

Similar resonance has been observed in (simple) concentration phenomena for
various problems, see [14, 34, 37, 38]. The phenomenon of clustering of interfaces
here discovered has an interesting resemblance with the problem of foliations of a
neighborhood of a geodesic by CMC tubes considered in [35, 41].

Our result deals with situations in which the minimal submanifold is local but
not globally area minimizing. In fact, since condition (3.2) holds, the Jacobi opeator
has at least one negative eigenvalue, and near K, M cannot have parabolic points.
In the case of a bounded domain Ω of R2 under Neumann boundary conditions, a
multiple-layer solution near a non -minimizing straight segment orthogonal to the
boundary was built in [15]. In ODE cases for the Allen-Cahn equation, clustering
interfaces had been previously observed in [9, 46, 47]. No resonance phenomenon
is present in those situations, constituting a major qualitative difference with the
current setting.

We do not expect that interface foliation occurs if the limiting interface is a
minimizer of the perimeter. On the other hand, negative Gauss curvature seems
also prevent interface foliation. This is suggested by a version of De Giorgi- Gibbons
conjecture for problem (3.1) with M the hyperbolic space, established in [4].
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4. Formal derivation of Jacobi-Toda system. In this section, we derive for-
mally the Jacobi-Toda system on a compact manifold M on which we consider
singularly perturbed Allen-Cahn equation (3.1).

4.1. The Laplace-Beltrami and Jacobi operators. If (M, g̃) is an N -
dimensional Riemannian manifold and K ⊂ M be an (N − 1)-dimensional closed
smooth embedded submanifold associated with the metric g̃0 induced from (M, g̃).
Let ∆K be the Laplace-Beltrami operator defined on K.

Let us consider the space C∞(NK) of all smooth normal vector fields on K. Since
K is a submanifold of codimension 1, then given a choice of orientation and unit
normal vector field along K, denoted by νK ∈ NK, we can write Φ ∈ C∞(NK) as
Φ = φνK, where φ ∈ C∞(K).

For Φ ∈ C∞(NK), we consider the one-parameter family of submanifolds t →
Kt,Φ given by

Kt,Φ ≡
{

expf(ỹ)

(

tΦ(f(ỹ))
)

: f(ỹ) ∈ K
}

. (4.1)

The first variation formula of the volume functional is defined as
d

dt

∣

∣

∣

t=0
Vol(Kt,Φ) =

∫

K
< Φ, h >N dVK, (4.2)

where h is the mean curvature vector of K in M, < ·, · >N denotes the restriction
of g̃ to NK, and dVK the volume element of K.

The submanifold K is said to be minimal if it is stationary point for the volume
functional, namely if

d

dt

∣

∣

∣

t=0
Vol(Kt,Φ) = 0 for any Φ ∈ C∞(NK), (4.3)

or equivalently by (4.2), if the mean curvature h is identically zero on K.

The Jacobi operator J appears in the expression of the second variation of the
volume functional for a minimal submanifold K

d2

dt2

∣

∣

∣

t=0
Vol(Kt,Φ) = −

∫

Γ

< JΦ, Φ >N dVK for any Φ ∈ C∞(NK) (4.4)

and is given by

J φ = −∆Kφ− Ricg̃(νK, νK)φ − |AK|2φ, (4.5)

where Φ = φνK, as has been explained above.
The submanifold K is said to be non-degenerate if the Jacobi operator J is

invertible, or equivalently if the equation Jφ = 0 has only the trivial solution in
C∞(K).

4.2. Stretched Fermi coordinates and expansion of the Laplace-Beltrami
operator. To construct the approximation to a solution of (3.1), which concen-
trates near K, after rescaling, in M/ε. We introduce stretched Fermi coordinates
in the neighborhood ε−1V of the point ε−1p ∈ ε−1K by

Φε(y, z) =
1

ε
Φ0(εy, εz), (y, z) = (y1, · · · , yN−1, z) ∈ ε−1V × (−δ0

ε
,
δ0
ε

). (4.6)

Obviously, in Mε = ε−1M the new coefficients gab’s of the Riemannian metric,
after rescaling, can be written as

gab(y, z) = g̃ab(εy, εz, ), a, b = 1, 2, · · · , N.
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Lemma 4.1. In the above coordinates (y, z), for any i, j = 1, 2, · · · , N−1, we have

gij(y, z) = δj
i − 2εΓj

i (EN )z + ε2
[

−R(Xj, XN , XN , Xi)

+

N−1
∑

k=1

Γk
i (EN )Γj

k(EN )
]

z2 +O(|εz|3), (4.7)

giN (y, z) = O((εz)2), (4.8)

gNN (y, z) = 1 +O(|εz|3). (4.9)

Here R(·) and Γb
a are the Ricci curvature tensor and Christoffel symbols repectively.

They are computed at the point p ∈ K parameterized by (0, 0).

Now we will focus on the expansion of the Laplace-Beltrami operator defined by

∆Mε
=

1√
detg

∂a

(

gab
√

detg ∂b

)

= gab ∂a∂b + (∂ag
ab) ∂b +

1

2
∂a

(

log (detg)
)

gab ∂b.

(4.10)

Using the assumption that the submanifold K is minimal, direct computation gives
that

detg = 1 − ε2K(εy)z2 +O(ε3|z|3),
where we have denoted

K = Ricg̃(νK, νK) + |AK|2. (4.11)

This gives

log (detg) = −ε2K(εy)z2 +O(ε3|z|3).
Hence, we have the expansion

∆Mε
= ∂zz + ∆Kε

+ ε2zK(εy) ∂z + B (4.12)

where the operator B has the form

B = εz a1
ij ∂ij + ε2z2 a2

iN ∂iz + ε3z3 a3
NN ∂zz + ε2z b1i ∂i + ε3z2 b2N ∂z . (4.13)

and all the coefficients are smooth functions defined on a neighborhood of K in M,
evaluated at (εy, εz).

4.3. The approximate solution. If we set u(x) := ũ(εx), then problem (3.1) is
thus equivalent to

∆Mε
u + F (u) = 0 in Mε, (4.14)

where F (u) ≡ u − u3. In the sequel, we denote by Mε and Kε the ε−1-dilations
of M and K.

To define the approximate solution we observe the heteroclinic solution to (1.5)
has the asymptotic properties

w(z) − 1 = −2 e−
√

2 |z| + O
(

e−2
√

2 |z|), z > 1,

w(z) + 1 = 2 e−
√

2 |z| + O
(

e−2
√

2 |z|), z < −1,

w′(z) = 2
√

2 e−
√

2 |z| + O
(

e−2
√

2 |z|), |z| > 1,

(4.15)
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where A0 is a universal constant. For a fixed integer m ≥ 2, we assume that the
location of the m phase transition layers are characterized in the coordinate (y, z)
defined in (4.6) by the functions z = fj(εy), 1 ≤ j ≤ m with

f1(εy) < f2(εy) < · · · < fm(εy),

separated one to each other by large distances O(log ε), and define in coordinates
(y, z) the first approximation

u0(y, z) :=

m
∑

j=1

wj(z − fj(εy)) +
(−1)m−1 − 1

2
, wj(t) := (−1)j−1w(t). (4.16)

With this definition we have that u0(y, z) ≈ wj(z − fj(εy)) for values of z close to
fj(εy).

The functions fj : K → R will be left as parameters, on which we will assume a
set of constraints that we describe next.

Let us fix numbers p > N , M > 0, and consider functions hj ∈ W 2,p(K),
j = 1, . . . ,m such that

‖hj‖W 2,p(K) := ‖D2
Khj‖Lp(K) + ‖DKhj‖Lp(K) + ‖hj‖L∞(K)

≤M, for all j = 1, . . . ,m. (4.17)

For a small ε > 0, we consider the unique number ρ = ρε with

e−
√

2 ρ = ε2ρ. (4.18)

We observe that ρε is a large number that can be expanded in ε as

ρε =
√

2 log
1

ε
− 1√

2
log

(√
2 log

1

ε

)

+O
( log log 1

ε

log 1
ε

)

.

Then we assume that the m functions fj : K → R are given by the relations

fk(y) =

(

k − m+ 1

2

)

ρε + hk(y), k = 1, . . . ,m. (4.19)

so that

fk+1(y) − fk(y) = ρε + hk+1(y) − hk(y) , k = 1, 2, . . . ,m− 1. (4.20)

We we will use in addition the conventions h0 ≡ −∞, hm+1 ≡ +∞.

Our first goal is to compute the error of approximation in a δ0/ε neighborhood
of Kε, namely the quantity:

S(u0) ≡ ∆Mε
u0 + F (u0). (4.21)

For each fixed ℓ, 1 ≤ ℓ ≤ m, this error reproduces a similar pattern on each set
of the form

Aℓ =

{

(y, z) ∈
(

−δ0
ε
,
δ0
ε

)

×Kε

/

|z − fℓ(εy)| ≤
1

2
ρε +M }

}

. (4.22)

For (y, z) ∈ Aℓ, we write t = z − fℓ(εy) and estimate in this range the quantity
S(u0)(t+ fℓ(εy), y). We have the validity of the following expression.
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Lemma 4.2. For ℓ ∈ {1, . . . ,m} and (y, z) ∈ Aℓ we have

(−1)ℓ−1S(u0)(t+ fℓ, y)

=6(1 − w2(t))ε2ρε

[

e−
√

2(hℓ−hℓ−1)e
√

2t − e−
√

2(hℓ+1−hℓ)e−
√

2t
]

− ε2
(

∆Khℓ + (t+ fℓ)K
)

w′(t) + ε2| ▽K hℓ|2w′′(t) + (−1)ℓ−1Θℓ(εy, t) . (4.23)

where for some τ, σ > 0 we have

‖Θℓ(·, t)‖Lp(K) ≤ Cε2+τe−σ|t|.

The proof of this lemma is quite lengthy and can be found in Lemma 2.4 of [21].

4.4. The Jacobi-Toda system as a solvability condition. We want to find a
solution to

S(u) = ∆Mε
u + F (u)

in the form

u = u0 + φ.

Expanding the operator S

S(u0 + φ) = S(u0) + S
′

(u0)[φ] +N [φ] (4.24)

whereN [φ] = O(φ2) and S
′

(u0)[φ] is linearized operator at u0 which can be formally
approximated by

S
′

(u0)[φ] ∼ φtt + F
′

(w)φ + ∆Kǫ
φ.

The leading order operator φtt + F
′

(w)φ has a one-dimensional kernel w
′

.
The infinite-dimensional reduction method, developed in [14], allows us to reduce

the problem (4.24) to finding an h such that for all ℓ = 1, . . . ,m, we have

Iℓ(y) =

∫

R

(Sℓ(h))w
′ dt = 0 for all y ∈ Kε. (4.25)

Let us compute this function more explicitly.
Using the definition of Sℓ in (4.23), we get

ε−2Iℓ(ε
−1y)

=b1

(

∆Khℓ +K(y)bℓ,
)

− b2ρε

[

e−
√

2(hℓ−hℓ−1) − e−
√

2(hℓ+1−hℓ)
]

+ θℓ(h), (4.26)

where θℓ is a small operator:

‖θℓ(h)‖Lp(K) = O(ε1−τ )

for any τ > N−1
p , uniformly on h.

The constants b1, b2 are given by

b1 =

∫

R

w′(t)2 dt, b2 =

∫

R

6(1 − w2(t))e
√

2tw′(t)dt =

∫

R

6(1 − w2(t))e−
√

2tw′(t)dt.

We recall that fℓ(y) = (ℓ− m+1
2 )ρε + hℓ(y). Since we want that the functions hℓ

make the quantities Iℓ as small as possible, it is reasonable to find first an h such
that the equations
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b1

(

∆Khℓ +K(y)hℓ,
)

− b2ρε

[

e−
√

2(hℓ−hℓ−1) − e−
√

2(hℓ+1−hℓ)
]

= 0, ℓ = 1, . . .m,

(4.27)
be approximately satisfied. Thus we have derived the location of the interfaces
formally satisfy (4.27) which is the Jacobi-Toda system (2.15). In fact, we set

Rℓ(h) := σ
(

∆Khℓ +K(y)hℓ

)

−
[

e−
√

2(hℓ−hℓ−1) − e−
√

2(hℓ+1−hℓ)
]

, (4.28)

where

σ := σε = ρ−1
ε b1b

−1
2 ∼ (log

1

ε
)−1 .

Then the Jacobi-Toda system becomes

R(h) :=







R1(h)
...

Rm(h)






. (4.29)

We shall solve this system in the next section.

5. Solvability of Jacobi-Toda system. In this section, we proceed to find a
solution h to the system R(h) = 0.

Before we solve the most general case, let us consider the simple case m = 2 first.
Our aim is to find what the difficulties are. If we set

v1 = h1 − h2, v2 = h1 + h2

then v2 satisfies
J (v2) = 0 (5.1)

which implies that v2 = 0 under the nondegeneracy condition of K. Now the
equation for v1 becomes

σ(∆Kv1 +K(y)v1) + e
√

2v1 = 0 on K. (5.2)

Equation (5.2) becomes supercritical as long as N ≥ 3. Even in one or two-
dimensional case, it is unclear how to obtain a solution and furthermore we have to
perturb such solution (because in reality a small right hand side is also prsent).

Let us assume that K(y) ≡ 1. Then (5.3) does have a solution satisfies the
algebraic equation

σ(v0
1) + e

√
2v01 = 0 on K. (5.3)

But if we perturb this solution v0
1, the linearized operator becomes

∆Kh+K(y)h− v0
1h (5.4)

which has resonance on K since v0
1 ∼ log σ.

In conclusion, we see that even in the constant K(y) case we should expect
resonance. When m > 2, the matter becomes worse because we have coupled
systems.

However, the above procedure also suggests a general scheme of solving R(h) = 0
we shall now describe next.

We find first a convenient representation of the operator R(h). Let us consider
the auxiliary variables

v :=

[

v̄

vm

]

, v̄ =







v1
...

vm−1






,
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defined in terms of h as

vℓ = hℓ+1 − hℓ, ℓ = 1, . . . ,m− 1, vm =

m
∑

ℓ=1

hℓ,

and define the operator

S(v) :=

[

S̄(v̄)
Sm(vm)

]

, S̄(v̄) =







S1(v̄)
...

Sm−1(v̄)






,

where for l = 1, . . . ,m− 1, and with the conventions v0 = vm+1 = +∞ we set

Sℓ(v) := Rℓ+1(h) −Rℓ(h) =

σ
(

∆Kvℓ+K(y)(ρε+vℓ),
)

+











e−
√

2v2 − 2e−
√

2v1 if ℓ = 1

e−
√

2vℓ+1 − 2e−
√

2vℓ + e−
√

2vℓ−1 if 1 < ℓ < m− 1

−2e−
√

2vm−1 + e−
√

2vm−2 if ℓ = m− 1

and

Sm(v) :=

m
∑

ℓ=1

Rℓ(h) = σ
(

∆Kvm +K(y)vm

)

.

Then the operators R and S are in correspondence through the formula

S(v) = BR
(

B−1v
)

, (5.5)

where B is the constant, invertible N ×N matrix

B =















−1 1 0 · · · 0
0 −1 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 −1 1
1 · · · 1 1 1















, (5.6)

and then the system R(h) = 0 is equivalent to S(v) = 0, which setting β = b2b
−1
1

decouples into

S̄(v̄) = σ
[

∆Kv̄ +K(y)v̄
]

+ βK(y)







1
...
1






+ S̄0(v̄) = 0, (5.7)

Sm(vm) = σ (∆Kvm +K(y)vm) = 0, (5.8)

where

S̄0(v̄) := −C







e−
√

2v1

...

e−
√

2vm−1






, C =















2 −1 0 · · · 0
−1 2 −1 · · · 0
...

. . .
. . .

. . .
...

0 · · · −1 2 −1
0 · · · −1 2















. (5.9)
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In system (5.7)-(5.8), the second relation and our non-degeneracy assumption forces
vm = 0. Thus we look for a solution v = (v̄, 0) of the system, where v̄ satisfies (5.7).

To solve (5.7), we proceed in two steps:
Step I: Good approximate solutions

Rather than finding an exact solution v̄ of S̄(v̄) = 0 we will find a good approx-
imation. More precisely, by means of a simple iterative procedure, we will find for
each k ≥ 1 a function v̄k with the property that

S̄(v̄k) = O(σk). (5.10)

Step II: Inverting the linearized Jacobi-Toda operator
Our next task is to prove the existence of of a true solution to (5.7)-(5.8) in the

form

v̄ = v̄
k + ω (5.11)

The problem is then to invert the linearized operator at vk.

5.1. Iteration: Good approximate solutions. Let us find a function v̄1 with
the desired property (5.10) for k = 1. We consider the vector v̄1(y) defined by the
relations

S̄0(v̄
1) = −C







e−
√

2v1
1

...

e−
√

2v1
m−1






= −βK(y)







1
...
1






.

We compute explicitly

v1
ℓ (y) =

1√
2

log

[

β

2
K(y) (m− ℓ) ℓ

]

, ℓ = 1, . . . ,m− 1, (5.12)

and get from (5.7)

S̄(v̄1) = σ
[

∆Kv̄
1 +K(y)v̄1

]

= O(σ).

This approximation can be improved to any order in powers of σ, as the following
lemma states.

Lemma 5.1. Given k ≥ 1, there exists a function of the form

v̄k(y, σ) = v̄1(y) + σξk(y, σ),

where v̄1(y) is defined by (5.12), ξ1 ≡ 0, and ξk is smooth on [0,∞)×K, such that

S̄(v̄k) = O(σk)

as σ → 0, uniformly on K. In particular,

h
k := B−1

[

v̄k

0

]

,

with B is given by (5.6), solves approximately system (4.27)in the sense that

R(hk) = O(σk).

Proof. In order to find a subsequent improvement of approximation beyond v1, we
set v̄2 = v̄1 + ω1. Let us expand

S̄(v̄1 +ω) = σ
[

∆Kω+K(y)ω
]

+ σ(∆Kv
1+K(y)v1)+DS̄0(v̄

1)ω+N(ω), (5.13)
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where

DS̄0(v̄
1) =

√
2C













e−
√

2v1
1 0 · · · 0

0 e−
√

2v1
2 · · · 0

...
. . .

...

0 0 · · · e−
√

2v1
m−1













=
β√
2
K(y)



















2a1 −a2 0 · · · 0
−a1 2a2 −a3 · · · 0
0 −a2 2a3 · · · 0
...

. . .
. . .

. . .
...

0 · · · −am−3 2am−2 −am−1

0 · · · −am−2 2am−1



















,

(5.14)
with

aℓ = (m− ℓ) ℓ ℓ = 1, . . . ,m− 1, (5.15)

and

N(v̄) =
β

2
C







a2( e
−
√

2v0
1 − 1 +

√
2 v0

1 )
...

am( e−
√

2v0
m − 1 +

√
2 v0

m )






.

The matrix DS̄0(v̄
1) is clearly invertible. Let us consider the unique solution

ω1 = O(σ) of the linear system

DS̄0(v̄
1)ω1 = −σ(∆Kv̄

1 +K(y)v̄1) = O(σ) (5.16)

and define v̄2 = v̄1 + ω1. Then from (5.13) we have

S̄(v̄2) = σ(∆Kω1 +K(y)ω1) + N(ω1) = O(σ2). (5.17)

Next we define v̄3 = v̄2 + ω2 where ω2 = O(σ2) is the unique solution of

−DS̄0(v̄
1)ω2 = σ(∆Kω1 +K(y)ω1) + N(ω1). (5.18)

Then from (5.13) we get

S̄(v̄3) = σ(∆Kω̄2 +K(y)ω̄2) + N(ω1 + ω2) − N(ω1) = O(σ2). (5.19)

In general, we define inductively, for k ≥ 3, v̄k+1 = v̄k + ωk where ωk is the
unique solution of the linear system

−DS̄0(v̄
1)ωk = σ(∆Kωk−1 +K(y)ωk−1)+N(ω1 + · · ·+ωk−1)−N(ω1+ · · ·+ωk−2).

(5.20)
Then clearly ωk = O(σk). Let us estimate the size of S̄(v̄k+1) From (5.13) we have

S̄(v̄k+1) = σ(∆Kv̄
1 +K(y)v̄1) +

[

σ(∆K +K) +DS0(v̄
1) + N

]

(

k
∑

i=1

ωi ).

Now, using (5.16), (5.18) and (5.20) we get
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[σ(∆K +K) +DS0(v̄
1)] (

k
∑

i=1

ωi ) = σ(∆Kv̄
1 +Kv̄1) + DS̄0(v̄

1)ω1 +

σ(∆Kωk +Kωk) +
k

∑

i=2

[

σ(∆Kωi−1 +Kωi−1) +DS̄0(v̄
1)ωi

]

=

0 − N(ω1) −
k

∑

i=3

[N(ω1 + · · · + ωi−1) − N(ω1 + · · · + ωi−2)] = −N(ω1 + · · · + ωk) .

Hence,

S̄(v̄k+1) = σ(∆Kωk+Kωk)+N(ω1+· · ·+ωk−1+ωk)−N(ω1+· · ·+ωk−1) = O(σk+1),
(5.21)

Finally, the functions ξ1 ≡ 0 and

ξk := σ−1(ω1 + · · · + ωk−1), k ≥ 2,

clearly satisfy the conclusions of the lemma, and the proof is concluded.

The question now, is how to use the approximation hk just constructed to find
an exact h solution to system (4.25). This system takes the form

R(h) = g (5.22)

where g is a small function, actually a small nonlinear operator in h. For the
moment we will think of g as a fixed function. Since the operator R decouples as in
(5.5) when expressed in terms of S, it is more convenient to consider the equivalent
problem

S(v) = g (5.23)

which, according to expressions (5.7) and (5.8), decouples as

S̄(v̄) = σ
[

∆Kv̄ +K(y)v̄
]

+ βK(y)







1
...
1






+ S̄0(v̄) = ḡ, (5.24)

Sm(vm) = σ (∆Kvm +K(y)vm) = gm, (5.25)

Equation (5.25) has a unique solution vm for any given function gm, thanks to
the nondegeneracy assumption. Therefore we will concentrate in solving Problem
(5.24), for a small given ḡ. Let us write

v̄ = v̄
k + ω

where v̄k is the approximation in Lemma 5.1. We express (5.24) in the form

L̃σ(ω) := −σ
[

∆Kω +K(y)ω
]

−DS̄0(v̄
k)ω = S̄(v̄k) + N1(ω) + ḡ (5.26)

where

N1(ω) := S̄0(v̄
k + ω) − S̄0(v̄

k) −DS̄0(v̄
k)ω (5.27)

and S0 is the operator in (5.9).
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The desired solvability theory will be a consequence of a suitable invertibility
statement for the linear operator L̃σ. Thus we consider the equation

L̃σ(ω) = g̃ in K. (5.28)

This operator is vector valued. It is convenient to express it in self-adjoint form
by replacing the matrix DS̄0(v̄

k) with a symmetric one. We recall that we have

DS̄0(v̄
k) =

√
2C













e−
√

2vk
1 0 · · · 0

0 e−
√

2vk
2 · · · 0

...
. . .

...

0 0 · · · e−
√

2vk
m−1













where the matrix C is given in (5.9). C is symmetric and positive definite. Indeed,
its eigenvalues are explicitly computed as

1,
1

2
, . . . ,

m− 1

m
.

We consider the symmetric, positive definite square root matrix of C and denote it

by C
1
2 . Then setting

ω := C
1
2ψ, g := C− 1

2 g̃,

we see that equation (5.28) becomes

Lσ(ψ) := −σ∆Kψ − A(y, σ)ψ = g in K (5.29)

where A is the symmetric matrix

A(y, σ) = σK(y) Im−1 +
√

2C
1
2













e−
√

2vk
1 0 · · · 0

0 e−
√

2vk
2 · · · 0

...
. . .

...

0 0 · · · e−
√

2vk
m−1













C
1
2 . (5.30)

Since

v
k = v

1(y) + σξk(y, σ)

we have that A is smooth in its variables and

A(y, 0) =
β√
2
K(y)C

1
2











a1 0 · · · 0
0 a2 · · · 0
...

. . .
...

0 0 · · · am−1











C
1
2 . (5.31)

where aℓ = ℓ(m − ℓ). In particular, A(y, σ) has uniformly positive eigenvalues
whenever σ is sufficiently small.

5.2. Inverting the linearized Jacobi-Toda operator. Our main result con-
cerning uniform solvability of Problem (5.29) is the following.

Proposition 5.1. There exists a sequence of values σ = σℓ → 0 such that Lσ

is invertible. More precisely, for any g ∈ L2(K) there exists a unique solution
ψ = L−1

σ g ∈ H1(K) to equation (5.29). This solution satisfies

σ‖D2
Kψ‖L2(K) + ‖ψ‖L2(K) ≤ Cσ− N−1

2 ‖g‖L2(K). (5.32)
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Moreover, if p > N − 1, there exist C, ν > 0 such that the solution satisfies besides
the estimate

‖D2
Kψ‖Lp(K) + ‖DKψ‖L∞(K) + ‖ψ‖L∞(K) ≤ Cσ− N−1

2
−ν ‖g‖Lp(K).

In addition, for N = 2, we have the existence of positive numbers ν1, ν2, . . . , νm−1

such that for all small σ with

|νiσ − j2| > cσ− 1
2 for all j ≥ 1, i = 1, . . . ,m− 1,

for some c > 0, then ψ = L−1
σ g exists and estimate (5.32) holds.

The first part of the result holds in larger generality. Actually the properties we
will use in the matrix function A(y, σ) are its symmetry, its smooth dependence in
its variables on K × [0, σ0) and the fact for certain numbers γ± > 0, we have

γ−|ξ|2 ≤ ξT A(y, σ)ξ ≤ γ+|ξ|2 for all ξ ∈ R
m−1, (y, σ) ∈ K × [0, σ0). (5.33)

Most of the work in the proof consists in finding the sequence σℓ such that 0
lies suitably away from the spectrum of Lσℓ

, when this operator is regarded as self-
adjoint in L2(K). The result will be a consequence of various considerations on the
asymptotic behavior of the small eigenvalues of Lσ as σ → 0. The general scheme
below has already been used in related settings, see [37, 38, 40, 34, 35], using the
theory of smooth and analytic dependence of eigenvalues of families of Fredholm
operators due to T. Kato. Our proof relies only on elementary considerations on the
variational characterization of the eigenvalues of Lσ and Weyl’s asymptotic formula.

Thus, we consider the eigenvalue problem

Lσφ = λφ in K. (5.34)

For each σ > 0 the eigenvalues are given by a sequence λj(σ), characterized by the
Courant-Fisher formulas

λj(σ) = sup
dim(M)=j−1

inf
φ∈M⊥\{0}

Qσ(φ, φ) = inf
dim(M)=j

sup
φ∈M\{0}

Qσ(φ, φ) (5.35)

where

Qσ(φ, φ) =

∫

K Lσφ · φ
∫

K |φ|2 =

∫

K σ|∇φ|2 − φTA(y, σ)φ
∫

K |φ|2 .

We have the validity of the following result.

Lemma 5.2. There is a number σ∗ > 0 such that for all 0 < σ1 < σ2 < σ∗ and all
j ≥ 1 the following inequalities hold.

(σ2 − σ1)
γ−
2σ2

2

≤ σ−1
2 λj(σ2) − σ−1

1 λj(σ1) ≤ 2(σ2 − σ1)
γ+

σ2
1

. (5.36)

In particular, the functions σ ∈ (0, σ∗) 7→ λj(σ) are continuous.

Proof. Let us consider small numbers 0 < σ1 < σ2. We observe that for any φ with
∫

K |φ|2 = 1 we have

σ−1
1 Qσ1

(φ, φ) − σ−1
2 Qσ2

(φ, φ) = −
∫

K
φT (σ−1

1 A(y, σ1) − σ−1
2 A(y, σ2))φ =

(σ1 − σ2)

∫

K
φT (σ−2A(y, σ) − σ−1∂σA(y, σ))φ (5.37)

for some σ ∈ (σ1, σ2). From the assumption (5.33) on the matrix A we then find
that
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σ−1
1 Qσ1

(φ, φ) + (σ2 − σ1)
γ−
2σ2

2

≤ σ−1
2 Qσ2

(φ, φ) ≤ σ−1
1 Qσ1

(φ, φ) + 2(σ2 − σ1)
γ+

σ2
1

.

From here, and formulas (5.35), inequality (5.36) follows.

Corollary 5.1. There exists a number δ > 0 such that for any σ2 > 0 and j such
that

σ2 + |λj(σ2)| < δ,

and any σ1 with 1
2σ2 ≤ σ1 < σ2, we have that

λj(σ1) < λj(σ2).

Proof. Let us consider small numbers 0 < σ1 < σ2 such that σ1 ≥ σ2

2 . Then from
(5.36) we find that

λj(σ1) ≤ λj(σ2) + (σ2 − σ1)
1

σ2
[λj(σ2) − γ

σ1

σ2
],

for some γ > 0. From here the desired result immediately follows.

5.3. Proof of Proposition 5.1, general N . Let us consider the numbers σ̄ℓ :=
2−ℓ for large ℓ ≥ 1. We will find a sequence of values σℓ ∈ (σ̄ℓ+1, σ̄ℓ) as in the
statement of the lemma.

We define

Γ1
ℓ = {σ ∈ (σ̄ℓ+1, σ̄ℓ) : kerLσ 6= {0}}. (5.38)

If σ ∈ Γ1
l then for some j we have that λj(σ) = 0. It follows that λj(σ̄l+1) < 0.

Indeed, let us assume the opposite. Then, given δ > 0, the continuity of λj implies
the existence of σ̃ with 1

2σ ≤ σ̃ < σ and 0 ≤ λj(σ̃) < δ. If δ is chosen as in Corollary

5.1, and ℓ is so large that 2−ℓ < δ, we obtain a contradiction.

As a conclusion, we find that for all large ℓ

card (Γ1
ℓ ) ≤ N(σ̄ℓ+1), (5.39)

where N(σ) denotes the number of negative eigenvalues of problem (5.34). We
estimate next this number for small σ. Let us consider a+ > 0 such that

ξT A(y, σ)ξ ≤ a+|ξ|2 for all ξ ∈ R
m−1, (y, σ) ∈ K × [0, σ0),

and the operator

L+
σ = −∆K − a+

σ
. (5.40)

Let λ+
j (σ) denote its eigenvalues. From the Courant-Fisher characterization we see

that λ+
j (σ) ≤ λj(σ). Hence N(σ) ≤ N+(σ), where the latter quantity designates

the number of negative eigenvalues of L+
σ .

Let us denote by µj the eigenvalues of −∆K. Then Weyl’s asymptotic formula
for eigenvalues of the Laplace-Beltrami operator, see for instance [33, 42], asserts
that for a certain constant CK > 0,

µj = CKj
2

N−1 + o(j
2

N−1 ) as j → +∞. (5.41)

Using the fact that λ+
j (σ) = µj − a+

σ and (5.41) we then find that

N+(σ) = Cσ− N−1

2 + o(σ− N−1

2 ) as σ → 0. (5.42)
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As a conclusion, using (5.39) we find

card (Γ1
ℓ ) ≤ N(σ̄ℓ+1) ≤ Cσ̄

− N−1

2

ℓ+1 ≤ C2ℓ N−1

2 . (5.43)

Hence there exists an interval (aℓ, bℓ) ⊂ (σ̄ℓ+1, σ̄ℓ) such that aℓ, bℓ ∈ Aℓ, Ker (Lσ) =
{0}, σ ∈ (aℓ, bℓ) and

bℓ − aℓ ≥
σ̄ℓ − σ̄ℓ+1

card (Aℓ)
≥ Cσ̄

1+ N−1

2

ℓ . (5.44)

Let

σℓ :=
1

2
(bℓ + aℓ).

We will analyze the spectrum of Lσℓ
. If some c > 0, and all j we have

|µj(σℓ)| ≥ cσ̄
N−1

2

ℓ ,

then we have the validity of the existence assertion and estimate (5.32). Assume

the opposite, namely that for some j we have |µj(σℓ)| ≤ δσ
N−1

2

ℓ , with δ arbitrarily

small. Let us assume first that 0 < λj(σℓ) < δσ
N−1

2

ℓ . Then we have from Lemma
5.2,

λj(aℓ) ≤ λj(σℓ) + (σℓ − aℓ)
1

aℓ
[λj(σℓ) − γ

aℓ

σℓ
].

Hence,

λj(aℓ) ≤ δσ
N−1

2

ℓ + Cσ
N−1

2

ℓ (σ
1+ N−1

2

ℓ − γ) < 0

if δ was chosen a priori sufficiently small. It follows that λj(σ) must vanish at some
σ ∈ (σℓ, bℓ), and we have thus reached a contradiction with the choice of the interval
(aℓ, bℓ).

The case −δσ
N−1

2

ℓ < λj(σℓ) < 0 is handled similarly. In that case we get λj(bℓ) >
0. The proof of existence and estimate (5.32) is thus complete.

Let us consider now a number p > N − 1. Now we want to estimate the inverse
of Lσℓ

in Sobolev norms. The equation satisfied by ψ = L−1
σℓ
g has the form

∆Kψ = O(σ−1)[ψ + g]

for σ = σℓ. Then from elliptic estimates we get

‖ψ‖W 2,q(K) ≤ Cσ−1[‖ψ‖Lq(K) + ‖g‖Lq(K)] (5.45)

Using this for q = 2 and estimate (5.32) we get

‖ψ‖W 2,2(K) ≤ Cσ−1[‖ψ‖L2(K) + ‖g‖L2(K)] ≤ Cσ− N
2
−1‖g‖Lp(K).

From Sobolev’s embedding we then get

‖ψ‖Lq(K) ≤ Cσ− N−1

2
−1‖g‖Lp(K).

for any 1 < q ≤ 2(N−1)
N−5 if N > 5, and any q > 1 if N ≤ 5. If q = p is admissible in

this range, the estimate follows from (5.45). If not, we apply it for q = 2(N−1)
N−5 , and

then Sobolev’s embedding yields

‖ψ‖Ls(K) ≤ Cσ−N−1

2
−2‖g‖Lp(K).
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for any 1 < s ≤ 2(N−1)
N−6 if N > 6, and any s > 1 if N ≤ 6. Iterating this argument,

we obtain the desired estimate after a finite number of steps. The proof of the first
part of the proposition is concluded.

5.4. The case N = 2. Conclusion of the proof. We consider now the problem
of solving system (5.29) when N = 2. We consider first the problem of solving

− σ∆Kψ − A(y, 0)ψ = g in K (5.46)

A main observation is the following: the linear system (5.46) can be decoupled:
If Λ1, . . . ,Λm−1 denote the eigenvalues of the matrix

Q := C
1
2











a1 0 · · · 0
0 a2 · · · 0
...

. . .
...

0 0 · · · am−1











C
1
2 ,

which coincide with those of


















2a1 −a2 0 · · · 0
−a1 2a2 −a3 · · · 0
0 −a2 2a3 · · · 0
...

. . .
. . .

. . .
...

0 · · · −am−3 2am−2 −am−1

0 · · · −am−2 2am−1



















,

then system (5.46) expressed in coordinates associated to eigenfunctions of Q de-
couples into m− 1 equations of the form

− σ∆Kψj −
β√
2
Λj K(y)ψj = gj in K, j = 1, . . . ,m− 1 (5.47)

When N = 2 this problem reduces to an ODE. K is then a geodesic of M
and K(y) will simply be Gauss curvature measured along K. Using y as arclength
coordinate, and dropping the index j, Equations (5.47) take the generic form

−σψ′′ − µK(y)ψ = g in (0, ℓ),

ψ(0) = ψ(ℓ), ψ′(0) = ψ′(ℓ).
(5.48)

where µ is given and fixed, and ℓ is the total length of K.
For this problem to be uniquely solvable, we need that µσ−1 differs from the

eigenvalues λ = λj of the problem

−ϕ′′ = λK(y)ϕ in (0, ℓ),

ϕ(0) = ϕ(ℓ), ϕ′(0) = ϕ′(ℓ).
(5.49)

More precisely, in such a case we have that the solution of (5.48) satisfies

‖ψ‖L2(K) ≤
σ−1

minj |λj − σ−1µ| ‖g‖L2(K) (5.50)
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Now, we restate Problem (5.49) using the following Liouville transformation:

ℓ0 =

∫ ℓ

0

√

K(y) d y, t =
π

ℓ0

∫ y

0

√

K(θ) d θ, t ∈ [0, π),

Ψ(y) = K(y)−
1
4 , e(t) = ϕ(y)/Ψ(y), q(t) =

ℓ20 Ψ′′(y)

π2 Ψ2(y)K(y)
.

Equation (5.49) then becomes

−e′′ − q(t) e =
ℓ20
π2

λ e in (0, π), e(0) = e(π), e′(0) = e′(π).

A result in [32] shows that, as j → ∞ we have

λj =
4π2j2

ℓ20
+ O(j−2).

Hence, if for some c > 0 we have that

|σ−1µ− 4π2j2

ℓ20
| > cσ− 1

2 for all j ≥ 1,

and σ is sufficiently small, then the problem will be solvable, and thanks to (5.50),
we will have the estimate

‖ψ‖L2(K) ≤ Cσ− 1
2 ‖g‖L2(K) (5.51)

for the unique solution of Problem (5.48). It follows that, under these conditions
System (5.47) is uniquely solvable and its solution ψ = −(σ∆Kψ + A(y, 0))−1g
satisfies estimate (5.51).

Now, for σ as above, we can write system (5.29) in the fixed point form in L2(K),

ψ + T (ψ) = −(σ∆Kψ + A(y, 0))−1g, ψ ∈ L2(K), (5.52)

where

T (ψ) := (σ∆Kψ + A(y, 0))−1[(A(y, σ) − A(y, 0))ψ] .

We observe that, as an operator in L2(K), ‖T ‖ = O(σ
1
2 ). Thus, for small σ, Problem

(5.52) is uniquely solvable, and satisfies (5.51). Finally, for the Lp case, we argue
with the same bootstrap procedure of §5.3.

The proof of the proposition is complete.

6. The Jacobi-Toda system II: nested catenoidal interfaces in R3. In this
section, we consider a simple noncompact case, i.e., M = R3 and K is a complete
embedded minimal surfaces in R3. First let us review the results on Allen-Cahn
equation in RN

∆u + u− u3 = 0 in R
N (6.1)
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6.1. De Giorgi conjecture. E. De Giorgi [10] formulated in 1978 a celebrated
conjecture on the Allen-Cahn equation (6.1), parallel to Bernstein’s theorem for
minimal surfaces: The level sets [u = λ] of a bounded entire solution u to (6.1),
which is also monoton e in one direction, must be hyperplanes, at least for dimension
N ≤ 8. Equivalently, up to a translation and a rotation, u = w(x1). This conjecture
has been proven in dimensions N = 2 by Ghoussoub and Gui [23], N = 3 by
Ambrosio and Cabré [2], and under a mild additional assumption by Savin [52] for
4 ≤ N ≤ 8. A counterexample was recently built for N ≥ 9 in [16]. See [20] for a
recent survey on the state of the art of this question.

6.2. Finite Morse index solutions to Allen-Cahn equation equation in
R3 and embedded minimal surfaces of finite total curvature. In [17], we
constructed a new class of entire solutions to the Allen-Cahn equation in R3, and
also finite Morse index, whose level sets resemble a large dilation of a given complete,
embedded minimal surface K of R3, asymptotically flat in the sense that it has finite
total curvature, namely

∫

K
|K| dV < +∞

where K denotes Gauss curvature of the manifold, which is also non-degenerate.
Furtheremore, we also proved that the Morse index of the solutions to (6.1) equals
the index i(K) of the minimal surface.

Theorem 2. [17] Let N = 3 and K be a minimal surface embedded, complete with
finite total curvature which is nondegenerate. Then, there exists a bounded solution
uα of equation (6.1), defined for all sufficiently small α, such that

uα(x) = w(z − q(y)) +O(α) for all x = y + zν(αy), |z − q(y)| < δ

α
, (6.2)

where the function q satisfies

q(y) = (−1)kβk log |αy′| +O(1) y ∈Mk,α, k = 1, . . . ,m,

for some numbers βk.
Furthermore, for all sufficiently small α we have

m(uα) = i(K).

6.3. Nested catenoids. We discuss another new phenomena for the Allen-Cahn
equation in R

3

∆u + u− u3 = 0 in R
3 . (6.3)

Theorem 2 establishes an almost one-to-one correspondence between finite Morse
index solutions to (6.3) and the embedded complete minimal surfaces with finite
total curvature in R3.

In the following, we present a new phenomena associated with (6.3) which has
not found any analog in the theory of minimal surfaces. Namely we find a solution
to (6.3) with large number of Morse index and large number of nested catenoids.

We consider the simpest minimal surfaces K =catenoid. Its parametrization is
given by

X(u, v) = (cosh(u)v, u) : R × S1 (6.4)

where u ∈ R, v ∈ S1. The Jacobi operator can be computed explicitly

J :=
1

(coshu)2
(∂uu + ∂vv + 2sech2u) (6.5)
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Let
Xw = X + tn

be the Fermi coordinate. Here n is the unit normal vector and t is the signed
distance to the catenoid.

We state the following theorem on the existence of nested catenoids:

Theorem 1. [18] Let N = 3 and K be the catenoid. Let m ≥ 2 be any fixed positive
integer. Then for α small, there exists a bounded solution uα of equation (6.3),
defined for all sufficiently small α, such that

uα(x) =

m
∑

j=1

(−1)jw(t− qj(y)) +O(α) for all x = y + zν(αy), |z − q(y)| < δ

α
,

(6.6)
where the function qj satisfies the Jacobi-Toda system

ε2
(

∆Kqj + |AK|2qj
)

− a0

[

e−
√

2(qj−qj−1) − e−
√

2(qj+1−qj)
]

= 0 (6.7)

on K, j = 1, . . . ,m, with the convention q0 = −∞, qm+1 = +∞. The Morse index
of uα approaches +∞ as α→ 0.

6.4. Solvability of the Jacobi-Toda system (6.7). In the following, we discuss
how to solve the new Jacobi-Toda system (6.7). Of course, the main problem is
that K is noncompact. We consider the simplest case m = 2 and furthermore we
assume that q depends on u only. Similar to Section 4, we can only need to solve
the following scalar equation

ǫ2J [h] = e−
√

2h,where h =
√

2(q1 − q2). (6.8)

If we use the arclength as paramter

s = sinhu

then the Jacobi operator becomes

J [h] = hss + hvv
s

1 + s2
hs +

2h

(1 + s2)2
h (6.9)

As in Section 4, we proceed in two steps: first we solve an algebraic equation and
improve the error, secondly we solve the linearized problem.

Let h0 solve the algebraic equation

2ǫ2h0

(1 + s2)2
= e−

√
2h0 (6.10)

Then it is easy to see that

h0 =
√

2 log
1

ǫ
+ log log

1

ǫ
+ log(1 + s2)2 (6.11)

Let

σ =
1

log 1
ǫ

Then we need to analyze the following linear problem

σJ [φ] + (1 + σ log(1 + s2)2)[φ] = g (6.12)

To overcome the non-compact case, we use stereographic projection

u = tan
θ

2
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so that (6.12) can be reduced to a problem on the compact manifold S2

σ[∆S2 [φ] + a(θ)φθ + 2φ] + (1 + σV (θ))[φ] = g on S
2 (6.13)

where V (θ) = log cos θ ∈ Lp for any p > 1.
If V (θ) is smooth, then we can solve (6.13) using gap condition, as in Section

4.3 or in [14]. But the main problem is V has a singularity like log |θ|. This can be
overcome by the following simple lemma:

Lemma 6.1. There exists σi → 0 such that

‖φ‖H2(S2) ≤
1

σ
‖g‖L2(S2) (6.14)

Proof. Since we are in symmetric class, we may find gaps σi → 0 (as in [14]) such
that

‖φ‖L2 ≤ 1√
σi

‖g‖L2. (6.15)

Combining (6.14) and (6.15), we see that

‖φ‖Lp ≤ 1

σ(1+τ)/2
‖g‖L2 (6.16)

for some p > 2 and τ is small.
Hence

‖φ‖H2 ≤ C‖V (θ)φ‖L2 +
1

σ
‖g‖L2

≤ C
1

σ(1+σ)/2
‖φ‖Lp +

1

σ
‖g‖L2

≤ C
1

σ
‖g‖L2.

7. The Jacobi-Toda System III: Nested traveling wave solutions for Allen-
Cahn equation. In this section, we show that another kind of Jacobi-Toda system
arises in the study of nested traveling waves to Allen-Cahn equation. Interestingly
enough, we can solve the corresponding Jacobi-Toda system without the resonance
condition.

We consider traveling wave solutions to the following parabolic Allen-Cahn equa-
tion

ut = ∆u+ u− u3, in R
N+1 × (−∞,∞), N > 1, (7.1)

in the following form:

u(x, t) = U(x′, xN+1 − ct), x = (x′, xN+1). (7.2)

Then U will satisfy the following traveling wave Allen-Cahn equation

c∂xN+1
U + ∆U + U − U3 = 0 in R

N+1. (7.3)

In [7], the existence of a traveling wave in the form U(r, xN+1), |x′| = r, is
obtained for any speed c > 0. Furthermore, it is shown that, asymptotically, the
0−level set of U—called Γ , is paraboloid- like

lim
xN+1→+∞,(x′,xN+1)∈Γ

r2

2xN+1
=
N − 1

c
, if N > 1.

Let us assume c = ǫ≪ 1, N > 1. In [19], we established the existence of traveling
wave solution to (7.3) whose zero level set consists on k disjoint components which
foliate the neighborhood of the rotationally symmetric eternal solution to the mean
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curvature flow. To explain this we will recall that (7.3) is related with the problem
of eternal solutions to the mean curvature flow.

Here we will discuss a special eternal solution of the mean curvature flow for
which Σ(t) = {F (x′) + t}, where F : RN → R, is a graph of a smooth function
satisfying

∇(
∇F

√

1 + |∇F |2
) =

1
√

1 + |∇F |2
. (7.4)

It is known from [8] that there exists a unique radially symmetric solution F of
(7.4) with the following asymptotic behavior

F (r) =
r2

2(N − 1)
− log r + 1 +O(r−1), r ≫ 1. (7.5)

Notice that this asymptotic behavior corresponds (to the leading order) to the
asympto tic behavior of the nodal set Γ of solutions to (6.1) found in [7].

Theorem 3 ([19]). Let c = ε > 0 be small. Then (7.3) has a solution uǫ whose
0-level set consists of k interfaces given as graphs of smooth functions {xN+1 =
Fǫ,j(r)} where

Fε,j(r) = ε−1F (εr) + 2(j − k − 2

2
)ε log

(1 + r)

ε
+O(ε log log

1

ε
), (7.6)

and r = |x′|.

Functions Fε,j(r) can also be seen as normal graphs over the surface Γε =
{xN+1 = ε−1F (εr)}. Although these functions diverge logarithmically along the
ends of Γε but since this growth is small relative to the asymptotic behavior of Γε

at ∞ (which is quadratic in r) and their graphs do not intersect we can speak of a
foliation of a neighborhood of Γε by the nodal sets of uε.

The relation between the eternal solution Γε and the traveling wave solution uε

is well known and in fact easy to explain, at least formally. On the other hand it is
not at all obvious what kind of geometric conditions should functions Fε,j satisfy.
The reason for this is that in the geometric context of the MC flow the phenomenon
of foliations does not have an analog. Indeed as we will see the way the foliation by
the traveling wave is determined depends on a delicate mechanism which mediates
between the local geometry effect due to the curvature of the nodal sets and the long
range interactions between them. This mechanism has no analogue in the geometric
context.

It turns out that as before, a new system of nonlinear PDEs, which we call the
Jacobi-Toda system, gives a sufficient condition (at least formally) for the eternal
solution of the MC flow to generate a foliation by traveling waves. To this end
we will fix an eternal solution Σ and consider k functions fε,1, . . . , fε,k ∈ C2(Σ)
such that fε,1 < · · · < fε,k. We will also denote the Laplace-Beltrami operator, the
second fundamental form, and the gradient on Σ, respectively, by ∆Σ AΣ , and ∇Σ .
Then functions fε,j , j = 1, . . . , k solve the following new Jacobi-Toda system

ε2α0

[(

∆Σ + |AΣ |2)fε,j + ∇Σ fε,j · ∇Σ (xN+1)
]

− e
√

2(fε,j−1−fε,j) + e
√

2(fε,j−fε,j+1) = 0, (7.7)

where we always agree that fε,0 = −∞, fε,m+1 = ∞. Here α0 > 0 is a universal
constant. The normal graphs of functions fε,j(ε·) over Σε represent the foliations
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by trave lling waves. The relation between functions fε,j and Fε,j introduced in
Theorem 3 is easy to obtain.

Considering this new Jacobi-Toda system (7.7) we have:

Theorem 4. Consider (7.7) with Σ replaced by Γ . For each m > 1 there exists a
solution to the Jacobi-Toda system.

A remarkable fact in Theorem 4 is that unlike Theorem 1 and Theorem 1, we do
not need nonresonance condition to solve the Jacobi-Toda system (7.7). This may
be due to the effect of the first order term. In the following we sketch the main
steps in proving Theorem 4.

7.1. Rotationally symmetric eternal solutions. For what follows it will be
convenient to denote:

L0[v] = ∆Γ v + |AΓ |2v + ∇Γ v · ∇ΓF. (7.8)

Our theory of solvability of the Jacobi-Toda system will be valid for functions of
the radial variable r only and so we need to express the operator L0 in terms of the
radial variable r:

L0[v] =
vrr

1 + F 2
r

+
(N − 1)vr

r
+

( (N − 1)F 2
r

r2(1 + F 2
r )

+
F 2

rr

(1 + F 2
r )3

)

v. (7.9)

Let us change the independent variable

s =

∫ r

0

√

1 + F 2
r dr. (7.10)

The new variable s is nothing else but the arc length of the curve γ = {(r, F (r)), r >
0} in R2. Using the asymptotic formula (7.5) for F we get that

s ∼ r, r ≪ 1, s =
r2

2(N − 1)
+ O(log r), r ≫ 1. (7.11)

By a straightforward computation we obtain the following expression for the
operator L0:

L0[v] = vss + a(s)vs + b(s)v (7.12)

where

a(s) =
Fr + N−1

r
√

1 + F 2
r

, b(s) = |AΓ (r)|2, r = r(s). (7.13)

Note that

a(s) =
N − 1

s

(

1 + O(s2)
)

, s≪ 1, a(s) = 1 + O(s−1), s≫ 1,

b(s) =
(N − 1)

r2
+ O(r−4) =

1

2s
+ O(s−2 log s), s≫ 1,

(7.14)

and that in general a(s), b(s) > 0 since Γ is convex and Fr(0) = 0. We also have
b(0) = 1 and b′(0) = 0. Another important fact is that

b′′(0) = −N
2 + 4N + 2

N4(N + 2)
< 0, N = 2, . . . . (7.15)

This last identity follows by a direct computation. Setting bN = N2+4N+2
2N4(N+2) we have

b(s) = 1 − bNs
2 + O(s4), s→ 0. (7.16)
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7.2. A non-homogeneous Jacobi-Toda system. In reality we have to deal in
general with the non-homogeneous Jacobi-Toda system. Thus we will consider the
following problem:

ε2α0L0[fε,j ] − e
√

2(fε,j−1−fε,j) + e
√

2(fε,j−fε,j+1) = ε2hε,j , (7.17)

where fε,j = fε,j(r), hε,j = hε,j(r). The above problem can also be seen in terms
of the arc length variable s.

Thus we state the following:

Proposition 7.1. Let m ≥ 2 and consider the following problem:

ε2α0L0[fε,j ] − e
√

2(fε,j−1−fε,j) + e
√

2(fε,j−fε,j+1) = ε2hε,j , j = 1, . . . ,m (7.18)

where hε,j are smooth functions such that it holds:

|hε,j(s)| ≤ Cετ (2 + s)−
3
2 , j = 1, . . . ,m, (7.19)

with similar estimates for the derivatives. There exists a solution of this problem
such that if we denote

uε,j = fε,j − fε,j−1, j = 2, . . . ,m, vε =

k
∑

j=1

fε,j ,

then functions uε,j, vε satisfy

uε,j(s) = log
2
√

2

ε2α0b(s)
+ O(log log

1

ε2b(s)
), s→ ∞

|vε(s)| ≤ Cετ (2 + s)−
1
2 log(s+ 2).

(7.20)

To describe the strategy we use we will assume for simplification that m = 2,
and denote uε =

√
2(fε,2 − fε,1) and vε =

√
2(fε,1 + fε,2), and respectively hε =√

2
α0

(hε,2 − hε,1) and gε =
√

2
α0

(hε,2 + hε,1). Then we get the following decoupled
system:

L0[uε] −
2
√

2

ε2α0
e−uε = hε (7.21)

L0[vε] = gε (7.22)

Let us discuss briefly the second of the above equations. We will see that the right
hand side of this equation satisfies:

gε ∼ ετ (1 + s)−
3
2
−β , τ > 0, β ≥ 0. (7.23)

When the right hand side of (7.22) has this behavior then the equation can be solved
by using the nondegeneracy of the traveling graph. The key observation is that the
operator L0 has a decaying, positive element in its kernel

φ0 =
1

√

1 + F 2
r

∼ 1

r
(∼ 1√

s
), (7.24)

from which (7.22) by a standard ODE method.
The solvability theory for the nonlinear equation (7.21) is another story. Even

when the right hand side decays at the same rate as in (7.23) we still have the
nonlinear term to deal with. In general the decay rate of this term will be actually
slower and in addition it is a term of order ε−2. In other words the real difficulty
is in solving the non-homogeneous nonlinear problem (7.21). To do this we will
first use an approximation scheme to find a suitable asymptotic approximation of
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the solution of (7.21) and after this we will be in the position to use a fixed point
argument to solve the non-homogeneous problem with the right hand side of the
type (7.23).

7.3. Solving for uε: Approximations. Our goal in this and the following section
is to solve (7.21). Of course once this is done the Proposition 7.1 will be proven.
We begin by finding an approximate solution of (7.21) assuming that hε,j satisfies
(7.19), which is equivalent to solving:

Sδ[u] = hδ, u > 0, |hδ(s)| ≤ Cδτ (2 + s)−
3
2 , (7.25)

where

Sδ[u] ≡ L0[u] − δ−2e−u, δ =
ε
√
α0

23/4
. (7.26)

Once a good approximation is found the nonlinear problem (7.21) can be reduced to
a fixed point problem. This step involves inverting the linear operator obtained by
linearization of the nonlinear operator Sδ around the approximate solution. This
problem will be dealt with in the next section.

The nonlinear operator Sδ can be written explicitly in terms of the arc length
variable s:

Sδ[u] = uss + a(s)us + b(s)u− δ−2e−u.

In order to find a solution of (7.25) we will first build an approximate solution. The
leading order term of this approximation is found by solving for u0 the following
equation:

b(s)u0 =
1

δ2
e−u0 =⇒ u0e

u0 =
1

δ2b(s)
, (7.27)

which implies that

u0(s) = log
1

δ2b(s)
− log log

1

δ2b(s)
+ O(log log | log δ2b(s)|). (7.28)

Let us also observe the following relations:

u′0 =
b′

b

u0

1 + u0
, u′′0 =

(b′

b

)′ u0

1 + u0
+

(b′

b

)2 u0

(1 + u0)3
. (7.29)

Accepting the function u0 as the leading order approximation, and assuming that
the approximate solution is of the form u+u0, we are left with the following problem:

u′′ + a(s)u′ + b(s)u = b(s)u0(e
−u − 1) − a(s)u′0 − u′′0 + hδ. (7.30)

Next terms in the approximate solutions will be determined considering two regions
depending on the behavior of the functions a(s), b(s). It is important to keep in
mind the the approximations we want to construct must be decaying functions of s
while at the same time there size must become small in terms of powers of 1

log 1

δ2

.

This is the reason why we need to consider the two regimes for s. Our goal is to
find, for any k > 0, an approximation to the above problem, denoted by uk such
that

|Sδ[uk](s)| ≤ C(2 + s)−k−1

[

log 1
δ2

]k
. (7.31)
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We introduce the following weighted Hölder norms for functions u : R+ → R:

‖u‖Cℓ
β,µ

(R+) :=

ℓ
∑

j=0

sup
s>1

{

(2 + s)β+j
[

log
(2 + s

δ2
)]µ‖u‖Cj((s−1,s+1))

}

,

where β, and µ ≥ 0.
We summarize the approximation in the following:

Lemma 7.1. For each k ≥ 1 the function

uk = u0 +
k

∑

j=1

[χui,j + (1 − χ)uo,j ],

satisfies, with some constant C (that may depend on k):

‖χui,j + (1 − χ)uo,j‖C2
j−1,j(R+) ≤ C, j ≥ 1. (7.32)

The error of the approximation can be estimated by:

‖Sδ[uk]‖C0
k+1,k

(R+) ≤ C. (7.33)

The proof of Lemma 7.1 is as follows: we will consider the inner and the outer
approximation separately, construct suitable approximations and then “glue” the
approximate solutions. We refer to [19] for detailed proofs.

7.4. Definition of the linearized operator Lδ. From the above considerations
we see that linearization of Sδ around the approximate solution uk is the following
operator

Lδ[h] = hss + a(s)hs + pδ(s)h, pδ(s) = b(s)(1 + u0e
−uk+u0). (7.34)

For future reference we observe that from (7.27)–(7.28) and Lemma 7.1 it follows
that

0 < pδ(s) ≤ C log
1

δ2
, (7.35)

while when s ≥ s̄ then pδ(s) satisfies

1

C(2 + s)
log

(2 + s

δ2
)

< pδ(s) ≤
C

2 + s
log

(2 + s

δ2
)

, s ≥ 0. (7.36)

7.5. The right bounded inverse of Lδ. The key is to solve the following problem

Lδ[h] = g(s). (7.37)

The point is to construct a right inverse of Lδ which is bounded in the weighted
norm defined above. More precisely we will show:

Lemma 7.2. Suppose that β > 1. Then there exists a constant C > 0 and a
solution to (7.37) such that

‖h‖C2,µ
β

(R+) ≤ C log
1

δ2
‖g‖C0,µ

β+1
(R+). (7.38)

To begin we make the following transformation:

ĥ = exp

(

1

2

∫ s

1

a(τ) dτ

)

h. (7.39)
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Then near s ∼ 0, ĥ = s(N−1)/2h and near s→ +∞, ĥ ∼ es/2h, by (7.14). Equation
(7.37) is transformed to

ĥ′′ + (pδ(s) − â(s))ĥ(s) = ĝ, (7.40)

where

â =
1

2
a′ +

1

4
a2, ĝ = exp

(

1

2

∫ s

1

a(τ) dτ

)

g.

We mainly work with the transformed equation (7.40). The idea of the proof
of the Lemma is the following: we will consider the inner and the outer problem
separately, construct suitable inverses of Lδ for these problems and then “glue” the
solutions. The situation now is more complicated since we have to consider the full
second order problem. It is at this level that we take full advantage of some special
properties of the eternal solution to the mean curvature flow. We refer to [19] for
full details.

8. Concluding remarks. We have derived the Jacobi-Toda system for the Allen-
Cahn equation in three different settings: the compact case, the non-compact R3

case and non-compact traveling wave case. We believe that in general the Jacobi-
Toda system provides a natural theory for the interaction of interfaces.

We note that Jacobi-Toda system has no analog in the theory of minimal sur-
faces or the theory of CMC surfaces: the reason is clear. In CMC surfaces, the
interaction of the surfaces is Dirac, i.e., either the surfaces touch each other or have
no interaction at all. The Toda system appears only for semilinear PDE because of
the weak interactions of the solutions.

Several important questions appear:
1. Under the condition K(y) > 0, it is possible to solve the Jacobi-Toda system.

What if K(y) ≥ 0? A natural condition for the solvability of the Jacobi-Toda
system seems to be that the Morse index of the Jacobi operator is positive.

2. In the non-compact setting, whether or not resonance is needed depends very
much on the decay of the potential K. In the catenoid case, the potential K decays
like 1

r4 . In the traveling wave case, the potential decays only like 1
r2 . It will be

interesting to know for what kind of potential the resonance condition is needed.
3. In [16], we constructed a single interface solution to the Allen-Cahn equation

in R9 using the Bomberie-De Giorgi-Giusti graph. In view of the nested catenoid,
a natural question is: is there a nested Bomberie-De Giorgi-Giusti graph?

4. Interfaces solutions are also constructed for the singularly perturbed
Schrodinger equation

ǫ2∆u− V (x)u + up = 0 in R
N (8.41)

Even for single interfaces, resonance conditions are needed [14]. If we consider
interface foliations, further difficulties arise for multiple non-resonance conditions.
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[49] F. Pacard and M. Ritoré, From constant mean curvature hypersurfaces to the gradient theory

of phase transitions, J. Diff. Geom., 64 (2003), 359–423.
[50] P. Padilla and Y. Tonegawa, On the convergence of stable phase transitions, Comm. Pure

Appl. Math., 51 (1998), 551–579.
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